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ABSTRACT 

Practicable life extension of engineering systems would be a remarkable application of 

prognostics. This research proposes a framework for prognostic-base life extension. This 

research investigates the use of prognostic data to mobilize the potential residual life. The 

obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, 

and lack of time.  

This research primarily considers using the acoustic emission (AE) technology for quick-

response diagnostic. To be specific, an important feature of AE data was statistically modeled 

to provide quick, robust and intuitive diagnostic capability. The proposed model was 

successful to detect the out of control situation when the data of faulty bearing was applied. 

This research also highlights the importance of self-healing materials.  

One main component of the proposed life extension framework is the trend analysis 

module. This module analyzes the pattern of the time-ordered degradation measures. The 

trend analysis is helpful not only for early fault detection but also to track the improvement 

in the degradation rate. This research considered trend analysis methods for the prognostic 

parameters, degradation waveform and multivariate data. In this respect, graphical methods 

was found appropriate for trend detection of signal features. Hilbert Huang Transform was 

applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA 

is able to indicate the trends in the data if accompanied by proper data processing. In 

addition, two algorithms are introduced to address non-monotonic trends. It seems, both 

algorithms have the potential to treat the non-monotonicity in degradation data. 

Although considerable research has been devoted to developing prognostics algorithms, 

rather less attention has been paid to post-prognostic issues such as maintenance decision 

making. A multi-objective optimization model is presented for a power generation unit. This 

model proves the ability of prognostic models to balance between power generation and life 

extension. In this research, the confronting objective functions were defined as maximizing 

profit and maximizing service life. The decision variables include the shaft speed and 

duration of maintenance actions. The results of the optimization models showed clearly that 

maximizing the service life requires lower shaft speed and longer maintenance time. 
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1  INTRODUCTION  

 

Based on the estimated potential capacity of wind power, there has been a heightened 

interest in the United States to boost the share of wind turbines in electricity supply to over 

20% by 2030 [1]. A critical aspect in the evaluation of economic viability of wind turbines is 

the difference between the market value of energy and the energy generation costs. From 

the turbine design and manufacturing point of view, this is a challenging problem because of 

the varying operating conditions, e.g. wind speed and unsteady aerodynamic loads. In effect, 

the operations and maintenance (O&M) costs are a major contributor to the energy 

generation costs. The O&M costs of offshore wind farms contribute about 25–30% to the 

energy generation costs [2].  It is to be noted that O&M costs vary based on location (offshore 

or onshore), weather conditions, turbine size and age, accessibility to drive train 

components, and availability of personnel, cranes and lifting equipment. Moreover, there are 

always concerns about unexpected equipment failure which can result in large maintenance 

costs e.g. intricate corrective actions as well as the downtime cost. Generally speaking, O&M 

costs are a major concern in all types of power plants particularly in the aging nuclear and 

fossil power plants which exceed the nominal design life. For nuclear power plants, O&M 

costs are estimated to be 60–70% of the overall generating cost [3].  

It should be emphasized that the maintenance strategy is the main contributor to the 

O&M costs. As indicated by Lu et al. [4], if the maintenance strategy does not work 

appropriately, the cost of replacement related to a failed bearing in wind turbines would 

jump from $5000 to $250,000. Maintenance strategies can assure low maintenance costs 

based upon corrective maintenance or low operating costs through time-based maintenance. 

In essence, O&M costs can be minimized through improved reliability of the turbine's 

components, condition-based maintenance (CBM), and optimal management of maintenance 

requirements. This is often the case with all nuclear and fossil-fueled power plants as well.  

The CBM of wind-turbines has received much attention during the past few decades [4-

7]. Practically, CBM can restore the balance between the maintenance costs and operations 

costs by minimizing unplanned downtime and unnecessary maintenance. A CBM system 

consists of three major units: (1) data acquisition, (2) data processing, and (3) maintenance 
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decision-making. Of special concerns are system-level and subsystem-level fault diagnosis 

and prognosis, since modern wind turbines are equipped with CBM systems. Diagnostics and 

prognostics are two important aspects of a comprehensive CBM program, which provide 

information for maintenance decision-making with respect to safety, operations planning 

and service parts logistics. Nowadays, prognostic-related activities are mainly embedded 

within the domain of Prognostics and Health Management (PHM) systems. Figure 1.1 shows 

a typical PHM system. 

 

 

Figure 1-1 A typical PHM system 

 

A key component missing from current PHM programs is the trade-off between the loss 

of power generation and O&M costs. The cost associated with the loss of power generation 

(i.e., plant outage) is a significant portion of the total downtime cost. In effect, the main 

purpose of PHM program is to reduce both loss of power generation and O&M costs. 

However, uncertain operational, meteorological, and logistical situations along with diverse 

technical health states of turbine components requires PHM programs to balance between 

O&M costs on one side and the loss of power generation and turbine durability on the other 

side. To provide a platform for this multiple criteria decision making (MCDM), it seems 

essential to have adequate information with respect to failure-causing faults and the 

remaining operational life of the faulty sub-systems and components. In other words, 
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decision-making and planning for O&M need to take diagnostic and prognostic systems into 

account. The primary objective of this research is to develop a prognostic-based life-

extending methodology in order to improve the current PHM practices in power generation.  

1.1 Problem Statement  

Although considerable research has been devoted to developing prognostics algorithms, 

rather less attention has been paid to post-prognostic issues such as maintenance decision 

making. In particular, an effective prognostic system may play a significant role in improving 

the durability of engineering systems. It is to be noted that applying prognosis for extending 

the operable life of power generating systems has been noticeably lacking in published 

literature. 

In this study, it is assumed that the first priority of the decision maker (DM) is to mobilize 

the potential residual life (i.e., extend the life of the system) to improve the return on 

investment. The obstacles in performing life extension include: lack of knowledge (e.g. about 

aging mechanisms, life-limiting factors, premature or impending failures and relevant 

collateral damage), lack of tools such as trust worthy prognosis algorithm, lack of data (e.g. 

an adequate RUL estimation), and lack of time. In essence, to overcome the above-mentioned 

obstacles, a life extension program requires numerous elements including: diagnostic, 

prognostic, maintenance and spare parts management, knowledge about operations and 

environmental conditions (before and after life extension), decision support system, and a 

methodology to analyze the efficiency of a life extension program. The major purpose of this 

research is to introduce a credible framework for prognostic-based life extension and 

demonstrate its applicability by elaborating certain elements of this framework. Figure 1-2 

describes the framework for prognostic-based life extension.   

The first and foremost element of an efficient life-extending methodology is effective and 

robust diagnosis, which detects and identifies the impending faults. A degraded component 

or system may affect other parts of the system. Also, competing failure modes need to be 

taken into account. This research primarily considers using acoustic emission (AE) 

technology for quick-response diagnostic. To be specific, an important feature of AE data will 

be statistically modeled to provide quick, robust and intuitive diagnostic capability.  
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Figure 1-2 Framework for prognostic-based life extension 

 

Next, real-time estimates of remaining useful life (RUL) need to be used to characterize 

and quantify the life extension practices. Useful life can be defined as the ability for power 

generation to fully or partially meet demands. RUL is the time that a component or system is 

able to operate with the same predefined specifications without the need for major repair or 

maintenance or without a significant rate of minor faults. In this study, the primary focus is 

on individual-based prognostic using sensed or inferred degradation measures. It is not 

unusual to combine degradation measures into a single prognostic parameter. In essence, 

RUL is subject to uncertainties and this creates the need for detailed characterization of 

prognostic parameters and selection of the appropriate parameters.  

One main component of the proposed framework is the trend analysis module. This 

module analyzes the pattern of the time-ordered degradation measures. The trend analysis 

is helpful not only for early fault detection but also to track the improvement in the 

degradation rate.  This research considers trend analysis methods for the prognostic 
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parameters, degradation waveform and multivariate data. In addition, algorithms to address 

non-monotonic trends will be considered.  

All the activities in the diagnostic and prognostic modules need to be followed by fruitful 

decision making. Maintenance-decision making (MDM) is by nature a complex process due 

to the followings: 

1. Presence of various decision alternatives, and therefore, the need for compromising,  

2. Multiple criteria which usually conflict and make the judgment of alternatives a 

complex endeavor,  

3. Uncertainty associated with the available data i.e. RUL estimates. 

The major step in decision making is to determine alternatives which are defined as 

possible courses of action [8]. Possible actions may include fault accommodation (i.e., 

modifying control rules or using redundancy), altering operation conditions or tactical 

control, and maintenance practices. Such actions need to restore the strength distribution or 

diminish the degradation, e.g., by reducing the stress. The alternatives may include urgent 

repair, working with modified/manipulated operating conditions, or working with no 

changes in operating conditions. 

Thus, an optimization procedure is required to clarify the parameters of these 

alternatives. For instance, the optimal shaft speed must be determined that allows the 

generator to meet demands and also diminishes the effects of component failure at the same 

time. In addition, it is essential to update RUL estimates after applying each alternative in 

order to characterize the life extension or the need for repeating the decision making. 

Moreover, in the case of life extension one can expect explicit change in the trend of 

component degradation or aging. The trend analysis module tests the trends of prognostics 

parameters (monotonic vs. non-monotonic) in order to ensure an appropriate parameter 

selection.  

Another concern in developing the alternatives is to find the optimal time to perform the 

actions. In effect, performance of maintenance at inconvenient times results in substantial 

time and economics losses. In this respect, logistics costs associated with maintenance can 

justify the option of run to failure. For instance, the cost and availability of vessels with 

cranes used in off-shore wind turbine maintenance may justify run to failure or even out of 
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schedule maintenance for multiple turbines. For this, maintenance plans need to be 

considered as inputs to the decision support system along with operations and 

environmental conditions. On the other hand, the plan for electricity generation needs to be 

taken into account. In effect, loss of power generation should be considered for the period of 

shut down and the period of inefficient performance. 

 

1.2 Original Contributions 

It is important to emphasize that life extension is case–dependent. In addition, it has a 

wide range of issues and options to be discussed. For these reasons, this research does not 

cover all the aspects of a prognostic-based life extension program. Hence, the discussion 

focused on the presence of non-monotonic degradation during life extension, trend analysis 

of degradation data and a decision support system that use prognostic information for life 

extension. Accordingly, the original contributions are as follows:  

 Development of a novel diagnostic method based on AE energy, Zero-inflated Poisson 

(ZIP) regression and control charts. The contribution can be further expanded by 

applying pattern recognition methods to identify faults and the limiting failure 

modes.  

 Performing self-healing experiments using AE.  

 Enhancement of parameter selection procedures through the techniques of trend 

analysis. Since the life extension activities may result in non-monotonic trends, there 

is a need for a trend analysis module to test the trends and modify the degradation 

paths.  

 Development of a prognostic-based decision support system using multi-objective 

optimization methods. The goal is to extend turbine durability. The contribution can 

be further expanded by taking superior fatigue life models into account and 

estimating the optimal time for life extension activities. 
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1.3  Organization of the Document 

Chapter 2 provides a detailed literature survey. Because of the wide scope of this 

research, the literature review was divided into several subsections in order to provide 

better insight. It is to be noted that, when necessary, some literature review is presented in 

other chapters to support a particular subject.  

Chapter 3 covers certain examples of nonmonotonic degradations. This discussion is 

followed by trend analysis in Chapter 4. Next, the interactive decision support system using 

prognostic information is presented in Chapter 5. Concluding remarks and 

recommendations for future work are presented in Chapter 6.  
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2 LITERATURE SURVEY 

2.1 Diagnostics  

Diagnosis systems deal with fault detection, isolation and identification of the nature of 

faults. Diagnostic methods can be classified into two major groups: data-driven and model-

based. The former consists of pattern recognition, statistical approaches and artificial 

intelligence (AI) methods. Pattern recognition methods include power spectrum graphs, 

wavelet phase graphs, phase spectrum graphs, cepstrum graphs, spectrograms, and wavelet 

scalograms. Examples of statistical approaches are regression methods, cluster analysis, 

support vector machines, and hidden Markov models. AI approaches include artificial neural 

networks, evolutionary algorithms (e.g. Generic Algorithms), fuzzy logic systems, neural-

fuzzy, and fuzzy-neural systems. 

The application of the above-mentioned approaches is a function of the quantity and 

quality of data as well as the data analysis techniques. This may cause some obstacles for 

developing generic diagnostic systems in complex mutli-component systems such as wind 

turbine. Diagnostic data can be classified into three groups: 

 Value type data is collected for single value variables like temperature, pressure, and 

humidity, 

 Waveform type is time series data which is collected over a specific time epoch and 

for specific variables (e.g. vibration data, acoustic data), and 

 Multi-dimension type such as image data. 

In this respect, signal processing is the process of data analysis and feature extraction in 

waveform and multi-dimensional data which can be categorized into three types: time-

domain analysis, frequency-domain analysis (e.g., fast Fourier transform, signal average 

method, cepstrum analysis, and high frequency resonance technique), and time-frequency 

analysis. The most common time-frequency methods include wavelet transforms, Hilbert-

Huang transforms (HHT), and short-time Fourier transforms). These methods can handle 

non-stationary and nonlinear signals. In essence, traditional signal analysis relies on the 

limiting assumption that signals are stationary. However, in the real physical world, the 
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signal features change over time. The research on advanced machine diagnostics has tended 

to focus on extracting information from non-stationary signals.  

Wavelet analysis is a powerful method to examine non-stationary signals, detect the 

transient signal, measure the time evolution of the frequency transitions, and segregate the 

amplitude and phase component [9]. In wavelet analysis, the signal is decomposed into 

different detail signals that correspond to different frequency bandwidths.  

HHT is applied in this research for the trend analysis of degradation waveforms. The 

Hilbert-Huang transform (HHT) [10] is a relatively new time-frequency technique. The HHT 

method is able to analyze large signals. The empirical mode decomposition (EMD) is the first 

major operation of the HHT. The details of EMD process can be found in [11, 12]. The EMD 

relies on the local characteristic time scales of a signal and can decompose the signal into a 

collection of successive intrinsic mode functions (IMFs). In other words, EMD intends to 

accurately reveal the signal characteristics. An IMF is a function that reveals a simple 

oscillatory mode embedded in the signal [12]. An IMF may suffer from mode mixing problem. 

After finding the IMFs, the Hilbert transform (HT) is applied to produce a full time-

frequency-energy distribution of the signal. The HT process provides instantaneous 

frequency and amplitude information for each IMF. 

The fault diagnosis of bearings is elaborately discussed in the next section. In addition, 

the review particularly considers the applications of acoustic emission (AE) in fault diagnosis 

of rotating components. Bearing and gearing systems have some common failure 

mechanisms such as pitting, and therefore they have similar diagnostic techniques. 

Moreover, AE has been extensively studied for gearing systems rather than bearings. For 

these reasons, fault diagnosis of gear systems is also presented in the literature review.  

2.1.1 Fault diagnosis in bearing and gearing systems 

Rolling Element Bearings (REB) are one of the primary causes of breakdown in rotary 

systems. Examples for catastrophic bearing failure include automatic processing machines 

and helicopters [13]. The major failure modes in bearing include spalling, pitting, flaking, 

brinelling, fluting, seizure, etc. Fatigue spalling is the major cause of diminished life for 

bearing races or rolling elements. Spalling occurs mostly in the rolling direction in the region 

of maximum shear stresses. Failures in bearings occur because of friction, wear, damage to 
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housing due to turning of the outer race, cage fatigue or broken cage rivets. In effect, relative 

motion between the balls would be the root cause of the cage failure. The relative motion 

happens because of angular misalignment between the inner and outer bearing races or a 

decrease in diametrical clearance.  

In years past, the L10 bearing life prediction [14] was used as the reliable method to 

denote bearing life. L10 Life is also introduced as "basic rating life" in bearing catalogs. The 

bearing life in this method is the time or number of stress cycles that 90 percent of a 

population survives. Based on this principle, the relation between bearing life and the 

dynamic load capacity (CD) with 90 percent probability of survival for carrying one million 

inner-race revolutions has been used for many years. In this equation, p is the load life 

exponent and BL is the equivalent bearing load [14]  

L10 = [CD / BL]P                                                            Eq. 2-1 

ISO 281 specifies the standard way to calculate the rated life of a bearing. In addition, 

ISO 16281 [15] provides the methods for calculating the fatigue life for universally loaded 

single-row REB. The presented calculation methods can be derived for more complex 

designs based upon the given geometry references. The standard considers lubrication, 

contamination, fatigue load limit of material, internal load distribution on the bearing, tilting, 

misalignment, and operation clearance.  Dynamic effects such as centripetal and gyroscopic 

forces were not taken into account. In reality, dynamic effects would be significant in high 

speed applications.  

Based on Hertz stress-life relation, life in a ball bearing is a function of cubic power of 

load. In roller bearings, life is a function of forth power of load. Zaretsky et al [16] discussed 

various life theories for REBs. The authors believed that Lundberg-Palmgren theory is the 

best life prediction method. This theory is based on orthogonal shear stress. A few 

researchers have modeled bearing crack propagation based on Paris's formula [17]. This 

formula relates the rate of defect growth to the instantaneous defect area D as follows: 

dD/Dt = C0 (D)n                                                       Eq. 2-2 

Here, C0 and n are material constants. Accordingly, under constant operating conditions, 

a deterministic crack propagation model in bearings relates the instantaneous defect area 
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with material constants that have no correlation with the defect size. Nevertheless, these 

models lack the exact shape of crack geometry, and therefore the stress intensity factor was 

roughly determined. In essence, bearing fatigue processes are highly stochastic. Numerous 

factors contribute to the fatigue crack growth including stress states, lubrication, material 

properties, and other environmental and operating conditions. In this respect, the 

propagation mode of fatigue spall is a subject deserving of attention. The investigation 

conducted by Hoeprich [18] was used as the industry standard for unacceptable fatigue spall 

damage size which is 0.01 in2 (6.25 mm2). 

Gearing systems are one of the acknowledged examples of the weakest-link-in-the-chain 

components in engineering systems such as automotive, helicopters, mining equipment, and 

Mega-Watt-level wind turbines. Gearing systems in wind turbines transmit force from the 

blades to the generator by means of a group of solid bodies i.e., gears, shafts and bearings. 

The most used gearing systems in wind turbines are planetary gearing systems, also known 

as epicyclic gearing. The major advantages of planetary gearing systems include high power 

density, compact design and various gearing configurations. The planetary gearing systems 

in wind turbines should be able to handle the torque generated by heavy and long blades and 

increases in speed of the main shaft by the scale of 50 to 300. With an operational period of 

5 years, gearbox replacement in wind turbines may lead to 1-6 months of production loss 

and a cost up to 10 percent of the original construction cost [19]. Moreover, a higher 

frequency of failures has been reported in bigger size wind turbines.  

One approach to improve the reliability and availability of gearboxes is to reduce the 

number of moving components. For instance, recent developments in wind turbine design 

advocate the use of direct drive generators (e.g. permanent magnet gearless synchronous 

generators) which avoids the need for an additional gearbox and leads to significant 

reduction in mechanical wear.  

Major gearbox failures include shaft misalignment, local and distributed faults of gears 

and local faults in rolling element bearings [19, 20]. For instance, the movement of machine 

chassis in wind turbines results in misalignment of the output shaft of the gearbox, which 

finally leads to bearing failure. Moreover, wind gust loads (which cause cyclic stresses) and 

manufacturing inconsistencies may cause minor misalignment. Highly reliable gearboxes 
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such as the Geared Turbofan Engine (GTF) take the advantage of magnetic bearings to 

minimize wear, self-align the transmission shafts and operate lubrication-free.  

Gear faults include cracks, tooth bending, tooth breakage, and tooth surface deformation 

such as scuffing, pitting and spalling. Pitting is a fatigue effect caused by micro-cracks due to 

surface and subsurface stresses.  Pitting is generally initiated within the hardened layer and 

near the pitch surface or on the dedendum flank where the oil film is thin [21-24]. The micro-

cracks propagate and consequently lead to removal of tiny particles and formation of cavities 

on tooth flanks. Aslantas and Tasgetiren [21] provided a numerical model of pitting 

formation life for spur gears using the finite element method and linear elastic fracture 

mechanics analyses. This work demonstrated that pitting failures might have irregular 

morphology, but rolling direction has no influence on the shape of pitting. In general, heat 

treatment prolongs the surface fatigue failures of gears. For more information on gear wear 

and damage mechanisms, the readers are referred to ISO 10825 [23].  

The CM programs for bearing and gearboxes are mainly based on vibration analysis, 

acoustic emission (AE), and oil debris analysis. AE is a promising CM technique with early 

fault detection ability. AE is broadly reviewed in the next section. Oil debris monitoring deals 

with detecting the number and size of oil particles that used to be a piece of the contact 

surfaces. Early stage of pitting can be identified via oil debris monitoring. This technique is 

not able to provide helpful information for fault localization.  

Vibration analysis is a well-established monitoring technique for all rotary systems. It is 

pertinent to mention that monitoring of bearings and gearboxes can be directly solved by 

root cause analysis of the factors influencing the vibration [20]. In effect, vibration analysis 

techniques based on the bearing or gear case vibration signatures reveal a range of faults. It 

was noted that the stiffness of the operating gear system is the main influencing parameter 

in terms of vibration level [25]. Furthermore, it should be noted that varying loads affect the 

vibration signal modulation. Condition indicators for gearbox condition monitoring include 

[26]: 

 Root mean squared (RMS) value for the velocity: this parameter deals with the energy 

content of the signal.  RMS is a simple and robust descriptor of the overall condition. 
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Although it is not sensitive to incipient tooth failure, RMS would increase with 

progress in tooth failure (e.g., pitting) and wear out.  

