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ABSTRACT

We present self-consistent, axisymmetric core-collapse supernova simulations performed with the PROMETHEUS-
VERTEX code for 18 pre-supernova models in the range of 11–28Me, including progenitors recently investigated by
other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into
two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front
leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually
decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and
explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and
correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram
pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after
the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth
of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-
expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain
layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of
all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical
resolution, and approximations in some aspects of the microphysics.

Key words: hydrodynamics – instabilities – neutrinos – supernovae: general

1. INTRODUCTION

Nearly half a century after the first suggestion (Colgate &
White 1966) that neutrinos might play an important role in
core-collapse supernovae (CCSNe), the viability of the delayed
neutrino-driven mechanism (Bethe & Wilson 1985) is still
controversially discussed. Although the degree of sophistica-
tion of the explosion models has continuously increased and a
growing number of multidimensional simulations have been
conducted over the past years, the conclusions with respect to
the neutrino-driven mechanism are contradictive and an
unambiguous verification of the physics that drives the
explosion has not yet been possible.

While successful explosions with simulations in spherical
symmetry (1D) including state-of-the-art physics could only be
obtained in cases of stars with O–Ne–Mg and low-mass Fe
cores (Kitaura et al. 2006; Janka et al. 2008; Fischer et al. 2010;
Melson et al. 2015b), explosion models in two dimensions (i.e.,
with assumed axisymmetry; 2D) demonstrated the important
and supportive role of multidimensional effects. However, the
2D results reported by various groups differ considerably.
According to the results by, for example, Marek & Janka
(2009), Janka et al. (2012), Suwa et al. (2010, 2016), Nakamura
et al. (2015), Müller et al. (2012a, 2012b), and Müller & Janka
(2014), simulations in axisymmetry show rather late explosions
with energies seemingly below the canonical value of 1051 erg
for typical CCSNe. Of course, it has to be noted that not all
simulations were continued to the time when a saturation of the
explosion energy can be expected. Bruenn et al. (2013, 2016)
presented four 2D simulations for progenitors with zero-age

main sequence (ZAMS) masses between 12Me and 25Me
where the explosions already begin at fairly early times after
bounce (∼0.2 s) and the explosion energies are in reach of those
deduced from observations. Curiously, in spite of the different
structures of the four progenitor models, all explosions (i.e.,
runaway shock expansions) set in at nearly the same time.
Using the same four progenitor models, but different treatments
concerning hydrodynamics, gravity, equation of state (EoS),
and neutrino transport, Dolence et al. (2015) did not find any
explosion, while Skinner et al. (2015) and O’Connor & Couch
(2015) reported failures or successes that depended on the
applied gravity (Newtonian or relativistic potential) and
transport treatment (for a summary of recent 2D results, the
reader is also referred to Janka et al. 2016). This unsatisfactory
situation clearly underlines the need for more detailed tests and
code comparisons among the different CCSN simulation
groups in the future.
The imposed symmetry constraints in 2D simulations are

also the cause of drawbacks. The unipolar or bipolar
deformations along the symmetry axis observed in 2D models
seem to be strongly connected to the artificial assumption of
rotational symmetry, and the inverse turbulent energy cascade
distributes the energy in an unphysical way to the largest scales
(see Kraichnan 1967; Hanke et al. 2012; Couch 2013; Radice
et al. 2016). But due to the huge computational demands of
self-consistent simulations in three dimensions (see e.g.,
Kuroda et al. 2012, 2016; Hanke et al. 2013; Tamborra
et al. 2013, 2014a, 2014b; Takiwaki et al. 2014; Lentz
et al. 2015; Melson et al. 2015a, 2015b; Müller 2015),
systematic studies of larger sets of progenitor models or
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detailed investigations of different explosion parameters are
restricted to the axisymmetric modeling approach at the
moment. Even in 2D, investigations of a wider range of pre-
supernova models usually employ only simplified neutrino
transport schemes (e.g., Nakamura et al. 2015; Pan et al. 2016;
Suwa et al. 2016).

In the following, we report the results of 2D simulations with
the PROMETHEUS-VERTEX code from Hanke (2014). The
consideration of a large set of 18 different pre-supernova
models allows us to investigate the influence of the progenitor
structure on the explosion physics in a systematic way, and a
connection of progenitor properties to certain aspects of the
evolution of the supernova explosion becomes possible.
Besides a set of 14 pre-supernova models from Woosley
et al. (2002), we include the four progenitors from Woosley &
Heger (2007) that were chosen by Bruenn et al. (2013, 2016),
Dolence et al. (2015), O’Connor & Couch (2015), and Skinner
et al. (2015) and discuss our simulation results of these four
models in depth. This is intended to facilitate future
comparisons between the different simulation groups and will
hopefully help to shed light on the currently rather diffuse
situation regarding the outcomes of CCSN simulations with
different codes.

Motivated by the question why the explosions in our models
set in at largely different times without any obvious connection
to special values of individual parameters like the non-radial
kinetic energy, heating efficiency or maximum/average
entropy in the gain layer, we will also present a theoretical
analysis that sets our results into the context of the critical
luminosity concept for the initiation of neutrino-driven
explosions. We will show that the critical condition of
á ñn nL E 2 as a function of ṀMNS coined by Müller & Janka

(2015) (Lν denotes the total electron-flavor neutrino luminosity,
á ñnE

2 the weighted average of the mean squared energies of

electron neutrinos and antineutrinos, Ṁ the mass-accretion rate,
and MNS the mass of the proto-neutron star, see also Section 4)
defines a universal relation that yields an excellent description
of the behavior of our models at the transition to explosion,
provided the effects of turbulent pressure as well as corrections
due to the time- and model-dependent variations of the gain
radius and binding energy in the gain layer are taken into
account.

The paper is structured as follows. After a brief summary of
the numerical setup in Section 2, our simulation results are
presented in Section 3. In Section 4, we show that the approach
to explosions of our model set can be well described by a
generalized version of the critical luminosity condition. We
conclude in Section 5 and close the paper with appendices
where detailed information for some special aspects is provided
and the dependence of our results on numerical resolution and
stochastic effects is discussed. We also briefly describe the
influence of special microphysics (in particular neutrino pair-
conversion and n n- scattering processes as well as nucleon
correlations and reduced effective nucleon masses at high
densities), which are not included by other groups (e.g., Bruenn
et al. 2013, 2016).

2. NUMERICAL SETUP

All calculations presented in this paper were performed with
the elaborate neutrino-hydrodynamics code PROMETHEUS-VER-

TEX. This tool for the simulation of CCSNe couples the
hydrodynamics solver PROMETHEUS (Fryxell et al. 1989) via

lepton number, energy, and momentum source terms with the

neutrino transport module VERTEX (Rampp & Janka 2002). The
hydrodynamics module is based on a dimensionally split, time-

explicit implementation of the Piecewise Parabolic Method

of Colella & Woodward (1984), which is a conservative,

Godunov-type scheme with higher-order spatial and temporal

accuracy that employs an exact Riemann solver. The transport

module VERTEX is a time-implicit solver for the energy- and
velocity-dependent 0th and 1st order moment equations for

neutrinos and antineutrinos of all flavors. The system of

moment equations is closed by a variable Eddington factor

obtained by solving model Boltzmann equations iteratively up

to convergence on all angular grid bins, called “radial rays.”

This “ray-by-ray” approximation implies that the neutrino

radiation field is assumed to be axially symmetric around the
radial direction at each spatial point. Non-radial components of

the neutrino flux are thus ignored except for explicitly included

terms associated with non-radial neutrino-pressure gradients

and non-radial advection of the neutrinos when trapped in the

stellar fluid (“ray-by-ray-plus approach,” cf. Buras

et al. 2006b). The energy dependence of the transport is fully

retained. Gravitational redshifting, all velocity-dependent

( ) v c terms like Doppler shifts, and the redistribution of

neutrinos in energy space by non-isoenergetic scatterings of all

types of targets (nucleons, electrons, neutrinos) are included

with the most sophisticated treatment of neutrino interactions

presently available (see, e.g., Marek & Janka 2009; Müller

et al. 2012b). For more details about the PROMETHEUS-VERTEX

code and the applied numerics, the reader is referred to Rampp
& Janka (2002), Buras et al. (2006b).
The simulations were conducted with a 2D gravitational

potential (cf. Buras et al. 2006b) including general relativistic
monopole corrections as described in Marek et al. (2006). At

high densities, the EoS of Lattimer & Swesty (1991) with a

nuclear incompressibility of 220MeV and a symmetry energy

parameter of 29.3 MeV was used. Below a certain density and

above a certain temperature, which were chosen differently

before and after bounce, we applied a low-density EoS for

nuclear statistical equilibrium (NSE) with 23 nuclear species.
Below NSE temperature (chosen to be 0.5 MeV in the present

simulations) we apply the flashing treatment of Rampp & Janka

(2002) as an approximate description of nuclear burning. The

axisymmetric models were computed on a spherical polar grid

with initially 400 radial and 128 angular zones. The radial

zones were non-equidistantly distributed from the center with a

reflecting boundary condition at the coordinate origin to an
outer boundary of 109 cm with an inflow condition. During the

simulations, the radial grid was gradually refined to ensure

adequate resolution in the proto-neutron star surface region. At

the time the simulations were stopped, the number of radial

grid zones typically amounted to ∼600, and a resolution of

D ~ ´ -r r 3.5 10 3 at the proto-neutron star surface was

reached. Tests with higher resolution in radial and angular
directions will also be presented in Appendix C. The innermost

1.6 km of the stellar core (corresponding to the innermost six

radial zones) were treated in spherical symmetry to avoid

excessive time step limitations at the center of the spherical

grid. At 10 ms after core bounce, seed perturbations of 0.1% in

density were randomly introduced on the entire computational

domain in order to trigger the growth of aspherical instabilities
in the previously spherically symmetric stellar progenitor
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models. For the neutrino transport, 12 geometrically spaced
energy bins with an upper bound of 380MeV were employed.

3. RESULTS AND DISCUSSION

This section is subdivided into two parts. First, we present
the simulation results of four pre-supernova progenitor models
from Woosley & Heger (2007) in detail (Model Set I). The
intention is to facilitate comparisons to recent publications of
other groups that only focused on this set of progenitors (e.g.,
Bruenn et al. 2013, 2016; Dolence et al. 2015). Our main
findings regarding 14 pre-supernova models of Woosley et al.
(2002) are discussed in the second part (Model Set II). The
choice of these 14 models was guided by the results of the
parametric study of Ugliano et al. (2012) with respect to
promising candidates for successful explosions. Due to the fact
that all 18 models explode within the framework of our self-
consistent and physically highly elaborate simulations, the
neutrino-driven explosion mechanism proves to be viable for a
large set of progenitors with different ZAMS masses (at least in
axisymmetry).

