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Background: Cuproptosis is a copper-dependent cell death mechanism that is

associated with tumor progression, prognosis, and immune response.

However, the potential role of cuproptosis-related genes (CRGs) in the

tumor microenvironment (TME) of triple-negative breast cancer (TNBC)

remains unclear.

Patients and methods: In total, 346 TNBC samples were collected from The

Cancer Genome Atlas database and three Gene Expression Omnibus datasets,

and were classified using R software packages. The relationships between the

different subgroups and clinical pathological characteristics, immune

infiltration characteristics, and mutation status of the TME were examined.

Finally, a nomogram and calibration curve were constructed to predict patient

survival probability to improve the clinical applicability of the CRG_score.

Results: We identified two CRG clusters with immune cell infiltration

characteristics highly consistent with those of the immune-inflamed and

immune-desert clusters. Furthermore, we demonstrated that the gene

signature can be used to evaluate tumor immune cell infiltration, clinical

features, and prognostic status. Low CRG_scores were characterized by high

tumor mutation burden and immune activation, good survival probability, and

more immunoreactivity to CTLA4, while high CRG_scores were characterized

by the activation of stromal pathways and immunosuppression.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.922780/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922780/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.922780/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.922780&domain=pdf&date_stamp=2022-08-01
mailto:13862901258@163.com
mailto:13061931996@163.com
mailto:904835959@qq.com
mailto:cowdl@163.com
https://doi.org/10.3389/fimmu.2022.922780
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.922780
https://www.frontiersin.org/journals/immunology


Sha et al. 10.3389/fimmu.2022.922780

Frontiers in Immunology
Conclusion: This study revealed the potential effects of CRGs on the TME,

clinicopathological features, and prognosis of TNBC. The CRGs were closely

associated with the tumor immunity of TNBC and are a potential tool for

predicting patient prognosis. Our data provide new directions for the

development of novel drugs in the future.
KEYWORDS

cuproptosis, triple-negative breast cancer, tumor microenvironment, immunotherapy,
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Introduction

Breast cancer has surpassed lung cancer to become the most

common cancer type worldwide. In 2020 alone, there were about

over 2.3 million new breast cancer cases globally, accounting for

approximately 11.7% of all tumors (1). Breast cancer is classified

into four classical subtypes, Luminal A, Luminal B, HER2-

enriched, and triple-negative breast cancer (TNBC), based on

immunohistochemical (IHC) subtypes and comprehensive

genetic analysis. TNBC accounts for about 15% to 20% of

invasive breast cancers, and has high heterogeneity,

invasiveness, and risk of recurrence (2, 3). In addition, it lacks

specific targets and targeted therapeutic drugs, which are the key

reasons for the observed failure of anticancer therapy and

ultimate death of patients.

At present, systemic chemotherapy remains the standard

treatment for TNBC (4). First-line chemotherapy consisting of

anthracycline, taxane, and platinum drugs is used to treat high-

risk, locally advanced TNBC. However, the rates of recurrence and

distant metastasis remain high (5). The results of a Phase III

clinical trial (KEYNOTE-355) comparing pembrolizumab

combined with chemotherapy versus chemotherapy alone

showed that for locally advanced/metastatic TNBC patients,

pembrolizumab combined with chemotherapy only achieved

significant progression-free survival (PFS) rates in the CPS 10 or

higher subgroup, while the treatment in the remaining CPS

subgroups had no significant effect (6). Another study in

patients with locally advanced/metastatic TNBC (IMpassion131)

showed that even with 45% of patients being PD-L1 positive, the

combination of atezolizumab and paclitaxel did not improve the

PFS of the patients (7). This suggests that determining a treatment

method and estimating prognosis in patients based on PD-L1

expression alone are not accurate. Recently, increasing numbers of

immune inhibitors have been approved for clinical use. However,

patient survival and prognosis have not yet significantly improved,

indicating that the optimal relationship between immune and

chemotherapy drugs and TNBC patients has not been clarified.
02
Therefore, a prediction model that can accurately characterize and

classify the tumor microenvironment (TME) of patients is

required for identifying patients who are sensitive to immune

checkpoint inhibitors. Additionally, this would prevent patients

who would not benefit from such drugs from undergoing

unnecessary treatments.

Copper is an important metal element in organisms that

participates in many biological processes, including

mitochondrial respiration, iron absorption, oxidation

resistance, and detoxification. The imbalance of copper

homeostasis has been confirmed to be related to Menkes

disease, Wilson disease, Alzheimer’s disease, blood diseases,

metabolic syndrome, cardiovascular disease, and cancer (8).

Copper is involved in the occurrence and development of

malignant tumors by promoting cel l proli feration,

angiogenesis, and metastasis. Copper ions mediate the key

steps of angiogenesis by binding to angiogenin and HIF-1.

Furthermore, copper-induced oxidative stress can destroy

DNA chains or modify molecular structures to activate

oncogenes (9, 10). The latest research has revealed a

previously unknown mechanism of cell death regulation,

which has been named cuproptosis. Cuproptosis is a process

mainly occurring in cells actively involved in respiration and the

TCA cycle that promotes the combination of copper and fatty

acylating component, resulting in the aggregation of fatty

acylating protein, loss of iron-containing sulfur cluster protein,

induction of HSP70, initiation of intracellular toxic oxidative

stress, and eventually cell death (11). Studies have shown that

copper is highly present in the serum or tumor tissues of patients

with various cancers, including breast cancer, lung cancer,

colorectal cancer, cervical cancer, ovarian cancer, and others.

