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ABSTRACT 

Background 

Chromosomal abnormalities in childhood acute lymphoblastic leukaemia are well 

established disease markers and indicators of outcomes. However, the long term 

prognosis and independent prognostic effect of some abnormalities has been questioned. 

Also less is known about the relationship between cytogenetics and the characteristics of 

relapse (time and site of relapse) known to predict outcome post-relapse.  

Patients and Methods 

We analysed cytogenetic data from 1725 children with B-cell precursor acute 

lymphoblastic leukaemia treated on MRC ALL97; with a median follow-up time of 8.2 

years. Univariate and multivariate analysis were used to examine the risk of relapse, 

event free and overall survival of 21 individual chromosomal abnormalities and three 

cytogenetic risk groups. 

Findings 

Analysis showed that two chromosomal abnormalities were associated with a 

significantly superior outcome whereas five were associated with an increased risk of 

relapse: ETV6-RUNX1 – HR=0.51 (95% CI 0.38,0.70), High hyperdiploidy – 0.60 

(0.47,0.78), iAMP21 – 6.04 (3.90,9.35), t(9;22) – 3.55 (2.21,5.72), MLL translocations 

– 2.98 (1.71,5.20), abnormal 17p – 2.09 (1.30,3.37) and loss of 13q – 1.87 (1.09,3.20). 

Multivariate analysis incorporating age, white cell count and treatment parameters 

revealed that six cytogenetic parameters (ETV6-RUNX1, high hyperdiploidy, iAMP21, 

t(9;22), loss of 13q and abnormal 17p) retained their significance for increased relapse 

risk. Based on these data, patients were classified into good, intermediate and poor 

cytogenetic risk groups. Slow early treatment response correlated with cytogenetic risk 

group: 34/460 (7%), 22/211 (10%) and 27/95 (28%) respectively (p<0.0001). In 

addition, the proportion suffering a very early (<18m) relapse varied by cytogenetic risk 

group: 8/129 (6%), 24/98 (25%) and 37/82 (45%) respectively (p<0.0001). However, 

there was no difference in the site of relapse by cytogenetic risk group.  

Interpretation 

Individual chromosomal abnormalities are strong independent indicators of outcome, 

especially risk of relapse. Diagnostic cytogenetics not only identifies patients with a 

higher rate of relapse but also those who are likely to suffer a “high risk” relapse.  

This research was funded by Leukaemia and Lymphoma Research (LLR).  
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INTRODUCTION 

Acute lymphoblastic leukaemia (ALL) is a heterogeneous disease at the cytogenetic and 

genetic levels.1 Numerous acquired genetic abnormalities have been described in the 

bone marrow cells of patients with ALL; including chromosomal translocations, 

aneuploidy, deletions and amplifications. Several genetic aberrations are pathognomic of 

the disease and can be used to monitor the patient’s response to therapy. Along with 

treatment regimen, age, white count cell (WCC) and minimal residual disease (MRD) 

detection, the genetic profile of the leukaemia is a major determinant of clinical outcome, 

especially the risk of relapse.2 Improvements in the design and delivery of frontline 

protocols for paediatric ALL have increased survival rates steadily over the past four 

decades.2 Despite these advances, 15%-20% of children with ALL will suffer a relapse.3 

The continued refinement and monitoring of prognostic factors is warranted to update 

risk stratification algorithms in the light of new discoveries and evaluate their role in the 

context of revised and developing protocols.  

Recent studies have suggested that the strongest risk factors for survival after a first 

relapse are the length of the first remission and the site of relapse.3 Several clinical 

study groups have proposed relapse risk classifications based on these factors along with 

immunophenotype.3 Increasingly, these relapse risk groups are being used to direct post 

relapse therapy, especially the use of stem cell transplantation. However, there are no 

studies examining the association between cytogenetics and these relapse risk groups.  

In this study, we present outcome data from the MRC ALL97/99 paediatric trial stratified 

by specific chromosomal abnormalities and cytogenetic risk group. In addition, we 

examine the relationship between presentation cytogenetics and relapse risk group. 

 

PATIENTS AND METHODS 

Study Population and treatment 

Between April 1997 and June 2002, 1725 children with B-cell precursor ALL (BCP-ALL) 

and aged 1-18 years old were treated on the MRC ALL97 and ALL99 phases of the trial 

(Figure 1). Infants under the age of one year were not eligible for this trial. Centres 

obtained local ethical committee approval and written informed consent from patients or 

parents. Full treatment protocols and overall results have been published.4-6 Both phases, 

ALL97 and ALL99, included a steroid and purine randomisation: prednisolone / 

dexamethasone and mercaptopurine / thioguanine in induction and maintenance. In 

ALL97, patients received a four drug induction followed by two or three intensification 
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blocks, appropriate CNS directed treatment and continuing therapy for a total of 2 years. 

High risk patients were identified by the Oxford Hazard Score (based on age, gender and 

white cell count (WCC)) or by the presence of t(9;22)(q34;q11.2)/BCR-ABL1, near 

haploidy (<30 chromosomes), low hypodiploidy (30-39 chromosomes) or MLL/11q23 

translocations (under 2 years old) and were transferred to a more intensive protocol 

(HR1).5 In ALL99, children were stratified on the basis of age and WCC to regimen A 

(<10 years and <50x109/L) or regimen B (all others). Patients received a three/four 

(regimen A/B) drug induction and were classified as a slow early responder (SER) if the 

day 15/8 (regimen A/B) marrow contained 25% blasts of higher. Patients who failed to 

remit, were SERs or had t(9;22), near haploidy, low hypodiploidy or MLL/11q23 

translocations (under 2 years old) were transferred to the more intensive regimen C. 

After induction, patients received consolidation, two interim maintenance blocks, two 

delayed intensification blocks and continuing therapy for up to 2 years (girls) or 3 years 

(boys). All patients treated on HR-1 were eligible for CR1 sibling allogeneic 

transplantation but only failure to achieve remission at day 29 and presence of 

t(9;22)(q34;q11.2)/BCR-ABL1 were indications in ALL99. 

