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Abstract: (1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer.
Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but
the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcrip-
tion factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC
and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regres-
sion analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE
interactions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes,
and pathways to construct a regulation network using Pearson correlation. Finally, the mecha-
nisms and clinical significance were explained using multi-dimensional validation unambiguously;
(3) Results: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox
regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network
was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1
and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value of eRNAs
in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for the prediction
of metastasis of NSCLC.

Keywords: Non-small cell lung cancer; metastasis; enhancer RNAs; regulatory network; prognosis

1. Introduction

Lung cancer is the malignant tumor with the highest incidence and mortality rates
in recent years. Approximately 1.6 million people die per annum as a result and lung
cancer death rates worldwide are estimated to be higher by the World Health Organization
(WHO) [1,2]. Non-small cell lung cancer (NSCLC) is the most common lung cancer,
consisting of over 80% of cases [3]. NSCLC is mainly treated with surgery, radiotherapy, or
chemotherapy [4]. However, only a few patients with early-stage NSCLC can be treated
by surgery, which makes the 5-year survival rate for stage IA NSCLC patients reach up
to 70% [5]. Patients with more advanced NSCLC are usually treated with chemotherapy
or radiotherapy, which means the 5-year survival rate decreases to around 23%. Besides,
significant limitations still exist in new treatments, such as immunological and targeted
therapies [6]. Therefore, a more comprehensive understanding of the molecular mechanism
of progression and metastasis is critical to improve the prognosis of patients with NSCLC.
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Enhancers are short genomic regions [7,8] that can modulate gene expression by
interacting with promoters [9]. Enhancer RNAs (eRNAs), produced during the transcription
process of enhancers, are of functional importance. Their expression levels correlate with
enhancer activity [10,11]. In human cells, quite a lot of eRNAs have been found, many of
which play critical roles in the meditation of the activation of target genes by transcriptional
circuitry [12]. eRNA promotes transcription by regulating the chromatin accessibility near
target gene promoters and binding to target gene promoters [13,14], or forming eRNA-
proteins complexes that promote enhancer-promoter loops [15]. Many studies reported
the role of eRNAs in cancers. For instance, the activation of ESR1 can broadly induce the
increase of eRNA transcription in breast cancer [16], indicating that eRNAs are associated
with activating oncogenes or oncogenic signaling pathways. Moreover, KLK3e is an
androgen-induced eRNA regulating the gene KLK3, it can regulate AR-dependent gene
expression in prostate cancer by scaffolding the androgen receptor (AR)-associated protein
complex [17], which means that in some cases, tumorigenesis can be promoted directly
by oncogene-induced eRNAs. Importantly, tissue and individual patient specificity were
found in the expression of eRNAs, indicating eRNAs’ potential clinical utility in diagnosis,
prognosis and therapy for cancers [18–20].

However, the eRNA regulation mechanisms underlying NSCLC metastasis have not
been elucidated, and eRNA targeted anti-cancer agents that can improve the prognosis
of NSCLC patients are still insufficient. Here, differentially expressed transcription fac-
tors (DETFs), eRNAs (DEEs), and target genes (DETGs) between primary and metastatic
NSCLC patients were determined. Prognostic DEEs (PDEEs) were further identified us-
ing univariate and multivariate Cox regression analyses, based on which a metastatic
NSCLC-specific prognosis prediction model was constructed. Significant immune cells
and immune-related pathways were identified using cell type identification by estimating
the relative subsets of RNA transcripts (CIBERSORT) [21] and single sample gene set
enrichment (ssGSEA) algorithms [22], respectively. Hallmark pathways correlated with
key DEEs were quantified using gene set variation analysis (GSVA) [23]. Importantly, six
PDEEs (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4), along with DETFs,
DETGs, immune cells, immune-related pathways, and hallmark pathways were integrated
into co-expression analysis to construct a regulation network. The results above were
demonstrated by multi-dimensional validation to explain the mechanisms and clinical
significance unambiguously.

2. Results
2.1. DEG Identification and Functional Enrichment Analysis

The mechanism by which eRNAs promote the transcription of target genes was shown
in Figure S1 A. An analysis process of this study was shown in Figure S1B. All clinical base-
line information for primary NSCLC samples was summarized in Table 1. The differential
expression patterns of 1648 DEGs (506 upregulated DEGs and 1142 downregulated DEGs)
between primary NSCLC and metastatic NSCLC samples were illustrated by the heatmap
plot (Figure 1A) and volcano plot (Figure 1B). The GO terms, including biological processes
(BPs), cellular components (CCs), and molecular functions (MFs) where the DEGs were
mostly enriched were the regulation of peptidase activity, extracellular matrix and enzyme
inhibitor activity, respectively (Figure 1C). Moreover, amyotrophic lateral sclerosis was the
most significant KEGG pathway in which the DEGs were mostly enriched (Figure 1D).
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Table 1. Clinical baseline information of 829 primary NSCLC patients.

Characteristics Total Patients (N = 829)

Age, years
• Mean ± SD 66.30 ± 9.35
• Median(Range) 68 (33–87)
Gender
• Female 301 (36.31%)
• Male 528 (63.69%)
Stages
• Stage i 415 (50.06%)
• Stage ii 242 (29.19%)
• Stage iii 144 (17.37%)
• Stage iv 28 (3.38%)
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Figure 1. The analysis of DEGs. (A,B) DEGs were defined between primary NSCLC and metastatic
NSCLC. A total of 1648 DEGs (506 upregulated DEGs and 1142 downregulated DEGs) were defined
between primary NSCLC and metastatic NSCLC. In the heatmap (A), red color represented primary
NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B), red dot represented
upregulated DEGs and green dot represented downregulated DEGs, the two dashed horizontal
lines mark the positions of p-value = 0.05 and p-value = 0.0001, respectively, and the 4 vertical
dotted lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3 and
logFC = 1.5, respectively. (C, D) GO and KEGG pathway enrichment analysis. DEGs enriched in
regulation of peptidase activity, extracellular matrix enzyme inhibitor activity and amyotrophic
lateral sclerosis significantly. NSCLC, Non-small cell lung cancer; SD, Standard deviation. DEGs,
differential expressed genes; NSCLC, Non-small cell lung cancer; GO, Gene Oncology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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In addition, we can see from the heatmap plot (Figure 2A) and volcano plot (Figure 2B)
that 255 DEEs (59 upregulated DEEs and 196 downregulated DEEs) were identified from
5100 eRNAs between primary NSCLC and metastatic NSCLC samples.
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2.2. Multivariate Prognostic Model Construction and Independent Prognostic Factors 

