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Identifying different types of cells in scRNA-seq data is a critical task in single-cell
data analysis. In this paper, we propose a method called ProgClust for the
decomposition of cell populations and detection of rare cells. ProgClust
represents the single-cell data with clustering trees where a progressive
searching method is designed to select cell population-specific genes and
cluster cells. The obtained trees reveal the structure of both abundant cell
populations and rare cell populations. Additionally, it can automatically
determine the number of clusters. Experimental results show that ProgClust
outperforms the baseline method and is capable of accurately identifying both
common and rare cells. Moreover, when applied to real unlabeled data, it reveals
potential cell subpopulations which provides clues for further exploration. In
summary, ProgClust shows potential in identifying subpopulations of complex
single-cell data.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) emerges as a powerful tool for the exploration
of genetic contents in single cells (Picelli et al., 2014; Hedlund and Deng, 2018; Aldridge and
Teichmann, 2020). Through sequencing each single cell, biologists can dissect cellular
heterogeneity more straightly, and help establish an in-depth understanding of complex cell
systems.

Single-cell Clustering that groups cells into cell populations is an essential step toward
single-cell analysis (Andrews andHemberg, 2018; Kiselev et al., 2019; Petegrosso et al., 2020).
However, the unbalanced type distributions of scRNA-seq data pose great challenge for
clustering-based cell type identification. Major cell types among these can be characterised
comprehensively with toolkits such as Seurat and Scater, whereas the rare cell types, making
up the majority of the new cell types, remain to be uncovered by specialised approaches.
Several single-cell clustering algorithms have been developed (Wang et al., 2017; Hu et al.,
2019). For example, SC3 (Kiselev et al., 2017) provides an ensemble approach to combine
multiple clustering solutions to yield a consensus clustering. Although SC3 can obtain
abundant cell populations accurately and robustly, it tends to fail in identifying non-
abundant cell populations, i.e., rare cells.

Rare cells are often transient cell states that play an important role in biological processes,
including cell development and disease progression. Therefore, much effort has been devoted to
identifying rare cells. GiniClust (Jiang et al., 2016) is proposed to use Gini index as the criterion for
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gene selection before performing single cell clustering. It assumed that
genes with a high Gini index are highly expressed in a rare cell type.
However, due to the nature of Gini index, the selected genes can hardly
distinguish between relatively large clusters, which we call abundant cell
types. In this paper, we further observe that Gini index calculated globally
on the whole data fails in identifying rare cell types that are outlying to
local neighbors. Recently, MicroCellClust (Gerniers et al., 2021) is
proposed to find rare cell clusters by directly searching the gene-cell
subsets with high expression levels in the gene expression matrix, that is,
bicluster. Thismethod is effective for the detection of rare cells, but is also
not suitable to explore the overall cell population.

Several methods have been developed to solve the problem of
detecting rare cells and abundant cell types simultaneously. RaceID
(Grün et al., 2015) identifies outlier cells in each cluster after
performing k-means to cluster the single cell expression data. It
calculates the transcript count probability of each cell, and considers
cells whose count probability is below a certain threshold as outlier
cells. These outlier cells are then removed from the original clusters
and re-clustered. RaceID3 (Herman and Grün, 2018) improves
RaceID by adding a feature selection step to reduce the impact of
noise on clustering. GiniClust2 (Tsoucas and Yuan, 2018) performs
GiniClust to identify rare cell types while uses Fano factor-based
k-means (Fano, 1947) to group abundant cell types, and then
combine the results through weighted ensemble clustering
technique. Further, GiniClust3 (Dong and Yuan, 2020) replaces
the clustering algorithm used in GiniClust2 with clustering
algorithms with lower time complexity such as Leiden clustering
or Louvain clustering. Compared with GiniClust2, it can process
large-scale data with higher efficiency. Xie et al. (2020) proposed a
deep learning clustering framework called scAIDE. It first uses an
Autoencoder to reduce the original data to 256 dimensions, and then
performs a random projection hashing based k-means algorithm.
However, experiment results show that it still remains a big
challenge to detect rare and abundant cell types at the same time.