Cytogenetics 

Cytogenetic analyses were performed on the pre-treatment bone marrow or blood 

samples of 1694/1725 (98%) patients by member laboratories of the UK Cancer 

Cytogenetics Group (UKCCG) (n=30) whose satisfactory performance was monitored by 

a national external quality assurance scheme: UK National External Quality Assessment 

Service (NEQAS) for Clinical Cytogenetics.7 The results were collected centrally by the 

Leukaemia Research Cytogenetics Research Group (LRCG).8 Karyotypes were not 

routinely analyzed centrally, but were reviewed for accuracy in description of the 

structural and numerical, clonal chromosomal abnormalities, which were reported in 

accordance with the International System for Human Cytogenetic Nomenclature (ISCN).9 

Analysis of fewer than 20 normal metaphases was classified as a failure, which occurred 

in 275/1694 (16%) cases. A normal karyotype (20 or more normal metaphases) was 

present in 219/1419 (15%) cases. A clonal abnormality was detected in 1200/1419 

(85%) cases. Fluorescence in situ hybridisation (FISH) testing was performed locally or 

centrally by the LRCG as previously described.10 FISH for ETV6-RUNX1, BCR-ABL1 and 

MLL was performed on 1451 (84%), 1448 (84%) and 1431 (83%) respectively, using 

commercial fusion or break-apart probes as previously described.10 The Multiprobe-I 

system for the detection of aneuploidy was performed on 265 (15%) cases with failed or 

incomplete cytogenetics or a normal karyotype. Each patient was classified according to 

whether each chromosomal abnormality was present, absent or had not been 
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appropriately tested. Chromosomal abnormalities were classified as primary or 

secondary based on prior knowledge.1 Analysis of secondary abnormalities was restricted 

to those that were present in 10 or more cases.  

Statistics and Endpoints 

Event free survival (EFS) and overall survival (OS) were defined as the time from the 

start of treatment to relapse/death and death, respectively. Relapse free survival (RFS) 

was calculated only for patients who achieved a complete remission and was defined as 

the time from the date of complete remission until relapse; with deaths in first remission 

being censored. Patients without an event of interest were censored at the date of last 

contact or date of second neoplasm whichever was earlier. A second neoplasm was 

diagnosed in 11 (<1%) patients. RFS, EFS and OS survival estimates were calculated 

using the Kaplan-Meier method. Hazard ratios comparing RFS, EFS and OS between 

subgroups were calculated using univariate Cox models.  Multivariate Cox regression 

modelling was performed for RFS, EFS and OS using a forward-selection stepwise 

modelling process; the difference in the log likelihood (-2*LogLikelihood) was used along 

with an adjustment for steroid randomisation (dexamethasone versus prednisolone) and 

phase of trial (ALL99 versus ALL97). Age and a log transformed WCC factor were 

modelled as continuous variables, while all other factors were categorical variables. All 

variables in the model were linear and conformed to the proportional hazards 

assumption. Interaction between treatment protocol and cytogenetic parameters were 

explored by the addition of an interaction term in the final model and inspecting its effect 

on the log likelihood. Only the following cytogenetic variables were considered in the 

model – high hyperdiploidy (51-65 chromosomes), ETV6-RUNX1, MLL translocations, 

iAMP21, t(9;22), abnormal 17p and loss of 13q. Not all cases were screened for all 

possible abnormalities (see cytogenetics paragraph above). As complete data is required 

to include a case in the model, we adopted two strategies - imputing missing values and 

reducing the dataset to cases with complete information. We performed both methods as 

each has implications in terms of bias. The results obtained were very similar. We opted 

to present the results from the “imputed” analysis because they were based on a larger 

number of cases and hence generated more precise estimates. Among the 1546 cases 

used for the modelling, 1233 (80%) had complete information. Imputing was based on 

the assumption of mutual exclusivity, which is supported by the data in Supplementary 

Table 1. Thus cases with one primary chromosomal abnormality were classified as 

negative for the presence of other primary chromosomal abnormalities. The number of 

cases imputed as absent were: high hyperdiploidy (n=79); ETV6-RUNX1 (n=188); 

t(9;22) (n=5); iAMP21 (n=219); MLL translocations (n=9). In addition, 127 cases with 
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failed cytogenetics were classified as negative for abnormal 17p and loss of 13q. While a 

more stringent multiple comparisons adjustment might be applicable in a classical 

setting, because of the investigative nature of this analysis, all tests were conducted at 

the 1% significance level. All analyses were performed using Intercooled Stata 11.0 for 

Windows (Stata Corporation, College Station, Texas, USA).Role of the funding source 

The funding source had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all 

the data in the study and had final responsibility for the decision to submit the paper for 

publication. 

 

RESULTS 

Survival estimates for the whole cohort of 1725 patients at 5 years were: RFS 81% (79-

83%); EFS 78% (95% CI 76-80%); and OS 87% (86-89%) after a median follow-up 

time of 8.2, 8.3 and 8.4 years respectively. In total there were 351 (20%) relapses, 16 

(1%) non-remitters and 257 (15%) deaths including 57 (3%) in first remission. Patients 

treated on the ALL99 phase of the trial had a significantly improved outcome compared 

to those treated on the ALL97 phase: RFS 84% (81-87%) v 78% (75-81%) (p=0.003); 

EFS 81% (78-83%) v 75% (72-78%) (p=0.005); OS 90% (87-91%) v 85% (83-88%) 

(p=0.014). 

On the basis of cytogenetic and FISH data 1269/1694 (75%) cases were assigned to the 

cytogenetic subgroups under consideration. Cases were assigned to one (n=983, 78%), 

two (n=228, 18%), three (n=53, 4%) or four (n=5, <1%) of the cytogenetic subgroups 

listed in Table 1. Among the remaining 425 (25%) cases, 152 (9%) had some other 

chromosomal abnormality, 131 (8%) had a normal karyotype and 142 (8%) did not 

achieve a cytogenetic result. With the exception of seven cases where t(9;22) or ETV6-

RUNX1 was observed in a high hyperdiploid (51-65 chromosomes) karyotype, primary 

chromosomal abnormalities did not co-exist in the same karyotype (Supplementary 

Table 1). In contrast, secondary abnormalities occurred together frequently and often in 

a non-random pattern.  

There was no significant variation in the ratio of boys to girls by chromosomal 

abnormality (Supplementary Table 2). Low hypodiploidy (30-39 chromosomes), iAMP21, 

IGH-CEBP, abnormal 9p and abnormal 17p were associated with older age. Patients with 

t(1;19)(q23;p13), t(9;22), MLL translocations, near haploidy (<30 chromosomes) and 
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abnormal 9p had higher WCCs at presentation whereas high hyperdiploid patients had 

lower WCCs.  

Table 1, Figure 2, supplementary table 3 and supplementary figures 1 and 2 describe the 

outcome of patients with different chromosomal abnormalities. There was little 

correlation between cytogenetics and failure to achieve a remission or death in first 

remission; six of the seven t(9;22) patients who died in first remission underwent bone 

marrow transplantation. ETV6-RUNX1 and high hyperdiploidy were associated with an 

improved outcome whereas t(9;22), iAMP21, MLL translocations, near haploidy, low 

hypodiploidy, t(17;19)(q23;p13), abnormal 17p and loss of 13q were associated with a 

higher risk of relapse and/or death. There were too few patients with an IGH-CEPB or 

IGH–ID4 fusion to assess their prognosis accurately.  

