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Recently, immunotherapy targeting tumor-infiltrating lymphocytes (TILs) has emerged as a
critical and promising treatment in several types of cancer. However, not all cancer types have
been tested in immunotherapeutic trials, and different patients and cancer types may have
unpredictable clinical outcomes. This situation has created a particular exigency for analyzing
the prognostic significance of tumor-infiltrating T cells (TIL-T) and B cells (TIL-B) across
different cancer types. To address the critical role of TILs, the abundances of TIL-T and TIL-B
cells, as determined by the protein levels of LCK and CD20, were analyzed across
heterogeneous human malignancies. TIL-T and TIL-B cells showed varying prognostic
significances across heterogeneous cancer types. Additionally, distinct distributions of TIL-
T and TIL-B cells were observed in different cancer and tumor microenvironment (TME)
subtypes. Next, we analyzed the cellular context for the TME communication network
involving the well-acknowledgeable chemokine receptors of TIL-T and TIL-B cells, implying
the functional interactions with TME. Additionally, these chemokine receptors, expressed by
TIL-T and TIL-B cells, were remarkably correlated with the levels of TIL-T or TIL-B cell
infiltrations across nearly all the cancer types, indicating these chemokine receptors as
universal targets for up- and down-regulating the TIL-T and TIL-B cells. Lastly, we provide the
prognostic landscape of TIL-T and TIL-B cells across 30 cancer types and the subgroups
defined by gender, histopathology, histological grade, therapeutic approach, drug, and TME
subtype, which are intended to be a resource to fuel the investigations of TILs, with important
implications for cancer immunotherapy.

Keywords: tumor-infiltrating lymphocytes, tumor-infiltrating B cells, tumor-infiltrating T cells, cancer, prognosis,
single-cell RNA-sequencing, tumor microenvironment
INTRODUCTION

Recent advances in the tumor microenvironment (TME) have demonstrated the complex interplay
between the tumor and the adaptive immune cells (1). The adaptive immune response to tumors
primarily relies on the tumor-infiltrating lymphocytes (TILs). TILs, mainly composed of T and B cells,
prominently impact cancer patients’ survival and treatment outcomes (2–5). Recently,
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immunotherapy targeting TILs has emerged as a critical and
promising treatment in several types of cancer (6–8). However,
not all cancer types have been tested in immunotherapeutic trials,
and different patients and cancer types may have unpredictable
clinical outcomes. This situation has created a particular exigency
for analyzing the prognostic significance of TILs across different
cancer types.

Previous studies have reported the evaluation of immune cell
abundances using bioinformatic approaches that analyze the
expression of cell markers at the transcriptional level (9).
However, it is reported that the transcriptome shows a low
correlation to the proteome (10). Since transcriptional
expression levels are imprecisely reflective of protein
abundance, the analysis of TILs’ abundance need to be
corroborated by approaches quantifying protein expression.
Besides using bioinformatic approaches on transcriptional data,
several clinical studies based on immunochemistry (IHC) have
analyzed the abundances of tumor-infiltrating T cells (TIL-T)
and B cells (TIL-B) through the protein levels of CD3 and CD20
(11–15). However, to assess the clinical relevance, these
studies choose predefined cut-offs to divide the patients
into subgroups. The predefined cut-off is unable to convey
the prognostic relevance across the continuous gradient of
TILs comprehensively. Besides, different studies usually
use different cut-offs, such as median, tertile, and quartile cut-
offs, which makes it difficult to analyze those fragmented
studies systematically.

To fill these knowledge gaps, firstly, we conducted the
protein-expression-based measurement for the abundances of
TILs. Secondly, we employed a novel analysis framework to
evaluate the prognostic significance of TILs towards the
favorable and unfavorable outcomes by exhaustively
considering all the continuous cut-offs. Thirdly, using the
novel prognostic evaluation methodology, we analyzed the
prognostic relevance of TIL-T and TIL-B cells in 7,694 cancer
tissues across 32 human cancer types systematically.

A previous study has reported that the abundances of TILs are
dramatically shaped by the TME, which could be classified into
six distinct subtypes, including wound healing, IFN-g dominant,
inflammatory, lymphocyte depleted, immunologically quiet, and
TGF-b dominant subtypes (1). In our study, we also investigated
the distributions of TIL-T and TIL-B cells across different TME
subtypes. Furthermore, through analyzing the expression of well-
acknowledgeable receptor-ligand pairs using the single-cell
RNA-sequencing (sc-RNAseq) data, we constructed the
receptor-ligand network and inferred the communications
between the TME and TILs.

Moreover, in order to provide a high-resolution landscape of
TILs, we characterized the abundances and the prognostic
associations of TIL-T and TIL-B cells across different clinical,
therapeutic, histological, and TME subgroups. The detailed
information of TILs’ prevalence and prognosis for these
subgroups were provided in this study, which was intended to
serve as a resource to fuel further studies of TILs, with important
implications for the TILs-based immunotherapies.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Patient Samples
In this study, the TCGA mRNA, RPPA, clinical, immune
subtype, and CIBERSORT data were obtained from the legacy
archive of the GDC (https://portal.gdc.cancer.gov/legacy-
archive/search/) and the TCGA publication page (https://gdc.
cancer.gov/about-data/publications/pancanatlas). The TCGA
data were standardized, normalized and batch corrected by the
PanCancer Atlas consortium (16, 17). The TCGA mRNA data
included 11,539 samples of 35 cancer types, and the TCGA
RPPA data included 7,694 samples of 32 cancer types. For the
TCGA RPPA data, tumor types with more than 30 samples were
used for further analysis, and 30 cancer types met the criteria.
ImmunePRECOG data was obtained from PRECOG (http://
precog.stanford.edu) (18). All the data in this study were
derived from previously published studies. Thus, the ethics
approval and consent to participate were not applicable.

GTEx and CCLE Data Availability
and Analysis
In this study, the Genotype-Tissue Expression (GTEx) RNA-
sequencing dataset of 8555 human tissue samples was obtained
from GTEx Portal (https://gtexportal.org) (19). The Cancer Cell
Line Encyclopedia (CCLE) RPPA data of 899 cell lines were
obtained from CCLE (https://data.broadinstitute.org/ccle/) (20).