An overview of all 18 explosion models and their
characteristic properties is given in Table 1. Besides the
ZAMS mass, MZAMS, the compactness parameter defined by

O’Connor & Ott (2011),

( )
( )

x =
=
M M

R M M 1000 km
, 1M

bary

is given forM = 1.5Me, 1.75Me, and 2.5Me (calculated from

the pre-supernova model). At the onset of the explosions

(defined by the time texp when the ratio of advection and

heating timescale reaches unity, see below), the mean shock

radius, Rs, the maximum shock radius, Rs
m, the neutron star

radius, RNS, the electron neutrino luminosity, nL e
, the mass-

accretion rate, Ṁ , and the (baryonic) neutron star mass, MNS

(defined as the matter with densities above 1011 g cm−3), are

listed. For the point in time *texp when the mean shock radius

reaches a value of 400 km, the maximum shock radius is

given, too.
It is common to all simulations presented here that the

development of the explosion is strongly influenced by the
specific density structure of each pre-supernova model. All
heavier models between 19Me and 28Me show a pronounced
density jump at the interface between the silicon and oxygen-
enriched silicon (Si/Si–O) shell that is located at radii between
2000 and 3000 km. While the position of this interface is nearly

Table 1

Overview of Characteristic Properties of the Simulated Axisymmetric Models

MZAMS
a texp

c Rs(texp)
d ( )R ts

m
exp

e RNS(texp)
f ( )nL texpe

g ˙ ( )M texp
h MNS(texp)

i *texp
j ( )*R ts

m
exp

k

Model ξ1.5
b ξ1.75

b ξ2.5
b

(Me) (ms) (km) (km) (km) (1052 erg s−1) (Me s−1) (Me) (ms) (km)

Model Set I

s12-2007 12.0 0.612 0.234 0.023 743 142 269 24 2.208 0.142 1.58 815 743

s15-2007 15.0 0.878 0.547 0.182 550 119 208 27 3.660 0.395 1.77 631 686

s20-2007 20.0 1.003 0.769 0.286 292 191 306 36 4.007 0.386 1.83 358 1015

s25-2007 25.0 1.009 0.819 0.330 338 144 224 33 4.195 0.374 1.92 407 659

Model Set II

s11.2 11.2 0.194 0.073 0.005 332 251 519 34 1.845 0.113 1.33 349 731

s12.4 12.4 0.759 0.265 0.028 634 172 317 25 2.176 0.142 1.61 697 426

s13.2 13.2 0.821 0.335 0.049 597 161 298 26 2.298 0.152 1.66 664 885

s14.4 14.4 0.868 0.515 0.124 726 120 201 24 2.852 0.198 1.79 799 513

s16.8 16.8 0.821 0.355 0.159 472 173 310 29 2.536 0.246 1.59 543 600

s17.2 17.2 0.857 0.367 0.168 382 179 289 32 2.886 0.263 1.58 453 751

s18.4 18.4 0.955 0.652 0.188 520 118 198 28 3.866 0.346 1.85 583 606

s19.6 19.6 0.873 0.298 0.119 356 206 369 33 2.354 0.145 1.61 415 699

s20.2 20.2 0.840 0.249 0.106 346 194 328 33 2.480 0.125 1.59 414 718

s21.6 21.6 0.939 0.467 0.181 503 169 275 28 2.772 0.266 1.70 572 744

s22.4 22.4 0.960 0.527 0.200 393 161 267 32 3.233 0.291 1.71 459 674

s26.6 26.6 0.960 0.569 0.228 326 228 363 34 2.938 0.249 1.71 373 677

s27.0 27.0 0.960 0.524 0.233 389 208 314 32 2.918 0.263 1.71 453 650

s28.0 28.0 0.962 0.524 0.236 400 157 256 32 3.240 0.258 1.71 474 833

Notes.
a
ZAMS mass of the pre-supernova progenitor model.

b
Compactness parameter as defined in Equation (1) (calculated from the pre-supernova model).

c
Onset of explosion defined by the point in time when the ratio of advection to heating timescale reaches unity.

d
Mean shock radius at the onset of the explosion.

e
Maximum shock radius at the onset of the explosion.

f
Neutron star radius at the onset of the explosion (defined by the location of density 1011 g cm−3).

g
Luminosity of electron neutrinos at the time of explosion (evaluated at 400 km and given for an observer in the lab frame at infinity).

h
Mass-accretion rate at the onset of the explosion as defined in Equation (2) (evaluated at a radius of 400 km).

i
Neutron star mass at the onset of the explosion (defined by the density surface of 1011 g cm−3).

j
Point in time when the mean shock radius reaches a value of 400 km.

k
Maximum shock radius at the point in time when the mean shock radius reaches a value of 400 km.
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the same for all heavier models, it varies noticeably for the less
massive progenitor models and in some cases a steep decline in
the density profile at the interface cannot be observed (see
Figure 1). The effects of these different pre-collapse structures
on the post-bounce evolution as apparent in our simulations
will be discussed in depth in the following.

3.1. Model Set I

3.1.1. General Properties

The trajectories of the average shock radii are depicted in
Figure 2 (upper panel). All four models explode, but the post-
bounce evolution differs. In the case of the two more massive
progenitors of 20Me and 25Me, the shock retreats until it
encounters the Si/Si–O composition shell interface. This point
in time is connected to a steep decrease of the mass-accretion
rate (evaluated at a radius of 400 km; see the lower panel of
Figure 2) given by

˙ ( ) ( )∣ ( )∣ ( )p r=M r r r v r4 . 22

Shortly afterwards, the shock starts to expand and the runaway

conditions for an explosion are reached. This is different in the

case of the two progenitors with lower masses of 12Me and

15Me. Due to a much weaker density contrast at the Si/Si–O
interface, the mass-accretion rate does not show a steep decline.

It decreases more gradually and the two models explode at

relatively late times. The difference in the explosion behavior

between the two more massive and the two less massive

progenitor models can be attributed to the competition of mass-

accretion rate and neutrino energy deposition in the context of

the delayed neutrino-driven explosion mechanism. The revival

of the stalled shock front requires the neutrino heating to be

strong enough to overcome the ram pressure of the infalling

material (e.g., Burrows & Goshy 1993; Janka & Müller 1996;

Janka 2001; Murphy & Burrows 2008; Fernández 2012), and

the threshold conditions for a successful explosion can be

defined by a critical neutrino luminosity that depends on the

mass-accretion rate of the shock (Burrows & Goshy 1993). We

will further elaborate on this aspect in Section 4, where we will

discuss and demonstrate the influence of multidimensional fluid

Figure 1. Radial density profiles for the 18 progenitors of Woosley & Heger (2007; first row) and Woosley et al. (2002; second row) at the onset of core collapse. The
models with lower ZAMS masses are displayed in the left column, and models with higher ZAMS masses are in the right column.

Figure 2. Time evolution of average shock radius (upper panel) and mass-
accretion rate (lower panel) for the simulations of Model Set I. Both quantities
are averaged over all angular directions; the mass-accretion rate is evaluated at
a radius of 400 km. The curves are smoothed by running averages of 5 ms.
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flows in the post-shock layer on the critical luminosity

condition in a more general form introduced by Müller &

Janka (2015).
In Figure 3, the angle-averaged luminosities as well as the

angle-averaged mean and rms energies of the different neutrino
species are shown. These quantities are evaluated at 400 km
and given for an observer in the lab frame at infinity. á ñn and

á ñn
2 are defined as the first and second moments of the

dimensionless neutrino phase space distribution function f(ò,
μ),

( )

( )
( )

   

  

ò ò

ò ò

m m

m m
á ñ =n

n n n n

n n n

¥

-
¥

-

d d f

d d f

,

,
, 3n

n

0

2

1

1

0

2

1

1

where μ is the cosine of the angle between the neutrino

momentum and the radial direction and òν is the neutrino

energy. Note that in the multidimensional case the additional

directional averaging involves the integration of the numerator

and denominator terms over all angular directions/bins of the
computational grid.

Due to a higher mass-accretion rate and therefore a faster
growth of the mass of the proto-neutron star, the two more
massive models show higher neutrino luminosities and a faster
growth of the radiated mean neutrino energies at early times of
the post-bounce evolution. For this reason, neutrinos deposit
more energy in the gain layer and provide stronger heating in
the region behind the stalled shock. The arrival of the Si/Si–O
composition shell interface at the shock is reflected by a drop in
the neutrino luminosities and mean energies, which is further

enhanced by the onset of shock expansion (see Figure 3). At
this time, the ram pressure of the infalling material is
significantly reduced, but a lot of energy is still stored in the
gain layer behind the shock due to the heating by the
previously high accretion luminosities. This combination of
high neutrino luminosities and mean energies but reduced ram
pressure is very supportive for the revival of the shock (for a
detailed discussion, see Ertl et al. 2016). In the two less
massive progenitors, the Si/Si–O interface is relatively weak,
and during the first 300 ms after bounce the neutrino
luminosities and mean energies are lower. Therefore, it takes
a longer time until the mass-accretion rate has decreased to
such a low value that the ram pressure can be overcome by the
neutrino heating.
The need for a favorable interplay between neutrino

luminosity and mass-accretion rate with respect to the onset
of a successful explosion is further supported by the results of
our additional simulations of 14 pre-supernova models (Model
Set II, see Section 3.2) and has been explored in a large set of
1D models by Ertl et al. (2016). In the following subsections,
we will focus on the four simulations of Model Set I and
investigate in detail the conditions that lead to the initiation of
the explosion.

3.1.2. Conditions in the Gain Layer

The residence time of matter in the gain layer determines the
exposure of this material to neutrino heating. If the advection
timescale (τadv), defined as the time the accreted gas stays in
the gain layer, is longer than the heating timescale (τheat),
which is given by the time neutrino heating needs to deposit an

Figure 3. Time evolution of neutrino luminosities (first row), neutrino mean energies (second row), and neutrino rms energies (third row) for the simulations of Model
Set I (lab-frame quantities, evaluated at 400 km and given for an observer at infinity). From left to right, the angular averages are shown for νe, n̄e, and nm t . The curves
are smoothed by running averages of 5 ms.
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energy equivalent to the binding energy of the gas, the
conditions in the gain layer become advantageous for an
explosion. For shock expansion to finally create a runaway
situation, a sufficiently long period of τadv/τheat1 is
necessary (e.g., Janka et al. 2001; Thompson et al. 2005;
Buras et al. 2006a; Fernández 2012). In order to account for the
influence of non-radial instabilities on the hydrodynamical flow
in our 2D simulations, we follow Janka (2012) and Müller et al.
(2012b) and use the dwell time of matter in the gain region as a
measure for the average advection timescale, assuming quasi
steady-state conditions (cf. Buras et al. 2006a; Marek &
Janka 2009):

≔
˙

( )t t »
M

M
. 4adv dwell

g

Here, Ṁ is the mass-accretion rate through the shock, andMg is

defined by the mass enclosed in the gain layer between the

direction-dependent (i.e., dependent on the latitudinal angle)

gain radius Rg(θ) and shock radius Rs(θ):

( )
( ) ( )