Additionally, copper is related to the occurrence, invasion, and

metastasis of tumors (12–14). However, there are no reports

describing any effects of the cuproptosis regulatory mechanism

on TNBC. Therefore, to examine the role of cuproptosis in

TNBC, we explored the possible prognostic value of cuproptosis-

related genes (CRGs) in this study.
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Materials and methods

Data sources

Data were obtained from the Gene Expression Omnibus

(GEO; https://www.ncbi.nlm.nih.gov/geo/) and The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

databases. RNA expression data were obtained for breast

cancer from two GEO cohorts (GSE135565 and GSE65194)

(15, 16) and from the TCGA cohort for subsequent analysis.

We obtained the original “CEL” file and performed background

adjustment and quantile normalization. In total, 253 cohort

samples were included in the follow-up study. After excluding

the samples with no prognosis and 0 and negative values for

survival data, 239 samples were ultimately included in the

follow-up study. Statistics were performed based on clinical

variables such as tumor stage and grade, tumor location,

patient age, gender, ethnicity, and prognosis. Additional

samples (n=107) from GSE58812 (17) were included for

further analysis in the construction of the CRG signature. The

final included sample size was n=346. Batch effects from non-

biological technical biases were corrected using the “ComBat”

algorithm of the sva package (18, 19).
Consistent clustering analysis and clinical
feature comparison of CRGs

Sixteen genes related to cuproptosis were retrieved from the

latest literature (11), of which 15 genes were expressed in the

combined samples of TCGA and GEO. The “network” package

was used to construct a gene network for these 15 CRGs. R

“Cluster” (20) was used for consensus unsupervised clustering

analysis, and the patients were classified into two subtypes

according to CRG expression levels. After clustering, the

correlation within the group was increased, while the

correlation between groups was decreased. The prognoses of

the two subgroups were compared using R “clusterSur”. We

compared the relationships between subgroups and clinical

pathological features, which included age, race, tumor location,

T, N, M, and tumor staging. Subsequently, the associations of the

subgroups with pathways and immunologic infiltration

were compared.
Genotyping of CRGs

To analyze the prognostic typing associated with CRGs in

breast cancer, Cox regression analysis was used to evaluate the

relationship between each gene in the combined TCGA and

GEO datasets and survival state. In total, five CRGs with P<0.05

were screened out. The R “Cluster” package was used to divide
Frontiers in Immunology 03
the samples into groups A and B according to the expression of

these five genes. To quantify the cuproptosis pattern of

individual tumors using two prognosis-related genes based on

CRGs, a gene cluster was established using the “NMF” package

(21). This divided the patients into high and low groups C1 and

C2, and analyzed the differences in survival and clinical

characteristics between the two groups.
Construction of a prognosis signature
related to cuproptosis

Based on samples from two GEO and one TCGA datasets,

we further included the LASSO Cox regression model and R

“clusterSur” to narrow the range of candidate genes and establish

a signature. The risk score was calculated as follows: Risk _

score =S (Expi * Coefi), where Coefi and Expi represent the risk

factor and expression of each gene, respectively. The patients

were divided into a training group (n =173), a test group

(n=173), and a LOOCV verification group (n=3,462) with the

propensity score matching model. According to the median risk

scores, the three groups were divided into low-risk (CRG_score

< median) and high-risk (CRG_score > median) groups. R

“cluster SUR” was used for survival analysis and R “risk plot”

and “ROC” were used for risk factor analysis and receiver

operating characteristic curve analysis, respectively.

Additionally, the survival states of the high- and low-risk

groups were evaluated. Finally, time-dependent ROC curves

for 1-, 3-, and 5-year survival were used to assess the ability of

the signature to predict prognosis in the high- and low-

risk groups.
Clinical correlation and immune
correlation of the prognostic CRG_score

The chi-square test was used to explore the relationships

between CRG_score and clinical features (age, race, tumor

location, T, N, M, and tumor stage). To assess whether the

risk score was independent of other available clinical pathology

features, univariate and multivariate analyses were performed on

the training and testing sets. In addition, we performed a stratum

analysis to determine whether the CRG_score retained its

predictive power in the different subgroups. The immune

status and stromal scores, microsatellite instability (MSI),

dysfunction, exclusion, and tumor immune dysfunction and

exclusion (TIDE) total scores between the high- and low-risk

groups were displayed as a violin chart using the ESTIMATE

algorithm (22). Furthermore, R “immunocor” was used to

quantify the infiltration of immune cells in the high- and low-

risk groups. To evaluate the proportion of tumor-infiltrating

immune cells (TIICs) in the TME, CIBERSORT was used to
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quantify the abundance of multiple immune cell types in the two

groups (23). We also explored the association of 22 infiltrating

immune cell types with CRG_cluster and gene_Cluster in the

high- and low-risk groups. We used Spearman’s analysis to

examine differential expression levels at immune checkpoints

between the subgroups.
Mutation and drug sensitivity analysis

To determine the pattern of somatic mutations in TNBC

patients in the high-risk and low-risk groups, a mutation

annotation format (MAF) from the TCGA database was

generated using the “MAF Tools” R software package. We also

calculated the tumor mutation burden (TMB) score for each

patient in both groups and performed a Kaplan-Meier survival

analysis for H-TMB and L-TMB. To explore the drug sensitivity

of the two groups of patients, the “pRRophetic” software package

was used to calculate the semi-inhibitory concentration (IC50)

values of TNBC after multi-drug treatment (24).
Establishment and verification of
nomogram scoring system

Using the results of the independent prognostic analysis,

clinical features and risk scores were used to develop predictive

nomograms using the “nomoR” package (25). In the nomogram

scoring system, the total score was obtained by adding the scores

of all the variables for each sample. The “timeroc” software

package was used for ROC curve analysis of the 1-, 3-, and 5-year

survival rates (26, 27). Calibration plots of nomograms are used

to describe the predicted values between the predicted 1-, 3-, and

5-year survival events and the actual observed results.
Cell culture and transfection

The two human breast cancer cell lines (MDA-MB-231 and

BT-549) were representative in cancers studies, and were

obtained from the Cell Bank of Shanghai Institutes of

Biological Sciences, Chinese Academy of Sciences (Shanghai,

China). The MDA-MB-231 and BT-549 cells were cultured in

RPMI 1640 medium (Gibco, CA, USA) with 10% fetal bovine

serum (Gibco, USA) and 1% penicillin-streptomycin solution

(Gibco, CA, USA) at 37°C in a humidified incubator containing

5% CO2. The medium was refreshed every 2 days.

