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Abstract

Background
Breast cancer is the mostly diagnosed malignance in female worldwide. However, the mechanisms of its
pathogenesis remain largely unknown.

Methods
In this study, we used weighted gene co-expression network analysis (WGCNA) to identify novel
biomarkers associated with the prognosis of breast cancer. Gene expression pro�les were obtained from
the Gene Expression Omnibus (GEO) database.

Results
A total of 5 modules were identi�ed via the average linkage hierarchical clustering. And a module
signi�cantly with the pathological grade was screened out. 33 genes with high connectivity in the
clinically signi�cant module were identi�ed as hub genes. Among them, CASC5 and RAD51 were
negatively associated with the overall survival and disease-speci�c survival. Similar results were
observed in the validation dataset. Protein levels of CACS5 and RAD51 were also signi�cantly higher in
tumor tissues compared with normal tissues based on the analysis of the Human Protein Atlas.
Convincingly, qRT-PCR analysis of breast cancer tissues and matched paracancerous tissue
demonstrated that CACS5 and RAD51 were signi�cantly upregulated in in breast cancer compared to
paracancerous tissues. Further cell proliferation assay indicated that CACS5 and RAD51 depletion
decreased cell proliferation capability.

Conclusion
In conclusion, our �ndings suggested that CASC5 and RAD51 could serve as biomarkers related to the
prognosis of breast cancer and may be helpful for revealing pathogenic mechanism and developing
further research.

Introduction
Breast cancer is the most common cancer and is the second leading cause of cancer death in women
worldwide. Despite the incidence of breast cancer is dramatically higher in developed countries, almost
half of newly diagnosed cases and approximately 60% of deaths are occurring in developing world(1).
Survival rates of breast cancer are largely different in the world. In developed countries, 5-year survival
was estimated at 80%, while it is thought to below 40% for developing countries(2). Breast cancer-related
deaths have been decreased in recent decades as a result of improving strategies to diagnose and
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treatment. However, a minority of breast cancer patients initially diagnosed with advanced stage are
nearly incurable. Some patients present early-stage disease suffer distant or locoregional recurrence(3).
Thus, it is important to understand the underlying mechanisms during the initiation and progression of
breast cancer.

Breast cancer is a disease with great heterogeneity. Based on the expression of the three biomarkers,
estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2),
molecular studies have demonstrated that breast cancer can be categorized into three subtypes: luminal
(hormone receptor positive), HER2-enriched (high expression of HER2 gene), and triple-negative (ER-
negative, PR-negative, HER2-negative). Luminal type of breast cancer is characterized by the expression
of estrogen receptor and progesterone receptor. Patients with luminal breast cancer often have the best
prognosis due to the application of endocrine treatment, while half of these patients will develop acquired
resistance. Triple-negative and HER2-enriched breast cancers have more aggressive behaviors. Patients
with triple-negative and HER2-enriched breast cancers are thought to have poorer prognosis, with trend to
early relapse and metastatic spread to the liver, lung and central nervous system(4, 5). BRCA1 and BRCA2
are used to assess the risk of inherited breast cancer. The risks of breast cancer associated with BRCA1
and BRCA2 mutations are 65% and 45% in population, while in cancer-prone families, the risks are
estimated to be 87% and 84%(6, 7).

Based on the histopathological features of breast cancer, such as tumor size, lymph node status and
grade, patients could be strati�ed into high- and low‐risk groups of recurrence and mortality(8). However,
even in patients with histologically similar tumors, clinical outcomes of breast cancer patients are largely
different due to the heterogeneity of breast cancer(9). Several studies have established multiple gene
prognostic signatures to predict the prognosis of patients with breast cancer. Some prognostic models
have been validated and are in clinical application(10–12). It is important to detect these biomarkers to
support early diagnosis, therapeutic strategies determination and prognosis prediction after treatment.