ò r=
q q< <

M dV . 5
R r R

g
g s

Our definition of the dwell time (Equation (4)) is only a rough

approximation of the advection timescale of matter falling

inward through the gain layer, because this expression also

includes material rising with positive velocities. For exactly

this reason, however, Equation (4) is a good measure of the

residence time of matter in the neutrino-heated region, because

the time period of gas being exposed to neutrino heating is

increased by non-radial as well as outward mass motions,

which are responsible for a growth of the mass in the gain

layer. Naturally, after the onset of the explosion, expanding

matter begins to dominate in the gain layer, for which reason

Equation (4) does not yield a good representation of the

“advection timescale” any longer.
The heating timescale is defined by the ratio of the total

energy of the material in the gain layer and the volume-
integrated neutrino heating rate in this region,

∣ ∣

˙
( )t =

E

Q
. 6heat

tot,g

heat

The total energy in the gain layer is given by the integral over

the sum of specific kinetic energy, v2/2, specific internal

energy, ò, and specific gravitational binding energy,

( )
( ) ( )

ò r= + + F
q q< <

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥E

v
dV

2
, 7

R r R
tot,g

2

g s

with Φ being the gravitational potential. The neutrino heating

rate is the integral of the neutrino energy deposition rate per

volume qe over the gain layer

˙ ( )
( ) ( )

ò= q q< <
Q q dV . 8

R r R
heat e

g s

In Figures 4 and 5, different diagnostic quantities evaluated
for the gain region are presented during the post-bounce
evolution. While the heating timescale continuously decreases
with time, the advection timescale shows a rapid increase at the
time of the arrival of the Si/Si–O interface in the case of the
two more massive models (see Figure 5). This increase is

Figure 4. Time evolution of gain radius, mass, neutrino heating rate per unit
mass, total energy, neutrino heating efficiency, and the mass fraction of matter
recombined to α-particles and heavier nuclei in the gain layer (from top to
bottom) for the four simulations of Model Set I. The black dots in the bottom
panel mark the fraction of recombined matter at the time when the ratio
τadv/τheat reaches unity. Quantities that are not well defined shortly after
bounce are only shown for t�0.05 s. The curves are smoothed by running
averages of 5 ms.
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caused by the sudden decline of the mass-accretion rate (cf.
Figure 2, lower panel). The longer residence time of matter in
the gain region thus enables more efficient neutrino heating
(Figure 4, fifth panel from top), providing the power to drive
the shock outward.

The advection timescale of the two less massive models
shows a continuous decrease connected to the diminishing
amount of mass contained in the gain layer (see Figure 4,
second panel from top) until it stabilizes on a level around
5 ms. Nevertheless, these two models still explode at relatively
late times after bounce. This can be attributed to the increasing
heating efficiency (see Figure 4, lower panel) defined by the
ratio of the total energy deposition rate to the sum of the

radiated electron neutrino and electron antineutrino luminos-
ities (which dominate the heating rate through νe and n̄e
absorption on free nucleons):

˙
( )

¯

h =
+n n

Q

L L
, 9

heat

e e

where we measure the luminosities at a radius of 400 km.

Following Janka (2001, 2012), the neutrino energy deposition

in the gain layer scales with nL e
, n̄L e

, á ñnE
2
e
, ¯á ñnE

2
e
, and Mg as

˙ ( )
¯ ¯µ

á ñ + á ñn n n n
Q

L E L E

R
M . 10heat

2 2

g
2 g

e e e e

Note that ≔  á ñ á ñ á ñn n nE 2 3
e e e

and ≔¯ ¯ ¯ á ñ á ñ á ñn n nE 2 3
e e e

are

defined from the energy distribution of neutrinos in energy

space, not from the number distribution as á ñn
2
e
and ¯á ñn

2
e
. Since

the mass in the gain layer (see Figure 4, second panel from top)

is growing at later times and the neutrino rms energies (see

Figure 3, third row) are continuously increasing, too, the slow

decline of the accretion luminosity (see Figure 3, first row) can

be overcompensated and the heating efficiency rises noticeably

already before the onset of the explosion (cf. Marek &

Janka 2009; Müller et al. 2012b). This effect can be observed in

the two less massive models: at late times, νe and n̄e deposit a
larger fraction of their energy in the gain layer, the post-shock

flow is heated more efficiently and finally an explosion is

triggered.
Around the onset of the explosion, the advection timescale

rises steeply in all four models. Higher pressure and stronger
“turbulent” flows in the gain layer lead to an expansion of gas
outward from deeper layers of the gain region. The expansion
of the shock creates a positive feedback loop by further
increasing the advection timescale. Once the critical condition
of τadv/τheat1 is reached, a runaway situation with
continuous shock expansion is created (e.g., Buras
et al. 2006b; Murphy & Burrows 2008; Fernández 2012).
The evolution of the total energy in the gain layer can be
inferred from Figure 4 (fourth panel from top). When the
timescale ratio τadv/τheat reaches unity, the total energy is still
slightly negative (compare Figures 4 and 5; cf. also Janka 2001;
Fernández 2012). At the beginning of the shock expansion, just
a small fraction of the material in the gain layer is rising while
most parts of the matter behind the shock are still nearly at rest
(see also Section 3.1.3). Only when the whole gain layer starts
to expand, does the total energy tend toward positive values,
indicating that the post-shock material gets unbound in the
gravitational field created by the enclosed mass. In Figure 6, the
average entropy in the gain layer, defined by

( )
( ) ( )

ò rá ñ =
q q< <

s
M

s dV
1

, 11
R r R

g
g g s

as well as the maximum entropy and the mass in the gain layer

with entropies above the average value, are given. In all four

models, the entropy increases toward explosion. On the way to

explosion, the mass in the gain layer with entropies above the

average value is also growing, which is compatible with

previous findings that the masses and volumes with entropies

above certain threshold values grow (Nordhaus et al. 2010;

Hanke et al. 2012; Fernández et al. 2014). Although models

Figure 5. Time evolution of average and maximum shock radius, advection
and heating timescale, as well as the ratio of the two timescales for the four
simulations of Model Set I. The definitions of these quantities are given in the
text. The black dots (open circles) in the top panel mark the value of the
averaged (maximum) shock radius at the time when the ratio τadv/τheat reaches
unity. Quantities that are not well defined shortly after bounce are only shown
for t�0.05 s. The curves are smoothed by running averages of 5 ms.
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exploding at later times after bounce show a tendency toward

higher entropies, no generic value that signals the successful

runaway can be found. Once the explosion has started, a great

amount of lower-entropy gas from below the gain radius enters

the gain layer and leads to a drop of the average entropy by

2–4 kB per nucleon.
Overall, the timescale criterion seems to be a viable concept

for interpreting the explosion behavior of all four models. We
will provide further evidence for that in Section 4. The concept
is post-dictive in the sense that it is based on an analysis of the
model conditions (in contrast to a two-parameter criterion
found by Ertl et al. (2016), which is based on the properties of
the pre-collapse star). There is ongoing controversy in the
literature regarding whether better explosion indicators exist
that describe the approach to runaway shock expansion in a
physically more founded way (e.g., Pejcha & Thompson 2012;
Gabay et al. 2015; Murphy & Dolence 2015). We do not want
to take a position in the debate here because we focus on
multidimensional results while the cited literature discusses the
behavior of the shock-stagnation problem in 1D, where special
pathologies like large-scale radial shock pulsations can occur,
which do not have a direct counterpart in 2D and 3D. Janka
(2012) and Müller & Janka (2015) have shown that the critical
condition of the timescale ratio can formally be connected to
the critical luminosity condition ( ˙ )L Mcrit introduced by

Burrows & Goshy (1993); see also, e.g., Yamasaki & Yamada
(2005), Murphy & Burrows (2008), Nordhaus et al. (2010),
Hanke et al. (2012) and Fernández (2012), which can be
generalized to include the effects of non-radial fluid flows in
terms of a contribution by turbulent pressure (cf. Müller &
Janka 2015). In Section 4, we follow the approach of Müller &
Janka (2015) and demonstrate that a generalized critical
condition can be formulated that applies to the whole set of
18 models as a general criterion for the onset of the explosion.
In multidimensional simulations, the development toward a

runaway situation is closely connected to the evolution of
hydrodynamic instabilities. The growth conditions of these
instabilities are the topic of the next subsection, where their
properties are further discussed in dependence on the different
progenitor models.

3.1.3. Growth of Instabilities

Non-radial mass motions are crucial for an increase of the
dwell time of matter in the gain layer, enhanced neutrino
heating, turbulent pressure, and the subsequent expansion of
the shock radius (Murphy et al. 2013; Müller & Janka 2015).
Both convection and the standing accretion-shock instability
(SASI, Blondin et al. 2003) can provide sufficient support to
the neutrino-heating mechanism to finally revive the previously
stalled shock front. Typically, the high mass-accretion rates of
the investigated models (see Figure 2, lower panel) and the
decreasing neutron star radii (see Figure 10, second panel) lead
to very small shock radii stabilizing at ∼80 km, well following
the proportionality

( )

˙
( )µ

á ñn n
R

L E R

M M
12s

2 4 9
NS
16 9

2 3
NS
1 3

e

(Janka 2012) as soon as quasi-steady state accretion conditions

in the post-shock layer apply6 and as long as multidimensional

effects do not play a crucial role (for a generalization to multi-

dimensions, see Equation (29) below and Müller &

Janka 2015). Due to the scaling relation (cf. Scheck et al. 2008)

( )t µ R , 13adv s
3 2

the advection timescale shrinks accordingly. The linear growth

rate ωSASI of the advective-acoustic cycle amplifying the SASI

growth is given by (Foglizzo et al. 2006)

∣ ∣
( )


w

t
=

ln
, 14SASI

cyc

where is the efficiency and τcyc is the duration of the cycle.

As argued by Scheck et al. (2008) and Müller et al. (2012a),

τcyc is short for small shock radii and thus short advection

timescales. Hence, our models with rather short advection

timescales should provide favorable conditions for efficient

SASI growth. In order to quantify this expected behavior by a

Figure 6. Time evolution of average and maximum entropy in the gain layer as
well as the mass in the gain layer with entropies above the average value (from
top to bottom). The black dots mark the point in time when the ratio τadv/τheat
reaches unity. The quantities are shown for t�0.05 s and the curves are
smoothed by running averages of 5 ms.