Small interfering RNA (siRNA) knockdown of ATP7A

Transient silencing of the ATP7A gene was achieved using a

pool of siRNA duplexes (ONTARGETplus SMARTpool,

Dharmacon). The siRNA sequences were as follows:
Frontiers in Immunology 04
si-Ctrl: 5’ - CAA GAG UUA CAA UAG UUG C - 3’,

siRNA-1: 5’ - UAU CCU AUG GUU AAA CCU CUG - 3’,

siRNA-2: 5’- GCA ACU AUU GUA ACU CUU G -3’.
The siRNA was transfected into indicated cells using using

Lipofectamine 3000 (Invitrogen; Thermo Fisher Scientific, Inc.,

USA) according to the manufacturer’s instructions, followed by

Western bloting assay to verify the efficacy of interference.
Western blotting

The total proteins from breast cancer cells were extracted

using a Total Protein Extraction kit (#C006225; Sangon Biotech)

according to the manufacturer’s instructions. Briefly, the protein

samples were then isolated using 12% SDS-PAGE (sodium

dodecyl sulphate-polyacrylamide gel electrophoresis; Sangon

Biotech), and the protein bands were transferred onto PVDF

(polyvinylidene fluoride) membranes, which were subsequently

blocked with 5% lipid-free milk solution. The membranes were

then incubated overnight with diluted primary antibodies at 4 °

C, and incubated for 2 h with diluted secondary antibodies at

room temperature, and finally developed with ECL Western

Blotting Substrates (#32109; Thermo Fisher Scientific). The

primary antibodies used for Western blotting were anti-

ATP7A (#ab13995; Abcam) and anti-GAPDH (#5174; CST).
Cell proliferation and migration assays

The stably transfected MDA-MB-231 and BT-549 were

divided into different groups and seeded onto a 96-well plate

at a density of 2×104 cells/ml. Next, the Cell Counting Kit-8

(CCK-8 Kit; Dojindo, Japan), based on the manufacturer’s

instructions, was added to determine the proliferative capacity

of cells. Optical density (OD) values were obtained at 450 nm

and was measured at 1, 2, 3, 4 and 5 days after seeding using an

automatic microplate reader (TEAN, Swiss). Three replicate

analyses were performed for each sample. A transwell cell

migration assay was used to test the ability of cells to

metastasize. The cell density of different groups was adjusted

to 2×105 cells/ml, and 100 ml cell suspension of different groups

were added to the upper chamber with or without Matrigel

(Corning, USA). The medium containing 20% fetal bovine

serum was added in the lower 24-well plate chamber. After

24 h, the bottom MDA-MB-231 and BT-549 cells were treated

with 4% polyoxymethylene for 15 min, deionized water, and

0.1% crystal violet for 30 min. Finally, the MDA-MB-231 and

BT-549 cells migrating to the lower surface of transwell chamber

were counted using a microscope in six random fields utilizing a

200x microscope.
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Statistical analysis

R survival package was used for survival analysis, and the

survival rate of each group was tested by Log-Rank test hypothesis.

Kruskal-Wallis test is used to compare two or more groups of

data, and Wilcoxon test was used to compare two groups of data.

Kaplan-Meier method was used to generate the survival curve of

each subgroup in the data set. Chi-square test was used to analyze

the mutation frequency between ICI score subgroup and somatic

cells, and Spearman analysis was used to calculate the correlation

coefficient. All statistical analyses were performed using R version

4.1.0. The statistical significance was set to P<0.05.
Results

Landscape of genetic variation of CRGs
in breast cancer

In this study, 16 genes related to cuproptosis were identified in

the literature. We first summarized the incidence of copy number

variation (CNV) and somatic mutations of these CRGs in breast

cancer. Only 35 of 986 samples (3.55%) showed genetic variation,

and in the mainly mutated genes ATP7A and ATP7B, the

frequency was only 1% (Figure 1A). Figure 1B shows the location

of the CNV changes on the chromosomes for the CRGs, with the

CNV changes occurring universally for 16 genes. Further

investigation of the frequency of CNV mutations revealed that

CNV amplification was more frequent in GLS and MTF1, whereas

the FDX1, DLAT, and PDHB genes weremore frequently expressed

as CNV deletions (Figure 1E). For these 16 genes, we constructed an

interaction network diagram of CRGs to demonstrate their

interactions (Figure 1C). Furthermore, principal component

analysis (PCA) showed that the data in the four cohorts had

reduced dispersion after sample normalization (Figure 1D). The

above analysis indicates that the landscape of genetic and expression

changes of CRGs in breast cancer was highly heterogeneous,

revealing that the imbalance of CRG expression plays a key role

in the occurrence and development of breast cancer.
Enrichment of five prognosis-
related CRGs

We analyzed the association between prognosis and CRG

expression levels in patients, finding that the differential

expression of five genes was significantly correlated with

prognosis. Among them, the high expression levels of ATP7A,

DLST, and LIAS were associated with poor overall survival (OS),

while the high expression levels of LIPT1 and PDHA1 suggested a

good prognosis (Figure S4). Gene ontology enrichment analysis of

the five differentially expressed genes (DEGs) revealed that these
Frontiers in Immunology 05
genes were mainly involved in biological processes and molecular

functions, and less in cellular components (Figure 2A).