Single-Cell RNA-Sequencing Data
Availability and Analysis
The 52K lung cancer single-cell data was obtained in
ArrayExpress under accessions E-MTAB-6149 and E-MTAB-
6653 (21). The authors generously provided the detailed lineage
annotations for each cell. The 10K human PBMC data were
obtained from the 10x Genomics (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_
protein_v3). The 33K human PBMC data was obtained from the
Satija lab (https://satijalab.org/seurat/get_started_v1_4.html).
The data were then log-transformed before further
downstream analysis using Seurat (https://github.com/satijalab/
seurat/). The single-cell data analysis code is available at https://
github.com/10XGenomics/.

Prognostic Association Analysis
The survival analysis was performed by the survival and
survivALL package (22) in R v3.5.1. The protein expression
levels were binned into two groups according to all the possible
cutoffs (each group below or above the cutoff should have at least
15 patients). For each possible cutoff, the multivariate Cox
proportional-hazards regression analysis was performed, with
covariates including age, gender, histological grade, and stage (if
applicable), to evaluate 5-year OS (overall survival), PFI
(progression-free interval), DFI (disease-free survival), and DSS
(disease-specific survival) in each cancer types and the subgroups
defined by gender, histopathology, histological grade, therapeutic
approach, drug, and TME subtype.
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Statistical Analysis
All statistical analyses were performed by using R v3.5.1. Non-
parametric (Mann–Whitney test or Wilcoxon signed-rank for
two samples and Friedman or Kruskal–Wallis with Dunn’s
multiple comparison test for multiple samples), parametric
(unpaired t-test for two samples or ordinary one-way ANOVA
with Tukey’s multiple comparison test for multiple samples)
tests, and Spearman correlation were performed using the stats
package as appropriate. All statistical tests used 0.05 as the
significance level, and p < 0.05 were considered as significant
difference, indicated with an asterisk (*p < 0.05, **p < 0.01, ***p <
0.001 and ****p < 0.0001).
RESULTS

CD20 and LCK as Specific Cell Markers
for B and T Cells
To construct the protein-level measurement of TIL infiltration,
we looked through the TCGA reverse-phase protein arrays
Frontiers in Immunology | www.frontiersin.org 3
(RPPA) data (23). In the TCGA RPPA data of approximately
200 proteins across 32 cancer types, the most probable cell
markers for B and T cells were CD20 and LCK. Here, we
analyzed the specificity of CD20 and LCK as cell markers for B
and T cells. In the Genotype-Tissue Expression (GTEx) RNA-
sequencing dataset, the CD20 and LCK mRNA levels were
significantly higher in the blood and spleen tissues, which are
the hematopoietic and lymphoid tissues (Figure 1A). Next, in
the Cancer Cell Line Encyclopedia (CCLE) RPPA dataset, we
found that the CD20 and LCK proteins expressed dominantly in
cell lines derived from the hematopoietic and lymphoid tissues
(Figure 1B, upper plots). The CD20 and LCK protein levels were
prominently higher in the cell lines derived from B and T cells,
respectively (Figure 1B, lower plots).

Next, using the sc-RNAseq data of 28,823 human PBMCs
(referred to as 33K PBMC dataset) with K-means clustering
visualized in the two-dimensional projection of t-distributed
stochastic neighbour embedding (t-SNE), we identified five
distinct cell subtypes using canonical markers of major cell
types, including T cells, B cells, monocytes, nature killer (NK)
A B

C E F

D 

FIGURE 1 | CD20 and LCK expression in different human tissue, cell, and cancer types. (A) CD20 and LCK mRNA expression in human tissues. (B) CD20 and
LCK protein expression in human cell lines. Error bars showing mean ± 95% confidence interval (CI). The p-value was calculated using ANOVA. (*p-value<0.05,
**p -value<0.01, ***p-value<0.001, ****p-value<0.0001) (C) t-SNE projection of single-cell RNA-sequencing data from 28,823 human PBMCs (known as 33K PBMCs
dataset), with each dot representing one single cell and colors representing the five major cell lineages. The cell lineages were assigned according to the expression
of known canonical marker genes (also see Figure S1). (D) LCK and CD20 mRNA expression in five major cell lineages. Error bars show mean ± 95% CI. Statistics
were computed using ANOVA. (E, F) The t-SNE projection of 28,823 PBMCs (E) and 52,698 lung cancer [(F), known as 52K lung cancer dataset; also see
Figure S5], color-coded according to the expression of LCK, CD3E, CD19, and CD20 in each subgraph.
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cells, and dendritic cells (DCs) (Figures 1C and S1). CD20 was
dominantly expressed in B cells, while LCK was dominantly
expressed in both NK cells and T cells (Figures 1D, E). Next, to
clarify the relative distributions of LCK-expressing cells that
include T and NK cells, we analyzed the CIBERSORT
ImmunePRECOG dataset included 7,741 samples from 25
cancer types (Figure S2) and the CIBERSORT TCGA dataset
included 11,273 samples from 33 cancer types (Figure S3). We
found that the abundances of T cells were averagely 8 to 100-fold
higher than that of NK cells (Figures S2–3). The LCK-expressing
cells were significantly dominated by the T cells.

To further validate the above findings, we added two
independent sc-RNAseq datasets, including the 10K PBMC
dataset of 7,865 human PBMCs (Figure S4) and 52K lung
cancer dataset of 52,698 cells from human lung cancer tissues
(Figures 1F and S5). We found that, at the single-cell level, the
expression of LCK and CD20 were largely consistent with the
well-acknowledged T and B cell markers, CD3 and CD19
(Figures 1E, F and Figure S4). Moreover, in the TCGA RNA-
seq dataset of 35 cancer types, we observed significant
correlations between the transcript levels of CD3E and LCK
(Figure S6A, pan-cancer rho=0.89), and the CD19 and CD20
(Figure S6B, pan-cancer rho=0.70) across different cancer types,
indicating LCK and CD20 as specific cell markers for the T and
B cells.