Among the 50 patients with abnormal 17p, 27 (54%) also had high hyperdiploidy (n=21) 

or ETV6-RUNX1 (n=6) (Supplementary Table 1). Abnormalities included i(17q) (n=17), 

del(17p) (n=7), der/dic(17p) (n=11), add(17p) (n=8)  and -17 (n=7). At least 42 (84%) 

of these 17p abnormalities resulted in loss of 17p13. The presence of abnormal 17p 

among patients with ETV6-RUNX1 or high hyperdiploidy did not adversely affect their 

relapse risk (HR=1.69, 95% CI 0.74-3.85, p=0.210), whereas for patients without ETV6-

RUNX1 or high hyperdiploidy the presence of an abnormal 17p conferred a three-fold 

increased risk of relapse (HR=3.17, 95% CI 1.76-5.74, p=0.0001). Given this difference 

and knowing that i(17q) correlates with high hyperdiploidy1, we examined the type of 

17p abnormality across cytogenetics subgroups. We saw some evidence of the high 

hyperdiploidy-i(17q) association [11/21 (52%) v 6/29 (21%), p=0.03] but did not 

observe any other relationship which might explain the differential effect of abnormal 

17p.  

A total of 44 patients had either a del(13q) (n=27), monosomy 13 (n=16) or both (n=1). 

These abnormalities were clearly secondary and frequently (24/44, 55%) coexisted with 

a known primary abnormality, particularly ETV6-RUNX1 (n=11), high hyperdiploidy (n=5) 

and t(1;19) (n=5) (Supplementary Table 2). There was no correlation between 

del(13q)/-13 and cytogenetic subgroup. Among 22 patients with a deletion and defined 

breakpoints, 16 (73%) involved 13q14. As with abnormal 17p, the effect of loss of 13q 

within the ETV6-RUNX1 and high hyperdiploid groups was not significant (HR=1.46, 95% 

CI 0.46-4.60, p=0.518). Although the effect of 13q loss among patients with other 

abnormalities was consistent with an increased relapse risk it was not significant 

(HR=1.78, 95% CI 0.94-3.39, p=0.078). 
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Previous studies have found triple trisomy (TT) (+4, +10, +17)11 or trisomy 18 (+18)12 

to be associated with an improved outcome. In this study, 419/562 (75%) and 484/562 

(86%) cases could be accurately classified by TT and +18 status, respectively. Only 

253/409 (62%) cases that were classified by both criteria were concordant (i.e. TT and 

+18 (n=190), or neither (n=63)), suggesting the criteria do not identify exactly the 

same patient populations. There was no difference in outcome by TT status (HR=0.80, 

95% CI 0.49-1.33, p=0.395) (Supplementary Figure 3). However, high hyperdiploid 

patients with +18 had a reduced risk of relapse compared to those with two copies of 

chromosome 18 (HR=0.44, 95% CI 0.26-0.74, p=0.002). As there was an overlap in the 

patient cohort between this and our previous study,12 we repeated the analysis after 

excluding patients treated on the ALL97 phase. The result was nearly identical (HR=0.37, 

95% CI 0.18-0.76, p=0.006).  

A multivariate Cox proportion hazards model was used to assess the significance of each 

cytogenetic abnormality that had been found to be significant in univariate analysis 

within the context of other risk factors. Table 2 and Supplementary Tables 3 and 4 show 

that six cytogenetic variables (iAMP21, t(9;22), ETV6-RUNX1, loss of 13q, abnormal 17p 

and high hyperdiploidy) retained their significance in the RFS and EFS models and five 

(iAMP21, t(9;22), ETV6-RUNX1, abnormal 17p and high hyperdiploidy) in the OS model. 

MLL translocations did not retain their prognostic significance in any of the models. There 

was no statistical interaction between ETV6-RUNX1 or high hyperdiploidy and the phase 

of trial (ALL97 versus ALL99) in the RFS, EFS or OS multivariate models. Individual poor 

risk chromosomal abnormalities were too rare to test for interaction reliably.  

The MLL subgroup was heterogeneous cytogenetically and comprised patients with 

t(4;11)(q21;q23)/MLL-AF4 (n=17), t(9;11)(p21~2;q23)/MLL-AF9 (n=5), 

t(11;19)(q23;p13)/MLL-ENL (n=1), t(10;11)(p12~14;q23)/MLL-AF10 (n=1) and 

unknown MLL partners (n=6). Patients with t(4;11) (n=17) were significantly older 

(median age 8.6 v 1.6 years, p=0.002) compared to other MLL patients (n=13), but 

there was no difference with respect to sex or WCC (data not shown). Most MLL patients 

had a common or pre-B immunophenotype (18/29, 62%), including seven t(4;11) 

patients. The remaining 11 (38%) patients (9 t(4;11), 1 t(11;19) and 1 unknown MLL 

partner) had a null or pro-B immunophenotype. As the median age of patients with a 

MLL translocation was 4 years, we examined the prognostic effect of MLL status among 

younger and older patients. Among patients under the age of 4 years, the presence of a 

MLL translocation was associated with a higher risk of relapse (HR=8.75 (95% CI 4.55, 

16.84), p<0.0001) but this was not the case among patients over 4 years old (HR=0.91 

(0.29, 2.83), p=0.865). Due to the strong correlation between t(4;11) and age in this 
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cohort, similar risks were observed when examining the risk of relapse associated with 

t(4;11) and other MLL translocations: HR=1.37 (0.51,3.68), p=0.529 and HR=5.94 

(3.06,11.52), p=0.0001, respectively. 

We classified 1547 patients hierarchically into three cytogenetic risk groups (Table 3). 

There was no significant difference in RFS, EFS or OS between the 1547 patients 

classified into these three cytogenetic risk groups and the 178 patients who could not be 

evaluated due to failed or missing cytogenetic data (supplementary table 3). We used 

outcome data from this study to derive this classification but there were exceptions. The 

decision to classify near haploidy, low hypodiploidy and t(17;19) as poor risk despite not 

being able to formally test these groups, is supported by the fact that the low EFS/OS 

observed is consistent with several previous studies1 and both near haploidy and low 

hypodiploidy were included in the trial risk stratification algorithm as high risk features. 

The MLL translocation group was included in the poor risk group despite not retaining its 

significance in the multivariate model because the univariate analysis was clearly 

significant and patients under the age of 2 years with a MLL translocation were treated 

as high risk in this trial. This, and other high risk criteria, meant that 18/30 (60%) 

patients with a MLL translocation were treated on HR1 or Regimen C. Poor risk 

abnormalities correlated with older age and higher WCC (Supplementary Table 2). Tables 

1, 2 and 3, Supplementary Tables 3, 4 and 5, Figure 2 and Supplementary Figure 1 and 

2 illustrate the strong correlation between cytogenetic risk group and outcome both in 

univariate and multivariate analysis. There was no statistical interaction between 

cytogenetic risk group and the phase of trial (ALL97 versus ALL99) in the RFS, EFS or OS 

multivariate models. 