Subsequently, KEGG metabolic pathway analysis showed that the

five DEGs were significantly enriched in the tricarboxylic acid cycle,

which possibly affects the occurrence of the disease by negatively

regulating the metabolic function of mitochondria (Figure 2B).

Finally, disease enrichment analysis showed that diseases such as

nutritional deficiency, hair disease, and metal metabolism disorders

were associated with CRGs (Figure 2C).
Tumor classification and related immune
infiltration based on CRGs

To further elucidate the clinical value or functional

biological pattern of these CRGs, we performed consistent

clustering and grouped the TCGA TNBC cohort samples into

subgroups based on the expression levels of 16 CRGs. We found

that when K=2, we can provide the best clustering stability from

k=2 to k=9. The TCGA TNBC cohort was categorized according

to two different CRGs (Figures 3A, B) into CRG cluster A

(n=132) and CRG cluster B (n=107). Additionally, based on

the expression levels of CRGs, PCA revealed significant

differences in the transcriptional profiles of CRGs between the

two groups (Figure 3C). Analysis of TME immune infiltration

for TNBC showed that the CRG cluster B group was rich in

innate immune cell infiltration, including activated B cells,

activated dendritic cells, CD56dim natural killer cells,

macrophages, and others (Figure 3E). According to the heat

map, CRG cluster A group showed increased expression levels of

LIAS, LIPT1, DLST, and ATP7A. Notably, there was a

significant difference in tumor stage between the two groups

(P<0.01, Figure 3F). To explore the biological behaviors of these

CRGs, we performed a gene set variation analysis. As shown in

Figure 3G, CRG cluster A is significantly enriched in stroma and

oncogenic activation pathways such as the TGF- signaling

pathway, adhesion, phosphoinositide metabolic pathway, and

mTOR signaling pathway. Further survival analysis showed that

CRG cluster B had better OS for patients than cluster A

(Figure 3D). Cluster A showed a matching survival

disadvantage. In summary, CRG cluster A can be classified as

an immune-desert phenotype with abundant stroma and

oncogenic signaling pathways, while CRG cluster B was

classified as an immune-inflamed phenotype characterized by

innate immune cell infiltration and immune activation.
Generation and functional annotation
of CRGs

To further analyze the genetic characteristics of CRGs, we

used NMF clustering analysis to separate the patients into
frontiersin.org
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different gene subtypes. Consistent with CRG classification,

TNBC patients were divided into two gene subgroups,

designated C1 (n=173) and C2 (n=66, Figures 4A, B). We

found that T4, M1, N2-3, and Stage VI in tumor staging were

mainly concentrated in the C1 group and were confirmed to be

associated with worse OS (Figures 4C, D). The analysis also

revealed that the two groups had different genetic

characteristics. ATP7A was mainly expressed in the C1
Frontiers in Immunology 06
group, while LIPT1 and PDHA1 were significantly enriched

in the C2 group (Figure 4E).
Construction of the prediction model

The above study used a population analysis approach,

making it difficult to accurately predict the CRG pattern in
A B

D

E

C

FIGURE 1

Landscape of genetic variation of Cuprotosis related genes in BRCA (A) Mutation frequency of 16 CRGs in 986 BRCA from TCGA and GEO
combined samples. The number on the right indicated the mutation frequency of each gene. The bar chart on the right showed the proportion
of mutations. The stacked bar chart below shows the fraction of conversions. (B) The position of CRGs CNV changes on 23 chromosomes.
(C) Interaction between CRGs in BRCA. The line connecting CRGs indicated their interaction, and the thickness of the line indicated the
correlation strength between CRGs. Purple and green represent negative and positive correlation respectively. (D) The figure of the PCA of the
TCGA and GEO (GSE13356, GSE65194, GSE58812) datasets. (E) CNV mutation frequency of CRGs. The deletion frequency, blue dot; The
amplification frequency, red dot. BRCA, breast cancer; CRGs, cuprotosis related genes; CNV, copy number variant.
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patients on an individual basis. Given the individual

heterogeneity and complexity of TNBC patients, we

attempted to determine the prognostic gene set for TNBC

using the LASSO method. A prognostic model was

established using the abovementioned genes, and a gene

model capable of quantification in each patient was created

using a regression model with a minimum lambda

(Figures 5A, B). With these, we constructed a scoring

system to quantify the CRG pattern in a single patient,

which we called the CRG_score. Subsequently, we used the

Kruskal-Wallis test to verify the relationship between the

CRG_score and CRG cluster. Surprisingly, the results showed

that the high score group matched with CRG cluster B and the

low score group matched with CRG cluster A (Figure 5C). In
Frontiers in Immunology 07
the subgroup comparison of CRG_score and gene cluster, we

found that the CRG_score of C1 was higher than that of C2,

which was consistent with our expectation (Figure 5D). Next,

we performed subgroup clustering using unsupervised

clustering and found a significant statistical difference

between CRG_score and gene cluster (P<0.001, Figure 5E).

