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COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus-2, which has
infected over thirty eight million individuals worldwide. Emerging evidence indicates that
COVID-19 patients are at a high risk of developing coagulopathy and thrombosis,
conditions that elevate levels of D-dimer. It is believed that homocysteine, an amino
acid that plays a crucial role in coagulation, may also contribute to these conditions. At
present, multiple genes are implicated in the development of these disorders. For example,
single-nucleotide polymorphisms (SNPs) in FGG, FGA, and F5 mediate increases in
D-dimer and SNPs in ABO, CBS, CPS1 and MTHFR mediate differences in
homocysteine levels, and SNPs in TDAG8 associate with Heparin-induced
Thrombocytopenia. In this study, we aimed to uncover the genetic basis of the above
conditions by examining genome-wide associations and tissue-specific gene expression
to build a molecular network. Based on gene ontology, we annotated various SNPs with
five ancestral terms: pulmonary embolism, venous thromboembolism, vascular diseases,
cerebrovascular disorders, and stroke. The gene-gene interaction network revealed three
clusters that each contained hallmark genes for D-dimer/fibrinogen levels, homocysteine
levels, and arterial/venous thromboembolism with F2 and F5 acting as connecting nodes.
We propose that genotyping COVID-19 patients for SNPs examined in this study will help
identify those at greatest risk of complications linked to thrombosis.

Keywords: coagulopathy, COVID-19, heparin, d-dimer, homocysteine, pulmonary embolism, thrombocytopenia,
venous thromboembolism

INTRODUCTION

The COVID-19 outbreak, which began in China’s Hubei Province, was declared a pandemic by the
World Health Organization on March 11, 2020. One of the most challenging features of COVID-19
is its outcome variability, as some afflicted are asymptomatic, while others experience mild-to-severe
flu-like symptoms or even death (Bai et al., 2020; Day, 2020; Kimball et al., 2020; Mizumoto et al.,
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2020; Sakurai et al., 2020; Zhou et al., 2020). In consideration of
the dramatic rise in the number of infected people and limited
health resources worldwide, it would be especially advantageous
to identify which patients will be most in need of critical care.
Notably, the clinical status and presence of concurrent
comorbidities in COVID-19 patients are good indicators of an
individual’s prognosis. In addition, assessing blood levels of
primarily the coagulation factors (D-dimer and fibrinogen)
and homocysteine may be informative (Velavan and Meyer,
2020).

Initially, pneumonia and shortness of breath were believed to
be the primary causes of death in COVID-19 patients, yet
growing research reveals that thrombosis, a consequence of
the deterioration of coagulation factors, may actually be the
leading offender (Becker, 2020; Bikdeli et al., 2020; Levi et al.,
2020; Tang et al., 2020; Yuki et al., 2020; Zhou et al., 2020). The
incidence of thrombotic events in COVID-19 patients admitted
to the intensive care unit can be as high as 31% (venous
thromboembolic events are the most common) (Abou-Ismail
et al., 2020; Klok et al., 2020). Numerous studies are presently
investigating the pathophysiology of coagulopathy specific to
COVID-19, so as to derive mechanistic insights that can direct
interventions (Abou-Ismail et al., 2020). Elevated levels of
D-dimer represent the initial manifestation of coagulopathy in
critically ill patients, followed by abnormal prothrombin and
partial thromboplastin times, and finally low platelet counts in
later stages (Connors and Levy, 2020; Iba et al., 2020).

D-dimer is a fibrin degradation product (FDP), otherwise
known as a protein fragment that circulates in the bloodstream
after a clot is broken down by fibrinolysis. Clinically speaking,
D-dimer levels are evaluated when monitoring a patient’s
response to anticoagulants; a decrease is illustrative of the
therapy’s efficacy. Interestingly, D-dimer levels will stay
elevated in patients taking anticoagulants and suffering from
conditions such as systemic lupus erythematosus, obesity or
various infections (Greenberg, 2017) because they tend to
trigger extravascular fibrin formation or prevent the
anticoagulant from suppressing fibrin formation. Studies have
found that D-dimer levels associate with a heightened risk of
coronary heart, cardiovascular, and peripheral arterial diseases, as
well as acute ischemic stroke, venous thrombosis, and
atherosclerosis (Folsom et al., 2016; Soomro et al., 2016).