Among 766 ALL99 patients who were assessed for early response and could be classified 

into a cytogenetic risk group, 83 (11%) patients were slow early responders (SER). SER 

percentage varied significantly by cytogenetic risk group: good 34/460 (7%), 

intermediate 22/211 (10%) and poor 27/95 (28%) (p<0.0001).  

We used this classification to examine the relationship between cytogenetics and relapse 

characteristics (Table 4). There was a strong correlation between cytogenetic risk group 

and the time to relapse. Patients in the poor cytogenetic risk group were more likely to 

relapse within 18 months of diagnosis, whereas those in the good  cytogenetic risk group 

were more likely to have later, off-treatment, relapses (p<0.0001). However, there was 

no correlation between the site of relapse and cytogenetic risk group whether divided by 

individual sites (as in Table 4) or dichotomously according to marrow involvement (data 

not shown). Finally, we examined the relationship between  cytogenetic risk group and 

relapse risk group, as used previously by us, to examine survival after relapse in the 
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UKALLR2 trial.13 Table 3 shows that relapses arising from the poor cytogenetic risk group 

were five times more likely to be classified as a high risk relapse compared to those 

occurring in the good  cytogenetic risk group (p<0.0001). 

 

DISCUSSION 

This dataset represents one of the largest and most comprehensive cytogenetic studies 

of childhood ALL yet published. The results provide compelling evidence for the 

prognostic significance of cytogenetics in this disease. As ALL99 patients fared better 

than their ALL97 counterparts, we assessed whether there was any interaction between 

cytogenetic parameters and protocol. No statistical interaction was observed suggesting 

that the improved outcome seen in ALL99 benefitted all patients irrespective of 

cytogenetic risk group. We have verified conclusively the excellent prognosis associated 

with ETV6-RUNX1 fusion and high hyperdiploidy.12, 14-16 Multivariate analyses confirms 

that these associations are independent of other risk factors. Moreover, contrary to 

reports from several other groups we did not observe any increased risk of late relapses 

associated with ETV6-RUNX1.17-19 The crude relapse rate in our study for ETV6-RUNX1 

patients was substantially lower, suggesting our treatment protocol might be averting 

the late relapses seen, for example, in the NOPHO study.17  

Outcome heterogeneity in high hyperdiploidy by specific trisomies has been debated for 

many years.1 We could not confirm the results of the Children’s Oncology Group study 

suggesting that high hyperdiploid patients with TT (+4,+10,+17) have a superior 

outcome.11 Rather, this analysis confirms our previous findings regarding the favourable 

outcome of high hyperdiploid patients with +18.12 There are a number of differences 

between the two studies which may account for this discrepancy. Firstly, the Children’s 

Oncology Group analysis was not restricted to high hyperdiploid patients and thus their 

“non triple trisomy” group included patients with other abnormal and normal karyotypes. 

While this approach includes very rare non-high hyperdiploid cases with TT, it introduces 

substantial heterogeneity into the analysis making the results more difficult to interpret. 

In contrast, our analysis represents simple comparison within the high hyperdiploid 

subgroup between patients with and without a triple trisomy. Secondly, although the  

Children’s Oncology Group study comprised over 5000 patients, they were treated over a 

longer period of time (11 years) and in a different era (1988-1999). Thirdly, poor 

chromosome morphology results in incomplete classification rates and also chromosome 

misclassification; both of which are likely contributing factors. FISH screening will resolve 
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these two technical problems and future, more accurate datasets, will hopefully resolve 

this ongoing question.  

This study has confirmed the poor outcome associated with t(9;22), near haploidy, low 

hypodiploidy, MLL translocations, t(17;19) and iAMP21,.1 This was despite patients with 

the t(9;22), near haploidy, low hypodiploidy and MLL translocations (<2 years) receiving 

more intensive treatment. However, it should be noted that equivalent cytogenetic 

subgroups treated on the predecessor trial, UKALLXI, had an extremely poor outcome 

(near haploidy (EFS at 5 yrs 0%); t(4;11) (13%) and t(9;22) (27%))20 suggesting that 

the risk stratification of these rare cytogenetic subgroups was beneficial. Although 

patients with a MLL translocation had an inferior outcome overall, there was clear 

evidence of outcome heterogeneity within this group. Our analysis suggests that both 

age and t(4;11) may be important factors. Due to the relatively small number of patients 

in this subgroup and the strong correlation between t(4;11) and age, we were not able 

to determine which factor is driving this heterogeneity. The situation is further 

confounded by the fact that 18/30 were treated as high risk either on the basis of a MLL 

translocation or other risk features. While it is clear from previous studies that age is an 

important prognostic factor for patients with MLL translocations, most have compared 

infants (<1 year) with children (>1 year) or just considered infants21-23; and our study 

did not include any infants. Heterogeneity of outcome by MLL partner, with t(4;11) and 

t(9;11) faring poorly, has also been suggested especially among children (>1 year 

old).21, 22 In addition, a study from St Jude Children’s Research Hospital reported a very 

good outcome for t(4;11) patients albeit on just a handful of cases.16 This important 

clinical issue will need to be addressed using a larger cohort of children. However, a 

recent gene expression study which reported a link between differential expression of 

HOXA genes and outcome among infants with t(4;11)24 raises the possibility that 

secondary genetic alterations could be responsible for this heterogeneity.  

We found that patients with abn(17p) had a significantly inferior outcome and in 

particular a higher rate of relapse, but this finding was restricted to patients without one 

of the good risk abnormalities of ETV6-RUNX1 and high hyperdiploidy. This finding 

mirrors the situation observed in AML, whereby the presence of poor risk cytogenetic 

abnormalities do not affect the good prognosis of patients with t(15;17), t(8;21) or 

inv(16).25 We have recently reported that abn(17p)/-17 are independent adverse risk 

factors in AML.25 Studies in childhood ALL have been limited to i(17q) within the high 

hyperdiploidy subgroup.1 This study confirms our previous observations that abn(17p) 

does not negate the good prognosis associated with high hyperdiploidy.12 In adult ALL, 

abn(17p) was not a risk factor in BCP-ALL but results in T-ALL were strongly suggestive 
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of an association with poor outcome.26, 27 In AML, abnormalities of 17p correlate with 

complex karyotypes and p53 inactivation/mutation.28 While p53 mutations are rare in 

childhood ALL, it has been suggested that they occur more frequently in high risk 

disease.29 Independent studies are required to confirm these observations and unravel 

the nature of these aberrations. 