6
A quasi-stationary state is earliest reached after the shock has arrived at its

maximum radius, because the initial shock expansion is driven by the high
mass-accretion rate, which leads to a non-stationary accumulation of an
accretion mantle around the neutron star core. This is demonstrated in
Appendix A, where we show the mass-accretion rates and shock trajectories for
our Model Set I.
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detailed analysis, we decompose the angle-dependent shock

surface Rs(θ) into Legendre polynomials ( )qP cosl . The

expansion coefficients are defined by (Burrows 2012; Ott

et al. 2013)

( ) ( ) ( ) ( )ò q q q=
p

a R P d
1

2
cos cos . 15l l

0
s

For the four models of Model Set I, the time evolution of the
coefficient a1 (dipole mode) is shown in Figure 7 (upper panel).
At ∼120 ms after bounce (average shock radii between 120 km
and 150 km, see Figure 2, first panel), shock sloshing motions
begin to grow in the well-known oscillatory way. At this time,
the lateral kinetic energy in the gain region increases (see
Figure 7, third panel from top) and the post-shock flow
becomes aspherical. All models exhibit strong quasi-periodic
shock oscillations with oscillation periods of 15–20 ms. At
∼220 ms after bounce, the Si/Si–O composition shell interface
reaches the shock in the case of the two more massive models,
and the advection timescale and hence the SASI oscillation
period increase (Foglizzo et al. 2007; Scheck et al. 2008; Guilet
& Foglizzo 2012). During the shock expansion phase, the two
models still show large shock oscillations, but these oscillations
are less regular than before. In the two less massive models,
shock oscillations with short periods can be maintained up to
several hundred milliseconds after bounce. Only after the shock
expansion sets in, can larger SASI amplitudes with non-
periodic behavior and large shock excursions with unipolar or
bipolar asymmetry be observed.
The time evolution of the quadrupole mode represented by

the coefficient a2 is depicted in Figure 7 (second panel from
top). Shortly before shock expansion sets in, all four models
develop a growing prolate quadrupolar deformation of the
shock surface. In the two more massive models that develop
explosions at earlier times, the a2 coefficient almost con-
tinuously increases directly from the onset of SASI activity at
∼120 ms. In the case of the less massive models exploding at
later times, the increase of the quadrupole mode starts at
∼450 ms. The development of a strong quadrupole mode in all
four models is a serious hint that the artificial symmetry axis
introduced in 2D simulations may play a supportive role for the
runaway expansion of the shock (e.g., Hanke et al. 2012;
Takiwaki et al. 2012; Couch 2013). The quadrupole mode
periodically pushes the post-shock layer further and further out
toward the polar direction along the symmetry axis, while
inflow occurs along funnels near the equator. The big polar,
buoyant bubbles are fed by material from equatorial down-
flows, which channel accreted matter to the gain radius, where
it can be efficiently heated by neutrinos.
The large-amplitude bipolar oscillations with increasing

amplitudes push the shock front step by step outward to larger
radii. Due to the effective increase of the dwell time of matter
that is channelled into the polar lobes, more accreted material
can be heated by the neutrinos for longer times (see the bottom
panel of Figure 4 for the growing neutrino heating efficiency).
The continuously ongoing SASI oscillations successively drive
the shock front outward, which in turn further increases (cf.
Equation (4)) the advection timescale of matter in the gain
layer. This positive feedback loop finally induces a successful
explosion (Marek & Janka 2009; Müller et al. 2012b).
Additionally, the supportive role of the SASI for shock

revival is mirrored in supersonic lateral velocities (sound speed
cs∼10

9 cm s−1) in the post-shock flow caused by repeated
phases of large-amplitude shock expansion and contraction.
The kinetic energy of these non-radial mass motions shows
quasi-periodic variations with spiky maxima (see Figure 7,
third panel from top). As pointed out by Hanke et al. (2012),

Figure 7. Time evolution of the coefficients a1 (dipole mode, first panel) and a2
(quadrupole mode, second panel) for an expansion of the shock surface into
Legendre polynomials. The coefficients are normalized to the amplitude of the
l=0 mode (i.e., the average shock radius). Furthermore, the kinetic energy of
lateral mass motions (third panel) and the velocity dispersion in the gain layer
(fourth panel) are given. The black dots in the third panel mark the kinetic
energy level at the time when the ratio τadv/τheat reaches unity. In the bottom
panel, the growth parameter χ is depicted for the four simulations of Model Set
I. All curves are smoothed by running averages of 5 ms.
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this is typical of the presence of low-order SASI modes. Similar
to the results of their parametric study for models at the
explosion threshold, the successful explosions presented here
are triggered and accompanied by large-scale mass flows,
which are indicated by growing fluctuations of the angular
kinetic energy that are characteristic for strong SASI activity.

While the lateral kinetic energy also depends on the mass
contained in the gain region, the velocity dispersion á ñqv

2

provides a direct measure for the typical velocities of
convective and SASI motions and for the turbulent pressure
associated with them (Müller & Janka 2015). Consequently,
the continuous growth of this quantity for all models indicates
an increase of convective and SASI activity with time. This is
especially supportive for the development of an explosion at
several hundred milliseconds after bounce in the case of the
two less massive models. Following Müller & Janka (2015),
the lateral kinetic energy satisfies the relation

( )
˙

( )µ á ñ - á ñ
⎡

⎣
⎢

⎤

⎦
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E

M
R R

Q

M
. 16
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g
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heat
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Since the neutrino heating rate per unit of mass, Q̇ Mheat g,

scales with ¯ ¯á ñ + á ñn n n nL E L E2 2
e e e e

(cf. Equation (10) and see

Figure 4, third panel from top), the continuous increase of the

mean neutrino energies is also responsible for the growth of the

velocity dispersion and fosters the large-scale aspherical mass

motions which finally induce the onset of explosion.
While the conditions of the hydrodynamic post-shock flow

are favorable for the efficient development of the SASI in our
simulations, convection is generally suppressed. Similar to the
results of Scheck et al. (2008) and Marek & Janka (2009), the
neutrino energy deposition in the gain layer of our models is
too weak to generate a steep negative entropy gradient. The
latter is a prerequisite for the development of convection.
Furthermore, the applied EoS of Lattimer & Swesty (1991)
with a nuclear incompressibility of 220MeV generates rather
compact neutron stars (Hebeler et al. 2010; Steiner et al. 2010).
Thus, the forming neutron stars contract rapidly from a
maximum radius of ∼75 to ∼40 km after 200 ms post bounce
and ∼25 km after ∼800 ms post bounce. Since the shock radius
directly scales with the neutron star radius (measured by the
radial location of ρ=1011 g cm−3; see Equation (12)), the
contraction of the neutron star also enforces the retraction of
the shock radius. That is why the matter in the post-shock
region is rapidly advected toward the gain radius and the
growth of convective motions is suppressed (cf. Foglizzo
et al. 2006).

In order to quantify the importance of convection, we
determine the growth parameter χ introduced by Foglizzo et al.
(2006) for our four explosion models (see Figure 7, lower
panel). This parameter can be considered as a measure of the
ratio of the advection timescale of the flow through the gain
layer and the growth timescale of convection. It is defined in
terms of the Brunt–Väisälä frequency wá ñBV (calculated from
angle-averaged quantities, for a discussion see Fernández
et al. 2014) and the spherically averaged advection velocity á ñvr
by

∣ ∣
( )òc

w
=

á ñ
á ñá ñ

á ñ

v
dr

Im
, 17

R

R

r

BV

g

s

where the integration runs from the averaged gain radius to the

averaged shock radius. Only regions with w < 0BV
2 (indicating

local instability) contribute to the integral. Since perturbations

are advected out of the gain layer with the accretion flow in a

finite time, a sufficient amplification of initial perturbations

within this time interval is needed for the successful

development of convective motions. According to the analysis

of Foglizzo et al. (2006) in the linear regime of small initial

perturbations, a threshold condition of χ3 is necessary for

convective instability in the gain region. This condition is

compatible with several numerical studies in 2D (e.g., Buras

et al. 2006a; Scheck et al. 2008; Fernández & Thompson 2009;

Fernández et al. 2014).
While SASI activity starts at around ∼100 ms after bounce

when aspherical mass motions begin to develop (see Figure 7,
two upper panels), the growth parameter for convective
instability still remains subcritical (see Figure 7, lower panel).
Due to the low neutrino heating rates and the small shock radii
and correspondingly short advection timescales at these times,
convection is damped in all four models. This absence of
convection may also be supportive for the early development of
the SASI (cf. Müller et al. 2012a). In the case of the two more
massive models, the threshold condition of χ>3 is reached
after the Si/Si–O composition shell interface has arrived at the
shock. Because of the abruptly reduced mass accretion rate, the
shock expands to larger radii and the advection timescale rises.
This leads to increased values of χ.
The two less massive models retain a subcritical value of χ

for a long time. After ∼500 ms, the conditions for convection
become more and more favorable. Convective activity is fully
established when the timescale ratio τadv/τheat exceeds unity
and shock expansion sets in. The reason for the gradual
development of convection in these two models is two-fold.
On the one hand, the large-amplitude SASI sloshing motions
of the stalled shock front are associated with fast lateral flows
in the post-shock region (see Figure 7, third and fourth panels
from above) and induce the formation of layers with very
steep unstable entropy gradients (see also Scheck et al. 2008;
Marek & Janka 2009). This supports the emergence of
secondary convective activity (Buras et al. 2006a; Scheck
et al. 2008). On the other hand, the increasing values of the χ
parameter directly mirror the enhanced neutrino energy
deposition per unit of mass (see Figure 4, third panel from
the top) at late times.
While our simulations show a similar behavior as the

“SASI-dominated” model s27.0 presented by Müller et al.
(2012a), a clear disentanglement of SASI and convective
effects with respect to the post-shock dynamics emerging
around shock revival is difficult. In the case of strongly
aspherical flows due to the SASI, with perturbations far away
from the linear regime, the criterion χ>3 may no longer be a
reliable measure for the development of convective instabil-
ity. To illustrate the hydrodynamic properties of the post-
shock flow around shock revival, color-coded snapshots of
entropy and radial velocity are presented in Figure 8 for all
models at the time when the timescale ratio τadv/τheat reaches
unity. All models show a prolate deformation of the shock
surface caused by large-amplitude bipolar SASI oscillations.
In addition to small buoyant bubbles growing in the wake of
the SASI sloshing motions, large-scale high-entropy bubbles
triggered by the SASI shock expansion phases are visible.
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Due to the assumption of axisymmetry, large plumes
preferentially grow along the direction of the artificial
symmetry axis (see also Hanke et al. 2012; Takiwaki et al.
2012; Couch 2013).

According to Fernández et al. (2014), SASI-dominated
explosion models are characterized by the interplay of shock
sloshing motions and the formation of large-scale, high-entropy
structures. The authors conclude that a SASI-driven explosion
develops if these bubbles are able to survive during several

SASI oscillation periods. The dominance of large-scale bubbles
seeded by SASI sloshing motions compared to small-scale
bubbles driven by convection, as indicated by the snapshots in
Figure 8, clearly suggests that the post-shock flow dynamics in
our simulations are governed by the SASI, while convective
instabilities play a more secondary role. This interpretation is
further supported by an analysis of the energy spectrum E(l),
which considers the decomposition of the azimuthal velocity vθ
at a given radius (weighted by the square root of the density)

Figure 8. Snapshots of radial velocity (left halves of the panels) and entropy per baryon (right halves of the panels) for the four simulations of Model Set I at the time
of explosion (defined by the time when the ratio τadv/τheat reaches unity).
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into spherical harmonics ( )qP cosl as the 2D analogon of the
definition provided by Hanke et al. (2012):

( ) ( )

( ) ( ) ( ) ( )ò
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q r q q

= +
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q

E l l

P v r d

1

2
2 1

cos , cos . 18l
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2

The results of this analysis are shown in Figure 9. In order to

obtain smoother spectra, E(l) is averaged over 30 km in radius and

over 5 ms in time. Similar to the SASI-dominated models

discussed by Fernández et al. (2014), the angular spectrum of all

four models shows a peak at l=2. The strong presence of

convection is visible from the enhanced power in the l=5–10
domain fully compatible with the spectral features observed in the

convection dominated models by Fernández et al. (2014). This

confirms the fact that the χ parameter tends toward the critical

value of 3 or even begins to exceed this value when the timescale

ratio approaches unity. The slope of ∼−3 at large l is indicative of

a direct vorticity cascade being characteristic of the spectral

properties of turbulence in axisymmetry (Kraichnan 1967).