In this study, we focus on D-dimer levels as a biomarker for
coagulopathy in COVID-19 patients. Second, we discuss
homocysteine levels and thrombocytopenia, because the
former correlates with D-dimer levels and the latter is induced
by heparin when treating coagulopathy in COVID-19 patients.
For all biomarkers, their molecular genetic basis and contribution
to coagulopathy-related complications are examined. Further, we
present differences in allele frequencies for associated genetic risk
variants across continental populations.

METHODS

We carried out a literature search using Medline (PubMed) for
published studies using terms such as D-dimer, homocysteine,

heparin and embolism. We chose search terms subjectively and
iteratively. We also checked the reference lists of potentially
relevant articles for additional citations and used the “related
citations” search key in PubMed to identify similar papers.

Established genotype-trait association signals identified
through global genome-wide association studies (GWAS) are
available from the NHGRI-EBI GWAS Catalog (Buniello et al.,
2019). Genetic variants and genes associated with traits and
disorders discussed in this study were obtained by querying
the GWAS Catalog available at https://www.ebi.ac.uk/gwas/. In
order to identify genetic variants that regulate genes of interest in
tissue-specific manner, we examined genotype-tissue expression
data using GTEX v8 (https://www.gtexportal.org). GTEX is a
comprehensive public resource to study tissue-specific gene
expression and regulation. The GTEx Portal provides open
access to data including gene expression, QTLs, and histology
images.

As regards querying the GWAS Catalog, selection criteria was
based on the P-values denoting the significance for association;
associations at genome-wide significance (P< 5.0E-08) were given
preference; the P-value threshold was relaxed when only few
associations were seen at genome-wide significance. As regards
querying the GTEX, selection criteria was based on significant
P-values and Q-values.

Allele frequencies at genetic variants in continental
populations were extracted from 1000 Genomes Project Phase
3 (Auton et al., 2015) data available through Ensembl genome
browser (http://www.ensembl.org). As regards Middle East
populations, genetic variants data published previously on
Kuwaitis (Hebbar et al., 2020; John et al., 2018) (available
from our in-house databases), Qataris (Fakhro et al., 2016) (as
available from http://clingen.igib.res.in/almena/) and Iranians
(Fattahi et al., 2019) (as available from http://www.iranome.ir/)
were used.

The eXploring Genomic Relations (XGR) tool (Fang et al.,
2016) was used to derive gene-gene interaction networks based on
the list of GWAS-annotated study variants and other GWAS-
annotated SNPs that are in Linkage Disequilibrium (LD) with the
study variants. XGR uses databases on functional annotation such
as STRINGs (Fang et al., 2016) presenting protein-protein
interaction networks and Reactome or PathwayCommons
(Cerami et al., 2011) presenting biological pathways to identify
an optimal gene network that is likely to be modulated by input
SNPs and their LD SNPs from a genome region of specified length
around the study variants. To do this, XGR first defines and scores
genes that are likely under the genetic influence of the study
GWAS SNPs by way of performing the following three steps: (a)
scoring the study SNPs (and their GWAS LD SNPs) by the
p-values for association with the GWAS trait; (b) scoring the
genes based on genomic proximity to quantify their genetic
modulation by the study SNPs and their LD SNPs; and (c)
scoring the networks to identify a maximum-scoring gene
subnetwork. The resultant gene subnetwork of functional
interactions with high confidence score >�700 from the study
variants was considered in our study. The resources of GWAS
Catalog and GTEX and the XGR tool was last accessed on 17th

June 2020.
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The trait names as used in GWAS Catalog are standardized
using well-defined Experimental Factor Ontology (EFO) terms in
the contexts of Disease, Phenotype and Biological Processes
(Welter et al., 2014). SNPs associated with one or more
related traits grouped together are annotated by such an EFO
term. A SNP mapped to an EFO term can also be annotated by its
parental ancestor term. The XGR tool (Fang et al., 2016)
considers additional SNPs that are in strong LD (r2 > 0.8)
with a given list of study variants and performs a
hypergeometric test. It thereby outputs a list of the parental
terms with FDR (false discovery rate) values to which the study
variants are associated with.