In 2000, Heerema et al30 reported that del(13q) was associated with an increased risk of 

relapse in childhood ALL, although the risk was not independent in multivariate analysis 

and did not extend to OS. We included patients with monosomy 13 in our analysis and 

found that the increased risk of relapse was independent of other risk factors although, 

again, OS was not affected. While it is tempting to speculate that the RB1 gene is the 

target of this abnormality, this requires verification.  

Historically several groups have reported that t(1;19) has an inferior outcome unless 

treated by more intensive treatment.1 However, in this and our previous study, 

UKALLXI20, patients with t(1;19) have always fared slightly but not significantly better 

than the average (Table 1). The St Jude Children’s Research Hospital recently reported 

that t(1;19) patients have an increased risk of CNS relapse.16, 31 Among our 50 t(1;19) 

patients, only 6 (12%) relapsed and 3 (50%) involved the CNS. However, with so few 

relapses occurring in this subgroup it is impossible to conclude that this rate is truly 

higher than the overall rate of 110/351 (31%).  

The prognostic relevance of dic(9;20) is currently the subject of debate with several 

groups reporting association with other poor risk features and increased incidence in 

high risk cohorts.32, 33 Our data, however, indicate no evidence for an increased risk of 

relapse or inferior outcome in this subgroup. This abnormality is both rare and 

heterogeneous at the molecular level34; these two factors make assigning a reliable 

prognosis to patients with dic(9;20) very difficult.  

The literature is contradictory with respect to the prognostic relevance of 9p 

abnormalities/CDKN2A deletions in childhood ALL.20, 35-40 The evidence from paediatric T-

ALL cohorts is more consistent for a relationship between CDKN2A/9p deletions and an 

inferior outcome.41, 42 However, it should be noted that not all patients with an 

abnormality of 9p have a CDKN2A deletion and vice versa.1, 35, 43 Therefore the terms are 

not mutually exclusive, despite considerable overlap. Our cytogenetic based observations 

are consistent with the recent EORTC study on paediatric BCP-ALL, which used molecular 

methods to assess CDKN2A copy number, and found no evidence for an association 

between CDKN2A deletion and outcome.38  
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Numerous studies over the past five years have shown that outcome after relapse is 

highly heterogenous.3 While there is a consensus regarding the most relevant risk 

factors governing post-relapse survival (initial response, time of relapse and site of 

relapse) less is known about the relationship between cytogenetics and these factors. 

Using a cytogenetic risk index outlined in Table 3, we found a strong correlation between 

poor risk cytogenetics and slow early response as well as early relapse. Furthermore 

there was a strong correlation between  cytogenetic risk group and the relapse risk 

groups used in UKALLR2.13 These findings could be used in conjunction with MRD data to 

identify patients at greatest risk of multiple treatment failure who would benefit most 

from early intervention with alternative therapies. 

This study has many strengths including size, long follow-up, quality and extent of 

cytogenetic analysis and comprehensive statistical analysis. However, it does have some 

limitations. As this is the first time that the cytogenetic risk groups in table 4 have been 

proposed in childhood ALL, they will require validation in independent cohorts. Recent 

array studies have highlighted a plethora of novel focal deletions of B-cell differentiation 

and cell cycle genes in childhood ALL.32, 44 Unfortunately we have not been able to 

incorporate data on these abnormalities into this study due to a lack of suitable material. 

Although, IKZF1 deletions have been reported to confer a higher risk of relapse, the 

largest effect was seen within the t(9;22) subgroup which is already a well established 

poor risk subgroup.44 In addition, den Boer et al32 reported that many of the micro-

deletions correlated with either the t(9;22)/BCR-ABL1 subgroup or the newly described 

BCR-ABL1-like subgroup. Importantly, the BCR-ABL1-like subgroup did not correlate with 

any of the major cytogenetic subgroups. Hence while it will be important to assess the 

prognostic relevance of these micro-deletions in the context of these results; we do not 

think that the absence of such data significantly alters the key findings in this study.  

The findings from this large and comprehensively characterised cohort of childhood ALL 

demonstrate the importance of cytogenetics in the management of patients with this 

disease. We have confirmed that individual chromosomal abnormalities are strong 

independent predictors of outcome, especially risk of relapse. Moreover, we have shown 

that diagnostic cytogenetics not only identifies patients with a higher rate of relapse but 

predicts those who are less likely to respond well to treatment after relapse. In the 

forthcoming NCRI ALL2010 paediatric trial the following chromosomal abnormalities will 

be classified as high risk - t(9;22), iAMP21, MLL translocations, near haploidy, low 

hypodiploidy and t(17;19). 
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Figure Legends 

Figure 1: ALL97/99 treatment regimens.  

CMT=Continuing maintenance therapy. MTX=Methotrexate. WCC=white blood cell count. 

RER=rapid early response. SER=slow early response. CCG=Children’s Cancer Study 

Group. BFM=Berlin Frankfurt Munster consolidation. DDI=double delayed intensification. 

IM=interim maintenance. DI=delayed intensification. CT=continuing therapy. * Third 

block was randomised in first year. 

 

Figure 2:  Kaplan Meier graphs showing the relapse free survival for (a) individual 

chromosomal abnormalities that were significant in univariate analysis, (b) cytogenetic 

risk groups.  

For the purposes of drawing this graph patients were classified hierarchically in the order 

ETV6-RUNX1, t(9;22), MLL translocations, iAMP21, high hyperdiploidy, abnormal 17p, 

loss of 13q.
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Table 2: Final multivariate Cox models of relapse free survival for individual chromosomal abnormalities and 

the cytogenetic risk groups 

Variable 
1
 Hazard Ratio 

3
 P value 95% CI 

    

Individual chromosomal abnormality 
6
 

ALL99 v ALL97 0.71 0.0031 (0.56,0.89) 

Dexa v Pred 
4
 0.62 0.0001 (0.49,0.79) 

iAMP21 4.69 <0.0001 (2.94,7.48) 

WCC 
2
 1.23 <0.0001 (1.13,1.35) 

Age 1.05 0.0003 (1.02,1.08) 

t(9;22) 2.65 0.0001 (1.62,4.35) 

ETV6-RUNX1 0.53 0.0002 (0.38,0.74) 

High hyperdiploidy 0.68 0.0065 (0.51,0.90) 

Abnormal 17p 2.21 0.0012 (1.37,3.57) 

Loss of 13q 1.99 0.0130 (1.16,3.43) 

    

Cytogenetic Risk Group 
5
 

ALL99 v ALL97 0.70  0.0019 (0.55,0.87) 

Dexa v Pred 
4
 0.62 0.0001 (0.49,0.79) 

Good v Intermediate Risk 0.70  0.0110 (0.53,0.92) 

Poor v Intermediate Risk 3.01 <0.0001 (2.23,4.06) 

WCC 
2
 1.16  0.0010 (1.06,1.26) 

Age 1.05 0.0004 (1.02,1.08) 

 

Notes: (1) Variables are listed in the order in which they entered the model; (2) WCC was transformed to 

ln(WCC+1) before being entered in the model; (3) The hazard ratio for the good and poor cytogenetic risk 

groups is relative to the intermediate risk group; (4) Dexamethasone v Prednisolone; (5) See table 4 for 

definition of cytogenetic risk group; (6) Sex and MLL translocations were assessed in the stepwise multivariate 

analysis but did not make it into the final model. 