In order to fully explore the cell populations, in this paperwe propose
a progressive clustering method, named ProgClust, which can identify
the subpopulations of abundant cell types and rare cell types
simultaneously. Inspired by previous studies and empirical
experiments, we note that gene selection plays a vital role in singe-

cell clustering.However, regardless of the feature selection (e.g., genefilter
used in SC3, Gini index used in GiniClust) or dimension reduction (e.g.,
Autoencoder in scAIDE) methods they adopted, previous studies
attempts to yield highly expressed genes for abundant cell types or
rare cell types on the whole data globally and in one go. Nevertheless, the
single-cell data always exhibits complex distributions in cell
subpopulations, e.g., local outliers that can not be detected from a
global perspective. Consequently, a global gene selection and
clustering strategy is not suitable for find clusters with large
differences in shape and size. For example, when we try to identify
rare cells from a sample that contains five cell types and of which the rare
cells, CD14+Monocyte, only accounts for about 0.3% (Zheng et al., 2017),
if we use the Gini index to find marker genes for CD14+ Monocyte, the
genes selected cannot reflect the differences between rare cells and other
cells verywell. On the contrary, we use ProgClust to progressively explore
the subpopluations and use Gini index to find marker genes for CD14+

Monocyte, and then obtain more discriminative genes (Figure 1).
ProgClust progressively refines the clusters from coarse to fine

by integrating the typical gene selection and clustering methods in a
progressive, tree-like pipeline. It starts from the whole cell
population as the root node, then performs Fano factor-based
gene selection and clustering to group abundant cells into
different leaf-nodes which represent cell subpopulations.
Subsequently, on each leaf-node, ProgClust performs Fano
factor-based clustering as well as Gini index-based rare cell
detection locally. When the tree stops growing, all the detected
rare cells are then re-clustered in a new tree. Statistical tests are
employed to determine the number of clusters and avoid over-
clustering. We show that ProgClust can effectively and efficiently
identify both abundant and rare cell types of complex single-cell data
through extensive experiments.

2 Materials and methods

2.1 Data preprocessing

In this chapter, there are three publicly available datasets
excluding the simulated experimental data. Among them, both

FIGURE 1
The bubble plots of CD14+ Monocyte cell’s marker genes selected by different methods on a sampled data from PBMC68K dataset. ProgClust find
7 gene markers while GiniClust can only find three gene markers.
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PBMC4k and PBMC68k datasets (Zheng et al., 2017) were processed
according to the code flow provided by 10X Genomics. Mouse
embryonic stem cells were processed according to the process of
GiniClust2 (Tsoucas and Yuan, 2018), i.e., filtering out genes
expressed on less than three cells and cells expressing less than
2000 genes.

2.2 Pipeline of ProgClust

Figure 2 displays the pipeline of ProgClust. The methodology is
to progressively construct different feature spaces of discriminating
genes to distinguish the differences between cells, which finally
grows multiple hierarchical clustering trees in different rounds.
On each node except the root nodes at the trees, ProgClust
performs two steps, Fano-based clustering and Rare cell
detection. As shown in Figure 2A, in round 1, at the root node
of the first tree, we perform Fano-based clustering, i.e., calculating
Fano factors of all the genes using the raw data, then splitting the raw
data into several nodes by clustering them based on genes with high
Fano factors. In this step, ProgClust identifies the abundant cell
types, and splits them to different leaf nodes. Then on each leaf node,
we calculates the Gini index of all the genes, and filter out the rare
cells mixed in the abundant cells through Gini-based Rare cell
detection. By repeating the two steps iteratively (to prevent over-

clustering, we iterate twice by default), ProgClust progressively
grows a clustering tree of abundant cells and removes rare cells
to the next round.

In round 2, the main purpose is to distinguish the rare cell types.
ProgClust will first merge all the rare cells into one group, and then
construct a new clustering tree following the same pipeline in round
1. Generally, ProgClust can well identify both the abundant cell
types and rare cell types in two rounds, i.e., by growing two
clustering trees.

2.3 Fano-based clustering of abundant cells

First, the Fano factor of each gene will be calculated and the top
1000 genes are selected as features. The Fano factor of each gene is
obtained by calculating the ratio of the variance to mean expression
value. Let gi be the expression vector of gene i on each cell, var (gi) be
the variance of the vector gi, and mean (gi) be the mean value of the
vector gi, then the Fano factor of gene i is defined as:

Fanoi � var gi( )/mean gi( ) (1)
Intuitively, differentially expressed genes are with high Fano factors.
Therefore, it can be used in identifying different cell types.

If there is a previous node, the high Fano-factor genes selected in
the previous node will be merged into the feature to prevent over-

FIGURE 2
Overview of ProgClust. (A) The framework of ProgClust. ScRNA-seq data is input into the first clustering tree. After Fano-based Clustering and Gini-
based rare cell detection, the detected rare cells and common cells clustering results are obtained. The rare cells are input to the next clustering tree; (B)
Fano-based clustering; (C) Gini-based Rare cell detection.
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clustering. Then different clustering methods are chosen according
to the number of cells. Since the differences between cells are mainly
reflected in the differences in expressed genes, the cosine similarity is
more able to reflect the differences between cells than the Euclidean
distance. But for large samples, k-means based on Euclidean
distance is more suitable than spectral clustering based on cosine
similarity. When the number of cells is greater than a certain
threshold, we will first use PCA (Wold et al., 1987) to reduce the
features to 50 dimensions, and then use k-means for clustering.
Otherwise, we will first calculate the similarity matrix of the sample
based on the cosine similarity, and then perform spectral clustering.
We set this threshold to 50.