RESULTS

D-Dimer as an Early Marker of Mortality in
COVID-19 Patients
Various studies have reported that elevated D-dimer levels (>
2 ug/mL) can increase the risk of fatality in COVID-19 adult
patients (Levi et al., 2020; Zhou et al., 2020; Tang et al., 2020;
Leonard-Lorant et al., 2020; Zhang et al., 2020; Cui et al., 2020;
Chen et al., 2020; Gao et al., 2020; Wang et al., 2020; Chen
et al., 2020; Huang et al., 2020) (Table 1). Additionally, high
levels have been observed during advanced stages of other viral
infections, such as HIV and Ebola (Lippi and Favaloro, 2020).
Infection by SARS-CoV-2, in particular, results in a cytokine
storm that injures endothelial cells and leads to a massive
release of plasminogen activators. It is possible that this
phenomenon is the reason why COVID-19 patients with
severe outcomes display significantly elevated levels of
D-dimer and FDPs. For children infected with SARS-CoV-
2, a two to three-fold increase in D-dimer levels has been
observed as the disease progressed frommild to moderate (Qiu
et al., 2020), and those with obesity are presumed to be at
highest risk of complications from this virus because obese
children are reported to have higher D-dimer levels.
Therefore, in addition to comorbidities such as diabetes,
cardiovascular disease, hypertension and lipid disorders
(Abu-Farha et al., 2020; Bosso et al., 2020), increased
D-dimer levels are a risk factor for death in COVID-19
patients. As such, D-dimer levels should be carefully
monitored throughout treatment.

Global genome-wide association studies (GWAS), as
deposited in the GWAS Catalog (Buniello et al., 2019), report
that approximately 16 genetic variants associate with D-dimer
levels in healthy individuals. Of these, three non-coding single-
nucleotide polymorphisms (SNPs) are linked to high levels of
D-dimer in healthy individuals: rs13109457-A [an intergenic
variant between fibrinogen gamma and alpha (FGG and FGA),
effect size is 6.3%], rs12029080-G (an intronic variant from an
lncRNA novel transcript, AC093117.1, effect size is 10.4%), and
rs6687813-A (an intergenic variant between F5 and Z99572.1,
effect size is 10.1%) (Supplementary Table S1A). Of note: the
remaining 13 SNPs are not discussed here because they carry an
effect size of < 0.1%.T
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Importantly, the three aforementioned SNPs are all common
variants (i.e., their minor allele frequency is > 5%), but their
frequency differs substantially across continental populations
(Supplementary Table S1A and Supplementary Figure S1).
For example, rs13109457-A occurs at 43% frequency in East
Asia, but this value is halved across the Middle East; rs12029080-
G occurs at 7% frequency in Africa, and this value is more than
tripled for all other populations; rs6687813-A occurs at 0%
frequency in East Asia, but is > 5% in all other populations;
rs17031315_T, which downregulates expression of FGA and
FGG, occurs at 12% frequency in Africans and ad-mixed
Americans, but is quite rare in other populations. These
variations may align with differences in COVID-19 severity
across populations.

Furthermore, the genes that harbor the three top SNPs
associate with disorders (some are often comorbid in COVID-
19 patients) and traits relating to coagulation. An examination of
the GWAS Catalog revealed that variants of FGG associate with
thromboembolism and glycine and fibrinogen levels; variants of
FGA associate with stroke, thromboembolism, and fibrinogen
levels; variants of AC093117.1 associate with type 2 diabetes and
end-stage coagulation; variants of F5 associate with ischemic
stroke, thromboembolism, peripheral artery disease, and uric
acid and cytokine network levels; variants of Z99572.1
associate with the coagulants, Factors II and V.