To better visualize the attributes of individual patients and

find any correlations with survival, we used the alluvial

diagram and found that patients with low scores were all

surviving, while some patients with high scores had died

(Figure 5F). Significant expression of genes related to the

regulation of cuproptosis was observed in both CRG gene

clusters and was consistent with the expected results for a

subset of CRGs (Figure 5G).
A

B C

FIGURE 2

Enrichment of five prognosis-related CRGs (A) Gene ontology enrichment (B) KEGG metabolic pathway Enrichment (C) Disease enrichment.
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A B

D
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FIGURE 3

CRG subtypes and clinicopathological and biological characteristics of two distinct subtypes of samples divided by consistent clustering.
(A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) relative change area under cumulative distribution
function curve. (C) PCA analysis revealed significant differences in transcriptome between the two subtypes. (D) Kaplan-Meier curve showed
that there were significant survival differences between cluster A and B (P=0.041). (E) The abundance of each TME infiltrating cell in two
clusters. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and
black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Differences in
clinicopathologic features and expression levels of CRGs between the two distinct subtypes. (G) GSVA of biological pathways between two
distinct subtypes, in which red and blue represent activated and inhibited pathways, respectively.
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Prognosis value of the risk model in the
training, test, and entire sets

The risk score was calculated according to the following

formula: Risk score = (-0.31657 * LIPT1) + (0.29823 *

ATP7A). The survival probability, risk score distribution,
Frontiers in Immunology 09
survival status, and related gene expression of patients in

the low and high subgroups were compared in the three

cohorts of Training Set A (n=173), Verification Set B

(n=173), and LOOCV Verification Set C (n=3462). Overall,

these analyses indicated that the high subgroup has a poorer

prognosis (Figures 6A–I). The time-dependent ROC curve
A B

D

E

C

FIGURE 4

Generation and functional annotation of CRGs (A, B) Two subgroups was identified the optimal value for consensus clustering,and was
designated genecluster 1 (C1) and genecluster 2 (C2). (C) Survival curve of the patients between C1 and C2(P = 0.034). (D) Differences in
clinicopathologic features and expression levels of CRGs between the C1 and C2. (E) The expression of 3 CRGs between C1 and C2. The
asterisks represented the statistical p value (**P < 0.01; ***P < 0.001).
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was plotted and the AUC was calculated at different time

points to estimate the performance of the predictive model.

As shown in Figures 6J–L, AUC values for sets A, B, and C

were 0.554, 0.727, and 0.620, respectively, at 1 year, 0.527,

0.557, and 0.538, respectively, at 3 years, and 0.649, 0.675, and

0.658, respectively, at 5 years. These data indicate that the

predictive model had good predictive value for both short-

term and long-term follow-up. After comprehensively

considering the sample size and source platform of the
Frontiers in Immunology 10
cohorts, we analyzed the survival probability of GEO cohort

(n=231) and TCGA cohort (n=115) (Figures 6M, N), and the

results were also very exciting. At the same time, we

subclassified all the TCGA and GEO databases involved in

the analysis, namely TCGA, TCGA-non-tnbc, GSE58812 and

Metabric, respectively. By analyzing the different effects of

CRG on the survival of each subgroup in detail, it was indeed

found that CRG had a unique effect on TNBC (p<0.05,

Figure S1).
A B D
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C

FIGURE 5

Construction of the prognosis risk prediction model (A, B) The least absolute shrinkage and selection operator (LASSO) regression was
performed with the minimum criteria. (C, D) Differences in CRG_score between gene subtypes and cuprotosis subtypes (E) Differences in
clinicopathologic features and expression levels of CRGs between the high-and low-risk group. (F) Alluvial diagram of subtype distributions in
groups with different CRG_scores and survival outcomes. (G) Six differential expressions of CRGs in high and low risk groups. The asterisks
represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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FIGURE 6

Prognosis value of the risk model in the train, test, and entire sets (A–C) Kaplan–Meier survival curves of survival probability of patients between
low-and high-risk groups in the train,test, and entire sets, respectively. (D–F) Exhibition of CRGs model based on risk score ofthe train, test, and
entire sets, respectively. (G–I) Survival time and survival status between low-and high-risk groups in the train, test, and entire sets, respectively.
(J–L) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the CRG_score in the train,test, and entire
sets, respectively. (M, N) Survival probability in the high-risk and low-risk subgroups of the GEO cohort and TCGA cohort, respectively.
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Independence detection of the
constructed risk prediction model

In clinical correlation analysis, we found that high CRG_scores

were observed more in young women, and there was no significant

difference in tumor location between the two groups (Figures 7A,

B). Univariate and multivariate Cox regression analyses including

the patient’s age and tumor stage confirmed that tumor stage and

CRG_score were independent prognostic factors for OS in TNBC

patients (Figures 7F, G). In addition, our stratification analysis

confirmed that CRG_score also had age-independent prognostic

value (Figures 7C–E). Therefore, we believe that CRG_score is a

reliable and independent prognostic biomarker for evaluating the

prognosis of TNBC.
Frontiers in Immunology 12
Comparison of immune activity
between subgroups

Ondifferent platforms shown in the immune cell bubble diagram

(Figure 8A), we found that more endothelial cells and cancer-

associated fibroblasts (CAFs) were associated with the high-risk

group. CAF activation has been confirmed to be strongly involved

in cancer progression through their complex interactions with other

cell types in the TME (28). Figure 8B shows the correlation between

immune cells and genes: gammadelta T cells, CD4memory restingT

cells, and eosinophils have significant positive correlations with

LIPT1, while plasma cells and memory B cells have significant

negative correlations with LIPT1. CD4 memory resting T cells

showed a significant positive correlation with ATP7A, while
A B

D EC

F G

FIGURE 7

Independence detection of the constructed risk prediction model (A) Relationships between CRG_score and Age. (B) Relationships between
CRG_score and Position. (C–E) Kaplan–Meier survival curves of survival probability prognostic value stratified by age and stage. (F, G) Uni- and
multi-Cox analyses of clinical factors and risk score with OS.
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FIGURE 8

Comparison of immune activity between subgroups (A) The immune cell bubble of risk groups (B) Correlations between the abundance of
immune cells and 2 genes in the proposed model. (C) Correlations between CRG_score and both immune and stromal scores. (D) Correlations
between CRG_score and TIDE, MSI, Dysfunction and Exclusion. (E) Differences in immune scores, stromal scores and expression levels of
immune cells between the high-and low-risk group. (F) Correlation of 12 immune checkpoint gene risk scores. (G–I) The association between
IPS and the CRGs based on TCIA database, (G) CTLA4– PD1–(H) CTLA4– PD1+ (I) CTLA4+ PD1– (J) CTLA4+ PD1+. The asterisks represented
the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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regulatory T cells and activated natural killer (NK) cells showed

significantnegative correlationswithATP7A.Theassociationof these

genes with immune cells was as expected. In addition, stromal

activation in the TME was generally considered to be T-cell

inhibitory. TME scores performed on different subgroups indicated

that the high score group had higher tumor stromal scores

(Figure 8C). Stromal activation would likely result in

immunosuppression and worse prognosis in the high score group.