Identification 

Figure 2. The DEEs identification and DEEs univariate Cox regression analysis. (A,B) The identi-
fication of DEEs. A total of 255 DEEs (59 upregulated DEEs and 196 downregulated DEEs) were
identified between primary NSCLC and metastatic NSCLC. In the heatmap (A), red color represented
primary NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B), red dot
represented upregulated DEEs and green dot represented downregulated DEEs, the two dashed
horizontal lines mark the positions of p-value = 0.05 and p-value = 0.0001, respectively, and the four
vertical dotted lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3
and logFC = 1.5, respectively. (C) DEEs univariate Cox regression analysis. Twenty-four eRNAs were
identified as PDEEs (p < 0.05). DEEs, differentially expressed eRNAs; NSCLC, Non-small cell lung
cancer; PDEEs, prognostic differentially expressed eRNAs; eRNAs, enhancer RNAs.
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2.2. Multivariate Prognostic Model Construction and Independent Prognostic Factors Identification

Twenty-four PDEEs were identified by univariate Cox regression analysis (p < 0.05)
(Figure 2C) and integrated into the multivariate prognostic model. Then, the efficiency of
the model was evaluated by an ROC curve (AUC = 0.699) (Figure 3D).
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Figure 3. Independent prognosis analysis. RS was calculated by 24 PDEEs integration multivariate
Cox model. (A,B) The scatter plot and line plot illustrated the distribution of RS among all NSCLC
patients. (C) The ROC curve indicated that the multivariate Cox regression model was of good
predictive power (AUC = 0.699). (D) The Kaplan–Meier curve showed that RS had prognostic value
for NSCLC patients (p < 0.05), red line and green line represented low-risk group and high-risk
group, respectively. (E) The distribution of low-risk and high-risk groups in PC1, PC2 and PC3, red
plots represented high-risk groups and green plots represented low risk groups, the proportion of
variance for PC1, PC2 and PC3 were 0.141, 0.087 and 0.074, respectively, the cumulative proportion
was 0.302. (F,G) The univariate (HR = 76.734, 95% CI (30.391–193.746), p < 0.001) and multivariate
(HR = 1.372, 95% CI (1.271–1.482), p < 0.001) Cox regression analysis for RS defined RS as an
independent prognostic factor for NSCLC patients. The multivariate Cox regression model was
corrected by age, gender and stage. RS, risk score; PDEEs, prognostic differentially expressed eRNAs;
eRNAs, enhancer RNAs; ROC, receiver operator characteristic; AUC, area under curve; NSCLC,
non-small cell lung cancer; HR, hazard ratios.

For the evaluation of the independent prognostic value of RS, the formula mentioned
in the methods was applied to calculate the RS for each NSCLC patient, and the distribution
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of NSCLC patients with low and high RS was shown by the risk scatter plot (Figure 3A)
and risk line plot (Figure 3B).

Besides, the survival probability of the high-risk group and low-risk group was shown
by the Kaplan–Meier survival curve, which indicated a lower survival probability in the
high-risk group (p < 0.001) (Figure 3C). Furthermore, the distribution of the high-risk group
and low-risk group within the principal components (PCs) (PC1, PC2 and PC3) was shown
in Figure 3E. Finally, RS was identified as an independent prognostic factor in the univariate
Cox regression (hazard ratios (HR) = 76.734, 95% confidence interval (CI) (30.391–193.746),
p < 0.001) (Figure 3F) and multivariate Cox regression (HR = 1.372, 95% CI (1.271–1.482),
p < 0.001) models (Figure 3G), which were adjusted by age, gender, and stage. Then,
boxplots showed the LncRNA expression of 24 PDEEs in each TNM staging and stage of
NSCLC (Figure 4A–D).

2.3. Correlation Analysis of PDEEs and Immune Cells

In all samples, the composition of 22 immune cells was estimated by the CIBERSORT
algorithm (Figure 4E), Macrophage M2, T cell CD4+ memory resting and Macrophage M1
have a higher proportion. Figure 4F, G illustrated the differential infiltration degree of
the immune cells between the primary NSCLC and metastatic NSCLC and co-expression
analysis of 22 immune cells, respectively. As is shown in Figure 4F, the infiltration degree of
T cell CD4+ naive, T cell CD4+ memory activated, T cell follicular helper, T cell gamma delta,
NK cell activated, Macrophage M2, Macrophage M1 and Mast cell resting in metastatic
NSCLC is significantly lower than that in primary NSCLC, but the infiltration degree of
T cell regulatory (Tregs) and NK cell resting is significantly higher in metastatic NSCLC.
Figure 4G showed that T cell CD8+ is positively correlated with NK cell activated and T cell
CD4+ memory activated significantly, but Mast cell activated and Mast cell resting, T cell
CD4+ memory resting and T cell follicular helper showed significant negative correlations.
Furthermore, co-expression analysis between PDEEs and 22 immune cells indicated a
significant regulatory relationship among 16 immune cells and 15 PDEEs with a |correlation
coefficient| > 0.15 and p < 0.05.

2.4. Correlation Analysis of PDEEs, DETFs, Immune-Related Gene Sets, and Hallmark Pathways

The expression levels of 30 DETFs were illustrated in a heatmap plot (Figure 5A) and
volcano (Figure 5B) plot, 29 immune gene sets were shown in a heatmap plot (Figure 5F).
Besides, the heatmap plot (Figure 5C), volcano plot (Figure 5D), together with the bar plot
(Figure 5E) showed the differentially expressed gene sets of hallmarks of cancer in GSVA,
HALLMARK_PANCREAS_BETA_CELLS and HALLMARK_KRAS_SIGNALING_DN are
highly expressed in metastatic NSCLC. Afterward, correlation analysis was performed based
on PDEEs with DETFs, immune-related gene sets, and hallmark pathways, respectively.