WGCNA (Weighted Gene Co-expression Network Analysis) is a systems biology method to analyze the
correlation patterns among genes(13). It can be used to identify candidate biomarker genes or
therapeutic targets according to the interconnectedness of gene sets and the association between gene
sets and phenotypes. In the present study, we used WGCNA to explore candidate biomarkers of patients
with breast cancer.

Materials And Methods

Data Processing
Gene expression pro�les and clinical data of breast cancer patients (GSE37751) were downloaded from
the GEO database. The GSE37751 was based on GPL6244 platform (Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]). This dataset included 47 normal breast tissues and 61 breast cancer
tissues. We used the Robust Multi-array Average (RMA) method to normalize raw microarray datasets,
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including background correction, log2 transformation and normalization. Probes were changed into gene
symbols using corresponding annotation �les. the expression value of each gene was compared between
cancer samples and normal samples to identify differentially expressed genes (DEGs) by Linear Models
for Microarray Data (LIMMA) package. The False Discovery Rate method was used to adjust the p-value.
Adjusted P-value < 0.05 and |log2 foldchange (FC)| > 1 were set as the cutoff criteria to select genes for
further network construction.

Construction Of Co-expression Network
The gene co-expression networks of DEGs were constructed using R WGCNA package. In the present
study, an appropriate soft-threshold power β was selected to build a weighted adjacency matrix. We
calculated the network connectivity of genes by transforming the adjacency matrix into topological
overlap matrix (TOM). In order to classify the genes with similar expression pro�les into gene modules,
the average linkage hierarchical clustering was performed according to the TOM-based dissimilarity
measure with a minimum size of 30 for the genes dendrogram.

Identi�cation Of Clinically Signi�cant Modules
Module eigengenes (MEs) are the �rst principle component of each gene module and were considered as
the expression patterns of all genes within a given module. Correlations between clinical trait and MEs
were calculated to identify the clinically signi�cant module. In addition, module signi�cance (MS) of each
module was calculated. The higher absolute value of module signi�cance of a given module was
considered as more biologically signi�cant.

Pathway Enrichment And Functional Analyses
In order to identify the biological function of the clinically signi�cant module, gene ontology and KEGG
pathway enrichment analyses were performed using a functional annotation tool in the database for
annotation, visualization and integrated discovery (DAVID, http://david.abcc.ncifcrf.gov/, version 6.8).
Adjusted P < 0.05 was considered statistically signi�cant.

Identi�cation And Validation Of Hub Genes
Hub genes are thought to be highly interconnected with nodes in a module and are more likely to have
functional signi�cance. Module connectivity of each gene was measured by absolute value of the
module membership (MM). And the absolute value of gene signi�cance (GS) was also calculated to
identify the relationship between genes and clinical trait. Hub genes are considered to have higher
absolute value of MM and GS. In the present study, absolute MM > 0.8 and absolute GS > 0.4 were de�ned
as hub genes in co-expression network. GSE21653 was downloaded to validated the prognostic value of
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our hub genes. Survival analysis was also performed using Kaplan Meier-plotter (www. kmplot.com)(14).
Immunohistochemistry data were obtained to validate protein levels of candidate hub genes using the
Human Protein Atlas (http://www.proteinatlas.org)(15).

Validation In Human Breast Cancer Samples
25 paired breast cancer and paracancerous tissues samples were collected from patients undergoing
modi�ed radical mastectomy at Zhongnan Hospital of Wuhan University. All the breast tumors samples
were con�rmed by two pathological specialists independently. The samples were immediately frozen and
stored in liquid nitrogen. We isolated total RNA from breast cancer and paracancerous tissue samples
and performed qRT-PCR analysis to validate the expression of prognostic genes in human samples. This
study was reviewed and approved by the Ethical Board at the Zhongnan Hospital of Wuhan University
with written informed consent from all the patients

Proliferation Analysis
Breast cancer cell line (MDA-MB-231) was used to identify the biological functions of hub genes. Cells
were transfected with 50 nM small interfering RNAs using Lipofectamin RNAiMAX (Invitrogen, Carlsbad,
CA, USA). Cell viability was measured using Cell Counting Kit-8 (CCK8) every 24 h.