Furthermore, according to the comprehensive map of TNBC, four

immune scores were given, including TIDE, Dysfunction, Exclusion,

and MSI. We assessed the differences in CRG_score between these

molecular subtypes. High CRG_scores were found in TIDE,

Dysfunction, and Exclusion, and patient prognosis was poor.

However, the low score group had a higher MSI, representing a

better prognosis (Figures 6 and 8D).

Previous studies have shown that Dysfunction and Exclusion, as

the two major mechanisms of tumor immune escape, can accurately

predict the effect of immunotherapy. However, the TIDE score, a

more optimized immune simulation calculation method, can stably

predict the effect of immunotherapy (29). Detection of tumor MSI

has been widely recognized as a means of predicting tumor immune

response in pan-cancerous species. Given that the CRG_score was

highly consistent with these four tumor immunopredictors, the

CRG_score may be a more effective biomarker for predicting the

efficacy of immunotherapy than the above four scores. Figure 8E

showed the differences in immune scores, stromal scores and

expression levels of immune cells between the high-and low-risk

group. Interestingly, the threshold for Fisher’s exact test was set to

P<0.05, and the three common immune checkpoint genes PDCD1,

CD274, and CTLA4 failed to show differences between the two

subgroups (Figure 8F). We further explored the ICI treatment

response represented by CTLA-4/PD-1 inhibitors. The patients in

the CRG_score group showed significant therapeutic effects only

with anti-CTLA-4 therapy (Figure 8G–J), which may partly explain

the mismatch between the current TNBC immune targets and the

immunotherapeutic effects.

Next, we performed a single-sample gene set enrichment

analysis for all CRGs, and found that most of the genes were

related to immunity, and then analyzed the role of CRG in BRCA.

It can also be clearly found that CRG has played an important role

in the immune microenvironment of BRCA. (Figure S2).
Genetic characteristics of CRG_score
and tumor somatic mutation of TNBC

We then used the maftools package to analyze any difference

in the distribution of somatic mutations for low and high

CRG_scores in the TCGA-TNBC cohort. As shown in

Figures 9A, B, the TMB was more extensive in the low score

group. The most obvious somatic mutations in the low score

group were TP53 (72%) and TTN (33%), while the most obvious

somatic mutations in the high score group were TP53 (84%) and
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PTEN (12%). Evidence suggests that patients with H-TMB may

benefit from immunotherapy. Further survival analysis

demonstrated that the H-TMB subgroup showed significant

survival benefits. The subgroup with both low CRG_score and

H-TMB showed better survival benefits, while the subgroup with

both high CRG_score and L-TMB had lower survival probability

(Figures 9C, D). Next, we analyzed the correlation between CRG

and CRG_score subgroups through the enrichment of the

HALLMARK pathway and KEGG pathway (Figures 9E, F).

The results showed that ATP7A and CRG_score, which were

high in the C1 group, were consistent with the enrichment of

signaling pathways in most cancers.

We performed KEGG analysis on all genes to analyze the

association of CRGs with different pathways and mechanisms.

We found that in Biological Process, it is mainly related to

tricarboxylic acid cycle, citrate metabolic process, and acetyl-

CoA metabolic process; In Cellular Component, it is mainly

related to mitochondrial matrix, oxidoreductase complex,

dihydrolipoyl dehydrogenase complex; In Molecular Function,

it is mainly related to oxidoreductase activity, acting on the

aldehyde or oxo group of donors, NAD or NADP as acceptor,

oxidoreductase activity, acting on the aldehyde or oxo group of

donors, transition metal ion transmembrane transporter activity.

We also analyzed the KEGG pathway and found that CRG is

mainly involved in the Citrate cycle (TCA cycle), Carbon

metabolism, Pyruvate metabolism, Glycolysis/Gluconeogenesis,

and Platinum drug resistance(Figure S3).
Construction and evaluation of a
nomogram based on CRG_score

To quantify the individual risk assessment in TNBC patients,

we developed a personalized score nomogram using three

parameters, age, tumor stage, and CRG_score, to predict OS.

Each arrow shows an example (Figure 10A). According to the

scores of each prognostic index, the higher the total score was,

the worse the clinical prognosis would be. Furthermore, the

calibration plot shows that the nomogram operated in

accordance with the ideal model (Figure 10B). The ROC curve

was used to calculate the AUC value at different time points to

evaluate the prediction performance of the nomogrammodel. As

shown in Figures 10C–E, the AUC values for 1-year, 3-year, and

5-year were 0.724, 0.823, and 0.822, respectively. This indicates

that the new nomogram prediction model has high accuracy.
Comparison of anticancer drug
sensitivity between patients with
different CRG_scores

We next selected anticancer drugs to assess the

susceptibility of the low-and high-risk populations to these
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drugs. Interestingly, we found that the IC50 values of

erlotinib, etoposide, gefitinib, and metformin were lower in

patients with high CRG_scores. However, in patients with low

CRG_scores, the IC50 values of chemotherapeutic agents

such as imatinib, bicalutamide, and belotinib were

significantly reduced. Taken together, these results suggest

that the CRGs are associated with drug susceptibility

(Figures 11A–H).
Frontiers in Immunology 15
Inhibition of ATP7A restrains proliferation
and migration capacities of breast
cancer cells