Finally, several elements aforementioned were considered to have significant cor-
relations which were extracted for the construction of a regulation network. Specifi-
cally, this regulation network consisted of pairwise interactions between 24 DETFs and
15 PDEEs with a |correlation coefficient| > 0.20 and p < 0.05, pairwise interactions between
24 immune-related gene sets and 13 PDEEs with a |correlation coefficient| > 0.20 and
p < 0.05, and pairwise interactions between 34 hallmark pathways and 16 PDEEs with a
|correlation coefficient| > 0.25 and p < 0.05.
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Figure 4. Clinical correlation analysis and immune infiltration analysis. (A–D) Boxplots showed
the LncRNA expression of 24 PDEEs in each TNM staging and stage of NSCLC. (E) CIBERSORT
algorithm estimated the composition of 22 immune cells in entire NSCLC samples. (F) The immune
cells that were differentially expressed between primary NSCLC and metastatic NSCLC, purple color
and blue color represented primary NSCLC and metastatic NSCLC, respectively. (G) Co-expression
analysis in entire 22 immune cells. NSCLC, Non-small cell lung cancer.
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Figure 5. Differential expression analysis among TFs, 50 cancer-related hallmark signaling pathways
and 29 immune-related gene sets. (A, B) Differential expression analysis of TFs. Thirty-one differen-
tially expressed TFs were defined between primary NSCLC and metastatic NSCLC. In the heatmap
plot (A), red color represented primary NSCLC and blue color represented metastatic NSCLC. In the
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volcano plot (B), red dot represented upregulated TFs and green dot represented downregulated TFs,
the two dashed horizontal lines mark the positions of p value = 0.05 and p value = 0.0001, respectively,
and the four vertical dotted lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3,
logFC = 0.3 and logFC = 1.5, respectively. (C–E) Differential expression analysis of 50 cancer-related
hallmark signaling pathways. In the heatmap (C), red color represented primary NSCLC and blue
color represented metastatic NSCLC. In the volcano plot (D), red dot represented the upregulated
cancer-related hallmark signaling pathways and green dot represented the downregulated cancer-
related hallmark signaling pathways, the two dashed horizontal lines mark the positions of the
p-value = 0.05 and p-value = 0.0001, respectively, and the four vertical dotted lines mark the positions
of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3 and logFC = 1.5, respectively. Bar plot
(E) showed the t-value of the GSVA score among all cancer-related hallmark signaling pathways.
(F) Differential expression analysis for 29 immune-related gene sets. Red color represented primary
NSCLC and blue color represented metastatic NSCLC. TFs, transcription factors; NSCLC, non-small
cell lung cancer. 2.6 The Construction of NSCLC metastasis-specific eRNA regulation network.

2.5. Correlation Analysis of PDEEs, DETGs, and RPPA Protein Chips

The heatmap plot (Figure 6A) and volcano (Figure 6B) plot showed significantly differ-
ential expression patterns for 17 DETGs. Afterward, correlation analysis indicated strong
correlations between 17 DETGs which were selected for the construction of a regulation
network based on a |correlation coefficient| > 0.20 and p-value < 0.05.
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Figure 6. Differential expression analysis of target genes of eRNAs. (A,B) Differential expression
analysis of target genes of eRNAs. Seventeen differentially expressed target genes of eRNAs were
defined between primary NSCLC and metastatic NSCLC. In the heatmap plot (A), red color rep-
resented primary NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B),
red dot represented the upregulated part and green dot represented the downregulated part in
target genes of eRNAs, the two dashed horizontal lines mark the positions of p-value = 0.05 and
p-value = 0.0001, respectively, and the four vertical dotted lines mark the positions of log2 foldchange
(logFC) = −1.5, logFC = −0.3, logFC = 0.3 and logFC = 1.5, respectively. eRNAs, enhancer RNAs;
NSCLC, non-small cell lung cancer.

Besides, 38 RPPA protein chips and 11 PDEEs were identified to have significant
correlations with the criterion of a |correlation coefficient| > 0.25 and p-value < 0.05.

2.6. The Construction of NSCLC Metastasis-Specific eRNA Regulation Network

Twenty-eight DEGs were eventually integrated to construct a regulatory network, and
the expression levels of them between primary NSCLC samples and metastatic NSCLC sam-
ples were shown in the heatmap plot (Figure 7A). Specifically, 6 PDEEs, 17 DETFs, 5 DETGs,
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33 RPPA protein chips, 23 hallmark pathways, 13 immune cells, and 21 immune-related
gene sets were selected to construct the NSCLC metastasis-specific eRNA regulation net-
work (Figure 7B). Figure 7C showed the results of co-expression analysis among 6 PDEEs,
17 DETFs, 5 DETGs, 33 RPPA protein chips, 23 hallmark pathways, 13 immune cells, and
21 immune-related gene sets. Finally, ANXA8L1 mainly positively regulated TP63 (DETF,
r = 0.345, p < 0.001), EXT1 (DETG, r = 0.361, p < 0.001), PAI1 (RPPA protein chip, r = 0.368,
p < 0.001), EGFR (RPPA protein chip, r = 0.258, p < 0.001), HALLMARK_P53_PATHWAY
(hallmark signaling pathway, r = 0.398, p < 0.001), and Mast cell resting (immune cell,
r = 0.214, p < 0.001) in NSCLC metastasis. CASTOR2 mainly positively regulated H2AFX
(DETF, r = 0.451, p < 0.001), SLC23A2 (DETG, r = 0.316, p < 0.001), TFRC (RPPA protein
chip, r = 0.318, p < 0.001), HALLMARK_G2M_CHECKPOINT (hallmark signaling pathway,
r = 0.336, p < 0.001) and NK cell resting (immune cell, r = 0.204, p < 0.001) in NSCLC metas-
tasis. CYP4B1 mainly positively regulated FOS (DETF, r = 0.302, p < 0.001), GTF2IRD2B
(DETG, r = 0.250, p < 0.001), NAPSINA (RPPA protein chips, r = 0.365, p < 0.001), HALL-
MARK_FATTY_ACID_METABOLISM (hallmark signaling pathway, r = 0.365, p < 0.001),
Mast cell activated (immune cell, r = 0.359, p < 0.001) and Type_II_IFN_Reponse (immune-
related gene set, r = 0.269, p < 0.001) in NSCLC metastasis. GTF2H2C mainly positively
regulated NAIP (DETG, r = 0.469, p < 0.001), TTF1 (RPPA protein chip, r = 0.412, p < 0.001),
HALLMARK_PROTEIN_SECRETION (hallmark signaling pathway, r = 0.323, p < 0.001),
Macrophage M2 (immune cell, r = 0.179, p < 0.001) and iDCs (immune-related gene sets,
r = 0.231, p < 0.001) in NSCLC metastasis. PSMF1 mainly positively regulated TP63 (DETF,
r = 0.320, p < 0.001), EXT1 (DETG, r = 0.276, p < 0.001), TFRC (RPPA protein chip, r = 0.251,
p < 0.001), HALLMARK_MYC_TARGETS_V1 (hallmark signaling pathway, r = 0.344,
p < 0.001) and Mast cell resting (immune cell, r = 0.152, p < 0.001) in NSCLC metastasis.
TNS4 mainly positively regulated TP63 (DETF, r = 0.289, p < 0.001), EXT1 (DETG, r = 0.310,
p < 0.001), CD49B (RPPA protein chip, r = 0.332, p < 0.001), HALLMARK_P53_PATHWAY
(hallmark signaling pathway, r = 0.320, p < 0.001) and Mast cell resting (immune cell,
r = 0.200, p < 0.001) in NSCLC metastasis.