Since we do not know the number of clusters, we need to
determine k according to the structure of the data. For k-means,
we use gap statistic (Tibshirani et al., 2001) to determine k, which
uses statistical methods to calculate whether there are significant
differences before and after clustering. As for spectral clustering,
since the similarity matrix has been obtained, it is more convenient
to directly determine k through the similarity matrix. Specifically, we
judge the choice of k by observing whether the average similarity
within the cluster does not increase significantly when k increases.
Given a singel cell dataset X � {xi}n1, let s (i, j) be the similarity
between cells, k be the number of clusters in the clustering algorithm,
and n(Ck

m) be the number of cells of the mth cluster Ck
m. Assuming

that the ith cell belongs to the mth cluster when the number of
clusters is k, the intra-cluster similarity of the cluster ski where the ith
cell is located is defined as:

ski � ∑
xi′∈Ck

m,xj′∈Ck
m,i′≠j′

s i′, j′( )/ n Ck
m( ) n Ck

m( ) − 1( )( ) (2)

We can calculate the ski of each cell, and define the increase of
intra-cluster similarity rk+1m as:

rk+1m � ∑
xi∈Ck+1

m

sk+1i − ski( )/ ∑
xi∈Ck+1

m

ski (3)

Then, we define the max rk+1m as the similarity gain Sk+1k :

Sk+1k � max
m

rk+1m( ) (4)

We set a gain threshold ic (we set it to 0.12 by default, which is
used for all my experiments, as are the other parameters.). We start
calculating Sk+1k from k = 1 until Sk+1k is less than this threshold,
which means that spectral clustering can no longer find new cell
types and is unnecessary to increase k. The reason for choosing max
rk+1m is to encourage the clustering algorithm to be able to find a new
cluster, even if the number of cells in this cluster is very small.
Sometimes, in order to improve the intra-cluster similarity of certain
clusters, the clustering algorithm will reduces the intra-cluster
similarity of other clusters. This is obviously detrimental to the
clustering result. Therefore, when considering the Sk+1k , this part can
also be taken into consideration. Assuming thatCk

m′ represents those
clusters with negative rk+1m , then the similarity gain Sk+1k can be
defined as:

Sk+1k � max
m

rk+1m −∑
m′

n Ck+1
m′( )

n Ck+1
m( )rk+1m′

⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭ (5)

2.4 Rare cell detection

Because the variance information of genes differentially
expressed on rare cell types can be easily masked by the
information on abundant cell types, the fano factor is not
suitable for gene selection in rare cell detection. Therefore, it is
necessary to detect rare cell in the results of Fano-based clustering.

Given a specific cluster obtained from Fano-based clustering,
ProgClust identifies the rare cells and remove them from this cluster
with the following three steps.

First, we select locally high Gini genes based on the cells in that
cluster, which define the feature subspace for rare cell detection. Let
gij be the expression value of gene i on the jth cell, and it has been
sorted in ascending sort order, and n be the number of cells, then the
Gini index can be calculated as:

Ginii � ∑
j

2j − n − 1( )gij/ n∑
j

gij
⎛⎝ ⎞⎠ (6)

Gini index is originally used to measure the degree of
imbalance. Generally, genes with high Gini index are only
expressed on a small fraction of cell population, and such genes
are particularly useful in distinguishing between rare cell types and
abundant cell types.

As illustrated in Figure 1, for a specific cell subpopulation, locally
high Gini genes as a whole are more differentially expressed than
globally high Gini genes. The local Gini index of each gene is
calculated and normalized following the method in (Jiang et al.,
2016; Tsoucas and Yuan, 2018). The principal difference is that
ProgClust only calculates the raw Gini index on the local data,
i.e., the cells in the cluster.

Second, in the defined subspace we calculate the cosine
similarities between each cells. We observe that high Gini genes
are usually lowly expressed on abundant cells, hence we label the
cells whose total expression on the selected genes is below a
predefined noise threshold (the default value is 30 for the
original count matrix) as abundant cells, which would not be
involved in the computation.