Statistical Analysis
Kaplan-Meier method with log-rank test and Cox regression model were used to perform survival analysis.
We separated patients into low- and high- expression groups based on the median expression value of
each hub gene. Student's t test and one-way ANOVA were used to compare the difference between two or
more groups. We performed all statistical analysis using R software 3.6.1 and GraphPad Prism software
version 7.0 (GraphPad Software, San Diego, CA, USA), a P < 0.05 was set as the probability value of
statistical signi�cance.

Result

Weighted co-expression network construction and key
modules identi�cation
Based on the threshold of adjusted P-value < 0.05 and |log2 foldchange (FC)| > 1, a total of 3668 DEGs
(2756 up-regulated and 912 down-regulated) were selected for WGCNA analysis. Nine tumor samples
without complete clinical information and 47 normal samples were removed from our subsequent co-
expression analysis. To assess the microarray quality, we performed sample cluster of GSE37751 in
Pearson’s correlation matrices and average linkage method (Fig. 1A). Fifty-two samples were included in
co-expression analysis. In this study, we selected the power of β = 16 (scale free R2 = 0.87) as the soft-
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thresholding to ensure a scale-free network (Fig. 1B, C). A total of 5 modules were identi�ed via the
average linkage hierarchical clustering. Turquoise module was found to have the highest association with
pathological grade (Fig. 2), which was selected as the clinically signi�cant module to be studied for
further analysis.

Gene Ontology And Pathway Enrichment Analysis
In order to identify the biological functions of turquoise module, genes in this module were categorized
into 3 functional groups: biological process (BP), molecular function (MF) and cellular component (CC).
In the BP group, turquoise module genes were mainly enriched in cell division, mitotic nuclear division,
DNA replication, sister chromatid cohesion, mitotic nuclear division and G1/S transition of mitotic cell
cycle. In the MF group, they were mainly enriched in protein binding, ATP binding, histone binding, DNA
binding and protein heterodimerization activity. In the CC group, they were signi�cantly enriched in
nucleoplasm, nucleus, nucleosome, kinetochore and cytosol (Fig. 3A-C). KEGG pathway analysis
demonstrated that these genes were mainly involved in cell cycle, DNA replication, alcoholism, systemic
lupus erythematosus and Fanconi anemia pathway (Fig. 3D). These results showed that genes in the
clinically signi�cant module were mainly involved in mitotic cell cycle process.

Identi�cation and validation of hub genes

Based the cut-off criteria (|MM| > 0.8 and |GS| > 0.4), a total of 33 genes with high connectivity in the
clinically signi�cant module were identi�ed as hub genes. Among them, CASC5 and RAD51 were
negatively associated with the overall survival and disease-speci�c survival. Consistently, high expression
of CASC5 and RAD51 indicated poor relapse-free survival in GSE21653 (Fig. 4). The same results were
observed in Kaplan Meier-plotter database (Fig. 5). In GSE37751, CASC5 and RAD51 were upregulated in
triple-negative breast cancer. Higher expression levels of CASC5 and RAD51 were associated with
advanced tumor stage and grade (Fig. 6). Similar results were found in the validation set
GSE21653(Fig. 7). Protein levels of CACS5 and RAD51 were also signi�cantly higher in tumor tissues
compared with normal tissues based on the Human Protein Atlas (Fig. 8). Convincingly, we performed
qRT-PCR using breast cancer tissues and matched paracancerous tissue to validate their expression
levels. CACS5 and RAD51 were signi�cantly upregulated in in breast cancer compared to paracancerous
tissues. Further cell proliferation assay demonstrated that CACS5 and RAD51 depletion decreased cell
proliferation capability (Fig. 9). To further analyze the function of CACS5 and RAD51, GSEA was
conducted to search KEGG pathways enriched in CACS5 or RAD51 highly expressed samples. Based on
the cut-off criteria (FDR < 0.05), 3 functional gene sets were enriched in CACS5 highly expressed samples:
“Proteasome”, “Spliceosome”, “RNA polymerase”, and “Oxidative phosphorylation”. Six functional gene
sets were enriched in RAD51 highly expressed samples: “Pyrimidine metabolism”, “Spliceosome”,
“Oxidative phosphorylation”, “RNA polymerase”, “DNA replication”, and “Basal transcription factors”
(Figure S1).
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Discussion
Breast cancer is the most frequent malignant tumor in females. It is still easy to recur even after
combined therapy. In the era of precise medicine, microarray has been widely used to analyze the
expression changes of mRNA in breast cancer and predict the potential therapeutic targets. However,
better biomarkers for cancer speci�c prognosis and progression were still required.