Varying Distributions of Tumor-Infiltrating
T and B Cells (TIL-T and TIL-B) Across
Different Cancer Types
The evaluation of TILs’ abundances based on the TCGA RNA-seq
data has been reported previously (9, 18). However, it is reported
that the transcriptome only has a low correlation to the proteome
(10). To investigate this phenomenon across different cancer and
tissue types, we compared the correlations between the mRNA and
protein levels of CD20 and LCK in the TCGA (Figure 2) and CCLE
(Figure S7) datasets. We found that: (i) the correlation levels for
both CD20 and LCK were varying across different cancer and tissue
types (Figures 2A and S7A); (ii) in both the pan-cancer and pan-
tissue analyses, the associations were significant in LCK but
insignificant in CD20 (Figures 2B and S7B); (iii) the correlation
levels for CD20 were very low in 93.8% of the cancer types and
91.3% of the tissue types (Figures 2A and S7A; Spearman rho <
0.3); by contrast, the low correlation levels for LCKwere observed in
12.5% of cancer types and 60.9% of tissue types. Moreover, except
for THYM, none of the cancer types showed a high correlation
coefficient of Spearman rho > 0.7. These findings revealed the
discordance of the mRNA-protein relationship, indicating the
importance of protein-expression-based measurement of
TILs’ abundances.

Next, we analyzed the TIL-B and TIL-T abundances using the
CD20 and LCK protein levels in the TCGA RPPA dataset,
including 7,694 primary cancer tissues across 32 cancer types
(Figure S8). The TCGA RPPA data has been previously
harmonized by the PanCanAtlas consortium for uniform
quality control, batch effect correction, and normalization (16).
To the best of our knowledge, it is the first large-scale pan-cancer
Frontiers in Immunology | www.frontiersin.org 4
study of TIL-B and TIL-T cells using the protein-expression-
based measurement. Here, Figure 3A shows the substantially
varying distributions of LCK and CD20 protein levels across
different cancer types. In the direct comparisons across 32 cancer
types, the expression levels of CD20 and LCK in DLBC
(lymphoid neoplasm diffuse large B cell lymphoma) were first
and second-highest, respectively, which were attributed to the
tissue origins related to B and T cells. The highest LCK levels
were observed in THYM (thymoma), as thymus tissue was
expected to have enriched T cells. Among the rest non-
hematologic and non-lymphoid cancer types, we found that
both the CD20 and LCK protein levels were high in the
stomach adenocarcinoma (STAD). The adrenocortical
carcinoma (ACC) had the lowest LCK levels, and the cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC) had the lowest CD20 levels. Brain tumors, the LGG
and GBM, had the second-to-third lowest LCK levels and
moderate CD20 levels. These results showed the discordant
infiltration of TIL-T and TIL-B cells (Figure 3B).

Prognostic Significance of TIL-T and TIL-B
Cells Across Different Cancer Types
To comprehensively evaluate the prognostic value of the
continuous TILs gradient, we employed an exhaustive survival
analysis approach (Figure 4A), which calculates the significance
for every possible expression cutoff exhaustively, as previously
reported (22, 24, 25). Patients were stratified by all the possible
cut-offs. At each cut-off, we conducted multivariate Cox
proportional-hazards survival analysis, with adjustment for
gender, age, histological grade, and stage. Clinical outcomes
were measured by 5-year survival, using four clinical outcome
endpoints of OS (overall survival), PFI (progression-free interval),
DFI (disease-free survival), and DSS (disease-specific survival).
Results of exhaustive survival analysis for LCK were summarized
by the proportions of favorable and unfavorable cut-offs
(Figure 4B) and the distributions of hazard ratios (HRs) for
significant cut-offs (Figure 4C). The high LCK protein levels were
associated with unfavorable prognosis in the cancer types of
MESO, PCPG, BRCA, PRAD, BLCA, and THCA, while the
favorable associations were found in the cancer types of READ,
OV, SARC, STAD, PAAD, TGCT, HNSC, LUSC, and UCEC.

Next, we selected four cancer types with prognostic
significances and plotted HRs for the continuous cut-offs
(Figure 4D). The best cut-offs, the cut-off with the highest
value of absolute log2 HR, were used for Kaplan Meier plots
(Figure 4E). Different cancer types did not have overlapped cut-
off positions in the percentage scale. Moreover, for individual
cancer types, survival analyses of different endpoints showed
different results, even using the best cut-off.

For the CD20, we also observed both the favorable and
unfavorable associations in different cancer types (Figures 4F–I).
The high CD20 protein levels showed unfavorable associations in
the cancer types of ACC, STAD, DLBC, and PRAD, and favorable
associations were found in the cancer types of LGG, SKCM, HNSC,
TGCT, OV, LIHC, KIRP, UCS, SARC, and LUSC, while PAAD,
BLCA, and THCA showed unclear biases towards the favorable or
January 2022 | Volume 12 | Article 731329
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unfavorable outcome (Figures 4F, G). Next, ACC, STAD, OV, and
LGG were selected for HR plots and Kaplan Meier plots
(Figures 4H, I). The prognostic associations were notably robust,
albeit with discordant biases towards the favorable or unfavorable
effect. Moreover, it is noteworthy that ACC and LGG tumors had
the first-to-second lowest T cell infiltrations (Figures 3A, B),
implying that TIL-B cells could exert significant prognostic effects
when only minimal TIL-T cells were present in the TME.

Collectively, both TIL-T and TIL-B cells showed
heterogeneous prognostic relations in different cancer types,
indicating the complex role of TILs in cancer prognosis. These
results might be due to the complex interplay between the TILs
and the TME. Thus, our further analysis should focus on the
relationships between the TILs and TME.