 

Abbreviations: WCC, white cell count 

Definitions: High hyperdiploidy, 51-65 chromosomes 
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Table 3: Definition of cytogenetic risk groups 

Cytogenetic 

Risk Group 

Chromosomal abnormalities Notes 

Good High hyperdiploidy (51-65 

chromosomes) 

ETV6-RUNX1 

Irrespective of the 

presence of poor 

risk abnormalities, 

except  

t(9;22)(q34;q11).  

Intermediate t(1;19)(q23;p13)  

IGH-CEBP  

IGH-ID4  

del(6q)  

abnormal 9p  

abnormal 11q  

dup(1q)  

-7  

dic(9;20)(p13;q11)  

dic(9;12)(p11~21;p11~13) 

any other abnormality 

normal karyotype 

 

Poor t(9;22)(q34;q11.2) 

iAMP21 

MLL translocations 

near Haploidy (<30 

chromosomes) 

low hypodiploidy (30-39 

chromosomes) 

t(17;19)(q23;p13) 

abnormal 17p 

loss of 13q 

In the absence of 

good risk 

abnormalities, 

except in the 

situation of 

t(9;22) with high 

hyperdiploidy. 
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Table 4: Relationship between cytogenetic risk group and response rate, time of relapse, site of relapse and 

relapse risk group. 

Relapse Criteria 
All cases 

1
  

n (%) 

Cytogenetic Risk Group n (%) 
2
 

Good Intermediate  Poor 

     

Total Relapses 309 (20%) 129 (100%) 98 (100%) 82 (100%) 

     

Time of relapse 

<18m 69 (22%) 8 (6%) 24 (25%) 37 (45%) 

>18m and <6m EOT 67 (22%) 28 (22%) 25 (26%) 14 (17%) 

>6m EOT 173 (56%) 93 (72%) 49 (50%) 31 (38%) 

     

Site of relapse 

Isolated marrow 180 (58%) 69 (54%) 57 (58%) 54 (66%) 

Isolated CNS 51 (17%) 22 (17%) 19 (19%) 10 (12%) 

Isolated other 15 (5%) 8 (6%) 4 (4%) 3 (4%) 

Combined 63 (20%) 30 (23%) 18 (18%) 15 (18%) 

     

Relapse Risk Group 
3
 

Standard Risk 19 (6%) 13 (10%) 3 (3%) 3 (4%) 

Intermediate Risk 217 (70%) 104 (81%) 72 (74%) 41 (50%) 

High Risk 73 (24%) 12 (9%) 23 (24%) 38 (46%) 

  

Notes:  

(1) Excludes cases with failed or no cytogenetics.  

 

(2) See table 4 for definition of cytogenetic risk group  

 

(3) Standard risk, isolated extramedullary relapses occurring 6 months or more after the EOT; Intermediate risk, 

isolated extramedullary relapses occurring on therapy or within 6 months of EOT, combined relapses occurring 

18m or more after diagnosis and isolated marrow relapses occurring 6 months after the EOT; High risk, 

combined relapses occurring with 18m of diagnosis and isolated marrow relapses occurring on therapy or 

within 6 months of EOT.  

 

Abbreviations: EOT, end of frontline treatment  
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Supplementary Table 2: Incidence and clinical characteristics of children with B-cell precursor acute lymphoblastic 

leukaemia (BCP-ALL) by chromosomal abnormality and cytogenetic risk group 

Chromosomal abnormality 
Number (%) of 

patients 1 

Sex ratio 

(M:F) 

Age (years) 

Median (IQR) 

WCC (x109/L) 

Median (IQR) 

All patients 1725 (100%) 1:0.83 4 (3,8) 9.9 (4.2,31.5) 

Primary Chromosomal/Genetic abnormalities 

High hyperdiploidy 562 (38%) 1: 0.8 3 (2,6)** 7.5 (3.7,19.7)** 

ETV6-RUNX1 368 (25%) 1: 0.7 4 (3,5) ** 10.7 (5, 33.7) 

t(1;19)(q23;p13) 50 (4%) 1:1.27 3 (2,8) 26.2 (16.2, 39)** 

t(9;22)(q34;q11.2) 43 (3%) 1:0.65 6 (3,12) 35 (11,200)** 

iAMP21 29 (2%) 1:0.93 8 (7,12)** 3.7 (2.4,13.9)** 

MLL translocations 30 (2%) 1:0.88 4 (1,12) 129 (32,205)** 

Near Haploidy 10 (1%) 1:1 6 (4,8) 50 (16,135)* 

Low hypodiploidy 8 (1%) 1:1 12 (10,14)* 5.6 (4.1,14.2) 

IGH-CEBP 7 (NA) 1:1.33 11 (9,14)* 5.9 (4.6,103) 

IGH-ID4 3 (NA) 1:0 12 4.5 

t(17;19)(q23;p13) 2 (0.1%) 1:1 9 6.7 

     

Secondary abnormalities 

del(6q) 77 (5%) 1:0.67 4 (3,7) 8.5 (3.4,23.4) 

abnormal 9p 160 (11%) 1:0.86 6 (3,11)* 12.8 (5.2,58)* 

abnormal 11q 68 (5%) 1:1.06 4 (3,8) 8.4 (5,22.2) 

abnormal 17p 44 (3%) 1:0.92 5 (3,10)* 9.5 (5.7, 36.5) 

Loss of 13q 50 (4%) 1:0.76 6 (4,9) 12.2 (4.6,34) 

dup(1q) 41 (3%) 1:0.86 4 (3,7) 9 (4.2,23.7) 

-7 23 (2%) 1:0.64 4 (3,12) 11.4 (4,49.6) 

dic(9;20)(p13;q11) 13 (1%) 1:0.86 7 (5,11) 10.7 (4.2,20.1) 

dic(9;12)(p11~21;p11~13) 15 (1%) 1:0.15 11 (3,14) 15 (3.6, 33.9) 

Cytogenetic Risk Group 2 

Good Risk 923 1:0.77 4 (2,6)** 8.5 (4.1, 24)** 

Intermediate Risk 458 1:0.89 5 (3,10) 12.6 (4.6,36.9) 