3.1.4. Diagnostic Explosion Energies and Neutron Star Properties

The diagnostic energies depicted in Figure 10 (dotted lines in
upper panel) are calculated by integrating over the gain layer
for regions where the total specific energy defined as

= + + Fe v 2tot
2 is positive (see also previous studies by

Buras et al. 2006b; Marek & Janka 2009; Suwa et al. 2010;
Müller et al. 2012b; Bruenn et al. 2013):

( )
( ) ( )

ò r=
q q< <

>E e dV . 19
R r R

diag tot, 0
g s

In addition to this lower limit, we also show diagnostic

explosion energies obtained by the assumption that all nucleons

finally recombine to iron-group nuclei, which accounts for the

maximum release of nuclear binding energy and can be

considered as an upper limit (see Figure 10, solid lines in upper

panel). Typically, first fluid elements behind the shock become

formally unbound (etot>0) at the onset of the explosion when

the timescale ratio exceeds unity. After the shock has expanded

beyond ∼200 km, the temperature behind the shock decreases

sufficiently to allow for the recombination of nucleons to α-

particles (see bottom panel of Figure 4 for the fraction Xrec of

recombined matter in the gain layer). Consequently, the

explosion energy starts to rise with a steep gradient. At the

time our simulations had to be stopped because of the

extremely high computational demands of the neutrino

transport, maximum diagnostic energies of up to

∼0.17×1051 erg were reached and were still increasing

steeply.
However, at this stage of the simulations a reliable

determination of the final explosion energies is not possible.
In order to follow the energy budget of unbound matter and the
continuous recombination processes behind the expanding

Figure 9. Turbulent energy spectra E(l) as functions of the multipole order l.
The spectra are based on a decomposition of the azimuthal velocity vθ into
spherical harmonics 25 ms before the timescale ratio τadv/τheat exceeds unity,
averaged over a time interval of 5 ms and a radius interval from 50 km to
80 km. The thin dashed and solid black lines indicate reference spectral slopes
of −5/3 and −3.

Figure 10. Time evolution of diagnostic energy (lower limits indicated by
dotted lines, upper limits by solid lines, see the text), neutron star radius and
mass (the baryonic mass is denoted by solid lines, the gravitational mass by
dotted lines), and the radius of the spectrally averaged νe sphere at an optical
depth of tá ñ =n 2 3e (from top to bottom). Neutron star radius and mass are
defined by the density surface at 1011 g cm−3. All quantities are angle-averaged
and the curves are smoothed by running averages of 5 ms.
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shock front, the simulations would have to be carried on further
for several hundred milliseconds (cf. Scheck et al. 2006, 2008).
This is presently beyond reach due to extremely small transport
time steps. Because of ongoing accretion and mass ejection we
expect that the explosion energies can rise considerably even
after the onset of the explosion (cf. Marek & Janka 2009;
Müller et al. 2012b; Müller 2015).

The time evolution of the baryonic and gravitational7

neutron star masses and radii defined by the density surface
at 1011 g cm−3 as well as the radius of the spectrally averaged
electron neutrino sphere at an (effective) optical depth of
tá ñ =n 2 3

e
is shown in the three lower panels of Figure 10. For

computing the optical depth for neutrino equilibration we used
the effective opacity

( )k k k= , 20eff tot abs

where κabs is the opacity for neutrino absorption processes and

k k k= +tot abs scatt is the total opacity for absorption and

scattering. The preliminary value of the neutron star mass is

determined by the amount of matter that can be accreted from

the collapsing star and settles to densities above 1011 g cm−3

until the end of our simulations. After the strong decrease of the

mass-accretion rate caused by the arrival of the Si/Si–O
interface in the two more massive models, the increase of the

neutron star masses begins to flatten. The higher growth rate of

the neutron star mass in model s15-2007 compared to model

s12-2007 directly reflects the differences of the mass-accretion

rates in these two simulations that persist until the explosions

set in at late times (compare Figure 2).

3.2. Model Set II

In the following, the main results of our simulations (Set II)
concerning 14 pre-supernova models of Woosley et al. (2002)
are presented in the light of the preceding discussion of Set I.
An overview of the characteristic properties of these models is
given in Figures 11 and 12.

The differences in the position and density gradient of the
Si/Si–O interface (see Figure 1) are directly mirrored by the
temporal evolution of the mean shock radii of the models with
lower and higher ZAMS masses (see Figure 11, first row). The
most outstanding examples are models s19.6, s20.2, and s26.6
with a very pronounced jump of the density at the interface.
After the arrival of this jump at the shock surface, the shock
almost continuously expands outward. The time evolution of
these models is comparable to that of models s20-2007 and
s25-2007 extensively discussed in Section 3.1. For model
s21.6, the delay between the arrival of the interface and the
beginning of the shock expansion is largest, because for this
model the step-like decrease of the mass-accretion rate is less
extreme than in the other representatives of the subset of more
massive models (see Figure 11, second row). The less massive
stars that do not show a sharp discontinuity at the Si/Si–O
interface (especially the 12.4Me, 13.2Me, 14.4Me, and
18.4Me cases) explode only at relatively late times when the
mass-accretion rates have decreased sufficiently, similar to the
models s12-2007 and s15-2007 of Model Set I.

Model s11.2, which has already been intensively studied in
previous works (Buras et al. 2006a; Marek & Janka 2009;
Müller et al. 2012b; Suwa et al. 2013), can be considered as
special case. In this model, the Si/Si–O composition shell
interface arrives already at ∼80 ms after bounce and at this
time, the mass-accretion rate decreases to a much lower value
(∼0.2Me s−1) than in the other less massive models. This is
why the shock front can expand to large radii at early times. In
spite of a transient overshoot of τadv/τheat=1 at ∼100 ms post
bounce, however, the 11.2Me model explodes only when this
critical value of the timescale ratio is exceeded for a long-
lasting period later than ∼300 ms after bounce (see also Marek
& Janka 2009).
In general, the trends already discussed in the previous

section for the four explosion models of Woosley & Heger
(2007) also hold for the 14 models of Woosley et al. (2002).
The major prerequisites for a relatively immediate onset of the
explosion can be summarized as follows. High mass-accretion
rates and proto-neutron star masses at the time before the
Si/Si–O interface reaches the shock surface cause high
neutrino luminosities and mean energies. This leads to strong
neutrino heating, which still persists when the interface has
passed the shock front. The more pronounced the density jump
at the interface is, the lower the mass-accretion rate gets and
therefore the ram pressure of the infalling material, producing
very favorable conditions for a successful shock revival.
In cases of models exploding at relatively late times (e.g.,

s12.4, s13.2, s14.4, s18.4, and s21.6), a stabilization of
τadv/τheat at values well below unity can be observed (see
Figure 11, bottom row). Nevertheless, these models still
achieve to explode after a longer accretion phase. The
systematically increasing neutrino heating rates per unit mass
(see Figure 12, second row from top) result in a continuous
growth of the velocity dispersion in the gain layer (cf.
Equation (16)), supporting the development of strong hydro-
dynamical instabilities, which are crucial for the final rise of the
timescale ratio above unity (cf. Section 3.1.3).
On the whole, our self-consistent axisymmetric simulations

of Model Set II with PROMETHEUS-VERTEX fully confirm the
strong dependence of the explosion characteristics on the
specific progenitor structure as already concluded in the
investigation of Model Set I.

4. A GENERALIZED APPROACH TOWARD THE
CRITICAL NEUTRINO LUMINOSITY CONDITION

Although the timescale criterion appears to be a reliable
concept for the description of the explosion behavior in all 18
axisymmetric simulations (in a post-dictive, diagnostic man-
ner), at first glance no obvious correlations with other
characteristic quantities can be found that point to generally
valid properties at the onset of the explosion. At the time the
ratio τadv/τheat reaches unity, the models exhibit a diverse
range of average and maximum shock radii, neutrino
luminosities, and mean energies, kinetic energies and fractions
of recombined matter in the gain layer, etc. (see, for example,
Table 1 and Figures 2–6), and the conditions necessary for
shock revival do not seem to be constrained tightly enough to
define a common framework for a successful runaway.
Müller & Janka (2015) suggest that in 2D a squared

turbulent Mach number of á ñMa 0.32 is needed for runaway.
The average squared Mach number of the turbulent lateral

7
The gravitational neutron star mass is directly derived from the effective

general relativistic potential described in Marek et al. (2006), which is identical
to subtracting the time-integrated total neutrino luminosity from the
baryonic mass.
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Figure 11. Time evolution of different diagnostic quantities for Model Set II. For better clarity, the 14 models are subdivided into 2 parts: the models with lower
ZAMS masses are displayed in the left column, and the models with higher ZAMS masses are in the right column. From top to bottom, the average shock radius, the
mass-accretion rate, the advection timescale, the heating timescale, and the timescale ratio are depicted. Quantities that are not well defined shortly after bounce are
only shown for t�0.05 s post bounce. The black dots in the top panels mark the point in time when the ratio τadv/τheat reaches unity (in the case of model s11.2, the
transient spike of t t 1adv heat at early times was disregarded). Note that the advection timescale of model s11.2 (left column, third panel from top) is scaled with a
factor of 0.25. All quantities are angle-averaged and the curves are smoothed by running averages of 5 ms.
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Figure 12. Time evolution of different diagnostic quantities for Model Set II. For better clarity, the 14 models are subdivided into 2 parts: the models with lower
ZAMS masses are displayed in the left column, and the models with higher ZAMS masses are in the right column. From top to bottom, the mass in the gain layer, the
neutrino heating rate per unit mass, the neutrino heating efficiency, and the luminosities and mean energies of electron neutrinos (solid lines) and electron antineutrinos
(dotted lines) are depicted. Quantities that are not well defined shortly after bounce are only shown for t�0.05 s post bounce. All quantities are angle-averaged and
the curves are smoothed by running averages of 5 ms.
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motions in the gain region is defined as
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In contrast to Müller & Janka (2015), we do not employ further

approximations for the sound speed cs,g, but extract all

quantities directly from the numerical simulations as mass-

weighted averages over the gain layer instead of quantities

measured behind the shock:
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The consequences of the two different approaches concern-
ing the determination of cs,g can be inferred from Figure 13,
where the time evolution of the average squared Mach number
for Model Set I is shown (calculated without approximation,
see upper panel) and the average squared Mach numbers of all
18 models are given at the time the ratio τadv/τheat reaches
unity (calculated with and without approximation, see lower
panel). The timescales τadv and τheat are calculated according to
Equations (4) and (6). While the approximate calculation of
á ñMa2 only takes into account post-shock quantities with a
number of simplifying assumptions (see Müller & Janka 2015),
the direct calculation considers the (averaged) properties of the
whole gain region, because such an analysis offers more

numerical robustness than a calculation directly behind the
shock. The latter approach typically results in smaller Mach
numbers (compare empty and filled circles in the lower panel of
Figure 13), and the correlation between Mach number and the
onset of explosion (defined by τadv/τheat=1) points toward a
“critical squared Mach number” around ∼0.25 and thus below
the value of 0.3 found by Müller & Janka (2015). However,
there are considerable temporary fluctuations in which á ñMa2

can exceed the value of 0.25 for transient times even before
shock runaway occurs. Moreover, at the time when
τadv/τheat∼1, the individual values scatter by more than
∼30% around the mean critical value of all models, for which
reason the turbulent Mach number is at most indicative, but has
no hard threshold for shock runaway. This suggests a
considerable model-to-model variation of the turbulent pressure
contribution, being only one of several elements that play a role
in triggering the explosion.
In principle, it is possible to relate the “critical luminosity”