Distinct Distributions of TIL-T and TIL-B
Cells in Six Subtypes of Tumor
Microenvironment
The previous study has identified six immune subtypes of TME,
which have been defined as wound healing, IFN-g dominant,
Frontiers in Immunology | www.frontiersin.org 5
inflammatory, lymphocyte depleted, immunologically quiet, and
TGF-b dominant signatures (1). Here, we found that the
immunological quiet subtype had the lowest LCK and
CD20 protein levels, and the lymphocyte depleted subtype
also had very low LCK and CD20 protein levels (Figure 5),
indicating the concordant deletion of TIL-T and TIL-B cells.
Notably, both the protein levels of CD20 and LCK were the
second-highest in the TGF-b dominant subtype (Figure 5),
which was the most minority subgroup with only 180 cases
that composed only 2.0% of the total cases. The TGF-b dominant
subtype has the highest TGF-b expression, which might
contribute to the concordant enrichment of TIL-T and TIL-B
cells. Of note, we observed that the wound healing subtype,
defined by elevated expression of angiogenic genes, had
moderate LCK levels but very low CD20 levels. The
inflammatory subtype, the TME subtype with the highest
mRNA levels of Th17 genes, had the prominently highest
CD20 protein levels and moderate LCK protein levels. And,
the IFN-g dominant subtype had the prominently highest LCK
levels but very low CD20 levels (Figure 5). The above results
A

B

FIGURE 2 | The relationships between the mRNA and protein levels of CD20 and LCK across different cancer types. (A) Bar plot shows the Spearman’s rho
coefficients between mRNA and protein levels of CD20 and LCK in different cancer types, with color coding according to cancer type. (B) The correlations between
mRNA and protein levels of CD20 and LCK in pan-cancer analysis. The error bar represents the 95% confidence interval (CI), the dot represents the average value,
with color coding according to cancer type.
January 2022 | Volume 12 | Article 731329
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showed that the distributions of TIL-B and TIL-T cells were not
fully concordant across different TME subtypes.

Distinct Distributions of TIL-T and TIL-B
Cells in Subgroups of Gender,
Histopathology, and Histological Grade
Next, we analyzed the CD20 and LCK protein levels in different
subgroups defined by gender (Figure S9), histopathology
(Figure S10), and histological grade (Figure S11). In the
gender-related differences, males had significantly lower LCK
protein levels than females in the lung squamous cell carcinoma
(LUSC), breast invasive carcinoma (BRCA), and bladder
urothelial carcinoma (BLCA), and males had significantly
higher CD20 protein levels in the LUSC, esophageal carcinoma
(ESCA) and glioblastoma multiforme (GBM) (Figure S9).

In the histopathology-related differences, the adenocarcinoma
had significantly higher LCK protein levels than the squamous
cell carcinoma in lung cancer and ESCA. And, adenocarcinoma
had significantly lower CD20 protein levels in lung cancer
(Figure S10).

In the histological-grade-related differences, the higher grade
tumor had significantly higher LCK protein levels than the lower
grade tumor in STAD, kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), and BLCA; and the
Frontiers in Immunology | www.frontiersin.org 6
higher grade tumor had significantly lower CD20 protein levels
in the ovarian serous cystadenocarcinoma (OV) and BLCA but
significantly higher CD20 levels in STAD (Figure S11).

The above results revealed the distinct distributions of TILs in
different subgroups, suggesting the importance of analyzing the
prognostic relevance of TILs in different subgroups separately.

The Prognostic Landscape of TIL-B and
TIL-T Cells Across Different Cancer Types
and the Clinical, Therapeutic, and TME
Subgroups
Previous studies have reported the prognostic associations of
TIL-T and TIL-B cells in several cancer types (11–14). However,
there is a scarcity of data on the prognostic landscape of TIL-B
and TIL-T cells in heterogeneous cancer subgroups. To solve the
problem, we conducted subanalyses based on the clinical,
therapeutic, and TME subtypes. The TCGA cohorts of 32
cancer types were separated into different subgroups by
gender, histopathology, histological grade, therapeutic
approach, drug, and TME subtypes. All the subgroups were
used for conducting the exhaustive multivariate Cox
proportional-hazards regression. The detailed results of the
subgroup analyses were provided in the supplementary
information (Figures S12–17). Moreover, we presented the
A

B

FIGURE 3 | LCK and CD20 protein levels across different cancer types. (A) The protein levels of CD20 and LCK across different cancer types. (B) The relationship
between the CD20 and LCK protein levels. The error bar represents the 95% confidence interval (CI), the dot represents the average value, with color coding
according to cancer type.
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FIGURE 4 | Prognostic significance of LCK and CD20 across cancer types. (A) Analysis framework of prognostic relevance. Patients were separated into two
groups according to all the possible cut-offs of protein levels. Each subgroup should have at least 15 patients. Multivariate Cox proportional-hazards regression
analysis was performed for each possible cut-off, with covariates including age, gender, histological grade, and stage. (B, F) Bar plots of the percentages of
favorable and unfavorable cut-offs by the protein levels of LCK (B) and CD20 (F) across different cancer types and four clinical outcomes of OS, PFI, DFI, and DSS.
(C, G) Distributions of HRs for significant cut-offs. Error bars show mean ± 95% CI. (D, H) Plots of HRs for individual cut-offs by the protein levels of LCK (D) and
CD20 (H), with color indicating p-value. The best cut-off is indicated by red dashed line. (E, I) Kaplan-Meier plots for patient stratification using the best cut-off of
LCK (E) and CD20 (I).
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7313297

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. Prognostic Landscape of TIL-T and TIL-B
summary plots that include the significant prognostic relevance
of LCK and CD20 for individual cancer types and subgroups
(Figures 6A, B). Of these, we underlined the robust prognostic
significances that have more than 10% significant cut-offs.

For the TIL-T cells measured by LCK, the favorable
associations were observed in STAD, PRAD, TGCT, and
UCEC, and the unfavorable associations were found in PRAD,
MESO, KIRP, and CESC, whereas the rest cancer types showed
inconsistent prognostic relevance (Figure 6A). For the TIL-B
cells measured by CD20, the favorable associations were
observed in LGG, HNSC, OV, and UCS, and the unfavorable
associations were found in PRAD, DLBC, STAD, and ACC,
while the other cancer types showed inconsistent prognostic
relevance in different subgroups (Figure 6B).