Upon examining Genotype-Tissue Expression (GTEx) data
(https://www.gtexportal.org), we found that the above SNPs
regulate genes involved in the production of proteins
necessary for coagulation, or linked to disorders displaying
elevations of D-dimer. In specific, rs13109457 (FGG, FGA)
regulates PLRG1 (associated with fibrinogen) and TLR2
(associated with body fat); rs12029080 regulates F3 (a
coagulant); rs6687813 (F5, Z99572.1) regulates SLC19A2
(associated with the heart’s QT interval), NME7 (associated
with the QT interval, thromboembolism, blood pressure, and
coronary artery disease), andMETTL18 (associated with amnesia
and hemorrhage).

Since FGA, FGG, and F5 are expressed in the liver, we also
searched for expression quantitative trait loci (eQTLs) regulating
expression of these genes in liver. GTEx identified rs17031315-
A_T, an intronic variant of DCHS2, as downregulating FGG and
FGA via an effect size of 1.7 units (Supplementary Table S1A).
DCHS2 participates in homophilic cell adhesion via plasma
membrane adhesion molecules and is related to cytokine,
bilirubin, and fibrinogen counts, as well as disorders comorbid
with COVID-19 (i.e., velopharyngeal dysfunction, venous
thromboembolism, liver disease, jaundice, anemia, and thyroid
disorders).

Homocysteine Levels and COVID-19
Another clinical parameter showing potential significance in
COVID-19 patients is homocysteine levels (Ponti et al., 2020;
Yang et al., 2020), as research reveals homocysteine levels
associate positively with venous and pulmonary
thromboembolism (r � 0.368 and r � 0.285, respectively)
(Previtali et al., 2011). In an investigation by Todua et al.
(Todua et al., 2017), analyses uncovered a correlation

coefficient of 0.557 between the levels of D-dimer and
homocysteine in patients suffering from conditions of
pulmonary arterial thromboembolism.

The GWAS Catalog lists 48 signals involving 44 SNPs from
34 genetic loci (including genes for von Willebrand factor and
NADPH oxidase 4) associated with homocysteine levels. The
top six signals with an effect size > 0.15 units are from CBS,
ABO, CPS1, MTHFR, (RPL24P4 and GNMT), and (ALDH1L1
and ALDH1L1-AS2) (Supplementary Table S1A). Recently, a
GWAS on an Italian and Spanish cohort of COVID-19 patients
showed that the ABO blood group locus, from the above list, is
associated with respiratory failure (Ellinghaus et al., 2020;
Ellinghaus et al., 2020). Moreover, a SNP in CPS1 appears
to be linked to a heightened risk of persistent pulmonary
hypertension in newborns (Pearson et al., 2001), and two
missense variants [rs1801133_G > A (A222V) and
rs1801131_T > G (E429A)] in MTFHR have been found to
impact homocysteine pathways (Brustolin et al., 2010). These
top association signals vary in allele frequencies across
populations (Supplementary Table S1 and Supplementary
Figure S1). As such, examining variants in these genes
among COVID-19 patients will provide insight into their
risk of clots, heart disease, stroke, and hypertension.

Heparin-Induced Thrombocytopenia
Thrombocytopenia, a condition characterized by low platelet
counts, is a common complication in COVID-19 patients and
associates with an increased risk of in-hospital mortality (Lippi
et al., 2020; Yang et al., 2020). There is currently limited evidence
on how it arises following infection by SARS-CoV-2 (Xu et al.,
2020), although one study found thrombocytopenia was induced
by the medications, Pegylated interferon and Ribavirin (Tanaka
et al., 2011).

COVID-19 is tied to an increased incidence of thrombotic and
inflammatory events, which contribute to its severe morbidity
and mortality. Heparin appears to be the preferred anticoagulant
for COVID-19 treatment because in addition to its ability to
inhibit the generation of thrombin, it is anti-inflammatory
(Thachil, 2020). In a study involving 449 COVID-19 patients,
no difference in 28-day mortality was found between the 99 that
received heparin and those who did not (Tang et al., 2020).
However, a difference in this outcome variable was observed
between heparin users and non-users when researchers assessed
patients with high D-dimer levels and sepsis-induced
coagulopathy, which suggests that not all COVID-19 patients
will benefit from anticoagulants. The study recommended that
anticoagulants should only be given to COVID-19 patients with
elevated D-dimer levels.