Because eRNA-related transcriptional regulatory changes were implicated in the
pathological processes of NSCLC, and traditional long-term treatment with drugs may
result in refractoriness and unsatisfactory outcomes, it is urgent to find potential inhibitors
which target NSCLC-related PDEEs, DETGs, and DETFs. Therefore, the small-molecule
bioactive inhibitors for DEGs within the regulatory network in this study were identified
based on the CMap database. The heatmap plot (Figure 7D) showed the statistically
significant small-molecule bioactive inhibitors in more than 10 types of cancers. The
results indicated that irinotecan (enrichment score = 0.996, p value < 0.001) may be the best
small-molecule bioactive inhibitor that may inhibit NSCLC metastasis by suppressing the
expression of key DEGs in this study.

2.7. Analysis of Single-Cell RNA-Seq Transcriptomes

Data of the single-cell RNA sequencing (scRNA-seq) from 24 NSCLC samples (GSE153935)
were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE153935, accessed on 8 June 2022) for validation of the subcellular locations of six key
PDEEs. Fifteen cell clusters and seven cell types (Alveolar, B, NK/T, Endothelial, Epithelial,
Fibroblast and Myeloid) were identified by t-distributed Stochastic Neighbor Embedding
(t-SNE) analysis (Figure 8A). The heatmap showed the genes that were up- or down-regulated
in the 15 clusters (Figure 8B). Figure 8C showed the expression of the major genes of the
seven cell types in each cell type. The Cleveland plot (Upper part of Figure 8D) showed
the expression of canonical markers in seven cell types and the bar plot (Lower part of
Figure 8D) showed the distribution of seven cell types in 24 NSCLC samples, which
validated the accuracy of our cell type annotations.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153935
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153935
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Figure 7. The metastasis-specific regulation network construction of NSCLC and Cmap analysis.
(A) A total of 28 DEGs were extracted in the construction of the regulatory network. Red color and
blue color represented primary and metastatic NSCLC. (B) Construction of the NSCLC metastasis-
specific regulation network. Six PDEEs, 17 DETFs, 5 DETGs, 33 RPPA protein chips, 23 hallmark
signaling pathways, 13 immune cells, and 21 immune-related gene sets in total were selected for the
construction of the regulation network. In the network, PDEEs were represented by red rhombus
in the center, immune-related gene sets were represented using green triangles, hallmark signaling
pathways were represented by dark blue rectangles, immune cells were represented by purple
ellipses, DETGs were represented by pink octagons, DETFs were represented by yellow concave
quadrilaterals, and RPPA protein chips were represented by light blue hexagons. (C) Co-expression
analysis among all elements selected in the regulatory network. (D) Cmap analysis. Heatmap plot
of Cmap analysis showed significant small-molecule bioactive inhibitors in more than 10 types of
cancer. Irinotecan (enrichment score = 0.996 p-value < 0.001) may be the potential small-molecule
bioactive inhibitor for key PDEEs in NSCLC metastasis. DEGs, differentially expressed genes; NSCLC,
non-small cell lung cancer; PDEEs, prognostic differentially expressed eRNAs; Cmap, connectivity
map; eRNAs, enhancer RNAs.
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Figure 8. Analysis of scRNA-seq transcriptome for NSCLC to verify the distribution of key biomark-
ers in various cell types. (A) Distribution of 24 NSCLC samples, 15 cell clusters and seven cell types
identified by t-SNE analysis. (B) Heatmap plot of genes that were up- or down-regulated in the
15 clusters. (C) Heatmap plot for the expression of the major genes of the seven cell types in each cell
type. (D) Cleveland plot (Upper) showed the expression of canonical markers in seven cell types and
the bar plot (Lower) showed the distribution of seven cell types in 24 NSCLC samples. scRNA-seq,
single-cell RNA sequencing.
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Expressions of five key PDEEs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1 and TNS4)
(Figure 9A), three key TFs (TP63, H2AFX and FOS) and four key DETGs (EXT1, GTF2IRD2B,
NAIP and SLC23A2) (Figure S23) in seven cell types were displayed in feature plots. The
UMAP plot displayed the cell cycle of cells above (Figure 9B), which showed that cells from
cluster 1 were mainly in G1 phase and cells from cluster 4 were mainly in S phase. Pairs of
ligand and receptor among the clusters above were displayed by the ligand-receptor plot
(Figure 9C). All the results above suggested that in NSCLC, ANXA8L1 and CYP4B1 are mainly
expressed in Alveolar cells, TNS4 is mainly expressed in epithelial cells, GTF2H2C is mainly
expressed in NK/T cells and PSMF1 is significantly expressed in the seven cell types above.