Third, based on the similarity matrix, we use Affinity
Propagation (Frey and Dueck, 2007) to further partition the
subpopulation into multiple smaller clusters. Affinity
Propagation is a graph-based clustering algorithm. Compared
with other clustering methods such as k-means, Affinity
Propagation does not need to preset the number of clusters and
is easier to find small clusters in the similarity matrix. Let s (i, k) be
the similarity between sample i and sample k, r (i, k) be the
suitability of the sample k to become the cluster center of the
sample i, and a (i, k) be the suitability of the sample i to choose the
sample k to be its cluster center. Then r (i, k) and a (i, k) are
calculated as follows:

r i, k( ) � s i, k( ) − max
k′ s.t k′≠k

a i, k′( ) + s i, k′( ){ } (7)

a i, k( ) � min 0, r k, k( ) + ∑
i′ s.t i′≠ i,k{ }

max 0, r i′, k( ){ }⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (8)

a k, k( ) � ∑
i′ s.t i′≠k

max 0, r i′, k( ){ } (9)
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Affinity Propagation iteratively updates r (i, k) and a (i, k)
according to Eq. 7, Eq. 8, Eq. 9 until the algorithm converges, and
then identifies clusters according to the result.

To identify rare cell types from these small clusters, we propose a
new metric based on the similarity between clusters to evaluate each
cluster. Specifically, given the mth cluster, let Im be the average
cosine similarity between cells in the cluster and Om be the average
cosine similarity between cells within the mth cluster and the cells
outside themth cluster, we define the ratio of Im to Om as the outlier
score of themth cluster. Since rare cell types are generally outlying to
the abundant cell types, the outlier score of rare cell clusters should
be greater than that of the abundant cell clusters. Here we set a
threshold ros and clusters with outlier scores greater than ros will be
considered as rare cell types. Note that the larger ros is, the more
accurate the rare clusters found, while some rare clusters will be
ignored if ros is too large. In this paper, we set ros = 3.5 by default. In
a few cases, there will be a class of clusters with only one cell, and the
Im of that class cannot be calculated. In this case we can only
consider Om. We set a threshold os, and single-cell clusters with Om

less than os will be considered as rare cell types.

3 Results

In this section, we show that ProgClust is able to reveal the cell
populations without any prior knowledge. We first evaluate the
overall clustering performances of ProgClust on two datasets with
known labels, in comparison with several state-of-the-art single-cell
clustering methods, i.e., GiniClust2, RaceID3, SC3, PARC and
scAIDE. The first dataset is a simulation dataset generated by
following (Jiang et al., 2016). The second one is the widely used
PBMC68k dataset (Zheng et al., 2017). Next, we evaluate the
performances of ProgClust in identifying rare cell types.
Specifically, we compare the ability of the above methods as well
as special clustering algorithms for rare cell detection (i.e., Giniclust,
MCC and Gapclust (Fa et al., 2021)) in identifying CD14+ Monocyte
cells in PBMC68k. Finally, we show how ProgClust effectively detect
all cell types on two real unlabeled data, mouse embryonic stem cells
(Klein et al., 2015) and PBMC4k dataset.

3.1 Evaluation metrics

Considering that the number of clusters may be different from
the number of reference cell types, Normalized Mutual Information
(NMI) (Strehl and Ghosh, 2002) and Purity are used to measure the
clustering performance. NMI is defined as:

NMI � 2I X, Y( )
H X( ) +H Y( ) (10)

where I (X, Y) is the mutual information between the clustering
result and the reference label, H(X) and H(Y) are the information
entropy of the clustering result and the reference label, respectively.

Purity is defined as:

Purity � ∑k
j�1

mj

m
pj (11)

where k is the number of clusters,mj is the number of samples in the
jth cluster, m is the total number of samples, and pj is the maximum
proportion of each type of sample in the jth cluster. NMI ranges
between 0 and 1, while the range of Purity is [1/k, 1], where k is the
number of reference labels. Note that NMI imposes a small penalty
for over-clustering and misclassification, while Purity only pays
attention to classification error.

Since we are dealing with unbalanced data, if we assign the same
weight to each sample in calculating NMI and Purity, the impact of
rare cell types on them will be very small. To fix it, the weight of each
sample is the reciprocal of the number of samples in its cluster.
When calculating the probability p(C) of a certain cluster C, p(C) is
defined as:

P C( ) � ∑xi∈Cwi∑iwi
(12)

where wi is the weight of the sample xi.