(Burrows & Goshy 1993; Murphy & Burrows 2008; Pejcha &
Thompson 2012) that is required to overcome the ram pressure
at a given mass-accretion rate to the timescale criterion
τadv/τheat1 (cf. Janka 2012). But in contrast to studies in
spherical symmetry, non-radial instabilities in multidimen-
sional simulations play a crucial role for the supernova
explosion mechanism and directly influence the critical
luminosity condition. While theories have been proposed to
describe the saturation properties of the SASI (e.g., Guilet

Figure 13. In the upper panel, the time evolution of the average squared Mach number in the gain layer (calculated without approximation) is shown for the
simulations of Model Set I. The curves in the upper panel are smoothed by running averages of 5 ms. In the bottom panel, the average squared Mach number (cf.
Equation (21)) is given for all 18 models at the time when the ratio τadv/τheat reaches unity. Filled symbols indicate the values directly evaluated from the simulations,
empty symbols denote the approximation given by Equations (41) and (52) of Müller & Janka (2015). The dashed line indicates the critical limit suggested by Müller
& Janka (2015).
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et al. 2010) and of convection (e.g., Murphy & Meakin 2011;

Murphy et al. 2013), only a few works focused on a

simplification of these theories to scaling laws that can be

easily verified by the extraction of volume-integrated quantities

from multidimensional simulations. Murphy et al. (2013)

performed a quantitative analysis of the interdependence of

neutrino heating and non-radial instabilities with respect to the

effect of turbulent motions on the average shock radius. In

Müller & Janka (2015), semi-empirical scaling laws were

formulated that describe the relations between the turbulent

kinetic energy and Mach number, shock deformation, and

neutrino heating. In the following, guided by the results of

Müller & Janka (2015), we aim at investigating to what extent

the additional consideration of turbulent stresses in the gain

layer can lead to a generalizable description of the explosion

conditions, being commonly applicable to all 18 simulations.
In order to derive the critical luminosity, we start with the

spherical symmetric case, considering the scaling relations for

τadv,

( )t µ
R

M
, 23adv

s
3 2

NS

and τheat,

∣ ¯ ∣
( )t µ

á ñn n

e R

L E
24heat

tot,g g
2

2

(see Janka 2012). Here, ētot,g is the average mass-specific

binding energy in the gain layer:

¯ ( )=e
E

M
, 25tot,g

tot,g

g

where Etot,g is defined in Equation (7). Lν is defined as the total

luminosity ¯= +n n nL L L
e e

of νe and n̄e, and á ñnE
2 denotes the

weighted average of the mean squared energies of electron

neutrinos and antineutrinos:

( )
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¯

á ñ =
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As in Equation (10), the mean squared energies are defined as

≔  á ñ á ñ á ñn n nE 2 3
e e e

and ≔¯ ¯ ¯ á ñ á ñ á ñn n nE 2 3
e e e

. According to Janka

(2012), the shock radius in spherical symmetry follows the

Figure 14. Critical luminosity condition for explosion. In both panels, the critical relation between ( )á ñn nL E 2
corr and ( ˙ )MMNS

3 5 for the onset of explosion (see
Equations (32) and (34)) is depicted as a black dashed line obtained from a least-squares fit to the critical points of all 18 axisymmetric models. The symbols indicate
these critical points corresponding to the time when the ratio τadv/τheat reaches unity. Circles denote the models of Set I, and triangles (diamonds) indicate the models
of Set II with lower (higher) ZAMS masses following the classification and color coding used in previous figures. In the upper panel, a comparison between corrected
(filled symbols) and uncorrected (empty symbols) values of the critical luminosity is shown. In three exemplary cases, the shifts introduced by the correction factor are

indicated by gray arrows. In the lower panel, the trajectories of all 18 models in the ( ) –( ˙ )á ñn nL E MM2
corr NS

3 5 plane for corrected values are additionally given (models
of Set II with higher ZAMS masses are shown with dotted lines). Furthermore, an axisymmetric (2D) 15 Me model of Heger et al. (2005) that does not evolve toward
an explosion is depicted with a black solid line. All depicted values are smoothed by running averages of 25 ms.
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By the use of these approximate scaling relations, the timescale

criterion τadv/τheat∼1 can be translated into a critical

luminosity condition that depends on the mass-accretion rate,

the proto-neutron star mass, the gain radius, and the average

specific binding energy in the gain layer:

( ) ( ˙ ) ∣ ¯ ∣ ( )á ñ µn n
-L E MM e R . 282

crit NS
3 5

tot,g
3 5

g
2 5

Note that we do not omit ētot,g and Rg in this relation.
For the multidimensional case, we follow Müller & Janka

(2015) and consider the turbulent stresses of multidimensional
flows in the gain layer by introducing an additional isotropic
pressure contribution d r» á ñ » á ñP v P4 3 Maturb

2 2 . The con-
sideration of this additional post-shock pressure leads to an
increased advection timescale because of a larger radius of the
stalled shock compared to Equation (27):
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(see AppendixB of Müller & Janka 2015). Taking this

modification into account, the scaling relation for the critical

luminosity now reads

( ) ( ˙ ) ( )xá ñ µn nL E MM , 302
crit NS

3 5
g

where the time dependent quantity ξg subsumes all gain-layer

related properties:
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ξg can be used to correct á ñn nL E 2 with respect to the time-

dependent evolution of gain radius, binding energy, and

turbulent pressure in the gain layer, which lead to a time and

model dependence of the critical luminosity condition for an

explosion in addition to its dependence on MNS and Ṁ :

( ) ≔ ( ) ( )
*x x
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2
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In order to obtain a meaningful comparison between different

models, we also introduce a constant normalization factor *x
g

such that the correction is applied relative to a reference model.

This reference model can be chosen arbitrarily. For our analysis

we selected model s16.8 and evaluated *x
g
at the time when the

ratio τadv/τheat reaches unity:
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This, finally, leads to a generalized version of the critical

condition, now applying to the corrected values of á ñn nL E 2 :

( ) ( ˙ ) ( )á ñ µn nL E MM . 342
crit,corr NS

3 5

The results of our analysis are shown in Figure 14, and the
corresponding correction factors are given in Table 2. In
addition to the time evolution of the corrected and normalized
values of ( ) ( ) ( )*x xá ñ = á ñn n n n

-L E L E2
corr g g

1 2 versus ( ˙ )MMNS
3 5

(lower panel), we depict the instants when the ratio τadv/τheat
exceeds unity. In the upper panel, these points are shown with
corrections (filled symbols) and without corrections (empty
symbols). The success of the correction procedure is evident:
accounting for the additional dependence of the critical
luminosity condition on ētot,g, Rg, and in particular on the
turbulent stresses of multidimensional flows in the gain layer
leads to the expected strong correlation with ṀMNS, and a
generalized critical curve (indicated by the black dashed line)
appears which is valid for all 18 explosion models. Note that
the critical curve shows up as a straight line in Figure 14 since
we plot ( ˙ )MMNS

3 5 on the abscissa. All models approach the
critical curve from the right and move upward after reaching
the critical condition. The upward bending of the evolutionary
tracks at the onset of explosion is caused by a steep drop of ξg
in the denominator, while ( )á ñn nL E 2 in the numerator evolves
slowly. The decline of ξg occurs because an increase of
( )+ á ñ1 4 3 Ma2 supports the outward acceleration of the shock
and, as a consequence, the specific binding energy of the gain
layer, ∣ ¯ ∣etot,g , plummets in addition. Interestingly, also the
behavior of the models exploding at rather late times after
bounce is correctly captured by this condition. This further
underlines the general validity of the critical curve defined
above.
In view of the analysis of Radice et al. (2016), which

demonstrates that in addition to the turbulent pressure, other
effects of turbulence, e.g., a term associated with centrifugal
support, play an equally important role, it is quite astonishing
that a simple correction by the turbulent pressure term in the
critical luminosity condition seems to capture the overall
effects of multidimensional fluid motions in the gain layer
remarkably well.
For comparison, we also show the trajectory of a model from

Heger et al. (2005; m15b6,8 simulated in axisymmetry (2D)

without the consideration of rotational effects) that does not
explode. As indicated by the solid black line in the lower panel
of Figure 14, this model does not reach the critical luminosity

Table 2

Correction Factors for the Critical Luminosity Used in Equation (32)

Model ( )*x x -
g g

1
Model ( )*x x -

g g
1

Model Set I Model Set II

s12-2007 0.86 s11.2 1.25

s15-2007 0.83 s12.4 0.92

s20-2007 1.07 s13.2 0.86

s25-2007 0.95 s14.4 0.75

s16.8 1.00

s17.2 1.08

s18.4 0.80

s19.6 0.98

s20.2 1.04

s21.6 0.95

s22.4 0.94

s26.6 1.05

s27.0 1.01

s28.0 1.00

Note. ξg and *xg are defined in Equations (31) and (33).

8
http://www.2sn.org/stellarevolution/magnet/
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condition, but evolves parallel to the critical curve in a
downward direction. The fact that this model does not fulfill the
necessary condition for a successful runaway is correctly
mirrored by its time evolution in the ( ) –( ˙ )á ñn nL E MM2

corr NS
3 5

plane (Equations (31)–(34)). In summary, the critical curve
constructed as described above proves to be an excellent
yardstick for the onset of the explosion and defines a reliable,
general criterion for the development of runaway conditions in
the simulations.

5. CONCLUSIONS

Our study of 18 pre-supernova models in a range of 11–28
solar masses, using 2D simulations with three-flavor, energy
dependent, ray-by-ray-plus neutrino transport including the full
set of state-of-the-art neutrino reactions and microphysics,
underlines the viability of the neutrino-driven mechanism in
axisymmetry. All investigated models explode and a systematic
comparison of the model set shows that the explosions are
strongly influenced by the pre-collapse structure of the
progenitor star.

If the progenitor exhibits a pronounced decline of the density
at the Si/Si–O composition shell interface, the rapid drop of the
mass-accretion rate at the time when the interface arrives at the
shock front induces a steep reduction of the accretion ram
pressure. This causes a strong shock expansion supported by
neutrino heating and thus favors an early explosion. Such a
behavior is particularly likely when the mass-accretion rate is
high before the Si/Si–O interface passes the shock. In this case
the neutron star mass grows quickly and a high accretion
luminosity ensures a high neutrino heating rate even after the
composition-shell interface has fallen through the shock. If the
progenitor structure does not exhibit a pronounced density
jump at the Si/Si–O interface and the mass-accretion rate
decreases more slowly, the models tend to explode rather late
when the mass-accretion rate has declined enough for the
neutrino heating to overcome the accretion ram pressure.