Poor Risk 166 1:0.84 7 (4,12) 16.1 (5.2, 91.5) 

 

Notes: (1) The incidence has been calculated using the total number of patients tested for each abnormality by cytogenetics, FISH 

or RT-PCR: High hyperdiploidy (n=1486); ETV6-RUNX1 (n=1451);  t(1;19), abnormal 11q, dic(9;12) (n=1420); t(17;19), del(6q), 

abnormal 9p, abnormal 17p, loss of 13q, dup(1q), -7, dic(9;20) (n=1419); t(9;22) (n=1633); iAMP21 (n=1449), Other MLL 

translocations, t(4;11) (n=1627); near haploidy, low hypodiploidy (n=1434). No incidence has been given for IGH-CEBP and 

IGH-ID4 has both these abnormalities were identified by selected FISH screening. (2) See table 4 for definition of cytogenetic risk 

group. For the good and poor cytogenetic risk groups each has been compared to the intermediate group. Abbreviations: IQR, 

inter-quartile range; WCC, white cell count. Symbols: * P <0.01, **P<0.001. Definitions: High hyperdiploidy, 51-65 

chromosomes; near haploidy, <30 chromosomes; low hypodiploidy, 30-39 chromosomes. 
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Supplementary Table 3: Outcome of children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) by 

chromosomal abnormality and cytogenetic risk group showing the comparator group for individual analyses. 

 

Chromosomal abnormality Total (%) 

No 

Remission        

N (%) 

Deaths 

in 1st 

remission 

N (%) 

Relapses 

N (%) 

RFS at 5 Yrs 

%  (95%CI) 

EFS at 5Yrs 

% (95% CI) 

OS at 5Yrs 

% (95% CI) 

All patients 1725 (100) 16 (1) 57 (3) 351 (20) 81 (79-83) 78 (76-80) 87 (86-89) 

Primary abnormalities 

High hyperdiploidy 
Yes 562 (38) 3 (1) 11 (2) 85 (15) 86 (83-89) 84 (81-87) 93 (91-95) 

No 924 (62) 11(1) 38 (4) 212 (23) 78 (76-81) 75 (72-78) 85 (82-87) 

 ETV6-RUNX1 
Yes 368 (25) 2 (1) 5 (1) 47 (13) 89 (86-92) 89 (85-91) 96 (94-98) 

No 1083 (75) 10 (1) 42 (4) 240 (22) 79 (76-81) 75 (73-78) 85 (83-87) 

 t(1;19)(q23;p13) 
Yes 50 (4) 0 (0) 4 (8) 6 (12) 87 (74-94) 80 (66-89) 84 (71-92) 

No 1370 (97) 13(1) 42 (3) 277 (20) 81 (79-83) 79 (76-81) 88 (86-89) 

 t(9;22)(q34;q11.2) 
Yes 43 (3) 1 (2) 7 (16) 18 (42) 56 (38-70) 44 (29-58) 58 (42-71) 

No 1590 (97) 13 (1) 46 (3) 309 (19) 82 (80-84) 79 (77-81) 89 (87-90) 

 iAMP21 
Yes 29 (2) 1 (3) 0 (0) 22 (76) 27 (12-44) 26 (12-43) 69 (49-82) 

No 1420 (98) 11(1) 46 (3) 266 (19) 83 (80-85) 80 (77-82) 88 (87-90) 

 MLL translocations 
Yes 30 (2) 0 (0) 2 (7) 13 (43) 55 (35-71) 50 (31-66) 60 (41-75) 

No 1597 (98) 14 (1) 51 (3) 315 (20) 82 (80-84) 79 (77-81) 88 (86-90) 

 Near Haploidy 
Yes 10 (1) 0 (0) 0 (0) 6 (60) 44 (14-72) 40 (12-67) 40 (12-67) 

No 1425(99) 14(1) 47 (3) 287 (20) 81 (79-83) 78 (76-80) 88 (86-90) 

 Low hypodiploidy 
Yes 8 (1) 0 (0) 0 (0) 4 (50) 50 (15-78) 50 (15-78) 50 (15-78) 

No 1426(99) 14(1) 47 (3) 289 (20) 81 (79-83) 78 (76-80) 88 (86-89) 

 IGH-CEBP 
Yes 7 (NA) 0 (0) 0 (0) 2 (29) 71 (26-92) 71 (26-92) 86 (33-98) 

No 86 (NA) 3 (4) 7 (8) 28 (33) 70 (59-79) 63 (52-72) 75 (65-83) 

 IGH-ID4 
Yes 3 (NA) 0 (0) 0 (0) 0 (0) 100 (-) 100 (-) 100 (-) 

No 90 (NA) 3 (3) 7(8) 30 (33) 69 (58-78) 62 (51-71) 75 (65-83) 

t(17;19)(q23;p13) 
Yes 2 (0.1) 0 (0) 0 (0) 2 (100) - - - 

No 1417(99.9) 13(1) 46(3) 281 (20) 82 (80-84) 79 (76-81) 88 (86-89) 

Secondary abnormalities 

 del(6q) 
Yes 77 (5) 0 (0) 2 (3) 17 (22) 80 (69-87) 79 (68-87) 87 (77-93) 

No 1342 (95) 13 (1) 44 (3) 266 (20) 82 (80-84) 79 (76-81) 88 (86-89) 

 abnormal 9p 
Yes 160 (11) 2 (1) 5 (3) 38 (24) 77 (70-83) 74 (67-80) 86 (79-90) 

No 1259 (89) 11 (1) 41 (3) 245 (20) 82 (80-84) 79 (77-81) 88 (86-90) 

 abnormal 11q 
Yes 68 (5) 1 (2) 3 (4) 12 (18) 81 (70-89) 78 (66-86) 87 (76-93) 

No 1352 (95) 12 (1) 43 (3) 271 (20) 82 (79-84) 79 (76-81) 88 (86-89) 

 abnormal 17p 
Yes 50 (4) 1 (2) 0 (0) 18 (36) 65 (50-77) 64 (49-76) 76 (61-86) 

No 1369 (97) 12 (1) 46 (3) 265 (19) 82 (80-84) 79 (77-81) 88 (86-90) 

loss of 13q 
Yes 44 (3) 2 (5) 1 (2) 14 (32) 68 (52-80) 66 (50-78) 82 (67-91) 

No 1375 (97) 11 (1) 45 (3) 269 (20) 82 (80-84) 79 (77-81) 88 (86-89) 

dup(1q) 
Yes 41 (3) 1 (2) 0 (0) 8 (20) 82 (66-91) 80 (64-90) 95 (82-99) 

No 1378 (97) 12 (1) 46 (3) 275 (20) 82 (79-84) 79 (76-81) 87 (86-89) 

