
Original Paper

Prognostic Modeling of COVID-19 Using Artificial Intelligence in
the United Kingdom: Model Development and Validation

Ahmed Abdulaal1, MBBS, BSc; Aatish Patel1, MBBS, BSc; Esmita Charani2, PhD; Sarah Denny1, MBBS, BSc;

Nabeela Mughal1, MBBS, MSc; Luke Moore1,2, MBBS, PhD
1Chelsea and Westminster NHS Foundation Trust, London, United Kingdom
2NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United
Kingdom

Corresponding Author:
Luke Moore, MBBS, PhD
NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance
Imperial College London
Exhibition Rd, South Kensington
London, SW7 2AZ
United Kingdom
Phone: 44 783 436 6302
Email: l.moore@imperial.ac.uk

Abstract

Background: The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency
and the case fatality rate in the United Kingdom is significant. Although there appear to be several early predictors of outcome,
there are no currently validated prognostic models or scoring systems applicable specifically to patients with confirmed
SARS-CoV-2.

Objective: We aim to create a point-of-admission mortality risk scoring system using an artificial neural network (ANN).

Methods: We present an ANN that can provide a patient-specific, point-of-admission mortality risk prediction to inform clinical
management decisions at the earliest opportunity. The ANN analyzes a set of patient features including demographics, comorbidities,
smoking history, and presenting symptoms and predicts patient-specific mortality risk during the current hospital admission. The
model was trained and validated on data extracted from 398 patients admitted to hospital with a positive real-time reverse
transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2.

Results: Patient-specific mortality was predicted with 86.25% accuracy, with a sensitivity of 87.50% (95% CI 61.65%-98.45%)
and specificity of 85.94% (95% CI 74.98%-93.36%). The positive predictive value was 60.87% (95% CI 45.23%-74.56%), and
the negative predictive value was 96.49% (95% CI 88.23%-99.02%). The area under the receiver operating characteristic curve
was 90.12%.

Conclusions: This analysis demonstrates an adaptive ANN trained on data at a single site, which demonstrates the early utility
of deep learning approaches in a rapidly evolving pandemic with no established or validated prognostic scoring systems.

(J Med Internet Res 2020;22(8):e20259) doi: 10.2196/20259
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Introduction

Since the outbreak of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in Wuhan, China in December
2019, there have been over 229,705 confirmed cases in the
United Kingdom, with a case fatality rate of 14.4% as of May
13, 2020 [1,2]. In the United Kingdom, the highest number of
coronavirus disease (COVID-19) deaths (the disease caused by

the SARS-CoV-2 virus) has been reported in London [3], with
many health care providers having experienced a rapid,
difficult-to-predict increase in intensive therapy unit (ITU) bed
requirements.

Although there appear to be several early predictors of outcome
such as age, high sequential organ failure assessment score and
elevated D-dimer levels [4], being male [5], poor glycemic
control in patients with diabetes [6], being immunocompromised
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[7], and obesity [8], currently there are no validated prognostic
models or scoring systems applicable specifically to patients
with SARS-CoV-2, despite attempts to delineate general
predictors of mortality [9]. Emerging clinical risk scores have
been limited by small sample sizes [10], predicting outcomes
in suspected as well as confirmed cases [11-14], or using
regression analysis to produce static models that have been
applied to specific population subgroups, limiting
generalizability [15].

Predicting patient-specific adverse events including ITU
admissions and mortality with sufficient lead time is crucial
during a pandemic, as it allows clinicians, managers, and service
providers to admit patients based on risk of deterioration,
forecast ITU bed demand, and determine appropriate ceilings
of care. From a public health perspective, this would play a
significant role in allowing policy makers to respond efficiently
to surges of COVID-19, which would otherwise risk
overwhelming critical care capacity [16].

There have been significant recent advances in modeling clinical
data on electronic health records (EHRs) [17,18] and specifically
in the capability of machine learning techniques to predict
mortality [19-21]. In view of this, our study proposes an artificial
neural network (ANN) that analyzes a set of patient features
including demographics, comorbidities, lifestyle factors, and
presenting symptoms and predicts patient-specific mortality
risk during the current hospital admission. Crucially, this data
could be collected during the initial encounter of a patient with
a physician, and therefore allows for a prediction of outcome
at the earliest opportunity along the patient pathway.