To investigate malignant biological behaviors of ATP7A in

vitro, we performed cellular experimental analysis, and

validation down-regulated of ATP7A in BT-549 and MDA-

MB-231 cells (Figure 12A). Using the CCK-8 assay, we found
A B

D
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C

FIGURE 9

Genetic characteristics of CRG_score and tumor somatic mutation of TNBC (A, B) The waterfall plot of tumor somatic mutation established by
those with high-and low-risk group. (C) The overall survival of H-TMB and L-TMB using Kaplan–Meier in Log-rank test. (D) The overall survival
of the patients stratified by both the CRG-score signature and TMB using Kaplan–Meier curves. (E, F) Correlations between CRGs and Pathway
Through KEGG and HALLMARK Enrichment Analysis. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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down-regulated expression level of ATP7A significantly

suppressed the proliferative ability of breast cancer cells

(Figure 12B). Transwell cell migration assay revealed

significantly decreased migrated cell numbers in ATP7A-

knockdown breast cancer cells compared with control group

(Figure 12C). Taken together, the down-regulation of ATP7A

expression markedly restrained proliferation and migration

capacities of breast cancer cells, which is in consistent with its

pro-tumorigenic role for patients with breast cancer.
Discussion

Because of the dual role of metallic copper in tumor

progression, this area is becoming a hot research topic in cancer

biology. Copper is a valuable coenzyme in the metabolism of
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organisms (30), and the imbalance of copper ion homeostasis in

the human body is also closely related to various diseases (31).

Increasing evidence has shown that copper plays vital roles in

tumor cell proliferation, angiogenesis, and cancer metastasis (32,

33). In addition, copper content levels in serum and tumor tissues

of patients with various tumors, including TNBC, are often

significantly increased. Serum copper levels can help predict the

survival probability of patients with early TNBC (34, 35). Copper

can induce cell death through apoptosis and the autophagy

pathway. The application of copper-chelating agents, such as

tetrathiomolybdate, has also achieved great efficacy in early

clinical experiments in a variety of tumors. In addition, copper

is widely used in many fields such as chemodynamic therapy,

chemotherapy, phototherapy, and biological imaging (33).

Recently, Peter Tsvetkov found a mitochondrial protein

aggregation caused by excessive copper, a cell death mechanism
A B
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FIGURE 10

Construction and Evaluation of Nomogram Based on CRG_score (A) Nomogram for predicting the 1-, 3-, and 5-year OS of TNBC patients.
(B) Calibration curves of the nomogram. (C–E) ROC curves for predicting the 1-, 3-, and 5-year ROC curves in the train, test, and entire sets.
The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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called cuproptosis. Accumulating evidence suggests that

cuproptosis may play indispensable roles in the TME,

inflammation, and tumor immunity. Therefore, characterizing

the global response mediated by multiple CRGs and TME cell

infiltration may help identify potential prognostic features and

determine immunotherapy strategies for TNBC.
Frontiers in Immunology 17
The results of this study revealed overall changes in CRGs at

both the genetic and transcriptional regulatory levels in TNBC

patients. First, we identified two subtypes based on 16 CRGs,

designated CRG cluster A and CRG cluster B. Surprisingly, the

two subtypes had markedly different immune infiltration

features and tumor signaling pathways. CRG cluster A, from a
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FIGURE 11

Drug sensitivity (A–H) Estimated drug sensitivity in patients with high and low FRLM risk.
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lack of an immune cell presence, had more of an immune-desert

phenotype and was enriched in a variety of tumor signaling

pathways, including the TGF- signaling pathway, adhesion,

phosphoinositide metabolic pathway, and mTOR signaling

pathway. CRG cluster B, however, was more in line with an

immunoinflammatory phenotype because of the large degree of

immune cell infiltration in the TME (36). This was consistent

with our finding that the cluster A group patients had better

prognoses compared with cluster B. Next, we identified two gene

subtypes, C1 and C2, based on CRG expression between tumors.

Late tumor stages and poor OS were also observed in C1.

Therefore, a comprehensive evaluation of CRGs and clinical

features not only helped to establish an accurate prognosis

model, but also helped clinicians to effectively evaluate the

rationality of immunotherapy as a treatment plan by depicting

the TME through CRGs. Considering the individual

heterogeneity and complexity of TNBC (37), a scoring

mechanism that can quantify the characteristics of individual

patients is required. In our study, the cuproptosis pattern

characterized by the immune-inflamed phenotype and

immune-desert phenotype showed lower and higher

CRG_scores, respectively. Significant differences between the
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two cohorts in clinical prognostic features, gene mutations,

immune infiltration, stromal score, MSI, Dysfunction,

Exclusion, TIDE, TMB, and drug susceptibility were noted.

Finally, we established a nomogram by integrating the

patient’s age, tumor stage, and CRG_scores to improve the

prediction model. This supports the accurate prognosis

stratification of TNBC patients and a better understanding of

the molecular mechanism of this disease, providing new ideas

for tumor immunotherapy.