In the present study, we performed WGCNA to explore gene co-expression modules associated with
progression of breast cancer. A total of 3668 DEGs were used to construct co-expression network and 5
modules were identi�ed. Turquoise module was found to have the highest association with tumor grade,
ER status and triple-negative tumor. Thirty-three genes with high connectivity were screened from the
module. Among them, CASC5 and RAD51 were negatively associated with the prognosis of patients.

CASC5, also known as D40, encodes a protein that functions as a scaffold for proteins in�uencing the
spindle assembly checkpoint during the eukaryotic cell cycle. It is required for creation of kinetochore-
microtubule attachments and chromosome segregation. CASC5 is widely expressed in various cultured
human cancer cell lines and primary tumors of different origins. Yuri N et al. characterized CASC5 as a
member of the cancer/testis gene family, and CASC5 knockdown signi�cantly inhibited the growth of
human cancer cell lines both in vitro and in vivo(16). In poorly differentiated primary lung cancer, CASC5
expression level was signi�cantly higher. It was the �rst gene in cancer/testis gene family for which
expression is associated with smoking habits of lung cancer patients(17). In patients with malignancies,
some of the cancer/testis genes could encode antigens on tumor cells and cause immune responses by
cytotoxic T cells which were called cancer/testis antigens. However, it was not clear whether CASC5
protein elicits immune responses in breast cancer patients(18, 19). A sequence homology search of
public database revealed that the CASC5 sequence was identical to a gene on human chromosome 15,
AF15q14. AF15q14 is a partner that fuses to mixed-lineage leukemia genes, which were involved in the
development of acute leukemias(20–22). In dataset GSE37751, CASC5 was highly expressed in breast
cancer tissues compared with normal breast tissues. In addition, ROC curve indicated that CASC5
exhibited excellent diagnostic e�ciency for normal and tumor tissues. One-way ANOVA and t test
demonstrated that the expression level of CASC5 was higher in triple-negative tumor and associated with
tumor progression. Besides, the Oncomine database also showed that the expression level of CASC5 was
signi�cantly higher in breast cancer samples. To obtain further insight of translational level of CASC5, we
used the Human Protein Atlas database to examine the immunohistochemistry staining of CASC5 in both
normal breast and breast cancer, and discovered that the protein level of CASC5 was signi�cantly up-
regulated in breast cancer tissues compared with normal breast tissues. Survival analysis revealed that
high expression of CASC5 was associated with the worse overall survival and relapse free survival.
CASC5 has the potential to be a prognostic biomarker. GSEA demonstrated that high expression of
CASC5 was associated with the pathway of proteasome, spliceosome, RNA polymerase and oxidative
phosphorylation. The ubiquitin-proteasome system (UPS) plays an important role in the degradation of
proteins. Increasing evidence indicated that the UPS involved in development cancer development(23,
24). Proteasomes participate in many cellular degradation processes, including in�ammation, cell cycle,
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responses to oxidative stress, and regulation of gene expression(24, 25). The proteasome inhibitor
bortezomib (N-acyl-dipeptidyl boronicacid) was approved by the FDA for the treatment of mantle cell
lymphoma and relapsed multiple myeloma (MM). Alternative splicing generates different, even
antagonistic products from a single gene locus. This prevalent process greatly expands the coding
capacity of complex genomes(26, 27). Spliceosome plays an important role in cancer progression
including the control of cell proliferation and programmed cell death, angiogenesis, metabolism of cancer
cells and metastasis. Misregulation of alternative splicing patterns often cause or modify human disease,
including cancer(28). RNA polymerase is required for tumorigenesis, it was reported that MYC's
tumorigenic potential is regulated by polymerase I-III(29). Some studies demonstrated a reduction of
oxidative phosphorylation capacity in different types of cancer cells, while other investigations revealed
contradictory modi�cations with the upregulation of oxidative phosphorylation components and a larger
dependency of cancer cells on oxidative energy substrates for anabolism and energy production. Guppy
and colleagues stated that breast cancer cells generated 80% of their ATP by the mitochondrion,
introducing the concept of oxidative tumors(30). It was reported that the typical “glycolytic” type of
cancer cells includes enhanced glycolytic machinery confronted to a low e�ciency oxidative
phosphorylation system, while the “oxidative phosphorylation” type of cancer cells relies mainly on
mitochondrial respiration to produce ATP from glucose and glutamine oxidation(31–33).