 Delta RMS is associated with differences between consequent RMS values. This 

parameter observes the trend of the vibration signal. Gear faults impose rapid 

increases in Delta RMS, 

 Crest factor is the ratio of peak value of the signal over the RMS. This parameter may 

reveal the damage in gearing systems at an early stage.  

 Kurtosis is the 4th centralized moment which deals with the shape of amplitude 

distribution, 

 Energy ratio is the ratio between the energy of the regular meshing and the energy of 

the signal. This parameter is useful in indicating heavy wear (i.e., where more than 

one tooth is damaged), 

 Sideband index, and 

 Peak value. 

Bartelmus and Zimroz [27] introduced a simple regression-based diagnostic feature 

relying on the linear relationship between the sum of the meshing component amplitudes 

and the instantaneous input speed as the operating conditions indicator. The gearing system 

under study is a multistage gearbox used in a bucket wheel excavator. This gearing system 

examines non-stationary operating conditions. The general and cyclic variations in operating 

conditions come from varying properties of ground and the manual control. After 20,000 

hours of operation, the gearbox suffers from over limit radial backlash in all rolling elements 

bearings and scuffing of almost all the gears. The author considered this stage of life as a “bad condition” which is also more susceptible to load than the gearbox in good condition.  
The linear relation described above depends on load susceptibility. Hence, the new 

feature is the difference of the slope of the linear relationship in different cases, i.e. the good 

and the bad condition. In effect, the linear relation would be applicable in a limited range of 

operating conditions. Moreover, changes in the conditions of tooth surface invalidate the 

assumption of linear relationship. It is of note that increased backlash is the major reason of 

degradation in tooth surface conditions.  
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It may be worth stating that gear dynamic models have been investigated with the hope 

to provide superior analysis of vibration generation mechanisms and dynamic behavior of 

faulty gears. The dynamic models appearing in the literature can be divided into three 

groups; (1) the models that consider dynamic factors to determine root stress formulas, (2) 

models that merely considered tooth stiffness as the storing element, and (3) recent dynamic 

models of gears which take into account shaft and bearings. For diagnostics purposes, 

Howard et al. [28] simulated gear dynamics of a single stage reduction gearbox focusing on 

the friction between the gear teeth through a multiple-degree-of-freedom model. The match 

between the simulation and the experimental results was promising.   

2.1.2 Acoustic Emission 

Acoustic Emission (AE) is a powerful passive method for real-time investigation of 

materials behavior under mechanical and/or thermal stress. AE is a natural phenomenon in 

a material deforming under stress, in which localized physical changes within the material 

result in rapid release of strain energy that leads to emission of transient elastic waves [29]. 

In fact, AE is a well-established diagnosis method for static structures. In recent decades, AE 

applications in health monitoring of structures and materials have been extended to other 

areas such as rotating machineries and cutting tools. The ISO 22096:2007 standard provides 

the general principles of AE application. 

The major advantage of AE technology is the sensitivity to surface and subsurface micro-

damage. For this, AE can ensure superiority over vibration-based monitoring systems with 

respect to discovering crack propagation and early fault detection, and therefore, it offers 

good potential for prognostic capabilities [24, 29-31]. Price et al. [32] confirmed the 

detectability of AE in severe sliding and pitting situations by observing changes in AE energy. 

The authors identified changes in the frequency patterns of AE signals prior to fault 

appearance and emphasized the superiority of AE in wear detection over vibration 

monitoring or wear debris analysis. In addition, Tan et al. [25, 33, 34] verified the supremacy 

of the AE technique in detecting and monitoring pitting in comparison with vibration 

analysis or spectrometric oil analysis techniques. These studies also emphasized the 

usefulness of AE for prognostics in rotating machinery considering the near linear 

relationship between AE and pit progression. Badi et al. [35] simulated scuffing and pitting 
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defects on gear tooth. The authors used crest factor and kurtosis for both AE and vibration 

analysis. While both monitoring techniques were able to detect scuffing, the pitting was 

detected only through the AE technique.      

The potential sources of AE in bearings are subsurface cracks, rubbing between 

damaged mating surfaces, excessive temperatures, and lubrication malfunction. It is worth 

noting that increases in AE parameters may happen prior to bearing failure particularly in 

dry runs. It is also the case when the operating conditions such as temperature or speed 

change. For these reasons, selecting the most appropriate failure threshold is a challenging 

task.   

Al-Balushi and Samanta [36] introduced energy-based features extracted from AE 

signatures. This index was defined as the square of the ratio of the RMS value for a section of 

the signal to the RMS value of the entire signal. The proposed index was successful in 

detecting and locating the broken and pitting teeth. In general, the proposed technique 

worked better than the traditional kurtosis and crest factor methods. In addition, Al-Balushi 

and Samanta [37] employed wavelet transforms to decompose AE signals to low frequency 

and high frequency components. The output of wavelet transforms was used as input to an 

ANN based diagnostic approach. 

The literature reports an increase in AE parameters (e.g. RMS, amplitude and energy) 

due to a increase in gear defect size [22, 24, 30, 38]. Singh et al. [39] concluded that pitting 

of gears can be detected earlier by AE at the crack initiation and growth stages, although this 

conclusion would not be acceptable for unloaded gears at extremely high speeds. By 

contrast, vibration monitoring reveals the fault at a later stage of the crack growth process.  

Yao et al. [9] believed that an efficient fault diagnosis requires a match between the time-

frequency structure of the wavelet transform and the transient components of the signal. In 

view of this, the authors proposed a new adaptive Morlet wavelet filter for more effective 

diagnosis of incipient gear crack faults. Kurtosis maximization was applied to optimize the 

wavelet parameters. In practice, tooth crack or breakage generates periodic impulses (0.044 

second in this case) which produce resonance features in the vibration signal. However, the 

periodic impulses generated by tooth crack are usually hidden in the signals. The use of 

Morlet wavelets was proven to be effective in extracting such impulses. In general, to 
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appropriately decompose these features, one should apply wavelet transforms with superior 

time resolution at high-frequencies.  

Fault detection in split torque gearboxes (STG) using acoustic emission and vibration 

sensors was studied by He and Eric [40]. STG is a reliable gearbox because of fewer gears 

and bearings and a reduced number of speed reduction stages. This work found a decrease 

in signal to noise ratio and accordingly diminished fault signal because of a large number of 

synchronous components meshing or rolling in close proximity. The following AE 

parameters were used in this work for fault detection: ring-down count, duration, peak 

amplitude, rise time, rise time slope, RMS, and kurtosis. A Hilbert-Huang transform based 

algorithm was used to extract gear fault features from the vibration signals. It was concluded 

that AE offers 100% accuracy in damage classification. In addition, AE signals do not require 

complicated algorithm to generate gear fault features and accurate AE signal would be in the 

form of high counts and low rise time.  

Raad et al., [41] used visual comparison and confirmed that spalling is the source for the 

AE bursts. Sentoku [38] claimed that increasing in pitting would result in friction which 

consequently increased the AE amplitude. Tandon and Mata [24] experimentally 

demonstrated the detectability of AE for defect size (pit diameter) around 500 micrometer 

or greater in diameter. The detectability of vibration monitoring was recognized for a defect 

size more than 1000 micrometer. 

Eftekharnejad and Mba [30] considered the fault detection of helical gears. It is pertinent 

to mention that the AE signal has two types of time domain waveforms; burst and 

continuous. This study shows that transient AE bursts come into sight on the continuous type 

AE waveform of helical gears exposing the defects in helical gears. While the accelerometer 

was located on the bearing pedestal, the authors believe in the superiority of AE over 

vibration analysis in identifying the seeded defects on helical gears. In the case of rolling 

element bearings, significant changes in vibration can be observed when the remaining 

operational life is very short [29, 42].  

Moreover, insensitivity to structural resonance and mechanical background noise gives 

the AE technology an extra advantage over the vibration-based monitoring systems. 

Depending on the data acquisition system, the smallest scale of AE inspection would be the 
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small dislocations within the elastic stress field. In fact, there is an acoustical reaction to 

permanent deformation processes such as twinning, slip and micro-crack formation. 

Nonetheless, because of the wide frequency range (10 kHz to 10MHz) AE is applicable not 

only for crack and corrosion detection but also for identifying certain processes like friction, 

solidification and phase transformation.  

It is recognized that the interaction of component's elements in relative motion is the 

primary source of AE in rotating machinery. This interaction can be in the form of impacting, 

cyclic fatigue, friction, turbulence, material loss, leakage, etc [29]. Thus, in rotating 

machineries, the number and arrangement of component interfaces, and loading conditions 

can influence the propagation of the AE signal. 

Furthermore, AE is not geometry-sensitive but it is material sensitive. In effect, AE 

signals depend on material microstructure, non-homogeneities and deformation mode. 

Principally, ductile materials show low emissivity in comparison with brittle material [43]. 

Suman et al. [44] believed that AE in metals can be generated due to dislocation movements 

in plastic deformation or the initiation and growth of cracks. Miyachika et al. [45] considered 

bending fatigue failure for two types of gears. The authors postulated that defect detection 

through AE would be easier in the case of case-hardened gears in comparison with 

normalized gears. Marked increases of AE parameters were adequate to characterize both 

crack initiation and crack growth for case-hardened gears. 

The major drawbacks of AE-based monitoring systems include the distance of AE 

sensors to the source and the weakness of signals in force or intensity, i.e., attenuation [22, 

25, 33]. In practice, severe attenuation and reflections may happen due to sensor positioning 

and complexity of machines. For this, an attenuation test (i.e. Nielsen source test) is 

recommended in order to display different interfaces [22]. Singh et al. [46] realized that 

attenuation at each individual interfaces contributes to the overall attenuation across the 

gearing system. According to [22], attenuation would be greater for lighter loadsing 

conditions. 

The positioning of AE sensors in gearing systems and bearings is a subject deserving of 

attention. While it seems the most convenient place would be the gearbox casing [22, 24], 

several researcher [25, 33, 38, 45] attempted to place the sensor on the side of the gear 
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namely close to the gear teeth. For such experiments, a slip ring was applied to transfer the 

monitoring data. Toutountzakis et al. [5] critically reviewed the developments in application 

of AE for spur gear systems. The authors believed that gear defect detection with AE is 

accompanied by technical difficulties that are mainly centered on understanding the 

parameters that influence the AE signal. These parameters include design factors (e.g., 

meshing mechanisms and asperity contact), operational factors (e.g., speed, torque and 

specific film thickness), and degradation factors (e.g., removed wear particles or debris 

interfering with gear mating). It is to be noted that, for spur gears, a gear meshing cycle is a 

combination of rolling and sliding. The rolling portion of gear meshing principally occurs on 

the pitch line. Asperity contact occurs during the sliding. 

Tan et al [33] explained that high amplitude AE transient bursts are generated at the 

gear mesh frequency because of the rolling contact on the pitch line of the spur gear mesh. It 

is interesting to note that in the time domain of AE signals, it is possible to calculate the gear 

mesh frequency by inversing the periodic time between two succeeding AE bursts [22]. 

However, the continuous waveform is produced because of the sliding contact. In principle, 

sliding, rolling or a combination of both will occur during the gear mesh, which is known as 

asperity contacts. It is notable that, in the gear industry, rolling contact fatigue cracks is one 

of the most challenging problems. The authors in [33] believed that under the conditions of 

constant temperature the load has no significant influence on AE RMS levels. On the contrary, 

speed would significantly influence AE levels since speed is associated with the sliding speed 

of the meshing gears. In brief, the source of AE signals is the elastic deformation of the 

material at asperity contacts [25]. 

Several studies consider the important effects of lubricant on AE activity [22, 25, 47]. In 

effect, lubricant is crucial in order to maintain the mechanical integrity of gears and bearings 

[47]. The thickness of oil film directly affects the rate of wear and asperity deformation and 

consequently AE activity is influenced. Therefore, one application of AE technology in 

gearboxes would be monitoring the lubricating conditions. The thickness of the oil film 

depends on oil temperature, surface roughness, load and speed of the meshing gears [47]. 

Hamza and Mba [47] realized that the oil film thickness in meshing gears with rolling and 

sliding (spur gear) has more effects on AE activity in comparison with meshing gears with 
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pure rolling (helical gear). Oil temperature influences AE activity in the case of fixed speed 

and load conditions particularly for higher rotational speeds [22, 25]. Oil temperature was 

introduced as the main reason for unsatisfactory seeded defect identification in [25] since 

increasing loads and speeds increased the oil temperature.  

To this end, it is possible to say that the development of AE applications for bearings and 

gears is merely dependent on experimental findings using seeded defects. In most cases, 

researchers are hardly aware of mounds or protrusions, which may exist at the boundaries 

of the seeded defect. Protrusions generate AE activity and may lead to growth in vibration 

[30]. Hence, it is worthwhile to consider more detailed experiments based on natural pitting 

or wear.  

The most common measurable characteristics of the AE signal include peak amplitude, 

energy, duration, counts, and rise time [24, 43, 45]. Figure 2.1 illustrates these measurable 

characteristics. Peak amplitude is a function of AE source scale and velocity [48]. The 

mentioned parameters can be used to provide more signal features such as RMS, AE 

cumulative event count, counts to peak, rise time slope, crest factor and Kurtosis [45]. 

Moreover, the distribution of events versus the above-mentioned parameters can be used as 

signal features [24].   

 

 

Figure 2-1 Measurable characteristics of AE signal [43] 
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AE count is defined as the number of threshold crossings of the AE signal. In the 

literature, this parameter is also known as ring down count (RDC) or threshold crossing 

count. In effect, AE counts imply the existence of a transient event (e.g. rolling action of 

meshing gears). One major drawback of this parameter is the dependence on the threshold 

level, signal frequency and the amplitude of the AE pulses.  It is to be noted that the average 

counts is a measure of AE intensity, i.e., the size of the emission signals detected [43]. 

Furthermore, AE counts divided by duration gives the average frequency of the signal. It is 

therefore difficult, if not impossible, to identify the origins of defects in bearings and gears 

using AE counts. 

Traditionally, RDC has been widely used in the literature as the condition indicator. 

Miyachika et al. [45] postulates that AE cumulative event count increases with crack growth 

in the case-hardened gears. Tandon and Mata [24]claimed that AE counts showed better 

results than other AE parameters in gear defect detection. Tandon and Nakra [49] 

considered AE counts for condition monitoring of radially loaded ball bearing. The authors 

observed a direct relationship between AE count and speed in the case of outer race defect. 

The results showed that AE count is a practical indicator for defects less than 250µm in 

diameter. However, Morhain and Mba [50] declared that AE count is able to detect large 

defects up to 15 mm in lengths and 1 mm in width. The authors in [50] calculated the AE 

counts at several different threshold values proportional to the maximum background 

amplitude (MBA) in order to determine the optimal threshold values. At the lowest speed 

and load, a threshold level at or above 30 percent of MBA is suggested. This study also 

emphasized the sensitivity of AE counts to the level and grade of lubricant within the bearing.  

AE parameter analysis for tool condition monitoring has received attention mainly for 

real-time applications. AE count rate was introduced as a reliable parameter for monitoring 

tool wear during turning, although AE signals highly depend on process parameters [51, 52]. 

In [53], a direct relationship between tool wear during drilling operations and AE count was 

observed. Carpinteri et al. [54] applied AE technology to monitor concrete and masonry 

buildings. The cumulative number of counts was found to be informative for analyzing the 

evolution of cracks and determining the released strain energy. The authors observed that 

the maximum counting of AE corresponds to the maximum velocity of crack propagation.  



 

 

21 

 

The parameter of interest in the study is energy which is a 2-byte parameter derived 

from the integral of the rectified voltage signal over the duration of the AE hit [43]. This 

parameter covers the significance of count, duration and peak amplitude. It is to be noted 

that peak amplitude is a function of AE source scale [48]. The unit of energy is 10 micro-volt-

seconds per count. The resolution of energy is 1 count ranging from 1 to 65535. It is evident 

that the energy is a discrete variable. For this, there may be a high frequency of zero energy 

in AE signals. 

 

2.2 Prognostics 

This section provides an overview of the current methods in prognostic modeling. A 

number of different definitions of prognostics have appeared in the literature [55-64]. The 

key phrases of the various definitions of prognostics are listed as follows: 

 Estimation of time to failure,  

 Estimation of risk of unacceptable behavior or accomplishing the mission,  

 Estimation of remaining useful/operational life, 

 Predicting future states or conditions, 

 Predicting failure progression, and 

 Predicting fault before it occurs. 

Considering all the definitions, it is clear that prognostics require knowledge about the 

system under study, engineering models, technology for data collection and data processing, 

validated methodologies and standardized procedures.  

ISO 13381 [55], provides general guidelines for a broader picture of prognostics. This 

standard believes that prognosis is an integral phase in the complete process of condition 

monitoring (CM). According to ISO 13381, prognosis is a case dependent process, and 

therefore, it is not reasonable to specify certain approaches or methodologies in prognosis 

standards. The standard covers the list of required data and the specific objectives for each 

group of data. Since prognosis is mainly based on data, determining the degree of certainty 

of the prognosis process, i.e., the confidence level, is an essential task. There is also an 

emphasis on the importance of failure modes data. Such data must include existing failure 
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modes, future failure modes, alarm limits and trip set point. In addition, symptoms of existing 

failure modes, i.e., influence factors and failure mode initiation criteria, need to be carefully 

considered. More importantly, the models of failure mode behavior should be used to 

provide more prognosis data. In addition, time to failure needs to be estimated using 

intuitive and/or empirical methods.  

This standard divides a prognosis process into four phases: pre-processing, existing 

failure mode prognosis, future failure-mode prognosis, and post-action prognosis. Pre-

processing deals with identifying and modeling the failure modes. The second and third 

phases are associated with the severity of existing and future failure modes as well as 

estimation of time to failure. The post-action phase mainly considers how to prevent the 

initiation of future failure modes.  

Sheppard et al. [56] attempted to outline IEEE standards for prognostics and health 

management (PHM). The authors believed that standards might reduce cost and design time 

in PHM systems. In this study, the term Time to Failure was preferred over the popular term 

Remaining Useful Life (RUL). This is because the term RUL would be deceptive at the system 

level. The necessary elements of a PHM system were mentioned as follows: current state 

estimation, future state prediction and impact assessment, which should be followed by 

mitigating action. This study emphasized the significance of information management in 

PHM, which involves the need for more improvements in information exchange, information 

processing and combining information from multiple models. 

There are extensive reviews of prognostics modeling in publications by , Jardine et al. 

[57], Lee et al. [58], Heng et al. [60], Farrar et al. [63, 64], Sikorska et al. [65], Si et al. [66], 

Hines and Usynin [67] and Dragomir et al. [68]. 

Jardine and his colleagues [57] provided an extensive review of machinery diagnostics 

and prognostics for condition-based maintenance up to 2005. The authors believed that 

prognostics approaches are even superior to diagnostics for maintenance decision support 

in a CBM program. To have effective prognostics models, this work underlined the 

importance of understanding failure mechanisms besides the knowledge on the fault 

propagation. 
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Lee et al. [58] provides an overview of the methods and information flow infrastructure 
that actualize the development of e-maintenance based on intelligent prognostics. Heng et 

al. [60] reviewed the prognostic of rotating machineries. Limitations and merits of current 

prognostics models have been indentified in this study. For efficient prognostics modeling, 

the authors suggested integrating condition monitoring and reliability data, utilizing 

incomplete measures of degradation, and considering failure interactions.  

Sikorska et al. [65] discussed business issues that are central to appropriate model 

selection. This topic emerged because prognostic models are not similar in terms of 

satisfying the business needs and the level of risk they impose. On the other hand, businesses 

are also required to meet the requirements of prognostic models, e.g., data availability. The 

authors supported a staged approach in applying prognostics models. The first stage was 

defined as predicting the RUL along with the confidence limits for all the identified failure 

modes. From a practical point of view, the extent to which a system is broken down for RUL 

prediction is considerable. The subsequent stages need to consider the failure modes 

interactions and the effects of maintenance actions. This work classified the prognostics 

models based upon practical implementation issues of remaining life prediction.  

 Bond et al. [62] emphasized the significance of monitoring and managing materials 

degradation in nuclear power plants. In this way, prognostic models need to understand the 

phenomena of stressor-material interactions and quantify the rate of material degradation. 

The authors advocated the staged prognostics approach. In this way, the best prognostic 

model at the early stage of a component’s service life would be a reliability model since there 

is no adequate degradation information. For active systems, monitoring of the stressor, e.g., 

temperature, fluid cavitations, mechanical vibration, is more beneficial than monitoring the 

subsequent effects of degradation and aging (i.e., degradation caused by numerous factors). 

However, this creates the need for physics-based models to relate the rate of aging or 

degradation to the stressors.  