Of note, the TIL-B and TIL-T cells, measured by the CD20
and LCK protein levels, showed different prognostic trends
across various subgroups, which indicated that the TILs play a
complex role under the heterogeneous context of cancer
subtypes. Therefore, the discordant effects of TIL-T and TIL-B
cells might not solely be driven by the heterogeneous clinical,
therapeutic, and TME subtypes.

Potential Modulators of T-Cell Infiltration
Across Different Cancer Types
The TGF-b dominant TME subtypes have high levels of TIL-T
cells (Figure S18A). Next, to identify the specific source of TGF-b
at the cellular level, we analyzed the expression of TGFB1, TGFB2,
and TGFB3 using the sc-RNAseq datasets of 33K PBMC and 52K
lung cancer cells (21). The expression levels of TGFB2 and TGFB3
were extremely low, while the TGFB1 expressed dominantly in the
monocytes in blood and the macrophages in cancer tissues
(Figures S18B–C). The IFN-g dominant subtype displayed the
highest IFN-g expression signature, which is the most dominant
TME subtype, which composed 28.4% of the total cases. The
previous study of IFN-g dominant TME has analyzed the IFN-g
dominant communication network, including CXCL9, CXCL10,
CXCR3, CCL5, IFNG, IFNGR1, and IFNGR2 (1). Based on the
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IFN-g dominant communication network, we inferred the cellular
context for the communications between TME and TILs. Through
analyzing the expression of well-acknowledgeable receptor-ligand
pairs using the sc-RNAseq datasets, we combined the IFN-g
dominant TME communication network with the cell-type-
specific knowledge at the single-cell level.

Here, we found that CXCL9 and CXCL10, the IFN-g
inducible chemokines (26), were rarely expressed in the
monocytes derived from blood (Figure S18D). However,
macrophages in lung cancer tissues expressed high levels of
CXCL9 and CXCL10 (Figure S18E). CXC chemokine receptor
3 (CXCR3), the receptor for CXCL9 and CXCL10 (26), was
expressed dominantly in T and NK cells from both peripheral
blood and lung cancer (Figures S18D, E). These findings
suggested that NK cells and T cells in the blood might migrate
into the tumor tissues due to the communications between the
macrophages and the T cells. Next, the NK and T cells also
dominant ly expressed IFNG and CCL5 , a potent
chemoattractant whose acknowledgeable function is to recruit
monocytes and macrophages (27). IFNGR1 and IFNGR2, the
cognate receptors of IFNG, were expressed in both monocytes in
blood and macrophages in lung cancer (Figures S18D, E).

The TIL-T cells expressed IFNG, CCL5, and CXCR3 that play
the central role in the IFN-g dominant communication network
(Figure S18F). Next, we analyzed the relationships of LCK with
IFNG, CCL5, and CXCR3, using TCGA bulk RNA-sequencing
data, and we found significant associations in the expression
levels of LCK with IFNG (Figure S18G, total rho=0.73), CCL5
(Figure S18H, total rho=0.80), and CXCR3 (Figure S18I, total
rho=0.84) in most cancer types. The above findings were
illustrated by the graphical representation (Figure 7A),
indicating the cross-talks between macrophages and T cells
involved the IFN-g dominant communication network.

It is reported that TIL-T cells express immune checkpoint
genes, such as programmed cell death protein 1(PDCD1, PD-1)
and the cytotoxic T lymphocyte-associated protein 4 (CTLA-4),
which renders TIL-T ineffective against tumors (6, 8). Recent
FIGURE 5 | LCK and CD20 protein levels across different tumor microenvironment (TME) subtypes. CD20 and LCK protein levels in different TME subtypes. The
error bar represents the 95% confidence interval (CI), the dot represents the average value, with color coding according to cancer type. The p-value was calculated
using the ANOVA test (*p-value<0.05, **p-value<0.01, ***p-value<0.001, ****p-value<0.0001).
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immunotherapies have used PD-1, CTLA4, and TIGIT inhibitors
to enhance T cell response in cancer patients (6–8). Here, we
found that the PD-1 (PDCD1) and CTLA4 were only expressed in
a sub-cluster of T cells in the peripheral blood (Figures S19A–C),
but the vast majority of TIL-T cells in lung cancer tissues
expressed PD-1 and CTLA4 (Figure S19D). Next, the TIGIT,
an T cell exhaustion marker and inhibitory receptor for both NK
and T cells (7), was expressed dominantly on both T and NK cells.
And, the TIGIT-expressing T cells were largely overlapped with
the PD-1 and CTLA4-expressing T cells (Figures S19A–D).
Furthermore, we found that LCK was significantly correlated
with TIGIT (Figure S19E, total rho=0.82), CTLA4 (Figure
S19F, total rho=0.77), and PD-1 (Figure S19G, total rho=0.81)
in most cancer types, indicating the important role of TIGIT,
CTLA4, and PD-1 in the TIL-T cells across cancer types.
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Potential Modulators of B-Cell Infiltration
Across Different Cancer Types

The TIL-B cells were remarkably enriched in the inflammatory
TME (Figure 5). The inflammatory TME subtype is defined by
the signature of high expression of the Th17 gene (1). Here, we
analyzed the CCR6 and CXCR4, the important homing
molecules expressed by Th17 (28). And, it is reported that the
CCR6 was consistently expressed in both Th17 and B cells across
blood, lymphoid, and non-lymphoid tissues (29). Using the sc-
RNAseq datasets, we found that the CCR6 was highly expressed
in both B cells and a sub-cluster of T cells in both blood and lung
cancer tissues (Figures S20A, B). However, the CXCR4 was
expressed in almost all the cell subsets in both blood and lung
cancer tissues, indicating that CXCR4 was not a specific marker
A

