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SUMMARY

Logistic regression analysis may well be used to develop a prognostic model for a dichotomous outcome.
Especially when limited data are available, it is di$cult to determine an appropriate selection of covariables
for inclusion in such models. Also, predictions may be improved by applying some sort of shrinkage
in the estimation of regression coe$cients. In this study we compare the performance of several selection
and shrinkage methods in small data sets of patients with acute myocardial infarction, where we aim to
predict 30-day mortality. Selection methods included backward stepwise selection with signi"cance levels
a of 0.01, 0.05, 0.157 (the AIC criterion) or 0.50, and the use of qualitative external information
on the sign of regression coe$cients in the model. Estimation methods included standard maximum
likelihood, the use of a linear shrinkage factor, penalized maximum likelihood, the Lasso, or quantitative
external information on univariable regression coe$cients. We found that stepwise selection with a low
a (for example, 0.05) led to a relatively poor model performance, when evaluated on independent data.
Substantially better performance was obtained with full models with a limited number of important
predictors, where regression coe$cients were reduced with any of the shrinkage methods. Incorporation of
external information for selection and estimation improved the stability and quality of the prognostic
models. We therefore recommend shrinkage methods in full models including prespeci"ed predictors and
incorporation of external information, when prognostic models are constructed in small data sets.
Copyright ( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Predictions from prognostic models may be used for a variety of reasons in medicine, including
diagnostic and therapeutic decision making, selection of patients for randomized clinical trials,
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and informing patients and their families [1]. The probability of a dichotomous outcome may
well be estimated with a logistic regression model [2]. It is, however, often di$cult to select
predictors for such a prognostic model and estimate the regression coe$cients for selected
predictors correctly, that is, without overestimation [3]. These issues are especially prominent in
relatively small data sets.

In this study, we aim to compare several methods for selection of predictors and estimation of
logistic regression coe$cients in small data sets. We distinguish selection and estimation methods
which use only information from the data set under study (for example, stepwise selection,
shrinkage), and methods which explicitly consider external information. We focus on predictive
performance. Models are constructed in small parts of a large data set of patients with acute
myocardial infarction, where we predict 30-day mortality with logistic regression analysis. We
evaluate the models in an independent part of this data set.

We "rst describe the selection and estimation methods that we consider in this study (Section 2).
The patient data are described in Section 3. Evaluations of predictive performance in data sets
with around 23 or 62 events are presented in Sections 4 and 5. We further compare the
performance of models with di!erent numbers of covariables in Section 6. We discuss our "ndings
in Section 7.

2. SELECTION AND ESTIMATION METHODS

We consider the usual logistic regression model log odds M>"1 DXN"b
0
#&b

i
X

i
, where > is

a binary outcome variable (0 or 1), b
0

is an intercept, and b
i
denotes the logistic regression

coe$cients for the design matrix X of i covariables. Our aim is to estimate the log odds
M>"1 DXN accurately; interpretation of b

i
is secondary in our analyses. Table I gives an overview

of the selection methods for the covariables in the matrix X and estimation methods for the
regression coe$cients b that we consider in this study. We discuss the methods below.

2.1. Selection of predictors

A large number of potentially prognostic covariables is often available in a prediction problem.
Some of these may have been reported in the medical literature, some may be plausible predictors
because of pathophysiologic mechanisms, others may simply be of interest to the investigator.
Selection of a limited number of predictors is an obvious step. Data reduction is in concordance
with the general scienti"c principle of parsimony, which implies that simpler models are more
plausible descriptions of reality than more complex ones. Also, smaller models may be applied
more easily in clinical practice [4].

Currently, stepwise selection methods are probably the most widely used in medical applica-
tions [5]. Forward selection starts with inclusion of the most signi"cant candidate covariable,
while backward selection starts with elimination of the least signi"cant one from a full model.
Forward and backward selection may also be combined. The stopping rule for inclusion or
exclusion usually applies the standard signi"cance level for testing of hypotheses (a"0.05), but
the Akaike Information Criterion (AIC) has also been used [6]. Another class of stopping rules
involves pooling of degrees of freedom of unselected predictors using the AIC or a residual
chi-square test. An extension of the stepwise selection strategies is &all possible subsets regression',
where every possible combination of predictors is examined to "nd a best "tting model [7].
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Table I. Overview of selection and estimation methods considered in this study.

Method Characteristics

Selection of predictors
Full model Inclusion of all candidate predictors, independent of statistical signi"cance.

Backward stepwise Selection based on the statistical signi"cance of covariables in the data set
under study. Leads to selection bias, since covariables with (by chance) large
coe$cients are more likely selected than those with (by chance) small
coe$cients.

Sign OK Selection based on qualitative external information (plausibility of sign of
the multivariable regression coe$cient).

Estimation of coe.cients
Standard Maximum likelihood estimation, leads to overestimation of regression coef-

"cients for predictive purposes (estimation bias).

Shrunk Linear shrinkage factor determined by bootstrapping. Bootstrapping cor-
rects for selection bias by applying the selection procedure in every boot-
strap sample.