3.2 ProgClust accurately clusters simulation
data

In order to evaluate the performance of ProgClust, we first
generated 4 simulated data following the same method as (Jiang
et al., 2016). Number of various types of cells of these four simulated
data are shown in Table 1. The first data simulates the situation
where a very small number of rare samples are mixed in a large
number of samples. The second, third and fourth simulate data
simulated a more complex situation. Compared with real data, the
boundary between each cluster in the simulated data is clearer. We
also evaluated the performance of GiniClust2, SC3, RaceID2, PARC
Stassen et al. (2020) and scAIDE, which can automatically select the
number of clusters for comparison. In order to show the effect of
iteration, we set number of iterations in each clustering tree in
ProgClust to 1 and 2, respectively. The former is named ProgClust_
deep1, and the latter is directly named ProgClust. The parameters of
all algorithms are set according to their recommended parameters.

Figure 3 reports NMI, Purity and the number of clusters selected
by each method on the four simulated data. It can be seen that
ProgClust reached the best. Even if the actual value of k is not clear,
ProgClust can still correctly find all clusters, while other methods
can only accurately classify some clusters. For example,
GiniClust2 has a good effect on identifying extremely rare cells,
such as Simulated data 1 and Simulated data 2. However, when
facing data with more complex distributions, it cannot accurately
identify all clusters only by automatically selected k. The other two

TABLE 1 The number of each type of cells in each simulation data.

Simulation data Number of cells in each cluster

Simulation data 1 2000,1000,10,6,4,3

Simulation data 2 1000,1000,100,100,10,10

Simulation data 3 1500,1000,1000,100,100,10

Simulation data 4 1500,1000,500,250,100,50
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methods SC3 and scAIDE are the opposite of GiniClust2. They are
difficult to identify extremely rare cells, but they can accurately
identify all non-rare cell clusters in all datasets. RaceID3 has better
robustness in various situations, but it shows over-clustering on
these datasets. Therefore, even if the Purity of RaceID3 on both the
simulation data 3 and the simulation data 4 reaches 1, the NMI can
not reach 1. Similarly, the overall effect of PARC looks good, but it
misestimates the number of clusters.

Figure 4 shows the clustering results of each method on the
simulation data 3. As expected, ProgClust can accurately identify all
clusters. GiniClust2 is able to find the rarest clusters, but it fails to
detect the other two rare clusters. Although RaceID3 is able to
identify the differences between all cells, including the rarest cells, its
over-clustering is obvious and some cells of the same type are

divided into two clusters. PARC has the same defect. SC3 detects
all common cells perfectly, but it cannot detect rare cells. ScAIDE
has the same defect as SC3. These analyses suggest that ProgClust
has higher robustness than other methods when the actual k is
unknown.

3.3 ProgClust is robust in clustering
PBMC68k data

In order to evaluate the performance of ProgClust on real data,
we design several subsamples by sampling data from PBMC68k
dataset (Zheng et al., 2017). PBMC68k dataset contains a total of
65579 cells and can be divided into 11 subpopulations according to

FIGURE 3
Comparison of the performance of different clustering methods on 4 simulation data. (A) NMI of each method on 4 simulation data; (B) Purity of
each method on 4 simulation data; (C) The number of clusters selected by each methods.

FIGURE 4
The clustering results of each clustering method on simulation data 3 (other data are provided in the Supplementary Material S1). X-axis represents
the cluster index, and y-axis represents the number of cells. Different colors in the same cluster represent the proportion of different types of cells.
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transcriptomic similarity with purified cell types. We sample data
from 5 subpopulations which are quite different from each other for
experiment: CD56+ NK cells, CD19+ B cells, CD4+/CD25 T Reg
cells, CD34+ cells and CD14+ Monocyte cells. Our sampling process
is as follows: First, each cell subpopulation was first further screened
based on the expression of the marker genes of that subpopulation to
ensure the reliability of the label. The specific screening steps were
performed according to the steps given in GiniClust2. (Tsoucas and
Yuan, 2018). Then we set a sampling range for each type of cells.
After that, the specific sampling number of each type of cells would
be randomly selected according to this sampling range. Finally we
sampled datasets according to the every cell types’ sampling number.
The specific sampling range are shown in Table 2. We sampled
4 types of datasets and repeated sampling 10 times for each type of
sampled datasets, and a total of 40 datasets were generated. For each
type of sampled data, we take the average performance metric of
repeatedly sampled 10 data sets as the result. In this experiment, all
algorithms keep the recommended parameters. Since the data has
been normalized, we set the noise threshold of our method to 1.