Hines and Usynin [67] reviewed various empirical methods for process and equipment 

prognostics. Bond and Meyer [69] emphasized the significance of online continuous 

monitoring to ensure optimal life management and operability of critical systems in nuclear 

power plant. The authors criticized the current mitigation policies in which mitigation 
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actions are being applied after discovering the degradations. The current online monitoring 

in nuclear power plants is limited to measuring environmental parameters and detecting the 

degradation in the physical aspects of active components, such as pumps and valves. This 

work highlighted the importance of monitoring and managing passive systems, such as 

pressure vessels and concretes, for the purpose of long-term operation (i.e., 80 years).  

Greitzer et al. [70, 71] presented a high-level framework for prognostics and life 

extension to facilitate the communication of logistics requirements. These works focused on 

developing statistical methods for characterizing the degradation in mechanical systems 

with an emphasis on real-time and onboard prognostics.  

2.2.1 Outputs and outcomes of prognostic models 

In general, prognostic outputs are dependent upon historical data and/or the output of 

diagnostics units. Historical data consists of reliability data, maintenance data and the old 

condition monitoring data. To be useful for prognostics, a diagnosis system should be able 

to provide detectable short-term or long-term trends of degradation. However, one can 

expect diagnostic systems to provide posterior event analysis depending on the nature of 

failures. For example, Tan et al. [72] experimentally compared the diagnostic and prognostic 

capabilities of spectrometric oil analysis (SOM), acoustic emission (AE) and vibration 

analysis for monitoring of spur gears subject to natural pitting. It was concluded that the 

linear relationship between AE signals and the pitting rates would lead to better prognostics 

capability. The AE technique, in this case, offers much earlier diagnosis than vibration 

analysis. Even SOM has better diagnostics capabilities than vibration analysis at higher 

torque conditions.  

The common prognostics systems outputs include RUL and the estimated time to failure 

(TTF). Furthermore, prognostic models might be used to predict the chance that a system 

operates without a major failure up to a specific time. However, in all cases, the output should 

be accompanied by confidence limits. Figure 2.3 shows different cases of TTF prediction. It 

is evident that more data would result in a more accurate model as shown in Figure 2.4. Here, 

the accuracy is defined as the closeness between the predicted values and the actual values. 

In principle, precision is a measure of the narrowness of the interval that covers the 

remaining life [68]. 
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Moreover, to be effective, the outputs should be calculated for all the ongoing failure 

modes. In addition, censored data can be helpful in improving the accuracy of prognostic 

models as recommended in [59]. Successful implementation of prognostics promises 

reductions in life-cycle costs, downtime cost, number of failures, mean time to repair, 

maintenance labor costs and hazardous conditions. It is important to mention that 

appropriate action must be taken based upon the prognostics information. In practice, 

earlier detection of failures through prognostics gives more time for mitigation. This creates 

the need for prognostics-enabled scheduling of maintenance and spare part management.  

 

 

Figure 2-2 TTF predictions [68] 

 

 

Figure 2-3 Accuracy of TTF prediction [68] 
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2.2.2 Prognostic approaches 

This section classifies the existing prognostics approaches into model-based and data-

driven approaches. This classification is based on the source of information or inputs, which 

is directly related to the cost and accuracy.  

2.2.2.1 Model-based approaches 

Such approaches require physical models, i.e., mathematical representation of the 

mechanistic knowledge, and theory of the degradation processes, such as crack propagation 

and spall growth. Model-based approaches are normally case dependent. If the physical 

models remain consistent across systems, they may provide the most accurate prognostics. 

However, in reality, the stochastic nature of systems increases the complexity of the physical 

models.  

To name a few examples, Li et al. [73] introduced a defect propagation model via failure 

mechanism modeling for bearing prognostics. Qiu et al. [74] proposed a prognostic model 

for a bearing system by linking the damage mechanics to the parameters of vibration 

analysis. Damage mechanics were used to theoretically relate failure time to the stiffness 

variation. The authors assumed the bearing system was a single-degree-of-freedom 

vibratory system and related the vibration amplitude and natural frequency to the system 

stiffness. By using the vibration measurements, on-line prediction of bearing failure time can 

be calculated. Amiable and his coworkers [75] provided a comparison of the numerical 

models for estimating the lifetime in a thermal fatigue experiment. The studied models 

include closed-form, finite element solutions, boundary element solutions and fatigue 

criteria.  

Ray and Tangirala [76] provided real-time damage rate of mechanical systems through 

a nonlinear stochastic model of fatigue crack dynamics. As mentioned earlier, the primary 

sources of AE in REB include the extension of cracks and contact between the rollers and the 

defected area, i.e., impact mechanism. Due to the fact that it is not possible to directly 

measure the bearing's defect area, Li et al. [13] developed an adaptive prognostic scheme to 

tune their deterministic defect propagation model - without interrupting the system - using 
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the estimation of defect size based on vibration and AE signatures. The following 

deterministic model was used in this study: 𝑡0 =  𝐶0−𝑛+1 𝐷0𝑛+1             Eq. 2-3 

This model is based on Paris’ formula where C0 and n represent material properties, D0 

is the smallest detectable defect area and t0 is the time when D0 occurs. The authors 

successfully reduced the prediction errors by applying a non-linear recursive least square 

algorithm.  

2.2.2.2 Data-driven approaches 

These approaches are highly influenced by the quantity and quality of data. They are able 

to transform high-dimensional and noisy data into lower dimensional information. There are 

several types of data-driven approaches: 

I. Traditional times to failure (reliability-based) approaches are also known as event 

data-based or experience-based prognostics. By categorizing the empirical models 

based on the type of information, the reliability-based approaches are introduced as 

Type I prognostics in some literature [67, 77, 78]. Such approaches use 

priori distribution of failure times, and therefore, it is assumed that operating 

conditions will remain the same in the future. Weibull analysis is the most common 

parametric reliability model because a it can handle increasing, decreasing and 

constant failure rates. The Weibull model with two parameters (β as the shape 

parameter and θ as characteristic life) is represented below: 

 

Eq. 2-4 

 

The common practice in reliability-based approaches to estimate RUL is the use 

of Mean Residual Life (MRL) based upon parametric or nonparametric distributions. 

The MRL at time t with survival function S is defined as   

 

Eq. 2-5 
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Here, X corresponds to a non-negative random variable. For identical units, 

reliability approaches provide an estimate for the entire population, and therefore, 

one cannot expect accurate prediction for individual units. The application of 

experience-based approaches is limited to non-critical items with low failure rates 

or where it is not possible to obtain sensory data.  

II. Statistical approaches can be categorized into two main groups. The first group uses 

direct CM data. This group include the following approaches:  

a. Regression-based models are popular models that have no probabilistic 

orientation. They are mainly used for the trend extrapolation. Simple 

regression models do not provide probability density function of RUL, which 

is important for risk analysis and maintenance decision-making. In this 

category, the General Path Models (GPM) is a very popular non-linear 

empirical model. The model was developed based on the famous article by Lu 

and Meeker [79] in which the authors considered reliability prediction based 

on degradation measurements where the time-to-failure data is not sufficient 

to estimate failure distributions. Degradation measurements (i.e. prognostic 

parameters) show the degradation paths to the end of life and it can be 

assumed that there is a unique degradation path for each individual 

component as shown in Figure 2.5. The degradation path y for unit i at time t 

can be expressed as:  𝑦𝑖 = η(t, φ, Θ𝑖) + 𝜀   Eq. 2-6 

where ε shows the error, φ is a vector that represents fixed effects and 
i

  

is a vector that represents individual effects for the ith component [79].  

End of life is usually indicated by passing over a pre-defined critical 

threshold. To estimate RUL of an individual component through GPM, the 

fitted model needs to be extrapolated to the failure threshold. It implies that 

the model parameters are constantly used for all RUL estimation regardless 

of the actual trend of degradation measures. Hence, it is possible to apply a 

Bayesian updating technique for a GPM model in order to consider the prior 

information. Bayesian updating is based on combining the prior information 
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and new observations to update the model parameter predictions. This would 

result in more accurate model fitting. Coble [78] applied Bayesian updating 

technique for GPM models.  

          

 

          

 

 

 

 

 

 

 

 

                           Figure 2-4 Degradation measurements 

 

Another popular method in this group is the auto-regressive moving 

average (ARMA) which can be used in real-time applications to provide short-

term predictions of RUL. Advanced ARMA can be used for non-stationary data 

and does not require historical failure data.  

b. Brownian motion with drift (Weiner processes) is a useful technique where 

the degradation processes vary bi-directionally over time and the noise 

follows a normal distribution. Liao and Elsayed [80] applied a simple 

Brownian motion process to estimate the lifetime for the light intensity of 

scanners' LED lamps.   

c. Gamma processes are used when a degradation trend takes place gradually 

in a series of tiny positive increments. Thus, the increment for each time 

interval follows a Gamma distribution. Henc, a Gamma variable is calculated 

as the sum of Gamma distributed increments. This technique has a 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
degradation paths of failed units (noisy data)

time

d
e
g
rd

a
ti
o
n
 m

e
a
s
u
re

s



 

 

30 

 

straightforward mathematical background, but it is limited to monotonic 

processes.  

d. Markovian-based models that are normally used for discrete state systems.    

 

The second group works with indirect CM data: 

a. Stochastic models include aggregate reliability functions, and conditional 

probability methods such as RUL probability density functions, static 

Bayesian networks and dynamic Bayesian networks such as Kalman filters 

and particle filtering. Bayesian networks are useful when the prior 

knowledge is reliable. Static Bayesian networks can deal with incomplete 

data and can be used when multivariate training data is available. Dynamic 

Bayesian networks are helpful for modeling time-series data. This method is 

applicable when the multivariate posterior distribution is available.  

b. Covariate-based hazard models: The factors that cause the degradation 

process are known as covariates. For instance, temperature is a covariate for 

a large number of mechanical and electrical components. The covariates 

normally have a stochastic nature and can be used to indicate lifetime. 

Covariate-based hazard models incorporate covariates in prognostic 

modeling. The Proportional Hazard (PH) model is a widely accepted semi-

parametric model for stress-based prognostic where each operating 

condition is associated with a specific degradation level. The general form of 

a PH model is given by: 

0( | ( )) ( ) ( ( ); )t z t t z t   
                      Eq. 2-7 

where λ0(t) is called baseline hazard rate, and ψ(z(t);β) is a function of 

covariates z with coefficient β. Both parametric and non-parametric forms of 

the baseline hazard rate can be utilized in practice. Weibull PH models are the 

most used parametric models. PHM should not be applied when covariates 

are not available or failure cannot be separated into individual failure modes. 

In addition, PHM is not a good method for non-stationary covariates.    
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Morkov Chain (MC) methods can be also used for stress-based 

prognostics. However, in MC processes, the transition probabilities do not 

vary over time and the future state does not depend on the past state, which 

may be considered as a drawback for some cases. 

c. Hidden Markov models (HMM) and hidden semi-Markov Models (HSMM) do 

not have the limiting assumption of the exponential distribution. 

 

III. Artificial Intelligence techniques include some non-linear, nonparametric techniques 

such as: 

a. Artificial neural network (ANN) can be used to provide direct RUL prediction 

or to estimate some parameters for other models. ANNs are the best choice 

when other methods are not applicable. The development process of ANNs is 

time-consuming and requires large amount of data, although it is not 

recommended to apply ANN for complex data or when minimal data is 

available for training. Moreover, confidence limits cannot be provided. 

Gebraeel et al. [81] used ANNs to project the degradation signals to find the 

best exponential fit. Huang et al. [82] developed a life prediction model for 

ball bearings based on a self-organizing map and Multi-Layer Perceptron 

neural networks trained with a Back-Propagation algorithm. Herzog et al. 

[83] tried to enhance the predictive capability of ANNs in prognostics 

applications. 

b. Expert systems and fuzzy systems are based on a set of rules to detect the 

similarity between the observations and the previously defined failures. 

Fuzzy methods can deal with noisy and incomplete data.  

 

2.3 Life Extension 

Power generation systems are an excellent example of capital-intensive engineering 

systems that are expected to operate safely and efficiently beyond their nominal design life. 

The Recent downturn in the world economy has restricted access to investment capital. 
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Moreover, return-on-investment (ROI) is a major concern with certain power generation 

systems including wind turbines. Accordingly, limited investment capitals and the need for 

ROI are the motivations for life extension in engineering systems. From investors point of 

view, the 2000 MW of installed wind energy capacity in 1990 still needs to remain operable 

[84]. On the other hand, useful design life is limited for highly stressed components and sub-

systems. Table 2.2 shows typical reliability field data for two types of WTs inferred from a 

population of over 300 WTs with average age up to 15 years [85].  

 

Table 2-1 Failure rate of 300kW & 1MW WT (Failure per turbine per year) 

 
 

 

After investigating the reliability data of over 6,000 wind turbines of all sizes, Spinato 

and his co-workers concluded that smaller WTs are more reliable than larger WTs [86]. Not 

surprisingly, there has been substantial recent growth in utilizing large WTs. It is also 

intriguing to note that O&M costs contribute at least 10-15% of the total power generation 

income would increase over the 20 years of WT operating life [7]. To this end, considering 

all the addressed issues about WT reliability, the attempts to develop life-extending 

methodologies can be easily justified.  

Reinertsen [87] provided a discussion on the published literature with respect to  life 

extension practices. The author highlighted the lack of research on determining the residual 



 

 

33 

 

life of repairable systems. He concluded that there are no consistent and good methods for 

extending residual life up to the time of his publication.   

In a series of research studies, Ray et al. attempted to connect the dynamics of material 

degradation with the current active control technologies to come up with a damage-

mitigating control system (i.e., life extending control system) [76, 88-106]. The major goal of 

these studies is to achieve an optimized trade-off between structural durability and dynamic 

performance under the assumption that a small manipulation in the dynamic performance 

would result in significant improvement in the service life of critical components and 

prevent the mechanical structures from overstraining. Consequently, enhanced safety, 

productivity, availability and reliability are expected.  

Ray and Lorenzo [89] provided an example about overheating of steam generator tubes 

when the control system reduces the feed water flow or increases the fuel flow. A small 

reduction in plant performance through damage-mitigating control would extend the creep-

fatigue life of tubes. One integral part of a damage-mitigating control system is the damage 

prediction system, which applies the available sensory and operational information. 

However, it should be emphasized that an analytical model of the material properties (i.e., 

fatigue model) can be more useful in predicting the impending failures. For instance, sensors 

may not be able to provide valuable information for high cycle fatigue of a critical plant 

component.  

To perform damage-mitigating control, the major challenge is to characterize the fatigue 

damage model and make it compatible with state-space representation of the controlled 

process (in a continuous-time setting). In effect, a fatigue damage model is based on 

experimental data. In such models, damage rate or other damage properties should be 

applied as inequality constraints. Ray and Newman [90] introduced a stochastic model of 

fatigue damage dynamics with an extended Kalman filter for estimating fatigue damage 

accumulation. In this model, the information on damage accumulation is a function of time 

and can be used for on-line life prediction. 

To this end, it is evident that prognostic systems are still in a research and development 

phase. Reliable and physically meaningful prognostic systems require long-term and high-

quality data streams and ongoing diagnostics. In this way, AE is a good candidate to be used 
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in PHM systems. This creates the need for more appropriate AE-based diagnostic techniques. 

The interest in long-term online monitoring creates the need for reliable long-term 

operation of monitoring systems as well as fast and precise prognostic approaches that can 

deal with multiple failure modes and novel events. The prognostics output is affected by 

degradation rate, novel events that change the rate, influencing factors (e.g., noise, type of 

model) and the sensor performance. Despite all the concerns in fruitful applications of 

prognostic models, it seems PHM has the potential to provide applicable life-extending 

methodologies and more appropriate maintenance decision making. 

The next chapter provides examples of non-monotonic degradation. The experiments 

that resulted in non-monotonic degradations are discussed. It is followed by trend analysis 

non-monotonic degradation measures in Chapter 4.  
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3   EXAMPLES OF NON-MONOTONIC DEGRADATION  

This chapter attempts to cover certain examples of non-monotonic degradation. One 

objective of this chapter is to provide a profound insight into the sources of non-monotonic 

trends. In this way, two degradation experiments along with the relevant diagnosis 

techniques are discussed. Generally speaking, little attention has been paid to the analysis of 

non-monotonic degradation.  

Bae and Kvam [107] studied the degradation of light displays, such as plasma display 

panels (PDP) and vacuum fluorescent displays (VFD). The critical characteristic of light 

display quality is luminosity (or brightness). PDP and VFD have similar degradation 

characteristic mainly caused by manufacturing impurities.  In particular, the burn-in 

characteristics are of interest when there is an unstable increase in emitted light before the 

continuous drop. Figure 3-1 illustrates the non-monotonic pattern of the VFD’s luminosity 

degradation.  

 

 

Figure 3-1 VFD’s luminosity degradation [107] 

 

Fouling is a common problem with heat exchangers which leads to degradation in the 

heat transfer efficiency [108]. Figure below shows the overall thermal resistance of a heat 

exchanger before and after cleaning (i.e. removing unwanted materials). Here, cleaning can 
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be considered as an imperfect maintenance that changes the degradation level as shown in 

Figure 3-2.    

 

 

Figure 3-2 Degrdation in heat exchangers before and after cleaning 

 

Gebraeel and Pan [109] proposed a stochastic model to handle time-varying operating 

conditions in real-time. In their experiments, load and speed were considered as the factors 

that influence the bearing’s lifetime. Thus, the authors applied different load and speed 

settings. Figure 3-3 shows the degradation signal for two different rotational speeds. This 

plot clearly shows the reduction in the amplitude of the degradation signal as a result of the 

reduction in speed.  

 

 

Figure 3-3 Speed change led to reduction in the amplitude of the degradation signal  [109] 
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The remainder of this chapter provides discussion on the experiments that resulted in 

non-monotonic degradation patterns. The first experiment, presented in Section 3.1, deals 

with applying different types of unbalance in a rotary system. The second experiment, 

presented in Section 3.2, deals with the prospect of crack closure in materials subject to 

fatigue.  

 

3.1 Unbalance in Rotary Systems  

The lack of balance causes excessive vibration in rotary systems. Vibrations impose 

centrifugal force and oscillatory force. Unbalance occurs primarily due to uneven material 

deposit on the rotor about its rotating centerline. High vibration amplitude at the rotating 

speed is the primary indicator of this fault. Other sources of unbalance include: 

 Imperfect manufacturing (e.g. eccentricity, clearance tolerances and cracks, loose 

parts in hollow places, crack, etc.) 

 Operational changes (e.g. maintenance, corrosion and erosion, wear at the journal or 

bearing, thermal or gravitational distortion) 

Bearings are a significant contributor to unbalance in rotary system because of internal 

clearance and run-out. In mechanical systems that utilize rolling element bearings, the 

rotational axis is not the same as the shaft axis. Even the locking mechanism (e.g. taper and 

setscrew) of bearing would affect the balance.  

In effect, the existence of heavy spot in rotors leads to shaft bending and cyclical forces 

on bearings. Both centrifugal and oscillatory forces affect the bearing life. The former would 

be the cause of fatigue. The magnitude of centrifugal force can be obtained as 

Fc = m r ω2                         Eq. 3-1 

where m represents mass, ω represents the angular speed and r is the radius from the 

center of rotation. It is important to note that centrifugal forces appear on stationary parts 

of the system. The vibration measurements for a point on the stationary parts show the sum 

of all oscillatory forces transmitted to that point. 

There are various types of unbalance based upon the relation between the center of 

gravity (CG) and the heavy spot:  
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 Static unbalance happens when the CG and the heavy spot are in the same plane and 

the principal mass axis is parallel to the shaft axis. 

 Quasi-Static Unbalance happens in systems such as motor-pulley where the shaft 

axis and the principal mass axis do not intersect on the CG.  

 Couple unbalance occurs due to existence of two equal heavy spots which are 180 

degrees apart (Figure 3-4). In this case, the shaft axis intersects the principal mass at 

the CG. Couple unbalance imposes radial force on bearings.  

 Dynamic unbalance happens when there is no relation between the principal mass 

axis and the shaft axis. Dynamic unbalance is the combination of static and couple 

unbalance, and therefore, it is the most common type of unbalance.    

 

 

Figure 3-4 Couple Unbalance 

 

Balancing is a well-known operation in the category of filed service and repair. It is 

important to note that perfect balance cannot be achieved or even measured. Regardless of 

the above-mentioned unbalance types, two weights in two separate planes would correct the 

unbalance faults. In essence, while the objective is to reduce vibration, the balancing treats 

the cause rather than the symptom. Balancing may involve the followings: correction of mass 

distribution, creating centrifugal force, changing orientation of parts and adding/removing 

mass from non-rotating part [110]. These actions would provide mass symmetry, change the 

center of gravity, and affect bending moments. In practice, single-plane balancing contribute 

to about 60-70 of all balancing. The major assumption for single-plane balancing is the 

absence of couple unbalance.  

The cyclical forces on bearing measured through vibration analysis are used for 

balancing. Since the sensors are normally placed on the stationary parts, only oscillatory 
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forces can be measured. Thus, there is no guarantee that the unbalance situation becomes 

better for the rotating parts. More importantly, balancing cannot treat other system faults 

that appear at the frequency of the shaft speed. In particular, in the case of couple unbalance, 

balancing would diminish the effects of unbalance on bearings but impose more bending 

load on the shaft. In general, the vibration induced by unbalance is affected by several factors 

including: mass, shaft speed, and stiffness of the supports. In essence, stiffer supports result 

in more force on bearings. It seems, however, further investigations are needed in order to 

elaborately diagnose unbalance faults in rotary systems.  