In breast cancer, elevated copper ions are associated with

tumor progression, remodeling of the TME, and drug resistance

(38). Currently, immune checkpoint inhibitors are the most

widely used immunotherapy drugs for breast cancer in clinical

research. The IMpassion 130 trial opened a new chapter in breast

cancer immunotherapy and used PD-L1 as a mature biomarker

for treatment of metastatic TNBC. However, because the

screening population was limited to PD-1 positive patients, the

results were narrow (39). Although we have achieved some

success in using immunotherapy, the prognosis of TNBC

patients is still significantly poor. Identifying more appropriate

biomarkers for accurate treatment plan development is urgently

needed (40). This highlights the crucial role of the TME in breast
A B
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FIGURE 12

Inhibition of ATP7A restrained proliferation and migration capacities of breast cancer cells (A) Western blot analysis revealed the efficiency of
ATP7A knocking-down in BT549 and MDA-MB-231 cell lines. (B) CCK-8 cell proliferation assay after ATP7A knockdown in BT549 and MDA-MB-
231 cell lines. (C) The Transwell invasion assay showed that knocking-down of ATP7A inhibited the cellular invasion of the BT549 and the MDA-
MB-231.Graphical representation of the number of invasive BT549 and MDA-MB-231 cells per microscopic field. Data were shown as the mean
± SD from three independent experiments. **P < 0.01, vs. control group.
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cancer tumorigenesis. TNBC has a unique TME that is related to

cell proliferation, apoptosis, angiogenesis, immunosuppression,

and drug resistance (41). Studies have shown that a considerable

number of delta T cells in TNBC tumors can kill cancer cells

through their innate immune functions. The high levels of CD4

memory resting and delta T cells are both significantly associated

with OS (42, 43). This is consistent with our study, where

CRG_score score was negatively correlated with the number of

gamma delta T cells, CD4 memory resting T cells, and

eosinophils in immune cells, suggesting that those with low

CRG_scores have good prognoses. In addition, the levels of

regulatory T cells, memory B cells, and plasma cells were

significantly reduced in the low CRG_score group.

Immunosuppression and immunodeficiency are two major

functional characteristics of regulatory T cells. These cells are

reprogrammed to proliferate and differentiate, which in turn

changes the transcription profiles of infiltrating immune cells

and support immune evasion. Moreover, a high abundance of

regulatory T cells is significantly associated with high tumor

expression levels of immune checkpoint inhibitor genes (44, 45),

which may explain the effective response of the low CRG_score

group to immunotherapy. Although the presence of B cells and

plasma cells is a good predictor of patient prognosis (46, 47), B

cells also have immunosuppressive roles in TNBC by enhancing

the levels of myeloid-derived suppressor cells (MDSCs) or

promoting IL-10 levels to facilitate isotype conversion to

immunosuppressive IgG4 antibodies (48, 49). In fact, the

effects of the humoral immune response on tumors may not

be related to the presence of B cells (50), but rather depend on

the tumor antigen recognition ability and activation of the

complement signaling pathway, which ultimately determines

the immune phenotype of B cells.

Tumors often have heterogeneous gene expression patterns

and both the mRNA and protein levels. In recent years,

significant heterogeneity has also been observed in the TME

and its role in tumor development has been more appreciated

(51). In addition, the inconsistency between research

observations and clinical results of PD-1/PD-L1 inhibitors

guided by biomarker expression levels has indicated that

tumor immunotherapy is quite complex.

Microsatellites are widely distributed repetitive DNA motifs

(52). The occurrence of new microsatellite alleles from the

insertion or deletion of repeat units is known as MSI. In

theory, H-MSI is often associated with a good prognosis.

However, the incidence of dMMR/MSI-H in TNBC is actually

extremely low and is not an appropriate representative

independent prognostic factor for this disease (53). Studies

have shown that Dysfunction and Exclusion can accurately

predict the immunotherapy effect of tumors, and TIDE is a

more optimal algorithm to simulate tumor immune escape. In

our study, CRG_score was negatively correlated with TIDE,

Dysfunction, and Exclusion, and positively correlated with MSI.
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The P53 gene encodes a 43.7 KDa protein that is mainly

distributed in the cytoplasm of cells. It can specifically bind to

DNA, and its activity is regulated by post-translational

modifications such as phosphorylation, acetylation, methylation,

and ubiquitination. P53 is a tumor suppressor gene with extensive

and powerful functions. More than half of tumors carry a p53

mutation, and its involvement in inhibiting innate immunity and

immune escape have been demonstrated (54). P53 expression is

not only related to the number of tumor-infiltrating lymphocytes

and chemotherapy efficacy in TNBC patients (55, 56), but also

promotes tumorigenesis by inducing the systemic circulation of

EGFR (57).

Previously observed mutations of the TTN gene are mostly

related to cardiomyopathy and skeletal muscle diseases. Recent

studies have found that TTN is one of the most commonly

mutated genes in various cancers, including metastatic TNBC.

The mutation load of TTN can represent the high TMB status of

the tumor, which has predictive value for immunotherapy

response and prognosis (58, 59). The most significant TNBC

somatic mutations in our study are P53 and TTN, which are

consistent with the results of Lips (60), where these mutated

genes are associated with relapse and chemotherapy resistance

and may express better responses to immunotherapy.

Similarly, low CRG_score tumors also show H-TMB, a widely

recognized biomarker for predicting the therapeutic effects of

immune checkpoint blockade (ICB) (61). In summary, we

conclude that the CRG_score, as a comprehensive biomarker

integrating various other markers such as the TMB, TME status,

and MSI status, is likely to be a more effective prediction strategy

for immunotherapy response.

Our study has confirmed that the CRG_score can be used to

comprehensively assess the CRG expression pattern and the

corresponding TME immune cell infiltration characteristics in

indiv idual pat ients . This wi l l he lp determine the

immunophenotype of the tumor and guide a more accurate

and effective clinical treatment plan. In addition, the CRG_score

can also predict the efficacy of immunotherapy in TNBC patients

as an independent prognostic biomarker. Our research results

provide new ideas and directions for improving the clinical

effects of immunotherapy in patients, identifying different

TNBC immunophenotypes, and promoting accurate and

personalized immunotherapy in the future.
Conclusion

Our comprehensive analysis of CRGs has revealed the extensive

regulatory effects of these genes on the TME, clinical features, and

prognosis. In addition, we have determined the value of these CRGs

in TNBC immunotherapy. These findings confirm the clinical

significance of CRGs and provide new research directions for

personalized and precise immunotherapy approaches.
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