Due to initially rather short advection timescales, our
simulations provide favorable conditions for the efficient
growth of the SASI. Large-scale mass motions in the post-
shock layer associated with low-mode oscillations of the
supernova shock front along the symmetry axis mirror the vivid
SASI activity in our models, and the final shock expansion is
initiated by the growth of large bubbles supported by this
instability. But also the strong influence of convection is
visible: when the timescale ratio approaches unity, the χ
parameter increases above the critical value of 3. A comparison
to the SASI and convection dominated models discussed by
Fernández et al. (2014) confirms the typical fingerprints of both
convection and the SASI in our models, since the turbulent
energy spectra of our simulations show the characteristic SASI
peak at a spherical harmonics mode of l=2 as well as
enhanced convective power at higher modes of l=5–10.

The investigation of a larger set of self-consistent CCSN
simulations naturally leads to the question of common
properties shared by all models that govern the onset of the
successful explosions. Although the timescale criterion proves
to be a reliable diagnostic parameter for runaway, obvious
correlations with specific values of other variables discussed in
Section 3 cannot be found. Following the approach suggested
by Müller & Janka (2015) to account for the role of non-radial
instabilities in the concept of a critical neutrino luminosity for
the onset of neutrino-driven explosions, we generalize the

critical luminosity relation by including corrections for the
effects of turbulent stresses (and of other time-dependent
parameters) in the gain layer (see Equations (31)–(34)). This
relation defines a direct proportionality between the corrected
product of ( )á ñn nL E 2

corr and ( ˙ )MMNS
3 5 and captures the

explosion behavior of all 18 models in an excellent way, thus
reliably determining the conditions necessary for the onset of
the runaway. Our ( ) – ˙á ñn nL E MM2

corr NS relation (see
Equation (34) and Figure 14) leads to a considerable reduction
of the scattering of the critical runaway condition of all models
compared to the uncorrected case as well as compared to the

˙-nL M condition discussed by Suwa et al. (2016); see Figure
18 there.
Since recent 2D core-collapse simulations by Bruenn et al.

(2013, 2016), Dolence et al. (2015), O’Connor & Couch
(2015), and Skinner et al. (2015) focused on four progenitors
models of Woosley & Heger (2007) that are also extensively
investigated in this work, detailed comparisons between
different codes applied to the CCSN problem become possible
now. At first glance, the differences between the results give
reasons for concern (for a cautious effort of a comparative
discussion see also Janka et al. 2016): the same progenitor
models fail to explode (e.g., Dolence et al. 2015, but with
Newtonian gravity and different EoS), explode very early at a
time that is nearly independent of the progenitor mass (e.g.,
Bruenn et al. 2013, 2016), or explode later, showing a strong
influence of the respective progenitor structure (this work).
However, O’Connor & Couch (2015) demonstrated that
Newtonian gravity (as applied by Dolence et al. 2015) is
not favorable for explosions while a relativistic potential is.
Skinner et al. (2015) reported differences in the dynamical
evolution of the four progenitor models with M1 and ray-by-
ray neutrino transport, the latter favoring explosions. But
these results are in conflict with the M1 models of O’Connor
& Couch (2015), which show overall agreement with the ray-
by-ray-plus results presented in our work. Curiously, the
differences observed by Skinner et al. (2015) decreased when
the resolution of their simulations was enhanced. Good
overall agreement with our results was also demonstrated in a
recent conference talk at FOE20159 by K. Kotake, who
presented his simulations for a subset of cases of our Model
Set II.
A profound analysis of similarities and differences of

simulations depending on the applied codes and microphysics
is demanded to shed light on the sensitivity of the CCSN
dynamics to the approximations still used in current simula-
tions. Particular attention will have to be paid to the possible
role of code- and method inherent numerical perturbations,
which might foster the growth of post-shock instabilities and
could have important consequences for the onset of explosions
(Couch & Ott 2013, 2015; Müller & Janka 2015). A close
comparison will help with putting present CCSN simulations
on a touchstone and will point to necessary improvements in
the modeling of this important astrophysical problem.
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APPENDIX

The following appendices provide information on several
aspects of our discussion in detail. First, we demonstrate the
viability of Equation (12) for a rough description of the steady-
state evolution of the radius of the accretion shock. Second, we
follow Nakamura et al. (2015) and present correlations of some
explosion properties with the compactness parameter ξ2.0
defined by Equation (1).

Moreover, we aim to study the resolution and stochasticity
dependence of our results with respect to the point in time
when the explosion sets in. This is intended to further validate
the connection between progenitor structure and post-bounce
evolution that is evident in our simulations and that has been
extensively discussed in this paper. We also vary the chosen
transition density between the high- and the low-density EoS
and study the influence of different treatments of energy
conservation on the simulation outcome.

In addition, we will test the effects of differences in the
employed neutrino physics compared to the models of Bruenn
et al. (2013, 2016) on the shock and neutron star radii. Even in
1D, these quantities differ significantly between the simulation
results of PROMETHEUS-VERTEX and the published results of the

CHIMERA code used by the Oak Ridge group. We note,
however, that the Oak Ridge group has recently presented 1D
results for “Series C” models (Lentz et al. 2015), where the
shock radii are considerably smaller than in the previous
“Series B” 1D models of Bruenn et al. (2013, 2016), and
therefore closer to our results obtained with PROMETHEUS-
VERTEX.
We emphasize that our multidimensional code retains

spherical symmetry exactly if no seed perturbations are applied.
Despite their potentially important role for the development of
post-shock instabilities (Couch & Ott 2013, 2015; Müller &
Janka 2015), we have not varied the recipe of random seeds
employed in this study but have constrained ourselves to the
seeding method described in Section 2 for all models.

APPENDIX A
EVOLUTION OF MEAN SHOCK RADIUS AND

ANALYTIC APPROXIMATION

In order to demonstrate the viability of Equation (12) for a
rough description of the time evolution of the mean shock
radius, Figure 15 displays the shock trajectories for the four
models of our Set I. Both the simulation data (solid lines) and
the proportionality relation are according to Equation (12)
(dotted lines; the normalization constant of this relation is
chosen such that the relation matches the simulation data at
0.1 s) are shown. Equation (12) describes the simulation data
very closely only in a time interval in which steady-state
conditions are roughly fulfilled. This is the case after the early
maximum of the shock expansion (the initial shock expansion
is driven by the non-stationary accumulation of an accretion

Figure 15. Mass-accretion rates (top panels) and mean shock trajectories (bottom panels) for the models of Set I with the lower-mass cases on the left and the higher-
mass cases on the right. In the lower panels, solid lines denote the simulation data, while the dotted lines provide the analytic approximation of Equation (12). The
latter holds for quasi-stationary accretion conditions, which apply better in the low-mass cases after an initial phase of high mass-accretion rates. In the high-mass
models, the accretion rates continue to remain on a high level with a steep decline for a longer period of time, for which reason the analytic approximation roughly
captures the general trend but does not show the good quality of the quantitative agreement visible in the lower left panel.
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mantle around the neutron star) and before the development of
strong non-radial mass motions in the post-shock flow. A
steep decline of the mass-accretion rate continues for a longer
period of time in the two more massive models, while the two
less massive cases reach a quasi-stationary accretion state
after about 80 ms of post-bounce evolution (see top row of
Figure 15). Therefore the requirement of stationarity is better
fulfilled for the two less massive stars, for which reason the
proportionality relation of Equation (12) agrees better with the
simulation data. Since the low-mass cases explode only late,
their early conditions are farther away from the threshold to
explosion and multidimensional effects play a minor role,
whereas such effects are slightly more visible in the two more
massive models.

APPENDIX B
EXPLOSION PROPERTIES AND COMPACTNESS

PARAMETER

In Figure 16, the mass-accretion rate, Ṁ , the electron
neutrino luminosity, nL e

, and the mass of the proto-neutron star,
MNS, are shown for our 18 explosion models as functions of the
compactness parameter ξ2.0 (cf. Equation (1)). As in Table 1,
the compactness parameter is calculated from the pre-super-
nova model (which in this case is identical to the value at
bounce). Following Nakamura et al. (2015), Ṁ and nL e

(as
defined in Section 3.1.1) are evaluated at the time when the
mean shock radius reaches a value of 400 km, while MNS is
given at the final time of our simulations. We constrain the
cases of Figure 16 to a single value of ξM (different from
Nakamura et al. 2015), since choices of 1.5M2.5 show
similar correlations. Although our model set exhibits the same
increasing trends found by Nakamura et al. (2015), only 18
data points do not provide sufficient statistics for a meaningful
derivation of correlations. The observed trends can also be
expected for fundamental physical reasons and are therefore
not astonishing: for models with a higher compactness
parameter ξ2.0, the mass coordinate of 2.0Me is located at a
smaller radius R(M=2.0Me) than those for models with
lower compactness. The same mass being compressed into a
smaller sphere of radius R(M=2.0Me) then translates into a
longer-lasting high mass-accretion rate (Figure 16, top panel),
leading to a higher accretion luminosity (Figure 16, middle
panel) and to a higher proto-neutron star mass (Figure 16,
bottom panel). But we would also like to underline that, despite
the overall rough trends, the significant scatter of the depicted
quantities points toward peculiar model characteristics that
cannot be captured sufficiently well by a single parameter like
the compactness. As discussed and demonstrated in Section 4,
the formulation of a criterion that reliably determines the
development of runaway conditions in multidimensional
simulations especially requires a proper consideration of the
model-dependent effects of non-radial mass motions.

APPENDIX C
RESOLUTION DEPENDENCE AND STOCHASTICITY OF

THE RESULTS

For the resolution study, we chose model s20-2007 of
Woosley & Heger (2007). The setups of the simulations are
listed in Table 3. Besides two different angular resolutions of
128 and 256 angular zones, radial grids of initially 400 and 600
zones (both gradually further refined during the simulations)

were used, and various combinations of the highly and

moderately resolved angular and radial grids were tested. We

also varied the random seeds (but without changing the seeding

recipe) for the density perturbations introduced 10 ms after

bounce (compare model s20-2007_r400_a128_A, s20-

2007_r400_a128_B, and s20-2007_r400_a128_C). This affects

only the perturbation pattern, the perturbation amplitude of

0.1% in density was the same for all models. In order to test for

the stochasticity of the results, the models with names

appended by an asterisk are just a repetition of the simulations

without asterisks for the same initial conditions (i.e., also the

same perturbations).
The numerical setup of the models was identical to the

description in Section 2 except for several code improvements

that were only used in the simulations of this section. Besides

minor changes this includes a more sophisticated treatment of

total energy conservation (cf. Müller et al. 2010) and the

correction of an erroneously applied identity of the charged-

current neutrino absorption coefficient in eight-cell OpenMP

patches. While the latter improvement has no noticeable effects

on the results of test calculations, the improved treatment of the

total energy conservation leads to slightly smaller shock radii at

earlier times (ΔRs10 km at the time of maximal shock

expansion, ~R 150 kms,max ), and we observe a somewhat

delayed (∼70–100 ms) development of a runaway situation

Figure 16. Mass-accretion rate, electron neutrino luminosity, and proto-
neutron star mass as functions of the compactness parameter ξ2.0 (from top to
bottom). Following Nakamura et al. (2015), the proto-neutron star mass is
given at the final time of the simulation, the two other quantities are evaluated
at the time when the mean shock radius reaches 400 km. Circles denote the
models of Set I, and triangles (diamonds) indicate the models of Set II with
lower (higher) ZAMS masses in line with the classification and color coding
used in previous figures.
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compared to the s20-2007 case presented in Section 3 (compare
Figures 2 and 17). But as we will show in the following,
stochasticity seems to be the key determinant for the exact
timing of the onset of explosion.