In this research, several types of unbalance were investigated to provide a platform for 

the proposed diagnosis method and also to illustrate the possibility of non-monotonic 

degradation signals due to imperfect balancing.  

3.1.1 Experimental set-up and procedure 

A multi-purpose test rig was designed and developed to simulate the drive train 

components of wind turbines. Figure 3-5 shows the test rig. A WindMax 2 kW wind turbine generator was used in this setup. The test rig’s motor provided a rotational speed in the 
range of 10- 1760 revolutions per minute (RPM). The control drive along with a LabVIEW-

based program allowed the motor to provide variable speed according to a pre-defined 

speed pattern. Other main components of the test rig include a single phase planetary 

gearbox, support bearings, and two test bearings of different size. 

The test bearing used was a SKF self-aligning ball bearing type 1205 ETN9 (Figure 3-6). 

The characteristics of the test bearing are as follows: internal (bore) diameter 25 mm, 

external diameter 52 mm, 26 rollers, and diameter of roller 7.4 mm. To make a faulty bearing, 

a groove with the width of 0.5 mm and the maximum height of 1.41 mm was made by using 

electrical discharge machine on the outer race of a bearing (Figure 3-6). Prior to the main 

tests, two bearings were run for 20 hours at the speed of 1700 RPM i.e. over 2 million cycles. These bearings will be called “used bearings” in the relevant analysis. It is important to note 

that all the bearings were used in dry condition. One reason for this was to ensure that the 

used bearings will not remain as good as new bearings after 2 million cycles. 
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Figure 3-5 Test Rig 

 

 

Figure 3-6 SKF 1205 ETN9 with a seeded fault 

 

To impose the unbalance force, two uniform disks with the diameter of 6 inches and the 

thickness of 1 inch were used. To be able to attach the disks to the shaft and also change the 

angle of the disks, a shaft collar with a thickness of 0.5 inch was welded to each disk (Figure 

3-7). An off-center hole with the diameter of 1.375 inch was then made for each disk as 
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shown in Figure 3-8. The mass of the disk with and without the hole were approximately 8 

pounds and 7.6 pounds respectively. The new center of gravity moved off-center about 0.078 

inches. The disks could be placed between the test bearings as shown in Figure 3-7. 

Consequently, several different sets of experiments could be performed by changing the 

number and orientation of the disks. In this study, the following loading configurations were 

used: no disk, one disk, two disks with an angle of zero, two disks with an angle of 120, and 

two disks with an angle of 180 namely couple unbalance. The magnitudes of the balancing 

masses for each configuration were found graphically.  

 

      

Figure 3-7 Sensor placement and the unbalance disk 

 

 

Figure 3-8 Disk with off-center hole (units in inches) 

 

A 2-channel PCI-2 based AE system was utilized for data acquisition. The PAC R15I-AST 

acoustic sensor was used. This sensor has an operating frequency range of 80-200 kHz. The 

sensor housing contains a filter and an integral preamplifier of 40 dB. With an improved 18 

bit analogue to digital conversion scheme, PCI-2 board provides a sampling rate of up to 40 
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MHz and a dynamic range of more than 85 dB. This data acquisition system is able to record 

up to 65535 counts per hit. AE signals were sampled at a high rate of 5 MHz. The upper and 

lower limit of filter was set to 10 KHz and 2 MHz respectively. The sensors were placed on 

the bearing housing as shown in Figure 3-7. Due to the interfaces that exist between the 

source and the side sensor, the sensor that was placed on the top of the housing provided 

more useful data. In Figures 3-9 the left graph shows the energy collected from the top sensor 

and the graph on the right shows the energy collected from the side sensor. As shown in this 

figure, data from the side sensor is not really helpful. By experimenting various position of 

the seeded fault, it was realized that placing the fault exactly below the top sensor provides 

more useful AE signals.  

 

 

Figure 3-9 PAC-energy from two sensors (Left) the top sensor, (Right) the side sensor - 

Fault was under the top sensor 

 

Moreover, the movement of the bearing inside the housing was negligible. The results of 

variable speed tests indicate the sensitivity of AE count to the shaft speed as shown in Figure 

3-10 where the speed was gradually changed from 0 to 300 RPM and dropped back to 0.  

In this study, three major variables were considered: (1) bearing type, (2) shaft speed, 

and (3) unbalance. Table 1 shows different categories of the variables. As shown in the table, 

three speed levels, three bearing types, and 5 loading patterns were designed for the 

experiments. 
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Figure 3-10 Dependence of AE parameters to the shaft speed 

 

Table 3-1. Test Data Description 

 Settings Category 

Unbalance 

No Disk 1 

1 Disk 2 2 Disk w 0 ̊ 3 2 Disk w 120  ̊ 4 4 Disk w 180 ̊ 5 

Bearing 

New 1 

Used 2 

Faulty 3 

Shaft 
Speed 
(RPM) 

150  1 

300 2 

450 3 

 

 

3.1.2 Unbalance types and degradation trend 

This section provides the graphical results for different cases of unbalance experiment 

monitored by AE technique. Keeping in mind that there is no perfect balancing, the objective 

of providing these figures is to show the need for more appropriate diagnostic techniques 

that could distinguish between various types of unbalance. Twelve bearings were used in 

these experiments. It is important to mention that the results unbalance experiments for 

some bearings are not similar to what presented in the following figures. The reasons for this 

dissimilarity include the moving structure of the test rig due to unbalance load and also using 

magnet mounting rather than stud mounting in the vibration monitoring. However, the 
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results for the unbalance tests prove the difference among various unbalance types for all 

the bearings tested. In addition, degradation of bearing in low speeds deserves more 

attention as sometimes unexpected degradation measures were collected in lower speeds. 

Figure 3-11 shows the difference among the unbalance types for the shaft speed of 300 RPM 

(there are four types of unbalance - categories 2-5 in Table 3-1). 

 

 

Figure 3-11 AE signals including absolute energy in Joules (left) and amplitude in dB (right) 

for various unbalance types with same speed (300 RPM) 

 

Fogure 3-12 illustrates the effect of the shaft speed on the amplitude of AE signals in the 

case of couple unbalance. In this respect, the fluctuation of the AE amplitude is a subject that 

deserves more attention. As expected, the amplitude is higher for the shaft speed of 450 RPM. 

However, unbalance at lower speed (e.g. 150 RPM) may exhibit surprising results that 

mainly refer to the nature of REBs (i.e. the interactions beween the elements of bearings). 

Figure 3-13 shows the unexpected AE signals for two unbalance cases at 150 and 300 RPM. 

Finally, the cumulative plot for the energy of all the different types of unbalance and various 

shaft speeds are depicted in Figure 3-14. This plot clearly shows the change in trends of 

degradation when the load and shaft speed are changing.  
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Figure 3-12 Amplitude (in dB) of the AE signal for couple unbalance at two speeds 

 

 

 

Figure 3-13 Surprising behavior of bearings in lower speed (Amplitude in dB) 
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Figure 3-14 Cumulative plot for all different types of unbalance and various speeds 
(150, 300, and 450 RPM); the unit of energy is 10 μv-sec/count 

 

3.1.3 Count data modeling and categorical data analysis 

This section focuses on applying regression methods to model AE count data. In the 

literature, linear regression models have been primarily used to correlate the AE signatures 

and the physical features of interest. Traditional regression (non-Bayesian) methods have 

been widely used to model count data in both natural and social sciences. Considering the 

proven usefulness of AE counts for various AE applications, it seems an appropriate 

modeling of this parameter will lead to fruitful AE-based diagnosis.  

In effect, the response variable in such models is a nonnegative integer. The most 

common regression-based count data model is Poisson generalized linear models (GLM) 

which is an extension of ordinary least squares regression and agrees with distributions 

from the exponential family. The Poisson GLM has the form   

y ~ Poisson(λ) 

The log link is specified by   log 𝜆 = 𝛽0  + ∑ 𝛽𝑖𝑥𝑖𝑖                    Eq. 3-2 

The logistic model where p is the probability of success is given by 
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y ~ Binomial (p,n) 

The logit link is given by logit  𝑝 = log 𝑝1−𝑝 = 𝛽0  +  ∑ 𝛽𝑖𝑥𝑖𝑖                   Eq. 3-3 

The major drawback of Poisson regression is the restrictive assumption of equality 

between the variance and the mean i.e. equidispersion [111-113]. On the other hand, 

overdispersion occurs when the variance is greater than the mean. The overdispersion can 

be handled through negative binomial GLM. Generalized linear mixed models (GLMM) add 

an error term to GLM which is not part of our discussion.  

Categorical data analysis based on GLM was performed for on AE data to provide a 

meaningful interpretation of the test variables’ effect on AE features. The data set for the 

categorical data analysis consists of data from six bearings: one faulty bearing, two used 

bearings and three new bearings. The cumulative energy (CE) was selected as the response 

variable. The objective of this categorical analysis is to reveal the effects of explanatory 

variables (i.e. bearing, speed and unbalance) on the response variable. Due to the time limit, 

it was not possible to perform all the loading patterns for the speed level of 150 and 450 

RPM. Although, this can be a drawback for the categorical analysis, the results are 

satisfactory.  

The GENMOD procedure in SAS was used to conduct the statistical tests. This procedure 

fits a GLM to the data by maximum likelihood estimation. Through an iterative fitting 

process, the parameters of the model are numerically estimated in this procedure. Based on 

the asymptotic normality of maximum likelihood estimators, standard errors and p-values 

of the estimated parameters are computed. The parameter with the smallest p-value will be 

the most significant parameter in that category. The GENMOD procedure provides a number 

of probability distributions and link functions such as log-link function.  

The categorical data analysis (CDA) shows that speed has the most significant effect 

among the explanatory variables. The bearing type has the least significant effect with the p-

value of 0.6295 (Table 3-2). Figure 3-10 supports the SAS results that speed would positively 

affect the number of count and the energy of the signal. 
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Next, the interaction between explanatory variables (speed, unbalance and bearing) is 

added to the model. This 3-way interaction is significant (p-value = 0.1041). This model 

shows that speed and unbalance have significant effects on the CE level (Table 3-3).  

 

Table 3-2 Categorical data analysis 

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept 0.1278 0.3054 0.6757 

bearing -0.0475 0.0985 0.6295 

speed 0.0011 0.0007 0.1254 

unbalance 0.0336 0.0493 0.4962 

 

 

Table 3-3. Categorical data analysis with 3-way interaction 

Parameter Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept -0.6358 0.5584 0.2549 

bearing 0.1680 0.1617 0.2987 

speed 0.0022 0.0010 0.0229 

unbalance 0.1717 0.0971 0.0769 

Interaction -0.0002 0.0002 0.1041 

 

 

A new model was built based on the interactions between every two explanatory 

variables. The most significant interaction is the bearing-unbalance. In this case, unbalance 

type is the most significant variable. The effect of categories of each variable on the AE 

generation was then investigated. One category was selected as the baseline and the 

significance of the other categories were analyzed. In the case of shaft speed, 450 RPM was 

selected as the baseline. As expected, the results indicate that this speed level is more 

significant than the other two levels (i.e. 150 and 300 RPM). The bearing type 3 (i.e. faulty 

bearing) was the baseline to analyze bearing types. As shown in the Table 3-4, type 1 (new 

bearing) and 2 (used bearing) are not significant compared to the faulty bearing.  

For the unbalance, type 5 was the baseline. As shown in the Table 3-5, type 1 and 2 are 

not significant at all compared to the couple unbalance i.e. type 5. Interestingly, the SAS 



 

 

49 

 

output results indicate that couple unbalance is the most significant type of unbalance in 

comparison with type 3 and 4. This result is similar to the graphical balancing calculation 

that shows couple unbalance needs the highest amount of balancing mass. Since it was 

realized that shaft speed has the most significant effect on CE, the next set of statistical tests 

were conducted with the speed level of 300 RPM. Having more data was the reason for 

selecting this speed level. The results of this data analysis indicated that unbalance is more 

significant in the absence of speed effect. Similar to the case with various speeds, adding the 

interactions of these variables lead to the results that all the inputs are significant. 

  

Table 3-4 CDA - Bearing 3 is used as the baseline 

Parameter 

T
y

p
e

 

Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept  0.1088 0.3034 0.7199 

bearing 1 0.0101 0.199 0.9593 

bearing 2 -0.2117 0.2195 0.3347 

speed  0.0011 0.0007 0.1256 

unbalance  0.0338 0.0493 0.4928 

 
 

Table 3-5 CDA – Unbalance type 5 is the baseline 
 

 

 

 

 

 

 

 

 

In practice, depending on the preset reference threshold value, there may be a high 

frequency of zero counts in the AE signals, which indicates excess zeroes. In this case, a 

simple Poisson regression would not satisfactorily fit the data. Zero-inflated Poisson (ZIP) 

Parameter 

T
y

p
e

 

Estimate 
Standard 

Error 
Pr > Chi Sq. 

intercept  0.2736 0.4105 0.505 

bearing  -0.0421 0.0986 0.6696 

speed  0.0009 0.0009 0.3432 

unbalance 1 0.0808 0.214 0.7058 

unbalance 2 -0.2115 0.2814 0.4521 

unbalance 3 -0.4037 0.2917 0.1664 

unbalance 4 0.3487 0.251 0.1648 
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model, introduced by Lambert [112], fittingly handles overdispersion and excess zeroes. 

Principally, ZIP model considers the data set as a mixture of a process that generates only 

zeroes and a process that generates counts from a Poisson or a negative binomial model. In 

other words, ZIP models calculate the probability (p) of having observations of 0. Therefore, 

1-p would be the probability of having non-negative integers. Therefore, for a vector of 

responses 𝒀 = (𝑌1, … , 𝑌𝑁)𝑇, the count response can be written as  

 𝑌𝑖~0            with probability 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑁        

   𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)   with probability 1 − 𝑝𝑖 ; and 𝜆𝑖 ≥ 1 Thus,       𝑌𝑖 = 0   with probability 𝑝𝑖 + (1 − 𝑝𝑖)𝑒−𝜆𝑖   Eq. 3-4 𝑌𝑖 = 𝑘   with probability (1 − 𝑝𝑖)𝑒−𝜆𝑖(𝜆𝑖)𝑘/𝑘!   Eq. 3-5 

 Consider the following regression models for λ = [𝜆1, 𝜆2, … , 𝜆𝑛]′ and  p = [𝑝1, 𝑝2, … , 𝑝𝑛]′ : ln (λ) = 𝔹β,        𝑙𝑜𝑔𝑖𝑡(p) = ln ( p1−p) = 𝔾γ  Eq. 3-6 where 𝔹 and 𝔾 are covariate matrices (design matrices), β and 𝛾 are regression coefficients. Accordingly, the log-likelihood function is 

𝐿(β, γ|y) = ∑ ln (𝑒𝔾𝑖γ + exp (−(𝑒𝔹𝑖𝛽))𝑛
𝑦𝑖=0 − ∑ ln(1 + 𝑒𝔾𝑖γ)𝑛

𝑖=1   
+ ∑ (𝑦𝑖𝑛𝑦𝑖>0 𝔹𝑖𝛽 − 𝑒𝔹𝑖𝛽) − ln(𝑦𝑖!)                                      Eq. 3-7 

By using ln(λ) = 𝔹β and 𝑙𝑜𝑔𝑖𝑡(p) = ln ( p1−p) = 𝔾γ we conclude   𝜆𝑖 = exp (𝔹𝑖𝛽), and 𝑝𝑖 = exp (𝔾𝑖γ)1+exp (𝔾𝑖γ)      Hence, using the delta method, the variances of 𝑝̂ and 𝜆̂ are  𝑐𝑜𝑣(𝜆̂𝑖, 𝑝̂𝑖) = [[𝜕𝜆𝑖𝜕𝛽 ]′[𝜕𝑝𝑖𝜕𝛾 ]′]𝑐𝑜𝑣(γ̂, 𝛽̂)[[𝜕𝜆𝑖𝜕𝛽 ]’ [𝜕𝑝𝑖𝜕𝛾 ]′]′ 
𝜎̂0(𝑝̂𝑖) = √𝑣𝑎𝑟(𝑝̂𝑖),  𝜎̂0(𝜆̂𝑖) = √𝑣𝑎𝑟(𝜆̂𝑖) 
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The independent variables in this study are the shaft speed and unbalance. The amount 

of mass required for balancing was used as the unbalance values in the ZIP model. The 

graphical balancing techniques were utilized to calculate the amount of the balancing mass. 

The procedure of balancing considers both the balance of forces and couples. It is to be noted 

that couple unbalance (type 5) needs the highest amount of mass for balancing. 

The COUNTREG procedure in SAS was used to develop the ZIP models. This procedure 

performs nonlinear optimization. Two iterative minimization method were applied; (1) the 

quasi-Newton method and (2) the Newton-Raphson method. The ZIP models provide the 

probability of obtaining zeroes (p) and the parameter for the Poisson model (λ). The 

probability of obtaining zero for the faulty bearing is almost zero for all the tests. This implies 

the existence of strong burst signals in all the AE hits. To provide a fair comparison, Figure 

3-15 shows the λ for different unbalance types at the shaft speed of 300 RPM.  

 

 

Figure 3-15. Lambda from the ZIP model for different unbalance type at 300 RPM 

 

In this graph, bearing 9 represents the faulty bearing; bearing 7 and 8 represent the used 

bearings. It is clear that the highest values of λ belong to either used or the faulty bearings. It 

implies that these bearing generate stronger burst signals in comparison with all the new 

bearings used in this study. It is interesting to note that the highest λ (= 429) was obtained 

for the couple unbalance of the faulty bearing. 
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Control charts can be used to detect anomalies in the trend of the above-mentioned 

parameters (i.e. p and λ). In essence, control charts can be a supportive tool for fault 

detection and diagnosis particularly when an accurate process model does not exist [114]. 

For instance, Leger and his coworkers [115] successfully linked Cumulative Sum (CUSUM) 

control charts and radial basis function neural network as a fault detection and diagnosis 

strategy. The CUSUM control chart is responsible for fault detection and generation of the 

fault signature pattern, which in this case is the current process means. The neural network 

performs the pattern recognition.  

The statistical changes (i.e. variability) fall into two categories: (1) natural variations 

which deals with regular and inherent variations, (2) unnatural variations [116]. The 

application of control charts in fault detection is based on the assumption that charts display 

the special causes of unnatural variations through a number of detectable patterns. General 

format of control charts consist of a centerline, which represents the expected value of the 

plotted data, the upper control limit and the lower control limit indicating the limits of 

variation. A process is in statistical control if the plotted statistic lay within the control limits. 

Control limits are generally set with respect to the standard deviations of the plotted 

statistic. The collected data is usually formed in time-ordered subgroups. Then, the values of 

interest need to be extracted from each subgroup. The minimum of 25 subgroups are 

recommended to initiate univariate control charts [116]. It is to be noted that data that 

comes from non-homogenous processes is a drawback for successful implementation of 

control charts. Traditional Shewhart charts can be divided into variables charts and attribute 

charts. The former deal with continuous data and the latter is associated with discrete data. 

CUSUM, first introduced in 1954, and moving average charts are special kinds of variables 

charts. In case of discrete data, c and u charts are suitable for Poisson-based data.  The most 

common chart for data with binomial distributions are the np and p charts.  

In this research, CUSUM chart was applied to diagnose the anomalous changes in the 

parameters of the ZIP model [117-119]. This chart detects the deviation of the process mean 

through cumulative sums of the shift between sample averages from a target value. CUSUM 

charts are sensitive to small and moderate changes in the process mean. Such changes, e.g. 

one-sigma shift in the mean, are hardly detectable by Shewhart-charts. The run chart of 
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CUSUM displays the successive differences between the sample average and the target i.e. 

process mean. Recent schemes of CUSUM takes the advantage of likelihood ratio that comes 

from the probability distribution of sample statistics. In addition, multivariate CUSUM (MCUSUM), and Hotelling’s T2 are the most useful types of multivariate control charts 

because of sensitivity to small and moderates variations. Moreover, nonparametric control 

charts have been recently developed to provide distribution-free control charts. 

Nonparametric control charts works better than their parametric counterparts in case of 

heavy-tailed distributions or where the true distribution is quite different from normality 

[120-122]. Nonparametric univariate control charts include Shewhart-type, and CUSUM-

type control charts using statistical schemes such as ranks, signed ranks, and hodges-lehman 

statistics.  

The two-sided tabular CUSUM for n samples chart is defined by  

𝑆±(𝑛) { 0,                                                              𝑖𝑓 𝑛 = 0max {0, 𝑆±(𝑛 − 1) ± (𝑥𝑛 − 𝜇̂0) − 𝑘𝜎̂𝑥} , 𝑖𝑓  𝑛 = 1,2, …     Eq. 3-8 

where 𝑥𝑛 = 𝜆𝑛 (or 𝑝𝑛) is the nth observation, 𝜇̂0 is the target (i.e estimate of in-control mean) and 𝜎̂𝑥 represents the known or estimated standard deviation of the sample mean. Here, S+
 (n) and S-

 (n) give the accumulation on high side and low side respectively and k is 

the threshold for accumulation which is also called allowable slack. This parameter is the 

minimum difference between the target and sample average. The V-Mask is the usual visual 

procedure used to determine an out-of-control process as shown in Figure 3-16. Thus, we 

have the decision interval as H = ℎ𝜎𝑥 = tan(𝜃) 𝑑 𝜎𝑥 as and h is called the decision parameter.  