B

FIGURE 6 | The prognostic landscape of CD20 and LCK in different cancer types and subgroups defined by gender, histopathology, histopathological grade,
therapeutic approach, drug, and TME. (A, B) Prognostic significances of CD20 (A) and LCK (B) in the total cancer types and different subgroups, with favorable and
unfavorable associations indicated by blue and red dots. The prognostic significances were shown using the average percentage of the significant cut-offs from OS,
PFI, DFI, and DSS if available. The robust associations with percentages of more than 10% were underlined with circles. The detailed results of subgroup analyses
could be found in Figures S12–17.
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for Th17. Next, we analyzed the ligands of CCR6 and CXCR4,
which are the CCL20 (30) and CXCL12 (31). The CCL20 was
expressed in cancer cells and macrophages in lung cancer tissues,
while the CXCL12 was expressed by fibroblasts in lung cancer
tissues (Figures S20A, B). These findings indicated that the
migration and retention of both B and Th17 cells in tumor tissue
might be controlled by the communications between the B cells,
Th17 cells, macrophages, and cancer cells through the CCR6-
CCL20 and CXCR4-CXCL12 chemokine axes.

Next, we analyzed CCR7, the homing molecule expressed by
B cells (32) and CD8+ T cells (33) but not expressed by Th17
(34). Here, we found that the CCR7 was expressed by the B and T
cells in both blood and lung cancer tissues. And, the CCL19 and
CCL21, the ligands of CCR7 (35, 36), were expressed by the
fibroblasts in lung cancer tissues (Figures S20A, B). These
results indicated that both B and T cells could migrate into
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tumor tissues from peripheral blood, which might depend on the
communications with fibroblasts through the CCR7-CCL19/
CCL21 chemokine axis.

Next, we analyzed the CXCR5, which has been reported to be
co-expressed with CCR6 and CCR7 in B cells (29). We found
that the CXCR5 was expressed in B cells from both PBMCs and
lung cancer. And, the CXCL13, the ligand for CXCR5 (37), was
expressed in T cells from the lung cancer tissues (Figures S20A,
B). These findings implied that the B cells in blood could be
recruited to tumor tissue by the TIL-T cells through the CXCR5-
CXCL13 chemokine axis (Figure S20C).

Next, we observed significant associations of the expression
levels of CD20 with CCR6 (Figure S20D, total rho=0.62), CCR7
(Figure S20E, total rho=0.79), and CXCR5 (Figure S20F, total
rho=0.73) in most cancer types. The above findings indicated
that the CCR6, CCR7, and CXCR5, expressed in the B cells,
A

B

FIGURE 7 | Cellular communication network involving TIL-T and TIL-B cells. (A, B) Graphical representation of cellular communication network of TIL-T (A) and
TIL-B (B) cells. Arrow represents the directions of ligand-receptor pairs expressed in the corresponding cells.
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might play an important role in the infiltration of TIL-B cells
across different cancer types. Based on the above results, we
constructed the cellular communication network for TIL-B cells
(Figure 7B), which also showed the infiltrations of T and B cells
might involve different but partially overlapped molecular
interaction networks.
DISCUSSION

Previously, the heterogeneous TME was classified into six
distinct subtypes through different signatures of the immune
gene expression (1). Additionally, these six TME subtypes were
characterized by distinct distributions of leukocyte fractions,
which were estimated using the DNA methylation probes with
the greatest differences between pure leukocyte cells and normal
tissue. Moreover, the spatial fractions of lymphocyte regions,
assessed by digitized H&E-stained slides, were also different in
these TME subtypes (3). In our study, we provided the protein-
level measurements of the TIL-T and TIL-B abundances, which
added a novel dimension for the evaluation of TILs. We observed
distinct TIL-T and TIL-B distributions across different TME
subtypes, which is in line with the previous characterizations of
TILs in those TME subtypes. Notably, we found that the
enrichments of TIL-T and TIL-B cells were not entirely
consistent, indicating the involvement of different cellular
communication networks.

Through mapping the well-acknowledgeable receptor-ligand
pairs on the cellular context at the single-cell level, we inferred the
cellular communication network involving the TIL-T or TIL-B
cells. We found the crosstalk between the TIL-T cells and
macrophages and the communications of TIL-B cells with
cancer cells, macrophages, fibroblasts, and TIL-T cells.
Consistent with our expectations, these results indicate the
TME regulations of TIL-T and TIL-B cells through the complex
but partially overlapped communication network. Notably,
despite these complicated TME interactions and heterogeneous
TME subtypes, the communication network highlights several
conserved chemokine receptors on TIL-T and TIL-B, respectively.
These chemokine receptors showed remarkably and positively
relations with the TIL-T and TIL-B abundances across various
cancer types. These findings could be accounted for by assuming
that, although the TILs communication network may differ under
heterogeneous TME contexts, the respective key regulators of
TIL-T and TIL-B abundances are likely to be consistent across
different cancer types.

In our study, we observed varying distributions of TIL-T and
TIL-B cell abundances across diverse cancer types and subgroups.
Furthermore, in different cancer types and subgroups, both TIL-T
and TIL-B cells showed heterogeneous prognostic effects. It is
reported that the heterogeneous prognostic effects of the TIL-T
and TIL-B cells could probably be attributed to the heterogeneous
constitution of TIL-T and TIL-B subpopulations (38–40).
Different TIL-T and TIL-B cell subsets have distinct functions,
which may contribute to pro- and antitumorigenic responses.
Here, our study reports the prognostic landscape of TIL-T and
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TIL-B cells, which offered a preliminary indicator for the pro- and
antitumorigenic roles of TIL-T and TIL-B cells in different cancer
types and subgroups as well as response to different therapy
and drugs.

To date, the immunotherapy of manipulating TILs has
become a critical treatment for cancer patients (6–8). Thus,
our s tudy might have important impl icat ions for
immunotherapy. Recently, the antitumorigenic effect of CD8+

TIL-T cells has been extensively investigated and used in
immunotherapy. However, only part of CD8+ TIL-T cells was
specific for tumor antigen (41). In contrast, another subgroup of
CD8+ TIL-T cells was characterized as bystander T cells that
recognize a wide range of epitopes unrelated to cancer (41). In
this study, the abundances of bulk TIL-T cells showed adverse
prognostic effects in different cancer types. Thus, our knowledge
of TIL-T cells is far from complete. The antigenic specificity of
TIL-T cells should also be considered in future studies.