The protein encoded by RAD51 is known to be involved in the repair and homologous recombination of
DNA. RAD51 interact with BRCA1 and BRCA2, which regulate both the intracellular localization and DNA-
binding ability of this protein. Loss of these controls may be a key event causing genomic instability and
tumorigenesis(34, 35). In breast cancer, RAD51 expression correlates with high-grade metastatic breast
tumor and poor prognosis. Cells with RAS51 overexpress exhibit disruption of cell cycle, resistance to
apoptotic signals and associated resistance to radiotherapy and chemotherapy(36, 37). In dataset
GSE37751, RAD51 was highly expressed in breast cancer tissues compared with normal breast tissues. In
addition, ROC curve indicated that RAD51 exhibited excellent diagnostic e�ciency for normal and tumor
tissues. One-way ANOVA and t test demonstrated that RAD51 was highly expressed in triple-negative
tumor and associated with high-grade tumor. Oncomine database showed that the expression level of
RAD51 was signi�cantly higher in breast cancer samples. Human Protein Atlas database with the
immunohistochemistry staining of RAD51 was used to further investigate the translational level of
RAD51. The protein level of RAD51 was signi�cantly up-regulated in breast cancer tissues compared with
normal breast tissues. Survival analysis revealed that high expression level of RAD51 was associated
with the worse overall survival and relapse free survival. GSEA demonstrated that high expression level of
RAD51 was associated with the pathway of pyrimidine metabolism, spliceosome, oxidative
phosphorylation, RNA polymerase, DNA replication, and basal transcription factors.

Conclusion
In conclusion, our WGCNA analysis revealed that CASC5 and RAD51 were associated with the
progression and poor prognosis of breast. Enrichment analysis demonstrated that CASC5 and RAD51
might promote tumor progression via spliceosome, RNA polymerase and oxidative phosphorylation
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pathways. Our results may be helpful for revealing pathogenic mechanism and developing further
research.
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Supplementary File Captions
Figure S1. Gene set enrichment analysis (GSEA). (A). The gene set of “Proteasome”, “Spliceosome”, “RNA
polymerase”, and “Oxidative phosphorylation” were signi�cantly enriched in CASC5 highly-expressed
samples. (B) The gene set of “Pyrimidine metabolism”, “Spliceosome”, “Oxidative phosphorylation”, “RNA
polymerase”, “DNA replication”, and “Basal transcription factors” were signi�cantly enriched in RAD51
highly-expressed samples.