Figure 9. Distribution of five key PDEEs in seven cell types in NSCLC. (A) Expressions of five key
PDEEs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1, and TNS4) in each cluster. (B) Cell cycle of each
cell. (C) ligand-receptor plot for pairs of ligand and receptor among the seven cell types. NSCLC,
Non-small cell lung cancer; PDEEs, prognostic differentially expressed eRNAs.
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2.8. Multidimensional Validation

Multiple databases were utilized for reducing the bias caused by different platforms
and to improve the reliability of our results. The key role of PDEEs including ANXA8L1,
CASTOR2, CYP4B1, GTF2H2C, PSMF1, and TNS4 in pathogenesis and metastasis of
NSCLC were validated based on GEPIA (Figure S2), UCSC xena (Figure S3), The Human
Protein Atlas (Figure S4), cBioPortal (Figure S5), UALCAN (Figures S6 and S7) and OncoLnc
(Figure S8). In GEPIA and UALCAN databases, it was shown that CASTOR2, GTF2H2C,
PSMF1 and TNS4 were highly-expressed in Lung Adenocarcinoma (LUAD), whereas ANX-
ABL1 and CYP4B1 were lowly-expressed in the TCGA LUAD cohort (Figures S2 and S6);
ANXA8L1, CASTOR2, PSMF1 and TNS4 were highly-expressed in the Lung Squamous
Cell Carcinoma (LUSC) cohort, while CYP4B1 and GTF2H2C were lowly-expressed in the
TCGA LUSC cohort (Figures S2 and S7). CYP4B1 (GEPIA, Figure S2; UALCAN, Figure S6;
OncoLnc, Figure S8), TNS4 (GEPIA, Figure S2; OncoLnc, Figure S8) were significantly
associated with the prognosis of LUAD. CASTOR2 (GEPIA, Figure S2), CYP4B1 (GEPIA,
Figure S2; OncoLnc, Figure S8) and PSMF1 (GEPIA, Figure S2; UALCAN, Figure S6) were
significantly related to the prognosis of LUSC. Besides, TNS4 (UCSC xena, Figure S3) was
significantly associated with the prognosis of pan NSCLC (all p < 0.05).

The clinical characteristics, drug responses, and target genes of six key PDEEs were val-
idated by the eRic database (https://hanlab.uth.edu/eRic/, accessed on 6 August 2021) [19].
The results indicated that ANXA8L1 (cholangiocarcinoma), PSMF1 (stomach adenocarci-
noma) and TNS4 (head and neck squamous cell carcinoma, lung squamous cell carcinoma,
rectum adenocarcinoma, stomach adenocarcinoma) were highly expressed in these cancers.
CYP4B1 was lowly expressed in lung adenocarcinoma (Figure S9). ANXA8L1 (kidney
renal papillary cell carcinoma) and CYP4B1 (lung adenocarcinoma and bladder urothelial
carcinoma) were highly expressed at the early stage of these cancers, but PSMF1 was highly
expressed in stage III stomach adenocarcinoma (Figure S10). CYP4B1 was lowly expressed
in high-grade bladder urothelial carcinoma (Figure S11). The expression levels of CYP4B1
(lung adenocarcinoma, bladder Urothelial Carcinoma, bladder urothelial carcinoma, and
breast invasive carcinoma) showed a significant relationship with different subtypes of
these cancers (Figure S12). Furthermore, ANXA8L1 (kidney renal papillary cell carcinoma),
CYP4B1 (lung adenocarcinoma) and TNS4 (stomach adenocarcinoma) showed a significant
relation with survival in these cancers (Figure S13). Moreover, smoking showed a signifi-
cant relation with the expression of CYP4B1 in lung adenocarcinoma (Figure S14) (all FDR
p < 0.05). Table S1 showed the information of target genes and the drug responses of six
key PDEEs.

The accessibility in chromatin of key PDEEs was validated by the data from ATAC-seq
downloaded from the TCGA database and the results in LUAD and LUSC were shown in
Figures S15 and S16, and Figures S17 and S18, respectively. Twenty-four chromosome open
regions of genic, intergenic, intron, exon, upstream, downstream and distal intergenic were
shown in Figures S15A and S17A, and Figures S15B and S17B, respectively (open regions
were shown as green peaks). The distance between the open regions of all chromosomes
and the regions of gene transcription were calculated and shown in Figures S15C and S17C,
and Figures S15D and S17D. Figure S15E,F showed that in the open region, genes were mainly
enriched for skeletal system development, centrosome, cell adhesion molecule binding and
MAPK signaling pathway in LUAD, and Figure S17E,F showed that the open region genes
were mainly enriched for the positive regulation of nervous system development, centrosome,
cell adhesion molecule binding and MAPK signaling pathway in LUSC. Then, six key PDEEs
were detected to be accessible in chromatin (Figures S16 and S18).

The Chip-seq validation was performed by the Cistrome database to determine
whether PDEEs are bound to DETFs binding sites, PDEEs and DETFs (ANXA8L1-TP63,
CASTOR2-H2AFX, CYP4B1-FOS, GTF2H2C-TP63, PSMF1- TP63 and TNS4-TP63) with
the highest correlation were selected for further analysis. Finally, six key PDEEs were
determined to be bound to the DETFs binding sites (Figure S19).

https://hanlab.uth.edu/eRic/
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3. Discussion

NSCLC is the main type of lung cancer [24], whose mortality ranks top 1 all over the
world [25]. In general, the prognosis of patients with NSCLC metastasis is not good [6],
it is vital to explore the potential biological mechanisms and biomarkers for prognostic
and therapeutic targets related to NSCLC metastasis. Multiple eRNAs are implicated in
tumorigenesis and metastasis, which were significant therapeutic targets in metastatic NSCLC.

In our study, 24 PDEEs were identified and based on them, the risk score was defined
by the multivariate Cox regression model (AUC = 0.699). Furthermore, the risk score
was identified as the significant predictive factor for the prognosis of NSCLC patients
by Univariate and multivariate Cox regression analysis adjusted by age, gender and
stage. In addition, for the exploration of potential mechanisms of NSCLC metastasis,
correlation analysis was utilized to construct the NSCLC metastasis-specific regulation
network, including key PDEEs, DETGs, DETFs, RPPA protein chips, hallmark signaling
pathways, immune-related gene sets, and immune cells. Finally, six key PDEEs including
ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4 were identified.

ANXA8L1 (annexin A8 like 1) encoded one of the top 10 antigens identified by the
majority of serological tests for pemphigus vulgaris patients [26]. High expression of
ANXA8L1 was detected to be associated with poor prognosis in cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) [27], but there were few studies on
the relationship between ANXA8L1 and lung cancer.

CASTOR2 (cytosolic arginine sensor for mechanistic target of rapamycin complex
1 (mTORC1) subunit 2) is a subtype of CASTOR, a kind of protein readily detectable in
vertebrates [28]. CASTOR2 was found to be related to the regulation of mTORC1 [28–30],
a central growth controller that integrates diverse environmental inputs to coordinate
anabolic and catabolic processes in cells [31], cancer cells might promote growth trans-
formation and tumorigenesis by manipulating CASTOR2, which was reported in Kaposi
sarcoma [32].