In comparison with TIL-T cells, the TIL-B cells are less well
studied. In our study, we found that the TIL-B cells showed
remarkable prognostic relevance. It is still unclear whether TIL-B
cells reflect or play an important role in the specific immune
responses to tumors. Future studies could help to study the
function of TIL-B cells in the prognostic-related cancer types,
such as ACC, STAD, OV, and LGG. Also, the pro- and
antitumorigenic TIL-B cell subpopulations remain to be
determined. With a better understanding of TIL-B cells, it
could be feasible to design immunotherapies that target not
only TIL-T cells but also the TIL-B cells to improve cancer
patients’ survival.

Our study has several advantages over previous studies.
Firstly, we used standardized, normalized, and batch corrected
LCK and CD20 protein levels across 32 cancer types, which
allowed us to investigate the distributions of TIL-T and TIL-B
abundances spanning different tumor types. Moreover, we
demonstrated that tumors from different tissues had a
remarkable difference in the abundances of lymphocytic
context. Secondly, we performed an exhaustive multivariate
survival analysis considering all the possible cut-offs, which
reduced the potential for erroneous conclusions drawn from a
single cut-off. Previously, the survival analysis usually used the
median-split approach that equally divides patients into two
groups. However, the median-split approach has a major
limitation that real-world data inevitably have distributional
variations, which is often ignored. For instance, for the DFI of
CD20 in LIHC, we observed 50.82% favorable and 49.18%
significant unfavorable cutoffs (Figure 4F), which indicates
that the prognostic significance could be confounded using a
single arbitrary cut-off. Comparatively, the exhaustive
multivariate survival analysis could measure the prognostic
relationship more reliably. Moreover, the percentage of the
significant cut-offs could be used to represent the robustness of
the prognostic relationship.

Through the improved methodology, we found that, in the
LGG patients, the TLL-T cells showed insignificant prognostic
associations, which were presented as 0% significant cutoffs. In
contrast, the high TIL-B cell abundances were remarkably
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associated with favorable prognosis, and the percentages of
significant favorable cutoffs were 43.95%, 79.01%, 5.319%, and
75.69% for OS, PFI, DFI, and DSS, respectively (Figure 4F).
Additionally, the favorable role of TIL-B cells was also observed
in different LGG subgroups. To the best of our knowledge, it
is the first time to identify the prognostic significance of TIL-B
cells in LGG cancer patients. Although further researches
are required involving independent patient cohorts, the weight
of evidence strongly supports a positive role for TIL-B cells
in LGG, suggesting that enhancing rather than inhibiting
TIL-B cell responses might be considered for the design of
immunotherapies for LGG patients.

There are still some limitations in our study. Firstly, although
our study used 5-year survival, the TCGA cohorts have different
follow-up times across different cancer types (17). Secondly,
those TCGA cohorts also have different survival event rates
(17). Thirdly, the OS, PFI, DFI, and DSS are different
definitions of clinical outcomes in oncology research, and as
described in the recommendation of using the data of TCGA
clinical outcomes, the OS and PFI could be relatively accurate,
the DFI is reasonably accurate, but DSS could only be estimated
for most cases (17). It remains unknown how much the above
limitations might bias our results across different cancer types
and subgroups. Thus, we recommend that those prognostic
associations with less than 10% significant cut-offs should be
interpreted cautiously. Nevertheless, most of our survival
analyses have clear prognostic relevance towards the favorable
or unfavorable trend. Notably, prognostic associations with more
than 10% significant cut-offs could be preferentially used for
further study.

Taken together, to the best of our knowledge, this study
depicted the first high-resolution prognostic landscape of TIL-T
and TIL-B cell abundances across heterogeneous human
malignancies and the clinical, therapeutic, and TME
subgroups. The prognostic landscape indicates lots of
hypotheses for future study, including exploring the function
of TILs under different clinical and TME subtypes or elucidating
the effects of TILs on different therapeutic approaches and drugs.
Despite these hypothetical possibilities, the precise functions of
TIL-T and TIL-B cells in the TME require further study.
Nevertheless, this study comprehensively investigated the
impact of TIL-T and TIL-B cells on cancer patients’ survival
across different cancer types, the prognostic landscape of TIL-T
and TIL-B cells will be a useful resource for future studies seeking
to better understand the role of TILs in cancer subtypes in which
it has not been explored, with critical implications for
cancer immunotherapy.
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Figure S1 | t-SNE projection of single-cell RNA-sequencing data from 28,823
human PBMCs, with each dot representing one single cell and colors representing
the expression of known canonical marker genes (A) and 5 major cell lineages (B).

Figure S2 | (A–B) Comparisons between the factions of NK cells and T cells
across 25 cancer types in 7,741 ImmunePRECOG samples. Error bars showing
mean ± 95% confidence interval (CI). The p-value was calculated using the
Student’s t-test (*p-value<0.05, **p-value<0.01, ***p-value<0.001, ****p-
value<0.0001).

Figure S3 | (A–B) Comparisons between the factions of NK cells vs T cells across
33 cancer types in 11,273 TCGA samples. Error bars showing mean ± 95%
confidence interval (CI). The p-value was calculated using the Student’s t-test
(*p-value<0.05, **p-value<0.01, ***p-value<0.001, ****p-value<0.0001).
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Figure S4 | The t-SNE projection of single-cell RNA-sequencing data from 7,865
human PBMCs (10K PBMC dataset), with colors representing the canonical marker
genes’ mRNA level (A), protein level (B), and major cell lineages (C–D).

Figure S5 | The t-SNE projection of single-cell RNA-sequencing data from 52,698
human lung cancer cells (52K lung cancer dataset), with red color representing
different cell lineages.

Figure S6 | The relationships between the expression levels of CD3E and LCK,
CD19, and CD20 across different cancer types. (A–B) Plots showing co-expression
between LCK and CD3E (A), CD20 and CD19 (B) across different cancer types.
Statistics were computed using Spearman’s rank correlation.