We first evaluated the clustering performance of each algorithm.
Table 3 records the results of the experiment. It can be seen that,
ProgClust surpasses other algorithms on NMI, while the Purity of
RaceID3 is slightly higher than that of ProgClust. However, on all
four datasets, RaceID3 selected k which far exceeds the real number
of cell types, while our proposed algorithm is more conservative.
Obviously, although ProgClust is slightly worse than RaceID3 in
Purity, it avoids many meaningless clusters. The performances of
GiniClust2, SC3, PARC and scAIDE are all not very good on these
four datasets. In addition, we also noticed that the performance of
ProgClust_deep1 is not as good as ProgClust, indicating that the

iteration of clustering does play a important role. At the same time,
we can also find that the gap between the NMI of ProgClust and
ProgClust_deep1 is not as large as Purity, which shows that the role
of iteration is more reflected in the ability to separate the mixed cells
that are not separated in the previous iteration.

3.4 ProgClust is robust in identifying CD14+

monocyte cells in PBMC68k dataset

Since detecting rare clusters is an important task in single-cell
clustering, we also explored the clustering performance of each
method on detecting CD14+ Monocyte cells, which is the rarest cell
type in PBMC68k dataset. Since the number of obtained clusters and
the number of real labels are different, there is no metric for
evaluating the ability to detect rare clusters and we need to make
some adjustments. We divide the clusters that methods identify into
two groups, CD14+ Monocyte clusters and other clusters. We
assume that the clusters with less than 20 cells (twice the upper
limit of the number of CD14+ Monocyte cells) and containing
CD14+ Monocyte cells are CD14+ Monocyte clusters. We count
the number of CD14+ Monocyte clusters identified by each method,
and then calculate the recall rate and precision rate of CD14+

Monocyte cells after merging all CD14+ Monocyte clusters.
10 independent runs are performed for each sampled data.
Considering that the detection is only for rare cells, we added
three algorithms for comparison. The first is MicroCellClust
(which is also called MCC), which is a method specifically used
to detect rare cells. Since the algorithm can only find one rare cluster
at a time, in order to find the cluster to which CD14+ Monocyte

TABLE 2 Sampling range of different cell types for each sampled data.

Cell type CD56+ NK CD19+ B CD4+/CD25 T Reg CD34+ CD14+ Monocyte

Sampled data 1 [1000,1929] [500,1000] [500,1000] [10,100] [3,10]

Sampled data 2 [1000,1929] [500,1000] [500,1000] [3,10] [3,10]

Sampled data 3 [1000,1929] [500,1000] [100,500] [10,100] [3,10]

Sampled data 4 [500,1000] [100,500] [10,100] [3,10] [3,10]

TABLE 3 Comparison of the performance of different clustering methods on PBMC sampled data: average NMI, Purity and k over 10 independent runs.

Data set Sampled data 1 Sampled data 2 Sampled data 3 Sampled data 4

Metrics NMI Purity K NMI Purity k NMI Purity k NMI Purity k

SC3 0.637 0.87 41.6 0.58 0.747 36.9 0.666 0.851 27 0.751 0.805 9.2

RaceID3 0.667 0.903 30.2 0.688 0.92 33.2 0.677 0.923 31.5 0.735 0.899 16.2

GiniClust2 0.625 0.639 3.6 0.703 0.689 4.1 0.611 0.682 4.8 0.541 0.875 3.8

scAIDE 0.703 0.727 4.3 0.708 0.708 4.2 0.69 0.724 4.1 0.783 0.812 5.1

PARC 0.731 0.887 10.2 0.702 0.827 9.9 0.719 0.873 9.8 0.75 0.867 8.1

ProgClust_deep1 0.727 0.783 7.5 0.77 0.764 5.5 0.734 0.748 6.1 0.73 0.689 4.5

ProgClust 0.758 0.895 11.6 0.814 0.888 8.8 0.8 0.917 9.8 0.845 0.882 6.3

Bold values represent the values with the highest performance metrics on the current data.
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TABLE 4 Identification of CD14+ Monocyte on 4 sampled data: average value of recall, precision, F1-score and k over 10 independent runs.

Data set Sampled data 1 Sampled data 2 Sampled data 3 Sampled data 4

Metrics Recall Precision F1 k Recall Precision F1 k Recall Precision F1 k Recall Precision F1 k

SC3 0.4 0.317 0.351 0.4 0.5 0.324 0.385 0.5 0.181 0.177 0.177 0.3 0.5 0.276 0.345 0.5

GiniClust 0.188 0.3 0.229 0.3 0.526 0.6 0.559 0.6 0.168 0.306 0.208 0.4 0.41 0.6 0.471 0.6

RaceID3 0.92 0.815 0.853 1.1 0.895 0.657 0.714 1.5 0.96 0.745 0.799 1.2 0.98 0.763 0.842 1.1