As a superfamily of enzymes related to phase I drug metabolism, Cytochrome P450
(CYP) was involved in multiple biological processes, such as maintaining calcium home-
ostasis, fatty acid metabolism, and steroid and cholesterol biosynthesis [33]. CYP4B1
(cytochrome P450 family 4 subfamily B member 1) is an extrahepatic form of cytochrome
P450 predominantly and responsible for the bioactivation of multiple protoxins with tissue-
specific toxicological effects [34]. CYP4B1 was found to be associated with a variety of
cancers [35] and Czerwinski et al. discovered that CYP4B1 from normal and neoplastic
lung tissues, compared with normal tissues, had mRNA levels in tumor tissues that were
reduced by 2.4 times [36].

GTF2H2C (GTF2H2 family member C) was a subtype of general transcription factor
IIH subunit 2-like, related to transcription by RNA polymerase II and DNA nucleotide
excision repair [37]. The expression level of transcription factor IIH was identified to be
significantly reduced in alveolar macrophages of idiopathic pulmonary fibrosis patients [38].
In fetal lung and placenta, altered methylation may occur in GTF2H2C to repair the DNA
damage caused by exposure to smoking [37]. However, the relationship between GTF2H2C
and cancer remained unclear.

PSMF1 (proteasome inhibitor subunit 1), the proteasome inhibitor PI31 subunit, was
able to bind to the outer rings of the 20S proteasome directly or compete for 20S binding
with the activating particles to inhibit the proteasome activities [39–41]. High expression of
PSMF1 was shown to be associated with better survival of NSCLC patients, hence PSMF1
was considered as an underlying suppresser gene in NSCLC [42], which demonstrated the
accuracy and clinical practicality of our hypothesis.

TNS4 (Tensin 4) participated in the cell movement, which was induced by MET and
was related to the GPCR signaling pathway. High expression of TNS4 was reported to be
associated with poor prognosis in gastric cancer and esophageal squamous cell carcinoma
patients [43,44]. Furthermore, the differential expression and abnormal methylation of
TNS4 were identified in LUAD patients. It was found that high expression of TNS4 leads
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to poor prognosis, and TNS4 may be involved in the mechanisms of DNA methylation in
LUAD, which means it may be a potential marker for the prognosis of LUAD patients. [45].

Six key PDEEs mainly positively regulated TP63, H2AFX, FOS (TFs), EXT1, SLC23A2,
GTF2IRD2B, NAIP (DETGs), PAI1, TFRC, NAPSINA, TTF1, CD49B (RPPA protein chips),
P53 pathway, G2M checkpoint, fatty acid metabolism, protein secretion, MYC targets
V1 (hallmark signaling pathway), Mast cell resting, NK cell resting, Mast cell activated,
Macrophage M2 (immune cell), Type_II_IFN_Reponse, and iDCs (immune-related
gene sets).

TP63 (tumor protein p63) was associated with the proliferation, migration, colony
formation, and invasion of certain squamous cell carcinomas (SCCs) [46,47]. The expression
of H2AFX (H2A histone family, member X) histone was promoted by USP22 (Ubiquitin-
specific protease 22), which was involved in the occurrence and progression of LUAD [48].
FOS (Fos proto-oncogene, AP-1 transcription factor subunit) can induce the abnormal
proliferation of lung cancer cells [48].

EXT1 (exostosin glycosyltransferase 1) methylation can regulate gene expression and
activate the WNT pathway, which affected the proliferation and migration of NSCLC and
predicted a poor prognosis [49]. SLC23A2 (solute carrier family 23 member 2) was known
to be required for sodium-dependent transporters of vitamin C [50], and several types
of cancer were reported to be linked with a deficiency in vitamin C [51]. GTF2IRD2B
(GTF2I repeat domain containing 2B) was involved in chromatin structure modification
and gene expression regulation [52], mutations in GTF2IRD2B may cause disorders of gene
expression regulation and contribute to carcinogenesis [53]. NAIP (NLR family apoptosis
inhibitory protein), is a major anti-apoptotic protein and is targeted by miR-1 and miR-145,
which induces cell death and contributes to the development of cancer [54].

PAI1 (phosphoribosylanthranilate isomerase 1) promoted glycolytic metabolism [55],
and the migration and chemotaxis of cancer cells relies on the energy obtained via enhanced
glycolysis primarily [56,57]. EGFR (Epidermal growth factor receptor) plays an important
role in the regulation of the proliferation, differentiation, survival and motility of the
tumor cells and was found to be highly expressed in over 60% of NSCLCs [58], which
indicates that it has the potential to promote NSCLC metastasis. TFRC (transferrin receptor)
promoted the proliferation and metastasis of cancer cells by upregulating the expression
of AXIN2, which accelerated the development of cancer [59]. NapsinA (napsin A aspartic
peptidase) and TTF1 (thyroid transcription factor-1) were reported as the specific clinical
diagnosis indexes and prognostic markers for LUAD [60–62]. CD49B was shown to be
the cell-surface marker for the enrichment of a subpopulation of leiomyoma cells that
possess stem/progenitor cell properties [63]. The functions of RPPA and their regulatory
relationship with PDEE were shown in Table S2.

The transcription factor p53 participated in the mechanism of the cell cycle and was
reported as an important tumor suppressor [64]. The G2/M checkpoint checked cell size
and DNA damage in mitosis of multiple organisms. Disorder of mitotic entry can often
cause oncogenesis or cell death [65]. Deregulated anabolism and catabolism of fatty acids
metabolic were identified as metabolic regulators that support cancer cell growth [66].
Protein secretion signaling was reported to be associated with multiple biological processes,
such as cancer cell migration and invasion [67]. MYC targets v1 signaling and might be
related to the higher rates of cell proliferation, resulting in increased aggressiveness of
the tumor and worse survival [68]. The tumor microenvironment (TME) was significantly
associated with the pathogenesis of lung cancer [69,70]. The proportion of resting NK
cells and mast cells resting in lung cancer tumor tissues was reported to be lower than in
normal tissues [71]. Mast cells and their activation might result in tumor cytotoxicity and
tumor angiogenesis [72]. M2 Macrophages promote the growth, invasion, metastasis, and
angiogenesis of cancer cells, and are regarded as one of the main tumor-infiltrating immune
cells [73]. IFN-γ (type II IFN) played an important role in anti-tumor responses [74]. IFN-
γ receptor impairment or IFN-γ-mediated signal disruption may cause insensitivity to
IFN-γ, which may promote the development and progress of tumors [75]. Dendritic cells
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(DCs) were associated with the regulation of the immune response and played key roles in
inducing anti-tumor activity [76], a decrease in immature dendritic cells (iDC) and impaired
migration ability may cause cancer [77].