 

 

Figure 3-16 Sample V-mask for a Two-Sided CUSUM Chart 
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The origin point of the V-Mask is the most recent plotted point (i.e. cumulative sum). The origin will be relocated by collecting new data. The V-mask arms slide backward. The process is out-of-control if one or more of the previously plotted points crosses the arms of the V-mask. If the points cross the lower arm it is possible to conclude that the process mean is increasing. Figure 3-17 show the two-sided CUSUM charts of λ and p for the case when only the new bearings were used. Here, as none of the plotted points cross the arms of the V-mask 

we conclude that the process is in control.  

 

 

Figure 3-17. (Left) CUSUM charts of λ for new bearings – (Right) CUSUM charts of p for 
new bearings 

 

Figure 3-18 show the CUSUM charts of λ and p for the case when used bearings were also taken into account. The chart for λ clearly shows that the bearings experienced certain 

deviation and they are not as good as new bearings. It is important to note that the points in 

the CUSUM charts of λ crossed the lower arm. It implies the increase in the mean of the 

energy in the used bearing comparing to the new bearing. Figure 3-19 show the CUSUM charts of λ and p for the case when all types of bearings were taken into account. These charts clearly depict the out of control condition since faulty bearing was taken into account. 

Interestingly, the points in the CUSUM charts of λ crossed the lower arm which means the 

increase in the mean of the energy due to existence of the fault in the system.  

 



 

 

55 

 

 

 

Figure 3-18. (Left) CUSUM charts of λ for new and used bearings – (Right) CUSUM charts of 

p for new and used bearings 

 

 

Figure 3-19. (Left) CUSUM charts of λ for all bearings - (Right) CUSUM charts of p for all 

bearings 
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3.2 Fatigue Crack Closure 

Self-healing material has become a favorite topic for investigation in material science 

and engineering. Self-healing is defined as the ability of a material to repair damage [123, 

124]. Self-healing can be classified into two groups: autonomous and non-autonomous. The 

latter requires some form of external intervention. For instance, certain healing processes 

require heating to activate the repair process. In essence, an effective healing process 

restores thermodynamic force by unsettling the thermodynamic equilibrium.  

Many recent studies in this area have focused on nonmetallic materials i.e. polymers, 

concretes and ceramics. Considerable success has been reported for polymers because of 

their large rates of diffusion and plasticity [123]. In ceramic materials small cracks can be 

repaired via oxidative reactions. Despite the countless practical prominence, less attention 

has been paid to self-healing alloys and composites mainly due to intrinsic features such as 

strong bonds and low diffusion rates. 

The study of natural materials and tissues has become an important aspect of self-

healing materials. In this respect, the new fields of biomimetic and bio-inspired materials 

have emerged. Biomimetics intends to study and mimic biological systems for engineering 

applications such as self-healing, self-lubricating, and self-cleaning. Most biological systems 

can implement partial or complete self-repair. The ability of self-repair in living organisms 

implies the existence of a complex hierarchical structures which is very difficult to be 

imitated in artificial self-healing materials. However, self-healing materials require 

mechanisms such as artificial vascular system or healing agent to partially heal damages 

such as voids and cracks. A healing agent is designed to fill the cavities in material through 

phase transition or chemical reaction. Thermosetting polymers such as epoxy can be used as 

healing agent. Epoxy can be stored in the matrix along with a catalyst in the form of macro-

capsules and act when the cavity is growing.  

There are several strategies to outfit the metallic engineering materials with self-healing 

properties. Figure 3-20 shows the most common strategies:  

 Encapsulation of a healing agent which can be an alloy with a low-melting point  

 Damage prevention by diffusion of the atoms and forming precipitates to halt the 

growth of crack or void  
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 Reinforcement of an alloy matrix with embedding shape-memory alloys 

 

 

Figure 3-20 Three types of self-healing in metals; (a) healing agent, (b) precipitation in 
an over-saturated alloy, (c) shape-memory alloy micro-wire [123] 

 

Fatigue crack closure (FCC) is the self-healing mechanism that was considered and 

experimented in this research. FCC, first pioneered by Elber [125], is an important 

phenomenon in evaluating the effective driving force for crack growth. Elber identified that 

plastically deformed material left in the wake of a propagating crack would result in partial 

or complete crack closure for a portion of the applied loading range [125]. It implies that the 

nature of the crack-face behind the crack tip is a major contributor to the crack-growth rate. 

The initial discovery of FCC was pursued by attempts for further elaborations using 

numerical and analytical methods such as finite element analysis and modern tomography 

methods [126]. However, there are few skeptical studies that advocate reviewing the role of 

FCC in the modeling of fatigue crack growth [127, 128].  
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FCC is not similar in different materials. It is still a challenging topic in predicting fatigue 

lives. There are several contributing factors to the phenomenon of FCC including: loading 

pattern [129], micro-structure of material, environment, geometry,  crack  length [130] and 

so on [129, 131]. For instance, Newman and Elber [132] realized that because of decrease in 

strain amplitude at the crack tip, shafts would show signs of lower crack growth rate in salt 

water. Furthermore, Liu and Wu [131] discovered different fatigue closure behavior in 

different geometries. They also emphasized the significant effects of stress ratio on FCC. In 

practice, these contributors would harness the existence, intensity and the dominant 

mechanism of crack closure. The crack surfaces behind the crack tip can contact due to a 

variety of mechanisms including:  plasticity-induced crack closure (PICC), oxide-induced 

crack closure (OICC), roughness-induced crack closure, and fluid-induced crack closure 

[133]. PICC, introduced by Elber, is the dominant factor in the most FCC cases. To successfully 

investigate this mechanism, the size of plastically deformed area should be estimated. OICC 

happens when crack faces meet as a result of oxide debris or other corrosion-based reasons. 

In practice, it is possible to verify the dominant FCC mechanism by using experimental 

evidence along with analytical or numerical models. 

Precise assessment and quantification of FCC would clarify ambiguities on materials 

behavior in terms of crack propagation. In this way, in situ investigation of the crack-tip 

deformation, plastic deformation near a fatigue-crack tip, and FCC micro-mechanisms are of 

primary importance. Equally important is the techniques to calculate and validate the 

effective-stress intensity-factor range (ΔKeff) based on the below relationships 𝐹𝑢𝑙𝑙𝑦 𝑜𝑝𝑒𝑛 𝑐𝑟𝑎𝑐𝑘: 𝐾 > 𝐾𝑐𝑙          ∆𝐾𝑒𝑓𝑓 =  𝐾𝑚𝑎𝑥 − 𝐾𝑐𝑙 
The prerequisite for the determination of ΔKeff is the precise measurement of the crack 

closure load. Inconsistent results in load measurements are influenced by the measurement 

location and the data interpretation method.  

The techniques to quantify FCC can be divided into three groups: experimental, 

numerical and analytical models [134]. In essence, analytical models provide quick 

approximation. On other hand, experimental and numerical models may provide better 

results. However, they are typically time-consuming and costly. Experimental methods 
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include [135-138]: crack opening displacement (COD) gauge, strain gauge, interferometry, 

nonlinear ultrasonic, direct current potential drop, synchrotron X-ray micro-tomography, 

neutron diffraction, polychromatic X-ray micro-diffraction and acoustic emission (AE). The 

ability of AE to reliably measure the crack closure level was appreciated in several works 

[135, 139]. Chang and his coworkers [139] believe that AE signals do not depend on the 

length of crack. This would be one of the significant advantages of AE signals in measuring 

FCC. In this research, AE was used to study fatigue crack growth behavior subjected to a 

single tensile load. It is to be noted that FCC elucidates the crack growth retardation subject 

to high overload. The single tensile overload is of interest since higher stress level can cause 

the contact of crack surface behind the crack tip. In essence, cycling loading (with periodic 

overload) causes more crack closure and consequently it may reduce the rate of fatigue 

fracture. 

A set of experiments was conducted to study FCC subject to a tensile load using AE. The 

experiments intend to analyze the growth of crack for single-edge-notched samples of 

HAYNES® HR-120™ according to ASTM E647 (Figure 3-21 & 3-22). This material is a heat-

resistant alloy that provides excellent strength at elevated temperature. The length of crack 

for this test is 20 millimeters. When the crack reached the middle point of the intended crack 

length (i.e. 10 millimeters) the test should be stopped and a single tensile load (STL) needs 

to be applied. The magnitude of the STL is equal to 150% of the maximum load applied for 

crack propagation.  

 

 

Figure 3-21 Sample with wire cut perpendicular to the loading direction and the sensor 

location  
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Figure 3-22 FCC Experiment 

 

The experiments start with 2-3 mm pre-crack to provide the early stages of crack growth 

for appropriate settings. Fatigue tests were carried out in ambient laboratory air using a 

servo-hydraulic material testing systems. AE measurements were performed using AE 

equipment (Digital Signal Process (DiSP) system) manufactured by the Physical Acoustic 

Corporation. The AE signal was amplified by preamplifiers (40 dB) and passed through the 

band-pass filter from 20 kHz to 2 MHz. The threshold set as 40 dB so the signals exceeding 

this level were recorded and used for further analysis. Table 3-6 provides the duration of the 

tensile loads and the number of cycles to reach the pre-determined length of crack (i.e. 20 

millimeters)  

 

Table 3-6 Details of FCC experiments 

 

 

Figure 3-23 shows the crack length versus cycle for all the samples. Sample 1 is clearly 

different from other samples that experienced STL and consequently FCC. Figure 3-24 shows 
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the rate of crack growth versus the effective stress intensity factor range. The period of 

retardation is obvious in this graph.  

  

 

Figure 3-23 Crack length vs. Cycle 

 
 

 

Figure 3-24 Effective fatigue crack growth curve (∆Keff with unit of stress x length0.5) 

 

Figure 3-25 provides the AE features for a sample that experienced STL. The red and 

green points in these plots are related to the start and the end of STL respectively. The period 
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of research works on fatigue life analysis are based on assumptions that exclude FCC from 

consideration. In essence, FCC is still a topic for basic research and no significant and 

profitable application has been identified for this phenomenon due to two reasons: (1) 

complexity of numerical crack growth calculations, (2) understanding exact micro-

mechanism of FCC is still a challenging research topic mainly due to experimental difficulties. 

 

 

Figure 3-25 AE Signal for the FCC experiment (the time unit is second) 

 

This chapter was dedicated to prove the existence of non-monotonic degradation due to 

imperfect maintenance and self-healing. The next step would be the analysis of non-

monotonic degradation measures for the use in prognostic models. Chapter four presents 

various graphical and analytical trend analysis methods for analyzing degradation data.   
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4  TREND ANALYSIS  

4.1 Background 

As mentioned previously, the focus of this research is on empirical degradation-based 

prognostic which takes into account the measured or inferred conditions of a specific unit 

under study. This individual-based life estimation requires a population of the degradation 

paths for a specific fault mode. Success in accurate RUL estimation is primarily a matter of 

appropriate prognostic parameter selection. In this way, combining several degradation 

measures is a common practice in prognostics and it has the potential benefits of developing 

vigorous parameters. Coble and Hines introduced three parameter features to 

characterize suitable prognostic parameters [77, 78] : monotonicity, prognosability, and 

trendability. These metrics are useful for comparing the parameters in individual-
based prognosis models. The optimal parameter can be selected through any optimization 

technique, such as Genetic Algorithms. According to Coble [78], the definitions and the 

relevant equations of the above-mentioned parameters are as follows: 

1. "Monotonicity: Underlying positive or negative trend of the parameter. It is given by 

the average difference of the fraction of positive and negative derivatives for each 

path." 

Monotonocity = (|# pos ddxn−1 − # neg ddxn−1 |)     Eq. 4-1 

2. "Prognosability: A measure of the variance in the critical failure value of a 

population of systems." Prognosability = exp ( std(failure values)mean(|failure values−starting values|))    Eq. 4-2   

3. "Trendability: Indicates the degree to which the parameters of a population of 

systems have the same underlying shape and can be described by the same functional 

form." Trendability = min(|Corr Coefij|)     Eq. 4-3  
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The focus of this research is on monotonicity which deals with subjacent positive or 

negative trend of parameters based on the assumption that systems do not experience any 

form of self-healing or human intervention (i.e. maintenance). In essence, this research deals with repairable systems in which self-healing or human interventions are desirable. A 

system with prognostic capabilities can lead to improved and more efficient maintenance. Thus, one can expect non-monotonic prognostic parameter upon post-prognostic maintenance and/or self-healing.  
Degradation data can be considered as data series with a certain trend plus stochastic 

variations (ε(t)).  D(t) = f(t) +  ε(t)     Eq. 4-4 

The stochastic variation (i.e. noise) is an inherent feature of degradation data. There are 

numerous methods for noise reduction and smoothing to minimize the stochastic variations. 

However, this study intends to analyze the main trend of the data regardless of the existence 

of the stochastic variation. In the following sections, the GPM will be used for the analysis of 

degradation data. It is important to remember that the GPM is based upon several significant 

assumptions:  

 The model needs to assume a functional form of the degradation paths. The 

function can be derived from physical models. 

 Degradation data are available for a population of identical components.  

 A critical failure threshold can be assumed for the population of identical 

components • Degradation measures collected under similar conditions.   • Finally, the degradation paths are monotonic. 

For degradation data, trend can be defined as the pattern of the time-ordered 

degradation measures. Trend analysis is a prevalent tool in different fields of science (e.g. 

hydrology and environmental science) for analyzing time series of random variables to 

detect a significant change over time. A monotonic trend suggests unidirectional and 

consistent change in the mean level of degradation measures. It must be emphasized that the 

assumption of a monotonic trend limits the number of available functional forms (usually to 
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a linear, exponential, or logarithmic function). Moreover, using polynomial functions does 

not retain the monotony property. Table 4-1 shows the typical patterns and associated 

slopes in degradation signals [140]. 

 

Table 4-1 Typical patterns in degradation signals 

 
Concave 

Upward 

Concave 

Downward 
Linear  

Monotonic 

Increase 

[∂x] = + [∂ ∂x] = + 

[∂x] = + [∂ ∂x] = − 

[∂x] = + [∂ ∂x] = 0 

Monotonic 

Decrease 

[∂x] = − [∂ ∂x] = + 

[∂x] = − [∂ ∂x] = − 

[∂x] = − [∂ ∂x] = 0 

 

 

A fruitful trend analysis requires proper sampling frequency and continuous recording 

of degradation measures. It also requires preprocessing of data in terms of selection and 

calculation of the quantities that describe the time-series for any specific task. Trend 

detection is a subset of trend analysis and it refers to identifying significant decreases or 

increases in the magnitude of a reference variable in time-series data [140]. Efficient trend 

detection is critical in early discovery of an impending failure. Furthermore, in the case of 

self-healing or human interventions, trend changes can be considered as the sign of 

improvement in the degradation rate. Melek and his colleagues [140] investigated various 

architectures for trend detection. They compared the performance of these techniques on 

physiological data. The authors focused on fuzzy approaches mainly because of the aptitude 

to identify underlying trends in the presence of noise and high fluctuation. 

Trend analysis has been investigated for aging properties, such as failure rate and mean 

residual life (MRL) [141, 142]. Lim and Park [141] developed certain tests to distinguish 

increasing or decreasing MRL form constant MRL. The authors considered the situations 

where monotonicity is not an appropriate assumption in modeling aging properties.  
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Researchers also have worked on the trend (i.e. pattern) of failure process in repairable 

systems [143-147]. This type of trend analysis is mainly helpful for selecting the most 

suitable model. For example, the existence of trend in the failure times implies that the time 

between failures are not identically distributed, and therefore, renewal process models 

would not be appropriate for this data. Obviously, the primary focus is on the trend exhibited 

by the time between failures data to discover whether alterations in the pattern of failures 

are statistically significant. It is pertinent to mention that censored data is a major concern 

in trend analysis of failure data.  

Both graphical and analytical methods have been used for the trend analysis of failure 

data. The analytical methods are mainly statistical hypothesis tests such as the Mann test, 

Laplace test, Anderson-Darling test, and the military handbook test. Normally, in these tests, 

the null hypothesis is formulated as no trend in the data, namely a non-homogenous Poisson 

process (NHPP) and the goal is to detect the increasing or decreasing trend in recurrent 

failures.  

It is of note that increasing trend would be an indication of degradation over time and it 

happens when the time between failures tends to get shorter. Decreasing trend would be the 

indication of improvement over time where the time between failures tend to increase. 

Figure 4-1 shows the decreasing and increasing trends in failure times.  

 

Figure 4-1 Decreasing and increasing trends in failure times  

 

In this regard, a non-monotonic trend denotes the change of trends with time or the 

existence of cyclic failure times. For instance, the well-known bath tub curve can be 

considered as one form of non-monotonic trends in which time between failures tend to 

increase in the beginning, and after a period of stability, time between failures become 
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shorter i.e. indicate deterioration [145]. It is to be mentioned that the trend analysis of the 

failure times is a decent candidate for measuring prognosability.  

 The remainder of this chapter is dedicated to introduce several graphical and analytical 

trend analysis methods for analyzing degradation data. These methods have been utilized 

for time-series data in various fields of science. Methods to analyze and handle non-

monotonic degradation are practically nonexistent in the literature. 

 

4.2 Statistical trend analysis 

Statistical trend analysis refers to a set of parametric and nonparametric statistical tests 

to detect the existence of a trend in time series. Hypothesis tests in statistical trend analysis usually contemplate the null hypothesis as “no deterministic trend”. Each test has a statistical 

quantity to perceive the existence of a deterministic trend. The significance level indicates 

the probability of wrongly rejecting the null. The power of a test refers to the probability of 

rejecting the null when it is false. It is important to note that failure to reject the alternative 

means that there is no enough evidence to conclude the existence of a trend in data.  

It is to be noted that a system under stress might experience step trend (e.g., due to 

shock) which appears as an abrupt shift in the degradation measures at a specific point in 

time. There are a number of parametric and nonparametric tests to detect and evaluate step 

changes (e.g. Kruskal-Wallis test, sign test, paired t-test).  

The parametric tests (e.g. t-test) are mainly based upon the linear regression coefficients 

for normally distributed and homosedastic random variables [148]. Thus, the parametric 

tests are limited to linear trends. For this reason, parametric tests are not considered in this 

research. On the other hand, nonparametric tests are not highly affected by outliers and large 

data gaps. Mann-Kendal (MK) is the most used non-parametric trend test which is based on 

the relative ranking of data (i.e. a rank-based test). The MK test computes difference between 

the sequential data(xi − xj). Then, it assigns an integer values of 1, 0, or -1 to the computed 

differences: 

sign(xi − xj) {−1   for (xi − xj) < 00   for (xi − xj) = 01   for (xi − xj) > 0  
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If n represents the length of the data series, the test statistic, S, is computed using the sum of 

the integers as: S =  ∑ ∑ sign(xi − xj)i−1j=1ni=2                             Eq. 4-5 

Thus the MK test is related to the sample size, trend magnitude and coefficient of variation. 

Generally speaking, statistical trend analysis methods can be used only as a preliminary 

trend check, and therefore, it is not possible to justify further discussion on these methods. 

 

4.3 Graphical methods 

Graphical tests do not usually need complicated calculations. Thus, they are simple to 

perform and are powerful in detecting the strong trends. On the other hand, they might not 

be very useful for data with slight trends, and therefore they need to be combined with 

analytical tests. In addition, graphical tests are based upon subjective interpretation which 

is prone to error. There are a number of graphical methods to be applied in trend analysis. 

Using control charts was even mentioned in the literature as a graphical test. This section 

covers two graphical tools that were found suitable for degradation data: 1. cumulative plots, 

2. temporal shape analysis.   

Also, two sets of data were applied in this chapter. The first set was made through 

simulation of bearing degradation. The fault signal of bearings were modeled through the 

combinations of the following parts [149, 150]: repetitious impulses, load, bearing induced 

vibration, and machinery induced vibration (see section 5.3.3 for detailed explanations). The 

simulation used the ball pass frequency outer race as the frequency component of a bearing 

fault. This frequency is a linear function of the shaft speed. Figure 4-2 shows six different 

cases of degradation measures simulated for rolling element bearings with different shaft 

speeds. The last three cases provide the typical non-monotonic degradations after reducing 

the shaft speed. As shown in Figure 4-2, the simulation results are similar to the experiment 

results produced by Gebraeel & Pan [109] (see Figure 3-3).  

The parameter features explained in section 4.1 (i.e. monotonicity, prognosability, and 

trendability) are calculated for the above cases using the codes provided in [78]. Not 
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surprisingly, the monotonicity for the first three are close to one. Table 4-2 provides the 

metrics for the non-monotonic case (i.e. case 4-6) for a population of 50 samples.  

 

   

Figure 4-2 Different cases of degradation measures simulated for REBs 

 

Table 4-2 The metrics for the non-monotonic degradations (case 4-6) 

  

Case 4 - Speed change 
from 35 to 20 

Case 5 - Speed change 
from 35 to 30 

Case 6 - Speed change 
from 35 to 33 

Monotonicity  0.333 0.75 0.85 

Prognosability 0.856 0.855 0.951 

Trendability 0.916 0.9 0.942 

 

 

For certain systems, damage is considered to be cumulative [78]. Thus, any change in 

slope of an increasing degradation can be a sign of improvement in durability. Figure 4-3 

shows the cumulative plots of the simulated degradation data for 50 bearings with constant 

shaft speeds i.e. a monotonic degradation trend.  Unlike the original plot of RMS, the 
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cumulative plot does not consider the slight trends or fluctuations in the data set. Figure 4-4 

clarifies the change in trends where the shaft speed changes.  