Classically, deep learning approaches created models that were
difficult to interpret. This had led clinicians to retreat from
complex but accurate techniques to simpler (eg, linear) models
[22]. However, significant recent advances have been made in
deep learning interpretability research [23] and specifically in
creating predictive machine learning models for health care
[24-26]. We use an algorithm capable of revealing which
features were important for making predictions while
maintaining accuracy and consistency [27].

Methods

The ANN was trained on retrospective data extracted from
EHRs in a digital format. Demographic, comorbidity, lifestyle,
and symptom data were encoded from admission notes of
patients admitted to an accident and emergency department at
a West London teaching hospital.

Study Population and Data Description
The clinical data used in this study was collected from all
hospital admissions for SARS-CoV-2 from February 2, 2020,
to April 22, 2020, at a West London teaching hospital. All
patients were included in the analyses. Data was anonymized
at point of extraction from EHR software (Millennium, Cerner
Corporation) and included admission notes, current active
medical conditions, and discharge summaries or electronic
certifications of death.

The inclusion criteria included all patients with real-time reverse
transcription polymerase chain reaction (RT-PCR)
test–confirmed SARS-CoV-2 (proprietary Public Health England
Assay until March 10, 2020, and an AusDiagnostics assay
thereafter). A SARS-CoV-2 infection must have been the
principal diagnosis and the reason for that admission episode.
Outcome data including the presence of either a discharge
summary or electronic certification of death were collected for
each patient. SARS-CoV-2 mortality was defined as an
in-patient death, which occurred during the current admission
episode, in patients with confirmed SARS-CoV-2.

Data Preprocessing
Individual patients were represented as an array of possible
prognostic factors. Demographic factors included age and
gender. Comorbidities included the presence or absence of
chronic obstructive pulmonary disease, asthma, or a chronic
respiratory disease; hypertension, diabetes, ischemic heart
disease, congestive cardiac failure, hepatic cirrhosis, chronic
kidney disease, or a cerebrovascular event history. Smoking
history was also collected. Symptom data included the number
of days of symptoms prior to hospital admission and the
presence or absence of fever, cough, dyspnea, myalgia,
abdominal pain, diarrhea or vomiting, altered mentation,
collapse, and olfactory change or ageusia. These data points
represented a feature set that was then used as the input for the
ANN. Information regarding patient ethnicity was not felt to
be robust due to 23.4% missing data. Ethnic subgroups are
reported using descriptive statistics; however, ethnicity is not
included in the ANN as a variable.

All data was encoded (by AA, AP, and EC) after reading the
admission episode notes for each patient. Comorbidity, lifestyle,
and symptom data were encoded as binary presence features.
Age was recorded as a discrete quantitative feature. Gender was
recorded as a categorical variable, which was later encoded as
a numerical binary feature. All numerical features were
standardized (centered and scaled) by subtracting the mean and
dividing by the standard deviation of the training samples. The
target value was defined as an in-patient death in a patient
clinically suspected of having SARS-CoV-2 on admission and
who had a positive RT-PCR test. Deaths were counted if they
occurred during the admission episode for which outcome
predictions were made. Mortality was encoded as a binary target
value.

Model for Predicting SARS-CoV-2 Outcomes

Overview
The ANN used clinical data accrued from the admission notes
to predict mortality for that admission. Input features were
provided to the system, and the output is the probability of death
for a patient during their current admission. Patients were
randomized to training (80%) and testing (20%) sets. Data for
each patient were randomized to only one of these sets. To
reduce model overfitting, k-fold cross-validation was used. Ten
folds were chosen during training, which represented 10% of
the training sets being used as validation sets. If the probability
of mortality was above a threshold of 50%, the prediction was
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considered positive in that the model predicted the patient was
likely to experience a poor outcome.

Artificial Neural Network Input and Core
Figure 1 demonstrates the ANN. The input layer had an input
dimension equal to the number of patient features and used
rectifier activation (n=22). Information was then fed into two

densely connected further layers (known as hidden layers),
which also used rectifier activation. Hidden layers are
input-output transformation of incoming data. Each layer
attempts to create increasingly meaningful representations of
the input data (patient variables) before attempting to make an
outcome prediction.