Figure S7 | The relationships between the mRNA and protein levels of CD20 and
LCK in cell lines from different tissue sources. Statistics were computed using
Spearman’s rank correlation.

Figure S8 | Bar plot of sample sizes in different cancer types from the TCGA
RPPA dataset.

Figure S9 | CD20 and LCK protein expression in different cancer types stratified
by gender. The p-value was calculated using the Student’s t-test (*p-value<0.05,
**p-value<0.01, ***p-value<0.001, ****p-value<0.0001).

Figure S10 | CD20 and LCK protein expression in different cancer types stratified
by histopathology. The p-value was calculated using the Student’s t-test (*p-
value<0.05, **p-value<0.01, ***p-value<0.001, ****p-value<0.0001).

Figure S11 | CD20 and LCK protein expression in different cancer types stratified
by histological grade. The p-value was calculated using the ANOVA (*p-value<0.05,
**p-value<0.01, ***p-value<0.001, ****p-value<0.0001).

Figure S12 | Subgroup survival analysis for gender. Statistics of survival analysis
were computed using multivariate Cox proportional hazards survival analysis using
age, histological grade, and stage if applicable. (A, C) Bar plots of the percentages
of favorable and unfavorable cut-offs by the protein levels of CD20 (A) and LCK (C)
across 4 clinical outcomes, including OS, PFI, DFI and DSS and TCGA cancer types
subgroup by gender. (B, D) HRs of significant cut-offs. Error bars show mean ±
95% CI.

Figure S13 | Subgroup survival analysis for histopathology. Statistics of survival
analysis were computed using multivariate Cox proportional hazards survival
analysis using gender, age, histological grade, and stage if applicable. (A, C) Bar
plots of the percentages of favorable and unfavorable cut-offs by the protein levels of
CD20 (A) and LCK (C) across 4 clinical outcomes, including OS, PFI, DFI and DSS
and TCGA cancer types subgroup by histopathology. (B, D) HRs of significant cut-
offs. Error bars show mean ± 95% CI.

Figure S14 | Subgroup survival analysis for histological grade. Statistics of survival
analysis were computed using multivariate Cox proportional hazards survival
analysis using gender, age, and stage if applicable. (A, C) Bar plots of the
percentages of favorable and unfavorable cut-offs by the protein levels of CD20 (A)
and LCK (C) across 4 clinical outcomes, including OS, PFI, DFI and DSS and TCGA
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cancer types subgroup by histological grade. (B, D)HRs of significant cut-offs. Error
bars show mean ± 95% CI.

Figure S15 | Subgroup survival analysis for therapeutic approach. Statistics of
survival analysis were computed using multivariate Cox proportional hazards
survival analysis using gender, age, histological grade, and stage if applicable.
(A, C) Bar plots of the percentages of favorable and unfavorable cut-offs by the
protein levels of CD20 (A) and LCK (C) across 4 clinical outcomes, including OS,
PFI, DFI and DSS and TCGA cancer types subgroup by therapeutic approach.
(B, D) HRs of significant cut-offs. Error bars show mean ± 95% CI.

Figure S16 | Subgroup survival analysis for drug. Statistics of survival analysis
were computed using multivariate Cox proportional hazards survival analysis using
gender, age, histological grade, and stage if applicable. (A, C) Bar plots of the
percentages of favorable and unfavorable cut-offs by the protein levels of CD20 (A)
and LCK (C) across 4 clinical outcomes, including OS, PFI, DFI and DSS and TCGA
cancer types subgroup by drug. (B, D) HRs of significant cut-offs. Error bars show
mean ± 95% CI.

Figure S17 | Subgroup survival analysis for tumor microenvironment subtype.
Statistics of survival analysis were computed using multivariate Cox proportional
hazards survival analysis using gender, age, histological grade, and stage if
applicable. (A, C) Bar plots of the percentages of favorable and unfavorable cut-offs
by the protein levels of CD20 (A) and LCK (C) across 4 clinical outcomes, including
OS, PFI, DFI and DSS and TCGA cancer types subgroup by immune subtype.
(B, D) HRs of significant cut-offs. Error bars show mean ± 95% CI.

Figure S18 | CD20 and LCK protein levels in different subtypes of tumor
microenvironment (TME), and the cellular communications involving IFN-g dominant
communication network. (A) CD20 and LCK protein levels in different TME
subtypes. (B–E) Plots of t-SNE projections for 33K PBMC and 52K lung cancer sc-
RNAseq datasets, with color indicating the normalized expression of genes from the
TGF-b family (B–C) and the IFN-g dominant communication network (D, E). (F)
Graphical representation for the IFN-g dominant communication network. (G–I)
Plots showing co-expression of LCK with IFNG (G), CCL5 (H), and CXCR3 (I)
across different cancer types. Statistics were computed using Spearman’s
correlation.

Figure S19 | The expression of CTLA4, PDCD1, TIGIT and the tumor-infiltrating T
cells. (A–D) Plots of t-SNE projections of single-cell RNA-sequencing datasets of
10K PBMC (A, B), 33K PBMCs (C), and 52K lung cancer cells (D), with color
indicating the normalized expression levels of CTLA4, PDCD1, and TIGIT. (E, F)
Plots showing co-expression of LCK with TIGIT (E), CTLA4 (F), and PDCD1 (F)
across different cancer types. Statistics were computed using Spearman’s
correlation.

Figure S20 | Cellular communication network involved tumor-infiltrating B cells.
(A, B) Plots of t-SNE projections for sc-RNAseq datasets of 33K PBMCs (A) and
52K lung cancer cells (B), with color indicating the normalized expression levels of B
cell chemokine receptors and their ligands. (C) Graphical representation of cellular
communication network of tumor-infiltrating B cells. (D–F) Plots showing co-
expression of CD20 with CCR6 (D), CCR7 (E), and CXCR5 (F) across different
cancer types. Statistics were computed using Spearman’s rank correlation.
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