 

 

 

Figure 4-3 Cumulative plot for monotonic degradations 

 

 

Figure 4-4 Cumulative plot for non-monotonic degradations 

 

The cumulative plots clearly detect the strong trend in the degradation data due to the 

change in shaft speeds. Cumulative plots were also produced for the AE signal features. It is 

important to note that only energy-related features showed the change in trend during the 

retardation period. 
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The second graphical method known as temporal shape analysis is a qualitative analysis 

proposed by Konstantinov and Yoshida [151]. This analysis starts by approximating the 

variable v by a polynomial with the order of m. Then, the values of the polynomial are 

evaluated at v. At the next step, the first and the second derivatives of the polynomial are 

calculated.  

The sign of difference between every data points and the preceding in the first and the 

second derivate should be extracted. The combination of the extracted signs forms the 

qualitative shape of the variable. Figure 4-5 displays the qualitative shape for the six cases 

discussed in Figure 4-2. It is obvious that the first derivatives (i.e. the first line of the 

qualitative shape) shows the change in trend and the second derivatives provide insight 

about the shape of the variable. It is also possible to show the qualitative shape by +1 and -

1. In this way, no difference between the samples (i.e. zero value) can be taken into account. 

Figure 4-6 shows the qualitative shape using +1 and -1 for the polynomial with the order of 

four.  

 

 

Figure 4-5 Qualitative shape for the six cases discussed in Figure 4-2 
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Figure 4-6 Qualitative shapes with +1 and -1; (left) Speed shaft equals 20, (Right) Speed 

shaft changed from 35 to 20 

   

Next, the monotonicity can be calculated using the qualitative shape data and the 

functional form obtained by the temporal shape method. Table 4-3 provides the results for 

monotonicity with various polynomial order. In this table, qualitative shape refers to direct 

use of number of positive or negative derivation according equation 4-1. The values related 

to the polynomial fit depend on the order. It was realized that with order of 4 or more we 

can obtain the monotonicity of 1 for cases 5 and 6. In essence, high order polynomial take 

the noise into account and might not be reliable. 

  

Table 4-3 Monotonicy values using the temporal shape method 

 

 

Qualitative shape Polynomial Qualitative shape  Polynomial Qualitative shape Polynomial 

Order of 3 0.971 0.33 0.874 0.506 0.92 0.746

Order of 5 0.338 0.33 0.513 1 0.558 1

Order of 10 0.105 0.3733 0.171 1 0.236 1

Monotonicity 

Case 4: Speed change from 35 

to 20

Case 5: Speed change from 35 

to 30

Case 6: Speed change from 35 

to 33
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4.4 Trend analysis using Hilbert-Huang Transform  

The analysis of waveforms can be performed in the time domain or the time-frequency 

domain prior to the signal feature extraction. Time–frequency analysis has gained increasing 

attention in the field of trend analysis. These techniques analyze non-stationary signals (i.e. 

time series in trend analysis) in time and frequency domains simultaneously. Wavelet 

analysis is the most popular time–frequency analysis for detection of meaningful trends 

[140, 152] or finding the turning points [153]. In actual practice, wavelet-based method are 

more appropriate for real-time implementation because of better computational efficiency. 

This section investigates the use of Hilbert-Huang Transform (HHT) which was introduced 

in Chapter 3.  

The Hilbert Transform (HT) within HHT delivers the instantaneous amplitude and 

frequency and information for each signal component i.e. IMF. In essence, the amplitude of 

the signal waveform can be used as a useful feature to display a non-monotonic trend. 

Nonetheless, amplitude in degradation signal might not be a good indicator of the incipient 

fault, particularly in the absence of certain physical quantities such as impacting. Figure 4-7 

shows a typical waveform which is a combination of small waveform collected periodically.  

 

 

Figure 4-7 Typical waveform 
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The change in the amplitude of the signal represents the change in the shaft speed. 

However, through analysis is required if there is slight trend change or when the comparison 

of several degradation signal is required. In essence, HHT can decompose the signal to 

several components and provide the instantaneous amplitude. Thus, instead of the whole 

waveform, the important components of the signal can be analyzed and the component 

associated with noise can be removed [154, 155]. Furthermore, more useful signal features 

can be utilized for the instantaneous amplitudes.  

Figure 4-8 shows the first four components of the wave shown in Figure 4-7. Figures 4-

9 and 4-10 shows the Hilbert spectrum i.e. time-frequency analysis of the signal and the 

instantaneous amplitude for each components respectively.  

 

 

Figure 4-8 Components of the waveform 
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Figure 4-9 Time-frequency analysis  

 

 

Figure 4-10 Instantaneous amplitude for each component  

 

In order to further improve this analysis, the concept of crest factor is utilized. For a 

waveform, crest factor is the ratio of the peak amplitude to the RMS value. This 

dimensionless feature is an indication of the significance of the peaks. The square of the crest 

factor is known as the peak-to-average power ratio (PAPR). Figure 4-11 illustrates the crest 

factor calculated by using the instantaneous amplitude of the first signal component for the 

three non-monotonic cases shown in Figure 4-2. It is evident that the crest factors in the 

above figure is not helpful for both detecting the trend change and the comparison of 
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up to the time of calculation was used. This can insure that the instantaneous amplitudes are 

compared against the waveform with the maximum energy. The trend changes using the 

modified crest factor is illustrated in Figure 4-12.  

 

 

Figure 4-11 Crest factor 

 

 

Figure 4-12 Modified Crest factor (Peak/max RMS) 
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In order to further improve the calculation of the crest factor, the ratio of the maximum 

RMS over the RMS for each waveform was used. Accordingly, the trend changes can be 

properly displayed as shown in Figure 4-13. This form of crest factor provides better 

comparison among the presented cases for the first two signal components.   

 

 

Figure 4-13 Modified Crest factor (Peak/ (max RMS / Waveform’s RMS)) 
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4.5 Multivariate trend analysis 

For some data sets, including AE data, it might be of interests to analyze the whole 

complex multivariate data. There are many approaches to investigate multivariate data sets. 

Among those methods, Independent Component Analysis (ICA) and Principal component 

analysis (PCA) seem to be good candidates for trend analysis of multivariate degradation 

signals.   

4.5.1 Principal components analysis  

PCA is a widely used linear statistical technique for reducing the dimensionality of 

complex multivariate data. In PCA, the goal is to analyze covariance structure and reduce the 

complexity of the data by projecting onto a lower dimensional subspace while retaining the 

variability. Through the PCA, the data will be represented by the products of scores (i.e. 

mutually orthogonal data) and principal component loadings (i.e. transposed linear 

transformation matrix) plus the matrix of residuals [156]. PCA has been utilized in the 

literature to analyze the features and the waveform of AE signal [156-158]. 

In this analysis, the AE data set related to one FCC experiment was utilized. This data set 

contains over 27000 observations and 11 response variables (i.e. signal features) as follows: 

 X1: PAC-Energy  

 X2: Average frequency (over the entire AE hit = AE count / Duration) 

 X3: Initiation frequency, i.e. rise-time based frequency 

 X4: Count 

 X5: Amplitude; maximum AE signal excursion 

 X6: Absolute signal level (ASL) is the averaged amplitude of the AE signal 

 X7: Reverberation frequency (ring down frequency = (AE count - count to peak)/ 
(duration – rise-time) 

 X8: Absolute energy is the true energy measure of AE hit.  

 X9: Rise-time is the time from the start of AE hit to the time of the peak amplitude 

 X10: Root Mean Squared (RMS) 

 X11: Signal strength; similar to energy but it is calculated over the entire AE 
 

Figure 4-14 shows the typical raw data of the first variable (Energy). This figure clearly 

shows the need for smoothing the data especially due to high level of background noise. 

Smoothing algorithms extricate the data from the periodic components and retain the long 

term trends. The Savitzky–Golay smoothing filter takes care of high frequency information 
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that should be retained. This filtering method increases the signal-to-noise ratio by 

performing local polynomial regression. The Butterworth filter is utilized to remove high 

frequency noise in the signal. Figure 4-15 shows the results of applying four methods of 

smoothing. The areas shown in the red ellipses represents the period of retardation in the 

signal i.e. crack closure. Butterworth filtering was chosen for further analysis on the data.  

 

 

Figure 4-14 Typical AE raw data for the FCC experiment 

 

Using scatter plots and correlation map the highly correlated variables were identified. 

As shown in Figure 4.16, the correlation map shows the pseudocolor map of the correlation 

matrix for the data set. It is obvious that Energy (variable 1) is highly correlated with count 

(variable 4) and absolute energy (variable 11). All these variables are related to the energy 

of the signal. Also, RMS (variable 10) is correlated with ASL (variable 6).  

In essence, correlated variables increase the contribution of their related PC. 

Consequently, the highly correlated variables were eliminated for the next stages of analysis. 

Thus, data with 7 variables was used for the next phase. PCA was performed for the 
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plot and the bi-plot for all the vectors. The direction and length of the vectors in the bi-plot 

represent the contribution to the first two principal components. For example, the first PC 

on the horizontal axis has positive coefficients for all the variables except variable 3. Figure 
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4-18 provides the scree plot of the data. With the first four PCs it is possible to represent 

over 90% of the variability of the data.  

 

 

Figure 4-15 Results of applying various methods of smoothing 

 

 
Figure 4-16 Correlation maps for the data set filtered by Savitzky-Golay 
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Figure 4-17 The first two PCs  

 

 
Figure 4-18 The scree plot of the AE data with 7 variables 

 

Similar analysis was performed for the portion of the data that contain the retardation 

as shown in Figure 4.19. Interestingly, similar to the bi-plot for the whole data (see Figure 4-

17, variable 3 cause the variation on the negative portion comparing other variables (Figure 

4-20). As clearly shown in figure 4-19 all the retardation period for the signal features have 

some negative values except for variable three that goes upward. To this end, by eliminating 

variable 3, better results are expected. Furthermore, it is possible to look at the portion of 

the data that has no retardation. The first 14000 observations used for the next analysis as 

displayed in Figure 4-21. Finally, by removing variable 3 and comparing the presented bi-

plots, it is possible to say that the shift in the relationship between PCs can represent the 
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retardation period. Thus, it can be concluded that PCA can show the trends in the data 

(Figure 4-22).  

 

  

Figure 4-19 Portion of the data that show the retardation 

 

 

Figure 4-20 The first two PCs (Retardation portion) 

 

There are always two important questions regarding PCA: 1. How many principal 

components should be retained for the analysis, 2. Is there any useful information in the 

remainder of PCs (i.e. PC4, PC5, and PC6) that was not selected. For the answer of the second 

question the information complexity criteria was used  [159]. The results show that one PC 
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would be enough to cover the remainder of information that not covered in the selected PCs. 

It seems variable 6 may contain significant information. It is clear from Figure 4-22 that 

variable 6 has different direction and it should contain some information that is not appeared 

in the first three principal components. Variable 6 is the RMS which is basically different 

from other features of the signal variables.  

 

 

Figure 4-21 The first two PCs (portion of the data without retardation) 

 

 

 Figure 4-22 The first two PCs–Orange circle represents the retardation period 
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Considering the new scree plot for the modified data, we can conclude that three 

principal components are appropriate to represent that data even with the retardation 

period. Figure 4-23 shows the selected PCs. Also, it is possible to use the PCs to reconstruct 

the original samples as shown in Figure 4-24.  

In brief, it was realized that PCA can show the trends in the data providing its perfect 

performance. Preliminary analysis of the data including smoothing, filtering, elimination of 

the correlated variables were very helpful in proper implementation of PCA.  

 

 

Figure 4-23 Selected PCs 
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 Figure 4-24 Reconstruction of the original samples 

 

4.5.2 Independent Component Analysis (ICA) 

ICA is a popular signal processing method to decompose a multivariate signal into 

uncorrelated and maximally independent components [160]. This method is also helpful in 

selecting the proper variables for further analysis. This method was applied on the AE data 

for the FCC test and it was not able to appropriately handle the retardation period. Figure 25 

shows the cases when we select to have one and two independent components. Figure 26 

which displays the decomposition of the data based on ICA, we can conclude that this method 

was not able to appropriately handle the retardation period in the AE signals.     
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Figure 4-25 ICA components 

 

 

 Figure 4-26 ICA decomposition of the data 

 

 The next two sections introduce two methods to treat non-monotonic degradation 
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4.6 Average Conditional Displacement Algorithm 

This section considers the application of an algorithm known as Average Conditional 

Displacement (ACD) for automatic estimation of monotonic trends.  ACD describes a trend by piecewise linear curves. This approximation algorithm was first introduced by Vamoş 
[161]. It is to be noted that ACD is based upon the signal values interval not the time interval. 

In this algorithm, the slope of each estimated linear segment is proportional to the average 

of the time series values in the corresponding interval [161, 162].  

The advantage of ACD algorithm is twofold: 1) no need for initial assumptions such as 

functional form of the trend, 2) the development of an automatic algorithm. The accuracy of 

ACD is comparable with well-tested methods such as polynomial fitting and moving average 

particularly for the signals with stationary noise.  

The ACD works well in estimating the monotonic trend for time series data with 

arbitrary stationary noise. More importantly, ACD reveals one of the possible monotonic 

components of a non-monotonic trend. Suppose that a time series {xn}, with 1≤ n ≤ N, can be 
generated by a discrete stochastic process {Zn} and the values of the trend f(t):  

Xn = fn + Zn                                       Eq. 4-6 Considering δt as the sampling interval, fn represents the value f(t) at the moment  

tn = (n-1) δt.                   Eq. 4-7 

Instead of the unknown initial and final values (i.e f1 and fN) , the ACD algorithm uses the 

extreme values of the time series. In addition, we assume that Zn does not depend on fn. 

Furthermore, we assume that {Zn} is stationary and {Xn} is a non-stationary process. The 

probability distributions of {Zn} and {Xn} are denoted by pz(z) and px(x,n) respectively. 

Therefore, we have px(x,n) = pz(x- fn). The theoretical background of the ACD is elaborately 

explained in [161]. Here, only the numerical quantities of the ACD are presented.  

Figure 26 shows the one-step variation of the time series {xn} for the interval (ξ j, ξ j+1]. 

There are J disjoint intervals that embrace all the values of xn. Therefore, Nj is the number of 

the values of xn in the interval Ij = (ξ j, ξ j+1], for j = 1,2,…, J. An increase in N results in improved 
accuracy of the trend estimation.  



 

 

88 

 

 

Figure 4-27 The one-step variation of the time series in which the thick straight line 
represents the ACD approximation [162] 

 

However, the ratio between the noise fluctuation and the amplitudes of the trend 

variation is the major contributor to the accuracy of the ACD algorithm. In essence, when 

homogeneous intervals are used, the difference between the values of Nj should not exceed 

a unit at the most. The one-step variation of the time series can be defined as  

 δxn = xn+1 − xn            Eq. 4-8 The sample average of δxn (i.e. the average variation of {xn} within Ij) is computed as 

follows: 

ĝj =  12Nj (∑ δxnxn ϵ Ij + ∑ δxnxn+1 ϵ Ij )               Eq. 4-9 

It is to be noted that the interval Ij should contain the initial or final values. Moreover, 

the values of ĝj should have similar sign in order to be used in the numerical approximation 

of the monotonic trend. Otherwise, the monotonic trend cannot be determined. If the values 

of ĝj have different signs, repeated central moving average (RCMA) can be utilized to smooth 

the fluctuation of the time series. RCMA provides a gradual smoothing of the time series 

based upon two parameters: (1) length of the averaging window, (2) the number of 

averaging.  
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In Figure 26 the thin straight segments denote the pieces of {xn} that enter into the 

computation of the sample average i.e. ĝj. The thick continuous line denotes the ACD 

approximation of the monotonic variation of {xn} for the interval (ξ j, ξ j+1]. Thus, the points (t̃j, ξ j) and (t̃j+1, ξ j+1) demarcate the j-th straight segment which has the slope of ĝj. Hence 

 t̃j+1 =  t̃j + ξ j+1−ξ jĝj          Eq. 4-10 

Therefore, for t ϵ (t̃j , t̃j+1) the estimated monotonic trend (i.e. piecewise linear curve) 

is  f̃(t) =  ξ j + (t − t̃j)ĝj            Eq. 4-11 

Furthermore, ĝj are negative for decreasing trend. Thus the points (t̃j, ξ J−j+2) and (t̃j+1, ξ J−j+1) demarcate the j-th straight segment which has the slope of ĝJ−j+2. Hence 

 t̃j+1 =  t̃j + ξ J−j+1−ξ J−j+2ĝJ−j+2             Eq. 4-12 

 Thus, we have  f̃(t) =  ξ j + (t − t̃j)ĝJ−j+2              Eq. 4-13 

The automatic ACD algorithm requires three things [162]: 

1. Distribution of the time series values into disjoint intervals Ij. The primary purpose of 

the ACD is to specify the trend shape as accurate as possible. For this, the distribution of 

the time series values into disjoint intervals is inversely proportional to the noise 

standard deviation. It implies that small number of intervals needs to be used if the noise 

fluctuation is high.     

2. Determining the parameter that controls the speed on noise damping in the averaging 

process. This parameter is the maximum value of the semi-length of the averaging 

window. The noise fluctuation can be strongly damped by large averaging window. 

However, it can lead to distorted trend.       
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3. Determining the threshold to stop the iteration of the ACD algorithm when the noise 

damping reached an acceptable level. For this, we seek the maximum value of the ratio 

between the noise variance and the final residual variance.  

 

Figure 4-28 and Table 4-4 show the application of the ACD for treating the non-

monotonicity in the degradation signals.  

 

 

Figure 4-28 Applying ACD for degradation signals 

 

Table 4-4 Applying ACD for degradation signals 

  
Case 4 - Speed 

change from 35 to 20 
Case 5 - Speed 

change from 35 to 30 
Case 6 - Speed change 

from 35 to 33 

Monotonicity  1 1 1 

Prognosability 0.866 0.914 0.948 

Trendability 0.877 0.967 0.983 
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4.7 Trend-Based Segmentation  

Trend based segmentation methods (TBSM) are able to locate the turning points in the 

time series data. Segmentation methods are popular in financial time series data to locate a 

set of trading points [153, 163, 164]. The most common segmentation methods include 

piecewise linear representation (PLR), Fourier transform, and wavelets. This study performs 

PLR. The details of PLR along with a pseudocode is provided in [153, 163]. Figure 4-29 shows 

three stages of segmentation process which was enough to group the data set into 4 

segments in the third stage.  

 

 

Figure 4-29 Three stages of segmentation process 
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The first segment represents the degradation with high speed and the second segment 

represents the reduction in speed (i.e. change in operating condition). It is to be noted that 

the Bayesian GPM did not provide any results for a set of non-monotonic data similar to what 

is shown in Figure 4-29. Therefore, the data was segmented based on the PLR method. This 

time only the segments after the change in speed were taken into account (i.e. segment 3 & 

4) and the prognostic model worked properly. Next, Bayesian GPM was applied for a set of 

non-monotonic data similar to what is shown in Figure 4-29. The prognostic model did not 

provide any results. Hence, in the next step the data was segmented based on PLR method. 

This time only the segments after the change in speed was taken into account, and the 

prognostic model worked properly.  

In chapters 3 and 4 the existence and analysis of non-monotonic trend were discussed. 

The next chapter is dedicated to fact that we can extend the life engineering systems by 

manipulating the operating conditions such as shaft speed. In this respect, it is required to 

apply the trend analysis methods presented in the current chapter. However, Chapter 5 

presents the an example of post-prognostic decision making with application to a simple 

power generation system.  
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5   INTERACTIVE DECISION SUPPORT SYSTEM 

5.1 Introduction to Decision Making 

The procedure of decision making falls into one of the following categories: 

 Intuitive analysis of information which results in a decision that cannot be justified. 

 Programmed decision making based upon past analysis and experience.  

 Analytical approaches that consider possible alternatives and their consequences  

This chapter talks about a Decision Support System (DSS) to gain insight into the 

analytical approaches with respect to operation and maintenance decision making (OMDM) 

based on prognostic information. A Decision Support System (DSS) may be defined as a 

computerized information system to support decision-making activities. Hence, using 

condition monitoring data and degradation models, an intelligent DSS should be able to 

transfers the monitored machine conditions and prognostic information into maintenance 

schedules [165]. 

As mentioned earlier, one objective of this dissertation is extending the application of 

prognostics to OMDM. It is pertinent to mention that the knowledge about the remaining life 

would offer more operation and maintenance alternatives. The estimation of RUL, also called 

prognostic distance, gives the DM lead-time and flexibility to perform maintenance actions 

at any time until the failure [166].  

To be specific, OMDM of a typical wind-based power generating systems is considered 

in this chapter. Naturally, OMDM is a complex process due to the followings: 

 Presence of various decision alternatives and decision criteria, and therefore, the 

need for compromising.  

 Multiple objectives which usually have conflict and make the judgment of alternatives 

a complex endeavor.  

 Uncertainty associated with the outcomes and information e.g. future cost. 