GiniClust2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.0778 0.0875 0.2

scAIDE 0.1 0.0571 0.0727 0.1 0 0 0 0 0.229 0.193 0.205 0.3 0.886 0.846 0.862 0.9

PARC 0 0 0 0 0.2 0.141 0.163 0.2 0 0 0 0 0.1 0.0909 0.0952 0.1

GapClust 0.6 0.689 0.689 0.7 1 0.935 0.965 1 0.633 0.7 0.655 0.7 1 0.979 0.989 1

MCC 0.6 0.538 0.567 0.6 0.8 0.702 0.747 0.8 0.5 0.468 0.483 0.5 0.99 0.979 0.984 1

Gini + ap 0.1 0.0909 0.0952 0.1 0.5 0.39 0.432 0.5 0 0 0 0 0.1 0.1 0.1 0.1

ProgClust_deep1 0.6 0.513 0.515 0.7 0.69 0.594 0.616 0.7 0.807 0.58 0.645 1 0.886 0.774 0.813 0.9

ProgClust 0.7 0.775 0.72 0.8 0.978 0.897 0.921 1 0.84 0.891 0.861 0.9 0.973 1 0.986 1

ProgClust [ros = 2.5] 0.963 0.913 0.928 1 0.971 0.972 0.969 1 0.848 0.737 0.766 0.9 0.962 0.983 0.971 1.1

Bold values represent the values with the highest performance metrics on the current data.
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belongs as much as possible, MCCwill run 3 times repeatedly to find
3 rare clusters. The second method is GapClust (Fa et al., 2021). The
third algorithm is Gini + ap. This is the part that detects rare cells in
ProgClust. Gini + ap first finds rare cells from the original data
according to the process of detecting rare clusters in ProgClust, and
then performs spectral clustering on these rare cells to find CD14+

Monocyte. The purpose of adding this algorithm is to prove that the
framework of ProgClust can enhance the detection ability of rare
clusters.

Table 4 shows the average performance of different algorithms
on identifying rare cells. ProgClust significantly outperforms other
algorithms on these data sets, except for RaceID3, and achieve the
best Precision and F1 on sampled data 2, sampled data 3 and
sampled data 4. Some methods performed poorly, such as
SC3 and scAIDE, especially on sampled data 1, sampled data
2 and sampled data 3. On sampled data 4 where rare cells
account for a larger proportion, the performence of SC3 and
scAIDE will be greatly improved, showing that these methods
have limited ability to detect rare cells. The effect of MCC on
sampled data 4 is particularly good, but its performance on the
first three data is very poor. This may be because MCC can only

identify one rare cluster at a time, and this limitation makes it
difficult to find the cluster we want in a limited search. The effect of
RaceID3 on sampled data 1 is better than ProgClust, which may be
caused by over-clustering. In order to prove that our method can
achieve better results while allowing over-clustering, we adjusted the
parameters of ProgClust (let ros = 2.5). The results after adjusting
the parameters are shown in Table 4. It can be seen that the
performance of the ProgClust (ros = 2.5) on sampled data 1 and
sampled data 2 has been greatly improved and outperforms
RaceID3. GiniClust2 and GiniClust performed poorly on these
data. These results shows that ProgClust can effectively detect
rare cells.

Figure 5 shows a result of ProgClust on sampled data 2. In this
dataset, according to the reference label, there are 1828 CD56+ NK
cells, 903 CD19+ B cells, 721 CD4+/CD25 T Reg cells, 7 CD34+ cells
and 9 CD14+ Monocytes. The results of each clustering in the
ProgClust algorithm process are clearly shown on Figure 5A.
ProgClust successfully identified three common clusters in the
first clustering tree and found 36 rare cells. And these 36 rare
cells were divided into five rare clusters in the second clustering tree.
The confusion matrix in Figure 5C shows the percentage of each

FIGURE 5
The result of ProgClust on sampled data 2. (A) Clustering trees; (B) A bubble plot of top differentially expressed genes for each cluster; (C) The
confusion matrix between the clustering result and the ground truth. The value denotes the proportion of each cell type in the cluster.
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type of cells in each of the identified class clusters. As can be seen
from this matrix, the Purity of the clustering results is still high, with
only two class clusters, c3 and c6, containing other cells in addition
to the major types of cells. It can also be seen that in this case, over-
clustering is also obvious. CD56+ NK cells, CD14+ Monocyte cells
and CD19+ B cells are all divided into two cell subpopulations.
Differential expression analysis in Figure 5B shows that the
identified cell subpopulations are reasonable. For example,
although both c2 and c4 belong to CD14+ Monocyte cells,
c2 clearly has high expression on two genes, CD74 and HLA-
DRA, while c4 has two marker genes, MZB1 and JCHAIN,
compared to other class clusters, which also implies that
ProgClust has identified new cell subpopulations.