Since the hydrodynamic flow behind the shock front
evolves highly nonlinearly and in a chaotic way, differences

in the detailed post-bounce dynamics of the presented
simulations are expected, even if initial conditions and grid
resolutions are identical. After 150 ms, this can be observed in
the evolution of the shock radius and the timescale ratio of
models s20-2007_r400_a128_A and s20-
2007_r400_a128_A* shown in Figure 17. The stochastic
nature of the developing non-radial flow in the post-shock
layer results in a difference of ∼30 ms between the times
when the critical condition τadv/τheat1 is reached (see
Figure 17). Similar stochastic differences can be observed for
the models with higher resolution (compare the time evolution
of models s20-2007_r600_a128 with s20-2007_r600_a128*

or s20-2007_r400_a256 with s20-2007_r400_a256*). It is
remarkable that not even in the case of the same initial
conditions do our simulations completely agree in the details
of their time evolution. This can be explained by the applied
compiler optimizations that are chosen to enhance the code
performance, but also marginally influence the precision of
floating-point operations.10 Further enhanced by the turbulent,
nonlinear evolution of the hydrodynamic dynamics behind the
shock, these minimal differences can lead to a certain spread
in the evolution of the models.
Models with a higher angular resolution of 256 zones seem

to show a trend toward a slightly earlier runaway than the
simulations with 128 angular zones. This is in accordance with
the results of Hanke et al. (2012) and their set of simulations
using only a simplified and parametrized neutrino treatment.
However, the rather small difference in time when the critical
condition is met compared to models s20-2007_r400_a128_A*

and s20-2007_r600_a128*, which show the earliest runaway of

Table 3

Tests of Resolution and EoS Treatment

Model #of Radial Zones #of Angular Zones

Resolution tests:

s20-2007_r400_a128_A 400 128

s20-2007_r400_a128_A* 400 128

s20-2007_r400_a128_B 400 128

s20-2007_r400_a128_C 400 128

s20-2007_r400_a256 400 256

s20-2007_r400_a256* 400 256

s20-2007_r600_a128 600 128

s20-2007_r600_a128* 600 128

s20-2007_r600_a256 600 256

Transition density tests:

s20-2007_r400_a88_rho3.4e7 400 88

s20-2007_r400_a88_rho6.0e7 400 88

s20-2007_r400_a88_rho3.0e8 400 88

Note. Naming convention: numerical values following the small letters “r” and

“a” indicate the numbers of radial and angular grid cells, respectively. Capital

letters A, B, and C at the end of the model name denote different patterns of

density perturbations imposed 10 ms after bounce. Models with an asterisk are

just a repetition of the models without asterisk with the same initial conditions.

In the cases of the tests for the EoS transition density, the respective density

values are also given. In all resolution tests, a transition density of

3.0×108 g cm−3 was applied.

Figure 17. Time evolution of shock radius (upper panel) and timescale ratio
(lower panel) for a set of nine 2D simulations for the same progenitor model,
but with different angular and radial resolutions and with different random
perturbations for seeding non-radial hydrodynamic instabilities. The black dots
in the top panel mark the point in time when the ratio τadv/τheat reaches unity.
All quantities are angle-averaged and the curves are smoothed by running
averages of 5 ms.

Figure 18. Time evolution of shock radius (upper panel) and timescale ratio
(lower panel) for a set of three 2D simulations for the same progenitor model,
but with different choices for the transition density between the high- and the
low-density EoS before bounce. The black dots in the top panel mark the point
in time when the ratio τadv/τheat reaches unity. All quantities are angle-
averaged and the curves are smoothed by running averages of 5 ms.

10
We confirmed by tests that running the simulations without any compiler

optimization allows us to reproduce the results of simulation runs in an exact
way, starting from the same initial perturbation patterns.
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all models with lower angular resolution, again suggests
stochastics as likely the main reason for the observed
differences between the models. This is also the case for the
models with initially higher radial resolution: Only differences
of the order of a few tens of milliseconds can be observed
concerning the points in time when the runaway sets in.

In a similar resolution study performed by Hanke (2014) for
model s27.0, higher angular resolution hardly made any
difference for the simulation results, whereas higher radial
resolution (combined with high angular resolution) led to a
delay of the runaway. While our study also shows a delay in the
case of model s20-2007_r600_a128, where only the radial
resolution was increased, our two models with enhanced
angular and enhanced angular and radial resolution, respec-
tively, explode rather early. This is also the case for model s20-
2007_r600_a128*. The fact that the resolution changes do not
produce uniform results again underlines the strong influence
of stochastic turbulent motions on the onset of explosion.

Overall, the results of our resolution study can be
summarized as follows. Although the time difference between
the simulation showing the earliest runaway and the simulation
exploding latest amounts to ∼80 ms (defined by the point in
time when the critical timescale ratio is reached), the
development of the explosion is mainly triggered by the arrival
of the Si/Si–O composition shell interface at the shock. When
the ram pressure of the infalling material is reduced to such an
extent that neutrino heating can revive the shock, the explosion
is initiated. The associated development of turbulent motions
due to convection and the SASI promotes the shock revival by
increasing the dwell time of matter in the gain layer and
additional support of the shock by turbulent momentum flows
and pressure, and the stochasticity of these fluid motions finally
leads to the moderate variance regarding the further evolution
of the explosion. Different patterns of initial density perturba-
tions or an energy cascade better resolved by a higher number
of grid zones affect the evolution of the turbulent motions, but
according to our resolution study, these are only secondary
effects. This underlines the validity of our conclusions
regarding the strong connection between post-bounce evolution
and pre-collapse structure as evident in the results presented in
the main text of our paper.

APPENDIX D
INFLUENCE OF PRE-BOUNCE EOS TRANSITION

DENSITY

In addition to the tests of resolution and stochastic effects,
we also varied the choice of the density at which the transition
from the high-density to the low-density EoS is placed (cf.
Rampp & Janka 2002; Buras et al. 2006a). During the collapse
phase until core bounce, the values for the transition density
were chosen to be 3.4×107 g cm−3, 6.0×107 g cm−3, and
3.0×108 g cm−3, respectively (see Table 3 and Figure 18).
The last value was the one used in all 18 simulations presented
in Section 3. In the post-bounce phase the transition density
was moved to 1011 g cm−3 in all cases, because below this
density nucleon interactions play a negligible role and our low-
density NSE solver allows for the consideration of a larger set
of nuclear species during the expansion phase of the high-
entropy shock- and neutrino-heated gas, connecting smoothly
to the nuclear freeze-out and nuclear burning in the shock-
accelerated ejecta. For the three simulations, the same code

version as in Section 3 was applied, and the number of angular
zones was reduced to 88. Even though the time when the
critical timescale ratio is reached differs by ∼80 ms between the
simulations (see Figure 18), this difference is still in the
ballpark of the stochastic effects discussed above, showing that
the exact choice of the transition density (in contrast to the
progenitor structure) has no major impact on the post-bounce
dynamics beyond the level of variation associated with
stochastic fluctuations. The shift is a consequence of
differences in the infall profile of the outer Fe-core and Si-
shell layers, which develop between the start of the simulations
and core bounce, i.e., before the time when the EoS transition
density is set to 1011 g cm−3 in all cases.

APPENDIX E
NEUTRINO-PAIR CONVERSION AND SCATTERING
PROCESSES AND EFFECTIVE MASS CORRECTIONS

According to Bruenn et al. (2013, 2016), the employed
neutrino physics in the CHIMERA and PROMETHEUS-VERTEX

simulations are similar except for the treatment of in-medium
nucleon correlations and nucleon-mass corrections at high
densities, ¯ ¯n n n n« mt mte e pair-conversion processes, and pure
neutrino-scattering reactions (Buras et al. 2003), which are not
included in the CHIMERA code. In order to test if these
differences in the neutrino physics can explain the considerable
differences between the results of the Oak Ridge group (“Series
B”) and the Garching group concerning shock and neutron star
radii, we performed three 1D simulations of the 20Me
progenitor of Woosley & Heger (2007).
Besides a simulation with the full neutrino physics (s20-

2007_1D), a second simulation was run with neutrino pair-
conversion and scattering processes switched off (s20-

Figure 19. Time evolution of shock radius (upper panel) and neutron star
radius (lower panel) for three 1D simulations applying different neutrino
physics. The neutron star radius is defined by the density surface at
1011 g cm−3. While model s20-2007_1D includes the full set of neutrino
reactions, pair-conversion processes between different ν flavors and νν
scattering reactions are disabled in model s20-2007_1D_nopcs, and high-
density nucleon correlations as well as effective mass corrections are
additionally switched off in model s20-2007_1D_nopcs_nohdeff. Note that
the lines for models s20-2007_1D_nopcs and s20-2007_1D_nopcs_nohdeff
fall on top of each other. The curves are smoothed by running averages of 5 ms.
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2007_1D_nopcs) and a third simulation with high-density
nucleon correlations and in-medium mass corrections (s20-
2007_1D_nopcs_nohdeff) additionally disabled. The improved
treatment of energy conservation described in Appendix C was
also applied here. The results are shown in Figure 19. While the
omission of neutrino pair-conversion and scattering processes
leads to slightly larger shock and neutron star radii, the high-
density effects do not have any significant additional influence
on the displayed quantities. Therefore, the differences in the
applied neutrino physics cannot account for the larger shock
and neutron star radii observed even in the 1D simulations with
the CHIMERA code (Bruenn et al. 2013, 2016). Note that the
neutron star radii depicted in Figure 3 of Bruenn et al. (2013)
seem to be—in contrast to our previous statement—smaller
than those for our models shown in Figure 10 (second panel
from top). However, since the proportionality between shock
radius and neutron star radius given in Equation (12) should
also hold for the results of Bruenn et al. (2013) and the smaller
neutron star radius values shown by Bruenn et al. (2013) do not
make sense for their larger shock radii, we attribute this
discrepancy to the accidental omission of a scaling factor in
their figure.

Furthermore, a comparison to Figure 4 of Steiner et al.
(2013) shows good agreement between the results of our
simulations with PROMETHEUS-VERTEX and the 1D simulations
with the AGILE-BOLTZTRAN code, an independently developed
general relativistic hydrodynamics solver with three-flavor
Boltzmann neutrino transport. In view of this unsatisfactory
situation further comparisons between different codes
employed for CCSN simulations are indispensable in order
to determine the origin of the current discrepancies in
the field.
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