Thus, one can look forward to a form of multiple criteria decision making (MCDM) 

problem to provide rational and consistent solutions for operation and maintenance 

problems. The general model of MCDM can be represented as follows:  
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Maximize [C1(x), C2(x), …, Ck(x)], x  ϵ X 

Here, X represents the set of available alternatives, x is an alternative and Ci is the ith 

evaluation criterion. Alternatives are defined as the possible courses of action. It is evident 

that one needs to develop all the possible alternatives in order to have a fruitful decision 

making. The descriptors of alternatives are called attributes which include performance 

parameters and inherent characteristics. Criteria are the rules or standards for evaluating 

the alternatives. Needless to say, the selected criteria should be clearly understood by 

decision maker (DM). A directly measurable criterion is called true criterion. When it is 

difficult to directly measure a criterion, it can be substituted by one or more surrogate 

criteria. It is to be noted that, in some situations, several MCDM methods need to be utilized 

to validate the results. In this respect, there are some methods to aggregate the results of 

various MCDM methods. 

5.1.1 Multiple attribute decision making 

Decision making problems can be divided into two classes depending on the availability 

of alternatives. The first class is known as selection problems or multiple attribute decision 

making (MADM) that focuses on selecting the best alternative among a finite set of 

predetermined alternatives by evaluation against a set of attributes. The general model of 

MADM is:   

X = [A1, A2, … , Am]; set of alternatives 

C = [C1, C2, … , Cn], set of criteria 

xmn : performance of the nth criteria on the mth alternative 

Z = [ 𝑥11 … 𝑥1𝑛𝑥21 … 𝑥2𝑛𝑥𝑚1 … 𝑥𝑚𝑛] 

The MADM model is usually represented in pay-off tables as shown below. It is clear that 

this type of decision analysis starts with alternative formulation and criteria selection. For 

instance, the decision criteria in power and energy systems fall into different categories: 

technical, economic, social, and environmental. Efficiency, safety and reliability are the most 
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used technical criteria. Economic criteria are broader and may include investment cost, 

operation and maintenance cost, expected lifetime or service life, product cost, and payback 

period. The methods of criteria selection are discussed in [167, 168].  

 

Table 5-1 Pay-off Table 

 

 

Often, in the next step, the relative importance of criteria i.e. criteria scores needs to be 

assigned. The evaluation scores may come from ordinal, interval or ratio scales. In addition, 

normalization is required when different units of evaluation measures are applied. The 

relative importance of criteria involves the application of weighting methods. In general, 

weighting methods falls into two main categories: equal weight and rank-ordered weighting. 

It is obvious that the former ignores the relative importance. The latter can be classified into 

three categories: subjective, objective and combination weighting methods [167]. Weights 

determination is followed by determination of preference orders of criteria by applying 

MADM methods. There are a number of publications that review such methods [167]. It 

should be emphasized that weighting and prioritization methods can also be used in multi-

objective optimization procedures.   

Literature survey shows that analytical hierarchy process (AHP) is by far the most 

popular selection and prioritizing method. The objective stands at the top of the hierarchy 

and criteria and sub-criteria are decomposed into levels and sub-levels of the hierarchy. 

Thus decision alternatives appear at the bottom of the hierarchy. The ratio-scaled 

importance of alternatives is calculated through pair-wise comparison of evaluation criteria. 

It is possible to mix qualitative and quantitative criteria through AHP.  
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5.1.2 Multiple objective decision making 

Multiple objective decision making (MODM) is another class of MCDM problems. In 

practice, it is not possible to predetermine the alternatives in many decision situations. 

Therefore, to specify the alternatives, decision makers (DM) attempt to concentrate on 

explicit mathematical relationships between decision variables. Hence, DM needs to 

formulate a set of objective functions to be optimized subject to a set of constraints. In other 

words, MODM deals with developing the best alternative from a large number of alternatives.  

In certain cases, it is required to develop a subset of these alternatives and select the 

best solution through MADM methods. To name a few, multiple objective linear programming (MOLP), ε-constraint method and parametric variation of weights method can 

be used to generate the sub-set of alternatives. MOLP identifies non-dominated extreme 

points where decision variables have linear relationships. 

The significant challenge in MODM is centered on defining suitable decision variables 

and the mathematical relationships between them. MODM is also known as multiple criteria 

mathematical programming (MCMP) or vector optimization problem. Objectives are defined 

to make improvements based on decision maker (DM) preferences. The thresholds or 

desired targets of objectives are called goals. One approach to deal with MODM problems is 

to deform it to a single objective problem by either combining all the objective functions or 

moving all but one objective to the constrain set [169]. In both cases, however, a single 

solution is returned. An MODM problem with m objectives is formulated as follows:  

Maximize [f1(x), f2(x), …, fm(x)] 

Subject to: 

gi(x) ≤ 0, j=1,2,…, n 

 where  

fi(x) = ith objective function,  i=1,2,…, m 

gj(x) = jth constraint function,  j=1,2,…, n 

 and x = [ xi | i=1,2,…, k ] is a k-dimensional decision variable vector in the   

 solution space X (restricted by gi(x)) 

The details with respect to the general formulation of a multi-objective constrained 

problem are presented in [169, 170]. Here we seek a vector x* that maximize the set of 
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objective functions. From a decision making standpoint, the conflicting criteria would not 

lead to an optimal solution. For this, the aim is to uncover the best compromise solution that satisfies the DM. Thus, a feasible solution that meets or exceeds DM’s goals is called satisfying 
solution. From this perspective, there can be a feasible solution (i.e. alternative) x1 that is 

relatively equivalent to x2 with respect to all criteria but it dominates x2 solutions in at least 

one criterion. Moreover, there can be a feasible solution (x1) that dominates all the other 

feasible solutions. Therefore, x1∈X is a non-dominated solution if for all x∈X: 

Ci(x1)≥ Ci(x), i = 1,2,...,k; and Cj(x1) > Cj(x), j≠i. In the MCDM literature, the terms “Pareto optimal set”, and “efficient solution” refer to 
a set of all feasible non-dominated solutions. Pareto-optimal front refers to the 

corresponding objective function values of a given Pareto optimal set. Having a non-

dominated solution, it is required to degrade the performance of at least one objective in 

order to improve the performance of another objective. An increase in the number of 

objective would result in increase in the size of Pareto-optimal set. Thus, it is intuitive to 

investigate a set of solutions rather than the whole Pareto optimal set. Moreover, it is 

desirable to apply algorithms with ability to find the Pareto optimal set with reasonable 

amount of iterations. In fact, classical optimization methods, such as weighted sum methods 

and goal programming, are not efficient in this respect. This fact emerges the development 

and application of evolutionary algorithms.  

There is an increasing trend of using MCDM in power generation systems and also for 

PHM. Kusiak and Zheng [171] proposed a bi-objective power optimization model for a single 

power generator unit in which the power factor and the power output are improved by 

adjusting set points of blade pitch angle and generator torque. The dynamic process of a wind 

turbine is the prerequisite for optimizing the power produced and its quality. For this, the 

author applied the actual wind farm data to derive the required dynamic process models. 

Through simulation experiments, Munteanu et al. [172] studied the trade-off between the 

efficiency of energy conversion and input variability. Furuta et al. [173] considered 

improving safety level as one of the objectives in their bridge maintenance planning. Safety 

level, also known as durability level depends on the current safety level with respect to the 
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initial safety level. Orcesi and Frangopol [174] believed that short duration of monitoring 

programs can be a source for the error associated with the decision. Thus, the authors 

attempted to capture the uncertainties inherent to the structural degradation and decision 

processes in their probabilistic methodology.  

 

5.1.3 Evolutionary optimization 

Evolutionary optimization procedures refer to heuristic and meta-heuristic methods 

that are mainly used to solve combinatorial optimization problems. A number of 

evolutionary methods have been developed since the 1970s including: Genetic algorithms 

[169, 170, 174, 175], simulated annealing, particle swarms, differential evolution, tabu 

search, constraint propagation, artificial bee colonies, artificial immune systems, artificial 

neural networks, and Monte Carlo based-method. In essence, there is no distinctive 

algorithm with the ability to solve all the problems perfectly. However, in practice, multi-

objective genetic algorithm (MOGA) is the most popular evolutionary method.  

Genetic algorithms (GA) refer to a set of probabilistic search algorithm based upon 

natural selection and genetic operations. GA underlines combining information from good 

parents and provides approximate optimal solution. In principle, GA considers information 

as a series of binary string. The binary string format of a solution is known as chromosome. The chromosomes represent individuals’ characteristics and they should have the same 
length. The set of solution is called population (i.e. a series of binary strings codes). In 

essence, to minimize the risk of being trapped in local maxima it is appropriate to use a 

population of solutions. Genetic operators such as crossover and mutation are utilized to 

obtain new population (i.e. the new generation of individuals). Crossover operation implies 

combining information from good parents and mutation means making changes in the code 

string of the new individuals. The outputs of GA include individuals who better fitted to their 

environment. Hence, a mathematical criteria i.e. fitness function is required to rank 

solutions. 

In this study, the optimal solutions sets of the multi-objective optimization problem are 

determined using non-dominated sorting genetic algorithm-2 (NSGA-II) developed by deb 
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and his co-workers [176]. NSGA-II is based on the repetitive procedure of classifying the 

Pareto solutions to n Front. There are many derivatives for NSGA-II in the literature.  

 

5.2 Using prognostics in maintenance decision making 

The process of using prognostic information for life extension and safety improvement 

has recently become a favorite topic for investigation in the field of PHM. It seems significant 

amount of research needs to be undertaken to develop prognostic decision making programs 

with the ability to deal with distributed and interconnected systems in which various 

decision-making formulations are required for different subsystems. In this way, particular 

attention should be paid to the significance of information fusion and uncertainty 

managements in prognostic decision making. Moreover, it is worthwhile to consider the 

situations where no feasible solutions are found or where the Pareto optimal set does not 

help in achieving the performance objectives.  

Balaban and Alonso [177] provides a review of the articles with respect to using 

prognostic information for fault-tolerant control and automated contingency management. 

The authors also outlined the key requirements for determining an aeronautic system’s 

actions using prognostic information. This work applied probabilistic optimization methods 

and left the evolutionary algorithms for future works. Iyer and his coworkers [178] proposed 

a framework for human-centered decision support system (DSS) based upon prognostic 

indications. This system consists of a multi-objective decision support module in which 

optimal set of actions are selected via generating the corresponding Pareto Frontier (i.e. non-

dominated alternatives).  

In addition, there has been a tendency to calculate the Return on Investment (ROI) 

associated with the opportunities created by PHM. In the most recent publication, a 

methodology for determining ROI was proposed in [179] that considered uncertainties in 

both PHM performance and the associated costs e.g. unscheduled maintenance costs. 

Haddad et al. [180] believed that systems with prognostic capabilities have the potential to 

reduce life-cycle cost and optimize availability. The authors proposed an economic approach 

based on real options theory in order to quantify maintenance options. In this research, the 

decision maker has a set of options after a prognostic indication. This will give the decision 



 

 

100 

 

maker a flexibility to take actions in the period of the remaining operational life. The real 

options theory was utilized to monetarily manage the flexibility induced by prognostic 

considering the optimal time of maintenance action. In real options theory, the uncertainty 

parameter may be signified by a measure of the total value of an asset over the lifetime.  

A central issue in human interventions is repair activities which can be divided into two 

classes: minor and major repairs. Minor repairs reduce the rate of aging and require short 

period of downtime e.g. routine services, oil change and alignments. On the other hand, major 

repairs have direct influence of the age of system. Normally major repairs special equipment 

and have longer process e.g. part replacement [87]. A prognostic-based life extension 

program should be able to plan and manage repair activities. Furthermore, the end-of-life 

threshold of repaired system would not be the same as the new one. There might be a need 

for a model to adjust the threshold after repair.  

5.3 Problem formulation and methodology 

This section attempts to elaborate the inherent features of the decision problem. The 

objective is to develop an interactive and computer aided techniques for aiding DM with 

application to a wind-powered electrical generators. In this way, the focus will be on 

formulating realistic models with conflicting and non-commensurable objectives to 

investigate a set of solutions. The primary function of a wind turbine is to convert wind 

kinetic energy into electrical energy within a definite speed range (i.e. cut-in and cut-out 

wind speed). In practice, wind turbines dynamics diminishes the power variations that come 

from the wind behavior. The various configurations and specific power dynamics of wind 

turbines will not be considered in this study. However, it is to be noted that almost all the 

wind turbines consist of the following components: aerodynamic rotor, transmission system, 

generator, controller, reactive power compensation, step-up transformer, and network 

[181]. It is evident that dynamic operation of the wind turbines is a function of the 

components performance and their interactions. Figure 5-1 shows the interaction between 

the components of a wind turbine. In this Figure, ω is the rotational speed, T represents the 
torque, U is the voltage, I refers to the current and f is the frequency. The aerodynamic rotor 

together with the mechanical transmission system is known as the aeroelastic part. 
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Figure 5-1 Interaction between the components of a wind turbine [181]  

 

The wind energy captured by the wind turbine rotor can be expressed as: 𝑃𝑟 = 0.5 𝜌 𝜋 𝑅2𝐶𝑝(𝜆, 𝛽𝑝𝑖𝑡𝑐ℎ)𝑊3           Eq. 5-1 

where 𝜌 is the air density, R is the rotor radius, 𝑊 is wind speed before passing the rotor 

(also known as effective wind speed), and 𝐶𝑝(𝜆, 𝛽) is the aerodynamic power coefficient and 

it is a normalized function of the blade pitch angle and tip-speed ratio (𝜔𝑟𝑜𝑡𝑜𝑟 ∗  𝑅), where 𝜔𝑟𝑜𝑡𝑜𝑟 represents the rotational speed of rotor then we have  𝜆 =  𝜔𝑟𝑜𝑡𝑜𝑟𝑊  𝑅      Eq. 5-2 

The pitch control system controls the mechanical torque of wind turbine when the rotor 

speed exceeds the rated speed [182]. It is to be noted that the conventional wind turbines 

have a stall-regulated rotor with fixed pitch angle. The power coefficient can be defined as  𝐶𝑝(𝜆, 𝛽) = 𝑃𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒            Eq. 5-3 

Hence, the aerodynamic power on the main shaft is (per unit):  𝑃𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 0.5 𝜌 𝜋 𝑅2𝐶𝑝(𝜆,𝛽𝑝𝑖𝑡𝑐ℎ)𝑊3𝑃𝑏𝑎𝑠𝑒𝑟𝑜𝑡𝑜𝑟         Eq. 5-4 

It is to be noted that 𝐴 = 𝜋 𝑅2 is the area that swept by the blades, and it is known as the 

swept area or capture area. Here the 𝑃𝑏𝑎𝑠𝑒𝑟𝑜𝑡𝑜𝑟 is the rated power of the rotor. Thus, the 

aerodynamic torque in per unit can be formulated as: 
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𝑇𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝜔𝑟𝑜𝑡𝑜𝑟 𝑃𝑏𝑎𝑠𝑒𝑟𝑜𝑡𝑜𝑟 =  𝜌 𝜋 𝑅2𝐶𝑝(𝜆,𝛽𝑝𝑖𝑡𝑐ℎ)𝑊32 𝜔𝑟𝑜𝑡𝑜𝑟 𝑃𝑏𝑎𝑠𝑒𝑟𝑜𝑡𝑜𝑟      Eq. 5-5 

 
The aerodynamic torque can be simplified as: 
 𝑇𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 0.5 𝜌 𝐴 𝐶𝑝(𝜆,𝛽𝑝𝑖𝑡𝑐ℎ)𝜆 𝑊2    Eq. 5-6 

Hence, for a given wind speed, 𝜆 and 𝛽𝑝𝑖𝑡𝑐ℎ (i.e. the power coefficient) control the 

mechanical torque. The power coefficient can be approximated by [183]: 𝐶𝑝(𝜆, 𝛽𝑝𝑖𝑡𝑐ℎ) = (0.44 − 0.0167𝛽) sin ( 𝜋(𝜆−3)15−0.3𝛽) − 0.00184(𝜆 − 3)𝛽    Eq. 5-7 

 
The dynamic model of wind turbine can be described by the first order differential 

equation [172]: 
 𝜔̇ = 1𝐽 (𝑇𝑎𝑒𝑟𝑜 − 𝐶𝑑𝜔 −  𝑇𝑔𝑒𝑛𝑟𝑎𝑡𝑜𝑟)     Eq. 5-8 

Here, 𝑇𝑔𝑒𝑛𝑟𝑎𝑡𝑜𝑟  is the generator torque and 𝐶𝑑 is the damping.   

5.3.1 Assumptions 

The optimization model is formulated under the following assumptions: 

 For the sake of simplicity, the focus of this section is mainly on a variable-speed power 

generator unit (PGU) which consists of a three-bladed rotor and a generator. The 

capacity of the PGU can be defined as: 

𝐶𝑃𝐺𝑈 =  Amount of the generated electricity Amount of the generated electricity in full power run   Eq. 5-9 

 The functional failures of the PGU include: (1) complete loss of energy generation 

capability; (2) over speeding; (3) partial loss of energy conversion capability. 

 In fixed speed wind turbine, there is only one tip-speed ratio that can provide the 

maximum efficiency. However, the modern variable speed wind turbines intend to 

ideally provide maximum efficiency across a range of wind speeds. For this, the rotor 

speed can manipulated by a controller that takes into account the difference between 

generator torque and the aerodynamic torque. In this research, it is assumed that 

controlling the rotor speed is possible as one of the main decision variables.  
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 MODM methods provide interim results due to the existence of uncertainty.  

 The monitoring and control systems ensure the ability of the system to fail well. In 

other words there is no failure with catastrophic consequences.  

 Because of real-time applications, the computational times are negligible. 

 In essence, the overall efficiency of the wind turbine is influenced by the losses of its 

various components. The bearing loss is mainly due to mechanical friction loss, and 

therefore, it depends on several parameters including the rotational speed and rotor 

weight. The bearing loss is usually very small and can be ignored.  

 The alternatives for decision making include: (1) Stop the operation if degradation 

level is high and maintenance resources are available; (2) Let the operation continues 

until a planned time/age or until the availability of resources; (3) Continue operation 

with modified operating parameters and/or imperfect maintenance to extend life. 

This alternative depends on the goal for extension (e.g. meeting the demand), and the 

reduction in the degradation rate. 

 We are allowed to stop the operation for imperfect maintenance practices that extend 

the life i.e. decrease the degradation/failure rate. The main condition to perform 

imperfect maintenance is 𝐶𝑂𝑆𝑇𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 
<<<  𝐶𝑂𝑆𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

 

 Imperfect preventive maintenance should be routinely done. The routine imperfect 

PM can be with two outcomes: no change in the degradation/failure rate or decrease 

in the degradation/failure rate. 

 The operational and environmental conditions have great impact on the rate of the 

degradation process.   

 Wind speed will be utilized as the random input of the system. One can expect 

disturbances in the system inputs due to wind speed and load variations. The output 

of aerodynamic rotor is a function of the wind speed and on the rotor speed. 

 There is no replacement (i.e. no renewal process).  

 There is sufficient time to estimate and apply RUL (remaining useful life).  
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 The time horizon for life extension is from the time of fault detection to the time of 

failure i.e. end of life. Upon fault detection, imperfect corrective maintenance can be 

performed with the objective of life extension.   

 It is possible to manipulate the variables for life extension 

 Life extension is a kind of availability improvement. However, the objectives of a cost-

effective life-extending program include: (1) increase in durability by reducing 

degradation with no significant reduction in performance; (2) performance 

enhancement. In this way, it is critical to the degradation or failure rate to the dynamic 

performance parameters.  

5.3.2 Bearings 

As discussed earlier in Chapter 2, roller bearings are critical parts of any machine that 

transmits power and motion. In essence, bearing has direct influence on the functionality of 

the machine. There are a number of formulas that can simplify the calculation of bearing life. 

In this study bearing life is expressed as:  𝐿 =  (𝐶𝑃)𝑛      Eq. 5-10 

where L is the expected lifetime of a bearing in millions of race revolution, C is the bearing 

load rating (i.e. dynamic load capacity), P is the equivalent load acting on the bearing, n is an 

exponent dependent on the type of bearing. In theory, C is the load to have a life of 1 million 

race revolutions with 90% reliability. This formula takes into account the applied load on a 

bearing. It is obvious that bearing lifetime is directly dependent the shaft speed and the 

applied load. There are two important modification factors that can be added to the bearing 

lifetime formula as expressed below: 𝐿 =  𝑎𝑓 𝑎𝑚 (𝐶𝑃)𝑛     Eq. 5-11 

where 𝑎𝑚 is the modification factor that deals with manufacturing and material variations, 

and  𝑎𝑓 is the modification factor of the life that represents the severity or size of defect. P 

can be calculated using equations 5-1 to 5-6.  
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To calculate  𝑎𝑓 we need a model that measure and update the defect size using the 

degradation data. A deterministic model for bearing fatigue life is proposed by Li et al. [13, 

184]. This crack propagation model is based on Paris's formula  𝑑𝑎𝑑𝑁 =  𝐶0(∆𝐾)𝑛                     Eq. 5-12 

and relates the rate of defect growth to the instantaneous defect area D as follows: 𝐷̇ =  𝑑𝐷𝑑𝑡 =  𝐶0(𝐷)𝑛                        Eq. 5-13 

Here, C0 and n are material constants. Accordingly, under constant operating condition, 

a deterministic crack propagation model in bearing relates the instantaneous defect area 

with material constants that have no correlation with the defect size. The bearing defect size 

at time can be estimated through the tome domain integration of the above equation:  ln(𝐷) =  𝛼 +  𝛽 ln (𝑡 + 𝑡0)              Eq. 5-14 

where t is the bearing running time, 𝑡0 shows the time associated with the smallest defect 

area 𝐷0. 