The GWAS Catalog lists ten variants from ZNF84 and
AC106799.2 (an lncRNA) that associate with HIT
(Supplementary Table S1A). Karnes et al. (Karnes et al.,
2015) observed additional associations from SNPs near
TDAG8, which governs production of the G-protein coupled
receptor, TDAG8, to induce T-cell death (Choi et al., 1996) and
attenuate immune-mediated inflammation (Onozawa et al., 2011;
Onozawa et al., 2012). For the majority of these variants, allele
frequencies show considerable variation across global
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populations (Supplementary Table S1 and Supplementary
Figure S1).

Progressive Coagulopathy Is Linked to a
TALDO1 Malfunction and the COVID-19
Pathway
Transaldolase 1 (TALDO1) is a rate-limiting metabolic enzyme
involved in the nonoxidative pentose phosphate pathway,
providing ribose-5-phosphate and NADPH for nucleic acid
and lipid biosynthesis, respectively. It is believed that
malfunctions in TALDO1 are due to mutations in TALDO1
such as R192C observed in patients from United Arab Emirates
(Al-Shamsi et al., 2015). TALDO1-deficient patients present
various clinical problems, including coagulopathy,
thrombocytopenia, hepatosplenomegaly, anemia, hepatic
fibrosis, and liver and renal tubular dysfunction (Loeffen et al.,
2012; Banne et al., 2016). Progressive coagulopathy is a sensitive
parameter indicating liver dysfunction in patients with TALDO
deficiency (Lipiński et al., 2018).

From our research, we observed an interesting link between
TALDO1 and interferon-induced transmembrane 3 (IFITM3) in
the COVID-19 pathway. IFITM3 produces a protein that blocks
viruses from fusing with cellular membranes (Thevarajan et al.,
2020). The rs12252-C variant of IFITM3 has been linked to severe
influenza (Everitt et al., 2012; Wang et al., 2014) and has been
observed in a patient with COVID-19 (Thevarajan et al., 2020).
GTEx data indicates that rs77216754, an intergenic variant
located between TALDO1 and PDDC1, downregulates IFITM3
and upregulates TALDO1. Collectively, this information points
to a relationship between TALDO1 and COVID-19 in the context
of coagulopathy. Of note, the minor allele frequency of
rs77216754, an eQTL variant, is highest in African populations
(32.5%) compared to the rest of the world (4 to 9%)
(Supplementary Table S1A and Supplementary Figure S1).

Pulmonary Embolism, Venous
Thromboembolism and COVID-19
Table 2 lists studies that examined the occurrence of
thromboembolic complications in COVID-19 patients. Their
cohorts differed by presence of pre-existing conditions, types
and amounts of medications that were administered, severity of
COVID-19, age, and sex. However, all experienced a high
occurrence of VTE and pulmonary thrombosis.

The GWAS Catalog lists 13 signals that associate with PE and
deep vein thrombosis. These signals correspond to SNPs in ABO,
AL357518, COX7A2L, F2, F5, F11-AS1, FUNDC2, (GAPDHP50,
ICE2P2), KNG1, (LRAT, FGG), PROCR, SLC44A2, and
TSPAN15. Moreover, for signals that associate with VTE, the
GWAS Catalog lists 14 signals that are of genome-wide
significance and display an odds ratio of ≥1.75. In specific,
these signals derive from ABO, AC022182, AC073115,
(AP005230, AP005262), (CD, AL118508), F2, F5, LEMD3,
LRP4, LY86, NME7, and (THBD, AL118508).

Like the cases of variants associated with the previously
mentioned disorders, the top association signals for PE and
VTE vary in allele frequency across populations

(Supplementary Table S1A and Supplementary Figure S1).
For example, rs60942712-T and rs17490626-G that associate
with PE occur at > 10% frequency among Europeans, but are
absent in East Asians. Additionally, rs73692310-T and
rs28496996-G that associate with VTE occur at a frequency
between 7 and 10% in African populations but are non-
existent in other continental populations.