Irinotecan is a topoisomerase inhibitor that causes cytotoxic protein-linked DNA
breaks [78], which is a kind of p53-dependent small-molecule bioactive inhibitor [79].
Linked to the results of Cmap, irinotecan may exert an inhibitory effect through the
P53 pathway.

Five key eRNAs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1, and TNS4) were found to
be expressed in Alveolar, B, NK/T, Endothelial, Epithelial, Fibroblast and Myeloid cells
in single cell sequencing analysis and the analysis of the scRNA-seq transcriptomes. The
tumor-microenvironment was detected to play an important role in each step of NSCLC
metastasis, and the synergistic mechanisms of tumor cells and the microenvironment may
provide biomarkers or potential therapeutic targets for cancers [80], which suggests that
eRNAs may regulate NSCLC metastasis by interacting with the tumor microenvironment.

The ATAC-seq validation showed that six key PDEEs were chromatin accessible in
the NSCLC metastasis state, which indicated that these eRNAs were related to NSCLC
metastasis. In addition, through Chip-seq validation analysis, these key PDEEs were found
to bind to the binding sites of enhancers and DETFs in this study. Therefore, our study
verified that these key eRNAs regulated target genes and mediated NSCLC metastasis by
recruiting TFs, which may be implicated in the metastasis of NSCLC.

This is the first study that explored the roles that eRNAs played in NSCLC metastasis,
however, several limitations still remained in our study. Firstly, since the samples were all
from America, selection bias was inevitable, and the applicability of the prediction model
to other countries was uncertain. Secondly, our results were completely based on public
databases and have not been verified by our own population studies and experiments.
Therefore, multidimensional validation was performed to validate our hypothesis based on
various online databases in the multi-omics dimension. Moreover, further cell and animal
experimental validation and clinical trials were warranted in future studies, demonstrating
correlations between identified key PDEEs and other multi-omics biomarkers, and validat-
ing the clinical relevance of our key findings regarding novel eRNA regulatory mechanisms
from multiple dimensions.

4. Materials and Methods
4.1. Data Acquisition

RNA-seq data from 1011 primary NSCLC, clinical information from 829 primary NSCLC,
and 258 protein chips were obtained from The Cancer Genome Atlas (TCGA) database (https://
tcga-data.nci.nih.gov, accessed on 3 August 2020) [81]. RNA-seq data from 42 metastatic NSCLC
were obtained from the MET500 database (https://met500.path.med.umich.edu/, accessed on
4 August 2020) [82], 318 TFs were obtained from the Cistrome database (http://cistrome.org,
accessed on 14 August 2020) [83]. Immune gene expression profiles were downloaded from
the ImmPort database (https://www.immport.org/, accessed on 19 February 2020). Fifty
cancer-related hallmark pathways and 29 immune-related pathways were obtained from
the Molecular Signatures Database (MSigDB, Version 7.4) (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp, accessed on 10 September 2020) [84].

4.2. The eRNA Expression Data

The list of eRNAs, which was normalized and annotated by Ensemble ID and the
corresponding target gene list was available in the eRic (enhancer RNA in cancers) database
(https://hanlab.uth.edu/eRic/, accessed on 6 June 2020) [19] in addition to the Chromatin
Immunoprecipitation Sequencing (CHIP-seq) results containing acetylated histone H3
lysine 27 (H3K27ac) [85]. In addition, the official gene symbol of each eRNA was identified
by the CHIP seeker package based on the location in the hg38 genome [86].

https://tcga-data.nci.nih.gov
https://tcga-data.nci.nih.gov
https://met500.path.med.umich.edu/
http://cistrome.org
https://www.immport.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://hanlab.uth.edu/eRic/
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4.3. Differential Expression Analysis

Differentially expressed genes (DEGs) between primary NSCLC and metastatic NSCLC
were identified by the limma and edgeR algorithm [87,88] with the criteria of a False Dis-
covery Rate (FDR) p-value < 0.05 and |log2 Fold Change (FC)| > 1.0; DEEs, DETGs, and
DETFs were all identified. To determine the most enriched pathways, the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Gene Oncology (GO) enrichment analysis was
applied [89].

4.4. Multivariate Risk-Prediction Model Construction and Independent Prognostic Factors
Identification

Prognostic DEEs (PDEEs) were screened by univariate Cox regression analysis from
identified DEEs. Furthermore, the Least Absolute Shrinkage and Selection Operator
(LASSO) regression was used to determine the independent variables with great signifi-
cance, reducing the over-fitting phenomenon [90]. Afterward, we integrated all PDEEs into
a multivariate Cox regression model, and the receiver operator characteristic (ROC) curve
was used to evaluate the predictive power of the model. The multivariate Cox regression
model formula was applied to calculate the risk score (RS) for each NSCLC sample as
follows:

RS = β1 × NSCLC1 + β2 × NSCLC2 + β3 × NSCLC3 + . . . . . . + βn × NSCLCn

In this formula, “n” represented the number of PDEEs in the multivariate model; “β”
represented the coefficient of corresponding PDEEs. Then, the median of the RS was used
to divide all the NSCLC samples into two groups, including the high-risk group and the
low-risk group. Additionally, the survival conditions of the high-risk group and the low-
risk group were described by Kaplan–Meier survival analysis. The independent prognostic
value of RS was evaluated by univariate and multivariate Cox regression analyses, and the
multivariate Cox regression model was adjusted by clinical variables, such as age, gender,
and stage.

4.5. Identification of PDEE-Related Immune Cells and Immune-Reltaed Gene Sets

The composition of 22 types of immune cells in all samples was evaluated by the
CIBERSORT algorithm. To determine the correlations between PDEE signature and im-
mune cell infiltration in NSCLC tissues, PDEE expression matrix data were uploaded to
CIBERSORT [21]. Infiltrating immune cells were all extracted for subsequent analysis.
Moreover, nonparametric tests were performed to determine associations between the
immune cells and different clinical phenotypes.

Additionally, a single-sample gene set enrichment analysis (ssGSEA) was carried out
to quantify 29 immune-related gene sets in all samples [22]. Further, Pearson correlation
analysis was performed to identify significant correlations between PDEEs and immune
cells/immune-related gene sets, where a p-value < 0.05 was considered statistically significant.