𝑡0 = ( 𝐶01 − 𝑛)(𝐷)𝑛+1 

𝛼 = 11 − 𝑛 𝑙𝑛( 𝐶01 − 𝑛) 

𝛽 = 11 − 𝑛 𝜃(𝑡) = [𝛼 𝛽 𝑡0]′ 
A recursive least square algorithm (RLS) can be used to update the vector of unknown 

parameters in the defect propagation process. The RLS is an adaptive estimation algorithm 

and can be expressed by the following equations [13, 73]: 

𝑒(𝑡) = 𝑌(𝑡) −  𝑌̂(𝑡, 𝜃(𝑡 − 1)) 𝛹(𝑡) = 𝑌̂(𝑡, 𝜃(𝑡 − 1))𝑑𝜃 |𝜃 = 𝜃(𝑡 − 1) 

𝑃(𝑡) = 𝜆−1 (𝑃(𝑡 − 1) −  𝑃(𝑡 − 1)𝛹(𝑡)𝛹(𝑡)𝑇𝑃(𝑡 − 1)𝜆 + 𝛹(𝑡)𝑇𝑃(𝑡 − 1)𝛹(𝑡) ) 
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𝜃(𝑡) = 𝜃(𝑡 − 1) −  𝑃(𝑡)𝛹(𝑡)𝑒(𝑡) 

where P(t) is covariance matrix, and 𝑌̂(𝑡, 𝜃(𝑡 − 1)) is the estimated value of 𝑌(𝑡) , and 

therefor, 𝑒(𝑡)  represents the prediction error. Under varying operating condition the above 

equation can be modified to  𝑑𝐷𝑑𝑡 =  𝐶0(𝐷)𝑛
 𝑒𝑍(𝑡) 

where 𝑒𝑍(𝑡) represents the amount of uncertainty in material properties or environmental 

factors. 𝑍(𝑡) is a random variable which can be expressed by Gaussian-Markov Process with 

the following equation:  𝑍̇ = − 𝜁 𝑍(𝑡) +  𝑤𝑧(𝑡) 𝑤𝑧(𝑡) is a Gaussian noise with zero mean.  

 

5.3.3 Bearing Degradation Modeling 

One requirement of the decision support system is the availability of degradation data 

to produce the relevant prognostic information. In fact, there is a need for changing the 

operating condition in the decision making process. This creates the need for a large 

database of degradation measures for each specific operations setting. For this reason, in this 

research, bearing degradation measures where simulated. The fault signal of bearings can 

be modeled through the combinations of the following parts [149]: 

1. Repetitious impulses: A single defect in bearings generates a series of impulses of equal 

amplitude. The frequency of this faulty signal is equal to one the above mentioned 

frequency components. The impulses signals is normally represented by: 

𝑑(𝑡) =  𝑑0 ∑ 𝛿 (𝑡 − 𝑛𝐵𝑃𝐹𝑂) 𝑛=∞
𝑛=−∞  

Here, 𝛿(𝑡) denotes the Dirac function, and 𝑑0 is the constant impulse amplitude. BPFO 

(Ball pass frequency outer race) represents one the major the major frequency components 

associated with a faulty bearing. For ball bearings the BPFO is calculated by: 
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𝐵𝑃𝐹𝑂 =  𝑁𝐵2  𝑓𝑠(1 − 𝐷𝐵cos (𝜃)𝐷𝑃 ) 

where 𝐷𝐵 is the ball diameter, 𝐷𝑃 represents the bearing pitch diameter, 𝑓𝑠 is the shaft speed, 

and 𝑁𝐵 is the number of balls.  BPFO is the most common fault in bearings and it is obvious 

from the above formula that BPFO is a linear function of the shaft speed.  

 

2. Load distribution: the formula below represents the non-uniform radial load on the 

around the circumference of a bearing 𝑞(𝑡) = 𝑞0[1 − (1/2𝜀)(1 − cos (𝜃))]𝑛
  

3. Resonant vibration: 𝑧(𝑡) = ∑ cos (2𝜋𝑓𝑟(𝑡 − 𝑛𝐵𝑃𝐹𝑂))𝑛=∞𝑛=−∞  

4. Exponential decay: 𝑒(𝑡) = ∑ e−α(𝑡− 𝑛𝐵𝑃𝐹𝑂)𝑛=∞𝑛=−∞   

5. Gaussian noise n(t): a basic noise model to simulate the effects of random processes.  

Finally, the signal model is denoted as  𝑤(𝑡) = [𝑑(𝑡)𝑞(𝑡)𝑧(𝑡)] ∗  𝑒(𝑡) + 𝑛(𝑡) 

Based on the above simulation the waveform of the typical faulty bearing signal is shown in 

Figure 5-2.  

 

 

Figure 5-2 Simulation of bearing degrdation 
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However, this simulation approach is computationally intensive. Thus, the second 

approach was utilized which approximate the elements of the degradation signal as listed 

below [150]: 

1. Repetitious impulses: 𝑋𝑓(𝑡) ≈  𝐴0 ∑ 𝑐𝑜𝑠(2𝜋𝑛𝑓𝑙 − ∅𝑓𝑛)𝑁𝑓𝑛=1   
2. Load: 𝑋𝑞(𝑡) ≈ ∑ 𝐴𝑞𝑘𝑐𝑜𝑠(2𝜋𝑛𝑓𝑞𝑡 + ∅𝑞𝑛)𝑁𝑞𝑛=1    

3. Bearing Induced Vibration: 𝑋𝑏𝑠(𝑡) ≈ ∑ 𝐴𝑏𝑠𝑘 𝑒−𝛼𝑛𝑡𝑐𝑜𝑠(2𝜋𝑓𝑞𝑡 + ∅𝑏𝑠𝑛 )𝑁𝑏𝑠𝑛=1   

4. Machinery Induced Vibration: 𝑋𝑏𝑠(𝑡) ≈ ∑ 𝐴𝑏𝑠𝑘 𝑒−𝛼𝑛𝑡𝑐𝑜𝑠(2𝜋𝑓𝑞𝑡 + ∅𝑏𝑠𝑛 )𝑁𝑏𝑠𝑛=1   

5. Noise: n(t) 

Finally, the fault signal is represented by  𝑥(𝑡) = 𝑋𝑓(𝑡). 𝑋𝑞(𝑡). 𝑋𝑏𝑠(𝑡) + 𝑋𝑠(𝑡) + 𝑛(𝑡) 

Figure 5-3 shows the RMS of simulated degradation data for 25 bearings. The effects of 

shaft frequency on degradation measures are displayed in Figure 5-4. In addition, the effects 

of change in the speed shaft is illustrated in Figure 5-5. This Figure is similar to the 

experimental results presented by Gebraeel and Pan [109](see Figure 3-3).  

 

 

Figure 5-3 Simulated degradation data for 25 bearings 
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Figure 5-4 Degradation pattern for three different shaft speeds   

 

 

 

Figure 5-5 Effects of change in the speed shaft 

 

5.3.4 Wind model 

Wind speed variation is the major cause of fluctuating power in the conventional wind 

turbines [181, 185]. A wind model is divided into deterministic and stochastic parts as 

shown in Figure 5-6. The former denotes the wind speed profile which is assumed to be 

constant in short periods of time (e.g., 10 minutes). 
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Figure 5-6 Illustration of wind speed variation on the rotor area [185] 

 

The stochastic part represents the spatial turbulence on the rotor area. Through 

knowledge of turbulence fluctuations is essential for the design of pitch control systems. The 

effects of spatial turbulence on power variation become even more significant in large 

diameter rotors. The wind turbine module provided by the Princeton Satellite Systems was 

used to simulate wind data [186]. The codes developed based on the model provided by 

Rosas in [181]. Figure 5-7 shows the typical stochastic wind data. It should be noted that the 

wind speed has been also modelled by three parameters Weibull distribution [187].   

 

 

Figure 5-7 Typical stochastic wind data 
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5.3.5 Decision variables & Objective function 

Using the average wind speed for each day is a common practice in industry. For this, 

the unit of time in this optimization model is a single day. It is important to mention that the 

optimization model considers the period of time between the fault detection and the end of 

life (EOL) i.e. the time that system needs to be shut down. The EOL is estimated through the 

prognostic algorithms. Thus, the decision making for life extension can be performed on any 

day in this period. The optimization model needs to have the revenue from power generation 

from the decision making day (DMD) to the EOL. It is assumed that wind speed, and other 

important parameters are available for each day in the period of DMD-EOL (i.e. DMD to 

DMD+RUL). Hence, the optimization model attempts to consider the decision variables to 

provide optimal values for service life and the profit from generating power in the period of 

DMD-EOL. It is to be noted that because of change in the variables, the EOL needs to be 

estimated for each set of variables. The data for the prognostic algorithm can be provided by 

the simulation methods explained in Section 5.3.3.  

The bi-objective model in this study is defined as follows: 

𝐦𝒂𝒙  𝑷𝒓𝒐𝒇𝒊𝒕 =  𝑹𝒆𝒗𝒆𝒏𝒖𝒆 − 𝑪𝑶𝑺𝑻𝑶&𝑴 
  𝐦𝐚𝐱  𝑺𝒆𝒓𝒗𝒊𝒄𝒆 𝑳𝒊𝒇𝒆 𝑹𝒆𝒗𝒆𝒏𝒖𝒆𝒊 = 𝑹𝑼𝑳𝒊 ∗  𝑾𝑻𝑷𝑹 ∗  

𝑪𝒇𝟏𝟎𝟎 ∗  𝑪𝑬𝑯 ,      𝑫𝑴𝑫 ≤ 𝒊 ≤ 𝑬𝑶𝑳   𝑳 = 𝒂𝑳𝑬 𝒂𝒇 𝒂𝒎 (𝑪𝑷)𝒏
  

 

The decision variables are as follows:  

 Rotor Speed [e.g. 15-35 RPM]  

 Pitch Angle [e.g. 20-40] 

 Time (day) of maintenance [e.g. between day 55 and day 85] 

 Duration of maintenance [e.g. 1-10] (i.e. determines the effects of maintenance on 

life extension 
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Net profit can be simply defined as the difference between the revenue generated from 

electricity sale and the operation and maintenance (O&M) costs. The cost of maintenance is 

a combination of several different elements including: cost of material, cost of labor, cost of 

access, cost of production loss during maintenance, and cost of prognostic and health 

management. Each element of the maintenance cost can be subdivided into several units. For 

instance, some details such as cost of transportation, cost of loading/unloading, and cost of 

a crane might be added to the cost analysis. Furthermore, there are some variables in the 

cost analysis that may come from predefined distributions. For example, cost of labor and 

total cost of production loss during downtime are function of total working hour which can 

be approximated by the expected time to repair. This cost element can be further elaborated 

if one wants to consider the cost of applying different maintenance types.  

The penalty of not satisfying the demand is another element of operations cost. 

However, demand for electricity can be also used as a constraint. The figure blow shows the 

pattern of daily demand based on the data provided by National Grid [188]. The data is scaled 

to provide better insight.  

  

 

Figure 5-8 Pattern of daily demand 
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5.3.6 Results and Discussion 

This section summarizes the results of applying prognostic information for decision 

making with application to a wind-powered PGU. This section applies the models developed 

in the previous sections particularly the optimization model from section 5.3.5. Figure 5-9 

provide the typical pattern of stochastic wind data and the associated power generated by the PGU’s rotor. In Figure 5-10, the effects of modification factor on the bearing life is 

illustrated.  

 

 
Figure 5-9 Stochastic wind the associated generated power 

 

Figure 5-10 Effects of modification factor on bearing life 
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Although the power applied on the bearings is a function of the stochastic wind speed, 

considering the defect size can ensure the right trend for the life of bearing. Similarly, the 

estimated revenue can be obtained as shown in Figure 5-11. Finally, the result of NSGA 

optimization is depicted in Figure 5-12. 

 

 

Figure 5-11 Estimated revenue  

 

 

Figure 5-12 NSGA optimization results 
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Figure 5-12 shows the confronting nature of objectives. Obviously, in order to increase 

the profit (i.e. objective 2) we need to accept less bearing life which is represented by 

objective one. The numbers in the bracket represent pitch angle, shaft speed, the suggested 

time (day) of maintenance, and the proposed duration of maintenance. Accordingly, by 

increasing the shaft speed the profit increases with the expectation of shorter life for 

bearings.  In addition, higher pitch angle and less maintenance are required for higher profit. 

Interestingly, the maximum life extension needs the minimum speed and the highest value 

of the maintenance days close to the EOL.    
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5.3.7 Uncertainty Considerations  

Uncertainty management is an integral component in all aspects of PHM. Uncertainties 

in PHM arise from imperfections in predictability of prognostic models. The failure in 

predictability is a function of several factors including type and quality of data, inherent 

assumptions in the model, level of computations, and understanding of underlying physical 

processes. The uncertainty estimation and quantification for PHM applications has been 

extensively considered in the literature [189-199]. Baraldi et al. [190] classified the sources 

of uncertainties in PHM into three categories: 1. randomness related to future degradations, 

2. errors in modeling, and 3. inaccuracies in degradation data. All these sources are 

significant when it is required to use the outputs of a PHM system for maintenance decision 

making. 

In essence, a large uncertainty bound is a risk in the application of RUL estimates in 

decision making. In practice, uncertainty would be higher at the early stage of life. On the 

other hand, as we get close to the EOL, the uncertainty is low but the risk for unanticipated 

failure in high. Therefore, there is a need to identify decision making horizon. Figure 5-13 

shows the examples of degradation measures where two degradation path were selected for 

uncertainty analysis. Figure 5-14 clearly shows the need for a decision making horizon. In 

this figure the RUL is estimated for the selected degradation paths (i.e. unit 1 and unit 2). 

Accordingly, by getting close to the EOL the uncertainty decreases namely the actual RUL 

and the estimated RUL get closer.      

 

 

Figure 5-13 Examples of degradation measures 
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Figure 5-14 Estimation of remaining life as getting close to the EOL 
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6   CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

Applying prognostics for extending the operable life of engineering systems has been 

noticeably lacking in published literature. This research investigates the use of prognostic 

data to mobilize the potential residual life. The obstacles in performing life extension 

include: lack of knowledge (e.g. about aging mechanisms or life-limiting factors), lack of tools 

such as trust worthy prognosis algorithm, lack of data (e.g. an acceptable RUL estimation), 

and lack of time. The first and foremost step in an efficient life-extending methodology is 

effective and robust diagnosis, which detects and identifies the impending faults. In this way, 

the concerns in successful application of proactive on-line monitoring include sensor 

calibration, quantification of uncertainty, sensor advancement, better understanding of 

physical aspects, wireless data transferring, enhanced data interrogation, data fusion for 

multichannel monitoring data, design of monitoring experiments, recognition of failure 

modes with similar patterns, monitoring small components in noisy areas, and controlling 

simultaneous multiple failure.  

In Chapter 3 the possibility of non-monotonic degradation measures was proven 

experimentally (unbalance and FCC experiments). This research primarily considers using 

acoustic emission (AE) technology for quick-response diagnostic. To be specific, an 

important feature of AE data is statistically modeled to provide quick, robust and intuitive 

diagnostic capability. The proposed ZIP model was successful to detect the out of control 

situation when the data of faulty bearing was applied. This diagnostic techniques can be 

further improved by considering pattern recognition methods to detect the type of fault in 

the system. Moreover, it was proved through categorical data analysis that couple unbalance 

is the most significant types of unbalance. This research also highlights the importance of 

self-healing materials. It seems promising research on self-healing materials would affect the 

current methods of PHM in near future. 

One main component of the proposed life extension framework is the trend analysis 

module. This module analyzes the pattern of the time-ordered degradation measures. In 

many cases trend analysis is an essential part of PHM modeling for both ensuring 
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monotonicity and discovering the improvements in the degradation signal after 

maintenance or self-healing. Trend analysis for prognostic parameters, degradation 

waveform and multivariate data are considered in this study. It was concluded that graphical 

methods are appropriate for trend detection of signal features. Particularly, cumulative plots 

are useful for certain features, e.g. energy-related features. Analyzing the waveform might 

be a better option before performing the feature extraction phase. HHT is very useful in noise 

removal and extracting the main components of the signal. Those components can be used 

for trend analysis and feature extraction. In this respect, the modified crest factor worked 

appropriately in analyzing and comparing the waveforms. For multivariate data, it was 

realized that PCA is able to indicate the trends in the data. Preliminary analysis of the data 

including smoothing, filtering, elimination the correlated variables were very helpful in 

proper implementation of PCA. In addition, two algorithms are introduced to deal with a 

non-monotonic trend: ACD and TBSM. Obviously, the usefulness of these algorithms is case-

dependent. However, it seems, both algorithms have the potential to treat the non-

monotonicity in degradation data.  

Although considerable research has been devoted to developing prognostics algorithms, 

rather less attention has been paid to post-prognostic issues such as maintenance decision 

making. All the activities in the diagnostic and prognostic modules need to be followed by 

fruitful decision making. A multi-objective optimization model is presented for a power 

generation unit. This model proves the ability of prognostic models to balance between the 

power generation and life extension. 

The major step in decision making is to determine alternatives which are defined as 

possible courses of action. Thus, an optimization procedure is required to clarify the 

parameters of these alternatives. Another concern in developing the alternatives is to find 

the optimal time to perform the actions. In effect, performance of maintenance at 

inconvenient times results in substantial time and economics losses. Nevertheless, despite 

the confronting nature of objectives, the proposed optimization model provides acceptable 

results. It was discovered that by increasing the shaft speed the profit increases with the 

expectation of shorter life for bearings.  Interestingly, the maximum life extension needs the 

minimum speed and the highest value of the maintenance days close to the EOL.   
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6.2 Recommendations for future works 

The followings are the recommended future works in various aspects of prognostic-

based life extension: 

1. System-level frameworks are in demand to be applied for a variety of mechanical 

systems. Current methods are suited for component RUL estimation. Moreover, 

challenging research is needed in order to handle the situations with overlapping failure 

mechanism. Moreover, integration of the qualitative methods such as failure mode and 

effects analysis (FMEA) or fault tree analysis (FTA) into the quantitative diagnosis 

analysis is desirable. 

2. Part of the future work with respect to the FCC experiments is providing in depth 

discussion on the possible difference in the characteristic signal in various stage of life. 

Preliminary results show that there are different fundamental frequencies in the first two 

signal components for various stages of crack propagation. Further analysis are required 

to link the signal features with various stages of crack propagation particularly for the 

period of retardation. 

3. In essence, uncertainty continues to be a major concern for the fruitful application of 

prognostic models. In this respect, assumptions and simplifications can be significant 

sources of uncertainty in prognostic models. Monotonic fault progression is an important 

assumption used in a number of prognostic systems. This assumption can be violated through human intervention or self-healing. Hence, non-monotonic degradation will 

appear in the modeling process which not only increases the uncertainty but also may 

cause model failure in some situations. Trend analysis techniques are able to provide a 

platform for uncertainty management prior to applying the degradation data in 

prognostic models. In addition, a large uncertainty bound is a risk in the application of 

RUL estimates in decision making. In practice, uncertainty would be higher at the early 

stage of life. The uncertainty seems to be lower close to the EOL but the risk for 

unanticipated failure in high. Therefore, there is a need to identify the optimal decision 

making horizon. 

4. By obtaining an acceptable level of diagnosis and prognosis in the system, it is possible 

to take full advantage of maintenance activities and ensure better decision making. Many 
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researchers have focused on the maximizing the power capture from the wind through 

the optimization of wind turbine control parameters such as set points of blade pitch 

angle, and generator torque. This research intends to simultaneously maximize the unit 

life and power generation through multi-objective optimization by applying prognostic 

information. The followings list the future works for the proposed multi-objective 

optimization model: 

 It is always difficult for the DM to pick one best solution from a large set of 

alternatives. Therefore, more constraint can be added to the MCDM problem.   

 For a superior decision making, the amount of infeasibility and the number of violated 

constraints need to be taken into consideration.   

 The safety level can be considered as an objective function for the critical 

components. In particular, it is pertinent to mention that waiting to do the 

maintenance close to the end of life increases the risk of unanticipated system failure 

and intimidates the system safety.   

 This decision making problem can be extended to a level that DM selects a portion of 

a solution and ask the system to provide exclusive feasible Pareto frontier [178]. 

Furthermore, sensitivity analysis needs to done mainly to improve the acceptability 

of the overall decision making model.   

 To enhance the models performance it is essential to consider dependent competing 

risk (e.g. the combination of degradation wear and random shocking). 

 Power quality can be considered as a constraint when the operating parameters need 

to be manipulated. There are several metrics to measure power quality of wind 

turbine such as power factor, reactive power, and harmonic distortion. Power Factor 

(PF): is defined as the ratio of real power over apparent power.  It provides a measure 

for the efficiency of the PGU. The goal is to preserve a power factor of 1.  
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