Interpretation of the Genomic Relationships
Between the Variants Presented in This
Study
The eXploring Genomic Relations (XGR) tool (Fang et al., 2016)
annotated the study variants with five ancestral terms: PE, VTE,
vascular diseases, cerebrovascular disorders, and stroke
(Supplementary Table S1B); the parental terms of PE, stroke
and cerebrovascular disorders were associated with intergenic
region of (AL357518.2, AL357518.1), FUNDC2, TSPAN15, F2,
PROCR, F11-AS1, ABO, F5, intergenic region of (GAPDHP50
and ICE2P2), KNG1, COX7A2L, intergenic region of (LRAT,
FGG), and SLC44A2; those of VTE and vascular diseases were
associated with the above gene loci and additionally with LEMD3,
AC022182.2, NME7, intergenic region of (CD93, AL118508.3),
intergenic region of (THBD, AL118508.3), intergenic region of
(AP005230.1,AP005262.1), LY86 and AC073115.2. Moreover, it
identified a maximum-scoring gene regulatory network based on
the linkage disequilibrium (LD) of the SNPs from a region of
0.05 MB (Supplementary Table S2 and Supplementary Figure
S2). The network presents three clusters of genes, each containing
hallmark genes involved in the regulation of D-dimer/fibrinogen,
homocysteine levels and arterial/venous thromboembolism
disorders. Particularly, genes that interact to influence
D-dimer and fibrinogen levels include F5, FGA, FGB, and
FGG; homocysteine levels are influenced by CBS and MTHFR;
and arterial/venous thromboembolism disorders are influenced
by F2, F3, F8, F11, CHRM4, KLKB1, CD93, THBD, and KNG1.
Interestingly, F2 and F5 were discovered to be connecting nodes
between these three clusters, although an obesity-related gene
(IGFBP3) and a muscular dystrophy-related gene (ADCY1) were
found to play prominent roles as well. As the region exploring LD
becomes enlarged to 0.5 MB (Supplementary Table S3 and
Supplementary Figure S3), the network brings additional
genes into clusters that help govern D-dimer and fibrinogen
counts, thrombosis, and obesity-related traits. Furthermore,
genes relating to the following clinical markers for thrombosis
also appeared: Partial thromboplastin time, Blood pressure/pulse
pressure, Lipids, Eosinophil and blood cell counts, Cell adhesion
measurements, Ubiquitination and degradation and Brain
volume.

The Molecular Link Between Key Genes in
Coagulation During COVID-19 Infection
The data presented so far in this review enabled us to establish
potential molecular link connecting some of the key genes in the
coagulation process. This includes association of FGA, FGG and
F5 with D-dimer levels, MTHFR with homocysteine levels and
F2, F3, F8, F11, KLKB1 and KNG1 with thromboembolism.
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Figure 1 summarizes how these key genes could be linked to the
coagulation process when a patient is infected with SARS-CoV-2.
The coronavirus infection results in an injury to the endothelial
cells leading to the activation of the coagulation cascade; both the
intrinsic as well as the extrinsic pathway. Within the extrinsic
pathway, tissue factor (encoded by F3) initiates the cascade to
activate the common pathway of coagulation.Within the intrinsic
pathway, which is also known as kallikrein/kinin system, pre-
kallikrein is converted to plasma kallikrein (encoded by KLKB1
gene) via the action of kininogen (encoded by KNG1 gene) (Loof
et al., 2014). This then results in the activation of Factor XI
(encoded by F11) which initiates the activation of the common
pathway of coagulation. The common pathway consists of several
coagulation factors that are activated in parallel to eventually
convert prothrombin (encoded by F2) to thrombin (Loof et al.,
2014).

Thrombin plays an essential role in coagulation since it can
activate the coagulation factors in the common pathway
including FVIII (encoded by F8) and FV (encoded by F5) as
well as convert fibrinogen to fibrin. Fibrinogen is a glycoprotein
composed of three different polypeptide chains; alpha, beta and
gamma (Mosesson et al., 2001; Undas and Ariëns, 2011). While
FGA gene encodes the fibrinogen alpha chain (α chain), FGG gene
encodes the fibrinogen gamma chain (γ chain). Fibrinolysis is
afterwards initiated where fibrin is broken down tomultiple fibrin
degradation products (FDPs), one of which is D-dimer (Weisel
and Litvinov, 2017). This thrombosis that is caused by the
coronavirus infection can also lead to elevated levels of
homocysteine which is synthesized from methionine by
methylenetetrahydrofolate reductase (MTHFR). Elevated
homocysteine levels could also activate the coagulation cascade
resulting in D-dimer production. Eventually, all these elements
collectively result in the formation of blood clots leading to severe
complications (including death) that were documented in some
COVID-19 patients.