3.5 ProgClust clusters unlabeled real data

3.5.1 Mouse embryonic stem cells data
We use ProgClust to identify cell types on an unlabeled real data,

i.e., mouse embryonic stem cells 4 days after leukemia inhibitory
factor withdrawal (Klein et al., 2015). The rare cell types in the
dataset have been detected in original publication with the help of
priori knowledge of relevant markers, and have been used to test the
ability of rare cell detection of singe-cell clustering methods
(Tsoucas and Yuan, 2018; Gerniers et al., 2021). In this
experiment, we show that ProgClust can reveal the cell
subpopulation including the rare cell types without any priori
information.

The dataset contains a total of 683 cells and 24175 genes.
ProgClust identifies 4 abundant cell types and 3 rare cell types in
the dataset. In Figure 6A, clusters c1 ~ c4 are abundant cell types and
the numbers of them are 349, 34, 101, and 190, respectively. A total
of 24 differentially expressed genes in c1 include cell growth and
embryonic development related genes such as Pim2 and Tdgf1
(Franzén et al., 2019). The marker genes of c2 are maternal
imprinted genes such as Rhox9 and Rhox6. The clusters c3 and
c4 have high expression on Krt8, Krt18, and S100a6, indicating that
they may be epiblast cells. Clusters c5 ~ c7 are rare cells, and the
number of cells in each cluster are 3, 4, and 2 respectively. Among
them, c5 has 12 differential genes, including primitive rare

endoderm marker genes such as Col4a1 and Col4a2. The cluster
c6 has 27 differentially expressed genes, including marker genes such
as Zscan4c and Zscan4f, while c7 has a total of 73 differentially
expressed genes, including Zscan4, Zscan4f, Tcstv3 and Usp171a,
which indicates that this two clusters correspond to 2C-like cells
(Macfarlan et al., 2012). The clustering results of rare cell
subpopulation are consistent with previous studies.

3.5.2 PBMC 4K data
We further use ProgClust to explore the cell population of the

PBMC 4K dataset from 10x GENOMICS, which contains
4340 cells and 33694 genes. ProgClust identifies 12 clusters in
the data. Using differential expression analysis (Figure 6B), we can
divide the 12 clusters into 5 cell groups according to the gene
markers from PanglaoDB (Franzén et al., 2019). The first one is
composed of c1, c2 and c3, with a total of 1804 cells. This group
may be T cells, since its marker genes are IL7R, LTB and CD2. The
second group is c4, with a total of 623 cells. This group is likely to
be B cells, because it strongly expresses genes such as CD79A and
CD79B. The third group is composed of c5 ~ c8. There are a total of
1181 cells in this cell type, and can be characterized by genes
related to dendritic cells, such as HLADQB1, FCN1, HLADQA1,
etc .,(Villani et al., 2017). The fourth group is c9 and has only
25 cells, which has a strong connection with a number of genes
related to plasmacytoid dendritic cells, such as CLEC4C and
LILRA4. The fifth group is composed of c10 ~ c12, which
contains a total of 707 cells. The differentially expressed genes
are related to NK cells such as NKG7, CCL5 and PRF1. The results
show that ProgClust can effectively distinguish these cell types.
Furthermore, in the 1st, 3rd and 5th groups, ProgClust also reveals
potential cell subpopulations, which provides key clues for further
exploration.

4 Discussion

The paper presents ProgClust, a novel methodology that utilizes
progressive clustering and dynamic feature selection to identify both
rare and common cell subpopulations efficiently. Our experiments
demonstrate that ProgClust can enhance clustering accuracy

FIGURE 6
Results from real data analysis. (A) A heatmap of differentially expressed genes for the clustering results of themouse embryonic stem cells data. (B)A
heatmap of differentially expressed genes for the clustering results of PBMC 4k data.
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effectively, even without prior knowledge of the number of clusters.
While our proposed method, ProgClust, has shown promising
results, it is not without limitations. Specifically, ProgClust only
takes into account cell differences and does not consider cell
similarities, which may result in over-clustering and
fragmentation of clusters. To address this issue, we plan to
investigate two possible solutions in our future research. The first
solution involves merging identical clusters post hoc, while the
second solution involves rejecting clustering results that are more
similar than dissimilar during the clustering process. We will focus
on developing efficient and effective approaches to implement these
solutions to improve the performance of ProgClust.
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