4.6. Identification of Downstream Hallmark Pathways

Gene Set Variation Analysis (GSVA) was utilized to explore potential downstream
hallmark pathways of PDEEs. Absolute quantification of 50 hallmark pathways was
calculated to determine the differentially expressed hallmark pathways between primary
NSCLC samples and metastatic NSCLC samples using the GSVA package [23].

4.7. Construction of Metastasis-Specific eRNA Regulation Network for NSCLC

Key PDEEs along with DETGs, DETFs, RPPA proteins chips, 50 hallmark pathways,
29 immune gene sets, 22 immune cells, were integrated into Pearson correlation analysis
to construct a NSCLC metastasis-specific eRNA regulation network with the criterion of
|correlation coefficient| > 0.20 and p value < 0.05 for PDEEs and DETGs; |correlation
coefficient| > 0.20 and p value < 0.05 for PDEEs and DETFs; |correlation coefficient| >
0.25 and p value < 0.05 for PDEEs and RPPA protein chips; |correlation coefficient| > 0.25
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and p value < 0.05 for PDEEs and hallmark pathways; |correlation coefficient| > 0.20 and
p value < 0.05 for PDEEs and immune-related gene sets, and |correlation coefficient| > 0.15
and p value < 0.05 for PDEEs and immune cells.

Furthermore, the connectivity map (Cmap) database was utilized to identify bioac-
tive small molecule inhibitors with the potential as target drugs for DEGs of the NSCLC
metastasis-specific regulation network (https://portals.broadinstitute.org/cmap/, accessed
on 25 September 2020) [91,92]. DEGs, including PDEEs, DETGs, and DETFs were used as
input data in the Cmap analysis, results of stemness-related DEG analysis in pan-cancer
were also integrated into the Cmap analysis [91]. Information on targeting inhibitors could
be acquired from the mechanism of actions (MoA) (http://clue.io/, accessed on 25 Septem-
ber 2020) including human cell lines’ transcriptional responses to perturbagens, structural
formulas, and protein targets. Therefore, based on MoA, inhibitors that may target NSCLC
metastasis-related DEGs in this study were all identified.

4.8. Analysis of scRNA-Seq Transcriptomes

scRNA-seq data from 24 NSCLC samples obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153935, accessed on 8 June 2022) were
applied to analyze the cellular localization of key PDEEs. The analysis of the integrated data
was carried out by the R toolkit Seurat [93]. Genes that were expressed in over 200 single
cells and cells with 1500 to 100,000 gene transcripts were selected for further analysis.
Moreover, the “vst” method, “FindMarkers” and “FindConservedMarkers” functions were
utilized to identify the variable genes, and the marker genes for each cell type were defined.
Then, the variable genes above were used to carry out the principal component analysis
(PCA) to reduce data dimensionality. The top 15 PCs were selected for further analysis,
including Unified Manifold Approximation and Dimensionality Reduction Projection
(UMAP) analysis and cluster analysis. The cell clusters, which were based on key PCs,
were identified by t-SNE (resolution = 0.50) [94] and absolute values of FDR < 0.05 and
log2 (FC) > 0.5 were the criterion for DEG in each cell cluster. Annotation for every cluster
was performed by the CellMarker database and the singleR method [95,96]. Visualization
of cell cycle stages was performed by the “CellCycleScoring” function and markers of
phases. Finally, in different cell types, the pairs of receptor and ligand were identified by
the “iTALK” package [97] and visualization of intercellular communication was performed
by the “edgebundleR” package (https://github.com/garthtarr/edgebundleR, accessed on
8 June 2022).

4.9. Multidimensional Validation

For balancing false positive results and reducing information bias, multi-database
external verification was performed based on various online databases including Gene
Expression Profiling Interactive Analysis (GEPIA) [98], UCSC xena [99], The Human
Protein Atlas [100], cBioPortal [101,102], UALCAN [103] and OncoLnc [104]. In addition,
Single Cell Expression Atlas was adopted to identify eRNA expression at the cellular level
(https://www.ebi.ac.uk/gxa/sc/experiments, accessed on 30 August 2021) [105]. The assay
for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data was
obtained from the TCGA database to explore the accessibility of eRNAs in chromatin [106].
Chromatin immunoprecipitation sequencing (Chip-seq) data of eRNAs were collected from
the Cistrome database to identify specific binding relationships between key PDEEs and
DETFs in this study (http://cistrome.org/, accessed on 30 August 2021) [107–117].

4.10. Statistics Analysis

All statistical analyses were performed by R version 3.6.1 (Institute for Statistics and Math-
ematics, Vienna, Austria) (Package: e1071, parallel, preprocessCore, sva, limma, edgeR, ggplot2,
survminer, survival, rms, randomForest, pROC, glmnet, pheatmap, timeROC, vioplot, cor-
rplot, ConsensusClusterPlus, forestplot, survivalROC, beeswarm, edgeR, chromVAR, Biostrings,
BSgenome.Hsapiens.UCSC.hg38, ChIPseeker, TxDb.Hsapiens.UCSC.hg38.knownGene, clus-

https://portals.broadinstitute.org/cmap/
http://clue.io/
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terProfiler, org.Hs.eg.db, ggplot2, karyoploteR, limma, pheatmap, GSVA, limma, GSEABase,
stringr, GEOquery, dplyr, limma, ComplexHeatmap, RColorBrewer, clusterProfiler, tibble,
ggplot2, cowplot, ggcorrplot, xlsx, tidyverse, GEOquery, plyr, circlize, ComplexHeatmap,
TCGAbiolinks, SummarizedExperiment, dplyr, tidyverse, fgsea, ggplot2, ImmuLncRNA,
iTALK, edgebundleR). A two-sided p-value < 0.05 was considered statistically significant,
and the utilization of the Pearson/Spearman correlation coefficient depended on the re-
sults of the normality tests. The machine diagram was drawn on the biorender website
(https://biorender.com/, accessed on 2 June 2022).

5. Conclusions

This study verified that eRNAs played significant roles in NSCLC metastasis. More-
over, six key PDEEs (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1, and TNS4) were
identified as potential markers to predict the prognosis of NSCLC and provide references
for the treatment of metastatic NSCLC, which occupied the central position in the NSCLC
metastasis-specific regulation network.
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