DISCUSSION

There is emerging evidence that coagulopathy and thrombosis are
a common finding besides pneumonia in patients suffering from
COVID-19, especially in severe courses. Thus, any strategy
carried out to predict the development of such conditions is
relevant for improving the clinical approach to this viral infection.
This study proposes a gene-gene interaction network with three
clusters of hallmark genes which have an influence for D-dimer/
fibrinogen levels, homocysteine levels, and arterial/venous
thromboembolism. The study further hypothesizes that
genotyping COVID-19 patients for SNPs in these genes helps
not only to identify patients with greatest risk of thromboembolic
complications but also the outcome of patients treated with
heparin according to their genotypes.

Our knowledge about COVID-19 continues to expand as
research groups dedicate tremendous efforts to unraveling the
mysteries of this viral infection. At present, thrombosis is
emerging as a common outcome that can turn fatal.
Measuring D-dimer levels is routinely done to assessT
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thrombosis, and elevated levels are frequently observed in
severely afflicted COVID-19 patients. For this reason, they
could be considered as an early biomarker and predictor of in-
hospital mortality. The top three genetic risk variants
(rs13109457-A, rs12029080-G, and rs6687813-A) that associate
with significant increases in D-dimer levels are located in FGG,
FGA, and F5. The data presented in this review and the cited
studies from literature enabled us to establish the molecular
connection between some of the key genes (FGA, FGG, F5,
MTHFR, KLKB1, KNG1, F2, F8 and F11) and D-dimer and
homocysteine levels during coagulation (Figure 1 and
Supplementary Figure S2).

The intronic variant, rs17031315, from DCHS2 has been
shown to downregulate FGG and FGA in the liver and GWA
studies have tied DCHS2 to various disorders that are often
comorbid with COVID-19. At least ten variants from ZNF84
and an lncRNA, as well as SNPs in TDAG8, associate with HIT.
The eQTL variant, rs77216754, downregulates IFITM3 and
upregulates TALDO1, and thereby connects with COVID-19
in the context of coagulopathy and thrombocytopenia. Levels
of homocysteine correlate with those of D-dimer, influencing
coagulation and thereby thrombosis. At least six variants that
mediate > 0.15 unit changes in homocysteine levels have been
identified in ABO, CBS, CPS1, MTHFR, (RPL24P4 and GNMT)
and (ALDH1L1 and ALDH1L1-AS2). Of these, the ABO locus
has recently been found to associate with respiratory failure in
Italian and Spanish COVID-19 patients. We illustrate the

differences in allele frequencies for key variants across
continental populations.

SARS-CoV-2 infections are associated with cardiovascular
diseases (CVDs) in multiple ways. Thrombosis is a common
underlying pathology of the three major cardiovascular disorders:
ischemic heart disease (acute coronary syndrome), stroke, and
venous thromboembolism (VTE). The focus of the current review
was to identify genetic variants that could predict COVID-19
patients at high risk of developing cardiovascular disorder of
VTE. Apart from the markers of D-Dimer and homocysteine
levels discussed in this study, other cardiovascular markers such
as troponin levels appear to associate with the severity of COVID-
19 and the development of different CVDs (Driggin et al., 2020;
Lippi et al., 2020).