Figure 1. Architecture of an artificial neural network to prognosticate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a UK
population. L1 represents the input layer, which accepts patient features as input. L2 and L3 represent two densely connected hidden layers, with a
variable number of units. L4 represents the output layer which predicts mortality for a given patient.

Prediction Targets and Training Objectives
The output layer consisted of a single node which used sigmoid
activation to provide a probability for the target value. In other
words, the output layer collects the data representations from
the prior hidden layers and predicts whether a patient is likely
to die during their admission. Each resulting probability output
was compared to the ground-truth label using the cross-entropy
loss function, which measures the performance of a classification
model whose output is a probability value between 0 and 1 [28].
This means that the ANN checks whether the prediction it made
was correct against known patient outcomes.

Training and Hyperparameters
Model architecture was chosen based on validation set
performance. A grid search technique was used to exhaustively
search over parameters in an iterative process to establish
optimal model parameters (known as hyperparameters). All
variables were initialized with normalized uniform (Xavier
normal) initialization [29] and trained using the Adam adaptive
learning rate optimization algorithm [30]. The input layer had
an input dimension to match the number of patient variables

(n=22). Optimal validation results were achieved with an ANN
with 22 units in the first hidden layer with a dropout rate of
20%, and 6 units in the second and third hidden layers with a
dropout rate of 40% to prevent overfitting. To further prevent
overfitting, L2 regularization is used on all layers except for
the output layer.

Relative Importance of Clinical Attributes
We used a high-speed approximation algorithm for Shapley
additive explanations (SHAP) values, which in effect reveal the
contribution of each patient variable (clinical attribute) to their
mortality prediction against a mean prediction [30,31].

Evaluation of Model
A validation set represented by 10% of the training set was used
during cross-validation and a cross-validated grid search. The
validation set was used to improve model architecture and select
for optimal hyperparameters. The metrics selected for model
performance evaluation were accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and the area
under the receiver operating characteristic curve (AUROC).
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K-fold cross-validation allowed a mean model accuracy with
95% CI to be calculated.

Code Availability
The open source machine learning framework Tensorflow 2.1.0
[32] was used to develop the neural network. The architecture
was written in the Python programming language (Python 3.7.7).
Scikit-learn 0.22 and its dependencies were used to create the
data preprocessing pipeline and to create the graphs in this
analysis.

Ethical Considerations
Data was collected as part of routine care by the responsible
clinical team. No patient-identifiable data was used in this
analysis. The need for written informed consent was waived by
the Research Governance Office of Chelsea & Westminster
NHS Foundation Trust. The study protocol was approved by
the antimicrobial stewardship group at Chelsea & Westminster
NHS Foundation Trust. The study was conducted in accordance
with the Helsinki declaration.

Results

Patient Demographics, Comorbidities, and Symptoms
There were a total of 11,144 data points for 398 patients,
encompassing 22 input features. The training and testing

populations consisted of n=318 and n=80 patients, respectively.
Out of the 398 patients included in the analysis, 389 (97.8%)
had completed outcomes and 9 (2.2%) were still hospitalized
at the end of the study period. There were 223 (56%) males. Of
patients with completed outcomes, 275 (69%) were discharged
alive and 93 (23%) died. There were 53 admissions to the ITU
(13%), of which 17 (32%) died.

The median age of all patients was 65 years (IQR 51-80). The
median age of patients who were admitted to the ITU was 56
years (IQR 51-65) and the median age of patients who died was
79 years (IQR 72-86). Regarding ethnicity, 157 (39.4%) patients
were White, 37 (9.3%) were Black, 42 (10.6%) were Asian, 66
(16.6%) were from other ethnicities, and 3 (0.7%) were of mixed
ethnicity. In total, 93 (23.4%) did not have a recorded ethnicity.
The median time from symptom onset to hospital admission
was 5 days (IQR 2-10). Mean length of stay for all patients with
completed outcomes was 9.8 days (SD 9.6). Mean length of
stay for patients who died was 8.5 days (SD 7.9).