 -7 
Yes 23 (2) 1 (4) 0 (0) 7 (30) 77 (54-90) 74 (51-87) 87 (65-96) 

No 1396 (98) 12 (1) 46 (3) 276 (20) 82 (80-84) 79 (76-81) 88 (86-89) 

dic(9;20)(p13;q11) 
Yes 13 (1) 0 (0) 1 (8) 3 (23) 77 (44-92) 77 (44-92) 92 (57-99) 

No 1406 (99) 13 (1) 45 (3) 280 (20) 82 (80-84) 79 (76-81) 88 (86-89) 

dic(9;12)(p11~21;p11~3) 
Yes 15 (1) 0 (0) 0 (0) 3 (20) 80 (50-93) 80 (50-93) 87 (56-97) 

No 1405 (99) 13 (1) 46 (3) 280 (20) 82 (79-84) 79 (76-81) 88 (86-89) 

Cytogenetic Risk Group 1 

  Good Risk Yes 923 (54) 5 (1) 15 (2) 129 (14) 88 (85-90) 86 (84-88) 94 (93-96) 

  Intermediate Risk Yes 458 (27) 5 (1) 23 (5) 98 (21) 80 (76-84) 76 (72-80) 85 (81-88) 

  Poor Risk Yes 166 (10) 4 (2) 10 (6) 82 (49) 50 (42-58) 45 (37-52) 61 (53-68) 

  No Cytogenetic Group No 178 (10) 2 (1) 9 (5) 42 (24) 77 (69-82) 72 (65-78) 83 (76-87) 

 

Notes: (1) See table 4 for definition of cytogenetic risk group. Abbreviations: CI, confidence interval; Definitions: High 

hyperdiploidy, 51-65 chromosomes; near haploidy, <30 chromosomes; low hypodiploidy, 30-39 chromosomes.



5 

 

Supplementary Table 4: Final multivariate Cox models of Event Free Survival for individual chromosomal abnormalities and 

the cytogenetic risk groups 

Variable 1 Hazard Ratio 3 P value 95% CI 

Individual chromosomal abnormality6 

ALL99 v ALL97 0.75 0.0059 (0.60,0.92) 

Dexa v Pred 4 0.71 0.0023 (0.57,0.89) 

Age 1.05 0.0001 (1.02,1.08) 

WCC 2 1.23 <0.0001 (1.14,1.34) 

iAMP21 3.84 <0.0001 (2.45,6.02) 

t(9;22) 2.89 <0.0001 (1.90,4.38) 

ETV6-RUNX1 0.49 <0.0001 (0.36,0.68) 

High hyperdiploidy 0.65 0.0009 (0.50,0.84) 

Abnormal 17p 1.89 0.0072 (1.19,3.01) 

Loss of 13q 1.92 0.0097 (1.17,3.13) 

 

Cytogenetic Risk Group 5 

ALL99 v ALL97 0.74 0.0039 (0.60,0.91) 

Dexa v Pred 4 0.71 0.0023 (0.57,0.89) 

Good v Intermediate Risk 0.64 0.0005 (0.50,0.83) 

Poor v Intermediate Risk 2.71 <0.0001 (2.07,3.56) 

WCC 2 1.17 0.0001 (1.08,1.26) 

Age 1.05 0.0003 (1.02,1.07) 

 

Notes: (1) Variables are listed in the order in which they entered the model; (2) WCC was transformed to ln(WCC+1) before being 

entered in the model; (3) The hazard ratio for the good and poor cytogenetic risk groups is relative to the intermediate risk group; (4) 

Dexamethasone v Prednisolone; (5) See table 4 for definition of cytogenetic risk group; (6) Sex and MLL translocations were assessed 

in the stepwise multivariate analysis but did not make it into the final model. Abbreviations: WCC, white cell count. Definitions: 

High hyperdiploidy, 51-65 chromosomes 
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Supplementary Table 5: Final multivariate Cox models of Overall Free Survival for individual chromosomal abnormalities 

and the cytogenetic risk groups 

Variable 1 Hazard Ratio 3 P value 95% CI 

Individual chromosomal abnormality6 

ALL99 v ALL97 0.71 0.0150 (0.54,0.94) 

Dexa v Pred 4 0.85 0.2490 (0.64,1.12) 

Age 1.07 <0.0001 (1.04,1.11) 

WCC 2 1.33 <0.0001 (1.20,1.47) 

ETV6-RUNX1 0.28 <0.0001 (0.17,0.46) 

High hyperdiploidy 0.49 0.0001 (0.34,0.69) 

t(9;22) 2.42 0.0004 (1.48,3.94) 

iAMP21 2.49 0.0033 (1.36,4.59) 

Abnormal 17p 1.99 0.0170 (1.13,3.50) 

    

Cytogenetic Risk Group 5 

ALL99 v ALL97 0.68 0.0069 (0.52,0.90) 

Dexa v Pred 4 0.85 0.2490 (0.64,1.12) 

Good v Intermediate Risk 0.48 <0.0001 (0.34,0.67) 

Poor v Intermediate Risk 2.50 <0.0001 (1.80,3.48) 

WCC 2 1.27 <0.0001 (1.15,1.40) 

Age 1.07 <0.0001 (1.04,1.10) 

 

Notes: (1) Variables are listed in the order in which they entered the model; (2) WCC was transformed to ln(WCC+1) before being 

entered in the model; (3) The hazard ratio for the good and poor cytogenetic risk groups is relative to the intermediate risk group; (4) 

Dexamethasone Vs Prednisolone; (5) See table 4 for definition of cytogenetic risk group; (6) Sex, MLL translocations and loss of 13q 

were assessed in the stepwise multivariate analysis but did not make it into the final model. Abbreviations: WCC, white cell count 

Definitions: High hyperdiploidy, 51-65 chromosomes  
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Supplementary figure 1: Kaplan Meier graphs showing the event free survival for (a) individual chromosomal 

abnormalities that were significant in univariate analysis, (b) cytogenetic risk groups. NB. For the purposes of drawing 

this graph patients were classified hierarchically in the order ETV6-RUNX1, t(9;22), MLL translocations, iAMP21, high 

hyperdiploidy, abnormal 17p, loss of 13q. 
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Supplementary figure 2: Kaplan Meier graphs showing the overall survival for (a) individual chromosomal 

abnormalities that were significant in univariate analysis, (b) cytogenetic risk groups. NB. For the purposes of drawing 

this graph patients were classified hierarchically in the order ETV6-RUNX1, t(9;22), MLL translocations, iAMP21, high 

hyperdiploidy, abnormal 17p, loss of 13q. 
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Supplementary figure 3: Kaplan Meier graphs showing relapse-free survival for high hyperdiploid patients with and 

without (A) triple trisomy (+4,+10,+17) and (B) trisomy 18 .   
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