A recent state-of-art review by Bikdeli et al. (Bikdeli et al.,
2020) emphasizes the need for high-quality multi-disciplinary
data to understand how thrombotic disease and COVID-19
interact with one another. The authors rightly point out that
elucidation of disease presentation/outcomes in COVID-19
patients and pre-existing or incident thromboembolic
disorders will help in developing treatment strategies for
thromboembolism in COVID-19 patients. Large-scale registries
of patients with thromboembolic disorders, such as RIETE
(Bikdeli et al., 2018) coordinated by S&H Medical Science
Service in Spain, ACS COVID-19 Registry (that captures
clinical data in COVID-19 patients) by American College of
Surgeons (https://www.facs.org/quality-programs/covid19-registry)

FIGURE 1 | The molecular link between key genes in coagulation during COVID-19 infection. SARS-CoV-2 infection results in an injury in the endothelium which
leads to the activation of the coagulation cascade; both the intrinsic and the extrinsic pathway. Within the extrinsic pathway, tissue factor (encoded by F3) initiates the
cascade to activate the common pathway of coagulation. Within the intrinsic pathway, prekallikrein is converted to kallikrein via the action of kininogen and factor XI is
activated. The activation of Factor XI initiates the common pathway of coagulation and leads to the activation of several coagulation factors including factor VIII and
factor V. Thrombin converts Fibrinogen to Fibrin. Fibrin is then broken down to D-dimer and other FDPs. This SARS-CoV-2-induced thrombosis also leads to elevated
levels of homocysteine which can eventually activate the coagulation cascade. Genes of interest are presented in boxes. For purpose of clarity, this illustration is only
highlighting the genes of interest that were picked by XGR analysis to associate with thrombosis. Grey arrows indicate activation of other coagulation factors. F:
Coagulation Factor, Fa: activated coagulation factor. FDPs: Fibrin degradation products, FGA: Fibrinogen alpha chain, FGG: Fibrinogen gamma chain, KLKB1: kallikrein,
KNG1: Kininogen 1, MTHFR: methylenetetrahydrofolate reductase.
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and AHA COVID-19 CVD registry (that captures cardiovascular
data) by American Heart Association are being created. Similar
large-scale efforts towards building registries collecting data on
the genetic basis of interaction of thrombotic disease and
COVID-19 with one another are in order. As a contribution
towards this effort, we propose a set of SNPs for interested
researchers and clinicians to genotype in COVID-19 patients
to identify those with greatest risk of thromboembolic
complications. The above-cited state-of-art review by Bikdeli
et al. (Bikdeli et al., 2020) further discusses the importance of
considering the drug-drug interactions between anti-coagulants
and the investigational therapies newly developed for COVID-19
treatment and presents a potential algorithm to be used when
making treatment decisions. In this context, the SNPs that we
report to genotype in COVID-19 patients to identify the outcome
of heparin-induced thrompocytopenia in patients treated with
heparin according to their genotypes are meaningful.

Absence of access to genotype data for the variants reported in
this review from COVID-19 patients is a limitation of the study.
Thus, differences in allele frequencies of the risk variants could
not be evaluated in COVID-19 patients versus healthy people nor
between COVID-19 patients with thromboembolic
complications versus less severe COVID-19 patients. However,
the review presents SNPs, by way of proposing a gene-gene
interaction network involving three clusters of hallmark
genes which have influence for D-dimer/fibrinogen levels,
homocysteine levels and arterial/venous thromboembolism, for
genotyping in COVID-19 patients to identify those with greatest
risk of thromboembolic complications.

In conclusion, it is likely that different populations will respond
uniquely to SARS-CoV-2, due, at least partially, to genetic variations.
In this analysis, we identified a list of SNPs and genes
(Supplementary Tables S1, S3) that can be used as biomarkers
to predict the development of coagulation. Furthermore, a gene-gene
interaction network constructed using the study’s variants and their
LD SNPs uncovered three clusters of genes involved in the regulation
of D-dimer, fibrinogen, and homocysteine levels and arterial/venous
thromboembolism disorders. Upon widening the considered
genome region for LD SNPs to 0.5 MB, the optimal genetic

network accrued genes that help contribute to obesity-related
traits, partial thromboplastin time, blood pressure, lipid
generation, white and red blood cell counts, cellular adhesion
properties, ubiquitination, cellular degradation, and brain volume.
We propose that genotypingCOVID-19 patients for SNPs examined
in this study will help identify those at greatest risk of complications
linked to thrombosis.
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