The most common comorbidities were hypertension (n=147;
37%), diabetes (n=104; 26%), and chronic respiratory disease
(n=84; 21%). The most common presenting symptoms were
cough (n=247; 62%), dyspnea (n=223; 56%), and fever (n=216;
54%). Tables 1 and 2 demonstrate comorbidities and presenting
symptoms in order of prevalence, respectively.

Table 1. Prevalence of comorbidities in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population in West London.

Patients, n (%)Comorbidity

147 (36.9)Hypertension

104 (26.1)Diabetes

84 (21.1)Chronic obstructive pulmonary disease, asthma, or chronic respiratory pathology

47 (11.8)Ischemic heart disease

33 (8.3)Chronic kidney disease

29 (7.3)Cerebrovascular event history

22 (5.5)Cardiac failure

15 (3.7)Obesity

6 (1.5 )Hepatic cirrhosis

Table 2. Prevalence of symptoms in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population in West London.

Patients, n (%)Symptom

247 (62.1)Cough

223 (56.0)Dyspnea

216 (54.2)Fever

105 (26.4)Diarrhea or vomiting

68 (17.1)Myalgia

59 (14.8)Altered mentation

40 (10.1)Abdominal pain

37 (9.3)Collapse

36 (9.0)Anosmia or ageusia
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ANN Performance
With this ANN, cross-validated accuracy (accuracy on the
training and validation set) was 89% (95% CI 81%-97%).
Patient-specific mortality was predicted with 86.25% accuracy
on the test set (Figure 2), with a sensitivity of 87.50% (95% CI

61.65%-98.45%) and specificity of 85.94% (95% CI
74.98%-93.36%). The positive predictive value was 60.87%
(95% CI 45.23%-74.56%), and the negative predictive value
was 96.49% (95% CI 88.23%-99.02%). Binary cross-entropy
loss is demonstrated in Figure 3. The AUROC was 90.12%
(Figure 4).

Figure 2. Model accuracy of an artificial neural network prognostic model for coronavirus disease (COVID-19) in a UK population. Model accuracy
is based on training and test set results per epoch. Accuracy is defined as (TP+TN)/(TP+TN+FP+FN), where TP=true positive, TN=true negative,
FP=false positive, and FN=false negative. One epoch represents one full cycle through the training set data. As the model trains for a greater number
of epochs, the accuracy (ie, its ability to predict true positives and true negatives relative to all outcomes) increases.

Figure 3. Performance metric of an artificial neural network prognostic model for coronavirus disease (COVID-19) in a UK population. Binary
cross-entropy loss for training and tests per epoch. Cross-entropy loss measures the performance of a model that outputs a prediction between 0 and 1.
It is a measure of how far the predictions made by the model are from the truth. As loss decreases, the probabilities estimated by the model match the
actual target value (in this case, correct mortality predictions) more closely.
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Figure 4. Receiver operating characteristic curve for an artificial neural network prognostic model for severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) in a UK population. AUROC: area under the receiver operating characteristic curve.

Relative Importance of Clinical Attributes
The approximation algorithm for SHAP values could reveal
feature importance on a patient-specific basis (Figure 5A). The
model dynamically adjusts mortality risk prediction for each
patient, and illustrates the predictors it used (and their relative

importance) to form the prediction. Overall feature importance
for the model was also calculated (Figure 5B). Altered
mentation, new dyspnea, and increasing age were the most
significant predictors of mortality. Moderate predictors of
mortality were collapse, male gender, new cough, and known
respiratory pathology.
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Figure 5. Relative importance of clinical attributes in an artificial neural network prognostic model for severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) in a UK population. A) An example of an accurate mortality prediction. Feature importance is proportional to feature bar width.
Features which increased risk of death are shown in red, and those which decreased risk are shown in blue. Altered mentation, ischemic heart disease
(IHD), and chronic kidney disease (CKD) were the most salient predictors of mortality for this patient. Female gender was protective. B) Overall feature
importance as considered by the model. SHAP: Shapley additive explanations.

Discussion

Principal Findings
In this analysis, we provide details of an ANN capable of
predicting patient-specific mortality with high sensitivity and
specificity. Furthermore, the model provides information on
which features are most salient when predicting risk, delivering
explainable predictions on a patient-specific basis to clinicians
and potentially allowing more informed discussions with patients
and relatives.