Figures
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Figure 2

Clustering dendrogram and determination of soft-thresholding power in the WGCNA. (A). Clustering
dendrogram. (B). Analysis of the scale-free �t index for various soft-thresholding powers (β). (C). Analysis
of the mean connectivity for various soft-thresholding powers. (D). Checking the scale free topology when
β = 16.
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Figure 4

Identi�cation of modules associated with the clinical traits of breast cancer. (A). Dendrogram of all
differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (B). Heatmap of the
correlation between module eigengenes and clinical traits of breast cancer. (C). Distribution of average
gene signi�cance and errors in the modules associated with tumor grade of breast cancer.
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Figure 6

Gene ontology and pathway enrichment analysis of blue module genes. (A). Biological process analysis.
(B). Cellular component analysis. (C). Molecular function analysis. (D). KEGG pathway analysis.
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Figure 8

Survival analysis of CASC5 and RAD51 in breast cancer in dataset GSE37751 and GSE21653. The
patients were strati�ed into high-level group and low-level group according to median expression. (A, B).
Overall survival (OS) of CASC5 and RAD51 in GSE37751. (C, D). Disease-speci�c survival of CASC5 and
RAD51 in GSE37751. (E, F). Relapse free survival (RFS) of CASC5 and RAD51 in GSE21653.
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Figure 10

Overall survival (OS) and relapse free survival (RFS) of the CASC5 and RAD51 in breast cancer based on
Kaplan Meier-plotter. The patients were strati�ed into high-level and low-level groups according to median
expression. (A). OS of CASC5. (B). RFS of CASC5. (C). OS of RAD51. (D). RFS of RAD51.
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Figure 12

Expression levels of CASC5 and RAD51 in GSE37751. (A). CASC5 expression and breast cancer subtypes.
(B). RAD51 expression and breast cancer subtypes. (C). CASC5 expression and lymph node status. (D).
RAD51 expression and lymph node status. (E). CASC5 expression and tumor stages. (F). RAD51
expression and tumor stages. (G). CASC5 expression and tumor grade. (H). RAD51 expression and tumor
grade. *, P value < 0.05; **, P value < 0.01; ***, P value < 0.001; ****, P value < 0.0001. One-way analysis of
variance (ANOVA) and two-tailed Student’s t-tests were used to evaluate the statistical signi�cance of
differences.

Figure 14
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Expression levels of CASC5 and RAD51 in GSE21653. (A). CASC5 expression and tumor grade. (B).
RAD51 expression and tumor grade. (C). CASC5 expression and tumor stages. (D). RAD51 expression and
tumor stages. (E). CASC5 expression and lymph node status. (F). RAD51 expression and lymph node
status. (G). CASC5 expression and breast cancer subtypes. (H). RAD51 expression and breast cancer
subtypes. *, P value < 0.05; **, P value < 0.01; ***, P value < 0.001; ****, P value < 0.0001. One-way
analysis of variance (ANOVA) and two-tailed Student’s t-tests were used to evaluate the statistical
signi�cance of differences.

Figure 16

Immunohistochemistry of the CASC5 and RAD51 hub genes based on the Human Protein Atlas. (A).
Protein levels of CASC5 in normal tissues. (B). Protein levels of CAS5 in tumor tissues. (C). Protein levels
of RAD51 in normal tissues. (D). Protein levels of RAD51 in tumor tissues.

Figure 18

Experimental validation of CASC5, and RAD51. (A). Relative expression of CASC5 and RAD51 in breast
cancer tissues and paracancerous tissues. (B). Cell Counting Kit-8 (CCK-8) assay. *, P value < 0.05; **, P
value < 0.01; ***, P value < 0.001; ****, P value < 0.0001. One-way analysis of variance (ANOVA) and two-
tailed Student’s t-tests were used to evaluate the statistical signi�cance of differences.
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