Our aim was to provide a patient-specific, point-of-admission
mortality risk prediction to help inform clinical management
decisions at the earliest opportunity. The contribution of this
analysis is in the proof-of-concept ANN trained on data from
a single site, which demonstrates the early utility of deep
learning approaches in a rapidly evolving pandemic with no
established or validated prognostic scoring systems. Intensivists
and respiratory physicians can be alerted of a patient with a
higher relative risk of deterioration at an earlier stage, and ITU

departments can better anticipate bed needs and adjust staffing
and capacity appropriately.

Altered mentation, dyspnea, and increasing age were found to
be the most salient overall features in predicting mortality.
Moderate predictors of mortality included collapse, male gender,
new cough, and previous respiratory pathology. These features
are broadly in line with the current literature [31].

Of note is smoking history, which appears less important to the
model than might be intuitively assumed. Smoking history was
encoded as a presence feature, meaning that current smokers
were grouped with ex-smokers, and this may provide an
explanation as to why smoking history was considered as a
more minor feature by the ANN. Indeed, the largest study to
investigate factors associated with SARS-CoV-2 deaths to date
(n=5683 SARS-CoV-2–linked deaths) demonstrated a lower
risk of death in current smokers (hazard ratio 0.88; 0.79-0.99)
but a higher risk in ex-smokers (hazard ratio 1.25; 1.18-1.33)
[33]. Although this may suggest smokers are underrepresented
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in groups with severe disease, a protective mechanism related
to nicotine function has been suggested [34].

An advantage of our current model is that all demographic,
comorbidity, lifestyle, and symptom data can be collected on
first encounter with a physician, and therefore an early outcome
prediction can be produced following clerking. Unlike previous
work [11,12], the intended use of this prognostic model as a
point-of-admission mortality risk predictor is clearly described.
Furthermore, the ANN models outcomes in the context of
current SARS-CoV-2 practice guidelines and is therefore
directly applicable to the current cohort of hospitalized patients
with confirmed SARS-CoV-2.

There were several limitations to consider in our analysis.
Although the ANN is representative of hospitalized patients
with confirmed SARS-CoV-2 and their outcomes within the
geographic remit of the study site, these results should be
generalized with caution to other populations. Validating the
predictive ability of the model would require prospective studies
with a larger number of patients across multiple sites in the
United Kingdom. In addition, we were unable to account for
patients who were admitted for clinically suspected
SARS-CoV-2 and subsequently tested positive for the virus,
but who may have died due to an unrelated morbidity. However,
such patients likely represent a small minority of our cohort.
There were 9 patients (2.2% of our data set) who were alive at
the end of the study period but had not yet been discharged.
They were considered as alive in the analysis. However, these
censored patients may be more likely to have a favorable
outcome, as we found that the mean length of stay for patients
who died was shorter relative to the whole cohort. Mean length

of stay for all patients was 9.8 days, and therefore the ANN
would be unsuitable for use to predict outcomes for significantly
longer durations than this. Lastly, the current model does not
include other potentially important predictors of outcomes,
including hematological, biochemical, radiological,
microbiological, and histological results where appropriate. The
ANN architecture is such that adding further input variables
(including clinical investigation results) is easily achievable.
We plan to extend the ANN in the future with these parameters
to maximize its predictive capability.

More complex deep learning models such as recurrent neural
networks (RNNs) allow for time-series forecasting and have
been successfully used to predict outcomes in real time [17].
Use of RNNs in the future would allow for real-time outcomes
predictions throughout an individual admission and could
account for factors such as ITU admissions as they occur.

Conclusions
Increasingly, hospitals document and store patient data in EHRs,
and machine learning techniques are becoming more ubiquitous
in health care. In the context of an evolving pandemic with no
established prognostic scoring system, deep learning approaches
can be used to rapidly develop empirical prognostic models.
These models have the inherent advantage of becoming
progressively more accurate and representative as data sets
increase in size. With larger, more representative data sets and
more accurate artificial intelligence models, it may be possible
for patient-specific outcome predictions to help guide physicians
to tailor management and establish appropriate ceilings of care
more generally.
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