Penalized Penalty factor determined with Akaike Information Criterion (AIC) and
e!ective degrees of freedom. Penalty factor for full model used in models
constructed with a selection procedure.

Adapted Uses quantitative external information (univariable regression coe$cients
from literature data) to adapt the standard coe$cients

Selection and estimation
Lasso Selection because some coe$cients are shrunk to zero.

Stepwise methods identify a limited number of covariables for inclusion in regression models,
which may be considered as the most important predictors in a prognostic problem. However,
several drawbacks are known for these techniques [8, 9]. The selection is unstable, in the sense
that the addition or deletion of a small number of patients can alter it, especially when covariables
are correlated [10}13]. Further, stepwise selection has limited power to select prognostically
important covariables in small data sets, which will lead to a loss in predictive ability. On the
other hand, there is a substantial risk that one or more (almost) random covariables are selected,
since multiple comparisons are made [8, 9]. Next, the variance of the coe$cients is usually
calculated as if the selection was predetermined. This causes underestimation of standard errors
and p-values in the resulting model [12, 14, 15].

Given the problems with stepwise selection methods, alternatives have been considered. The
most obvious selection strategy is to "t a "xed selection of prede"ned predictors, for example,
based on "rm clinical knowledge and information from other studies [2]. We refer to this
approach as "tting a &full model' (Table I). We include continuous variables as linear terms,
assuming linearity on the log-odds scale. Fitting main e!ects further assumes additivity of the
predictors. For simplicity, these assumptions were not assessed in our evaluation, as would be
possible with the extension of the models with non-linear and interaction terms [1]. As an
intermediate between "tting a full model and stepwise selection with the standard signi"cance
level (a"0.05), we may apply stepwise selection with a high a for selection. We may for example
exclude covariables with p-values exceeding 0.50, arguing that these probably contribute more
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noise than predictive information to the model. In our evaluation, we apply stepwise selection
with backward elimination of predictors from a full model, using a"0.50, 0.157, 0.05 and
0.01. The a of 0.157 corresponds to the use of the AIC, since all covariables had 1 degree of
freedom.

2.2. Estimation of regression coezcients in full models

A key problem of regression modelling in small data sets is that the regression coe$cients are
overestimated for predictive purposes. When the standard maximum likelihood estimates of the
logistic regression coe$cients are shrunk towards zero, predictions will show a better calibration
in new patients [3]. A simple and somewhat crude approach is to apply a linear shrinkage factor
for the regression coe$cients. The shrinkage factor may be based on a heuristic formula [1, 3, 16];
[model s2!(d.f.!1)]/model s2, where d.f. indicates the degrees of freedom of the covariables "t
in the model. The required shrinkage increases when larger numbers of predictors are considered
(d.f. C), or when the sample size is smaller (model s2 B) [3, 16].

We calculated a linear shrinkage factor for the regression coe$cients with bootstrapping
[1, 17, 18].

1. Take a random bootstrap sample of the same size as the original sample, drawn with
replacement.

2. Select the covariables according to the selection procedure and estimate the logistic
regression coe$cients in the bootstrap sample.

3. Calculate the value of the prognostic index for each patient in the original sample. The
prognostic index is the linear combination of the regression coe$cients as estimated in the
bootstrap sample with the values of the covariables in the original sample. The prognostic
index indicates the expected log odds of the outcome in the original sample, and is
equivalent to the &linear predictor' in the context of general linear models.

4. Estimate the slope of the prognostic index with logistic regression, using the outcomes of the
patients in the original sample.

Steps 1 to 4 were repeated 300 times to obtain a stable estimate of the shrinkage factor, which was
calculated as the mean of the 300 slopes estimated in step 4. &Shrunk' coe$cients were calculated
by multiplication of the standard coe$cients with the shrinkage factor, which might take values
between 0 and 1.

Further, shrinkage may be achieved by inclusion of a penalty factor j in the maximum
likelihood formula [19}21]: log ¸!1

2
jb@Pb. Here ¸ denotes the usual likelihood function, j is

the (positive) penalty factor, b@ denotes the transpose of the vector of estimated regression
coe$cients b (excluding the intercept), and P is a penalty matrix. In our analyses, the diagonal of
P consisted of the variances of the covariables and all other values of P were set to zero. This
choice of P makes the penalty to the log-likelihood unitless. This scaling was used both for
continuous and dichotomous covariables, although dichotomous variables might generally not
require scaling by their variance. To determine the optimal value of j, we varied j over a grid, for
example, 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, and evaluated a modi"ed AIC:
[model s2!2]e!ective d.f.]. A reviewer noted that penalized ML is very similar to applying
a linear shrinkage factor c when the matrix P is equal to the full matrix of second derivatives,
with c"1/(1#j). Details of the penalized ML procedure were described before
[1, 28, 33].
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2.3. Estimation of regression coezcients after selection

Stepwise selection methods cause predictors with relatively large regression coe$cients to be
more likely selected than predictors with relatively small regression coe$cients. The process of
estimation after testing (&testimation' [22]), leads to overestimation of the regression coe$cients
of predictors included in the "nal model [5, 9, 23]. This selection bias should be taken into
account when calculating a shrinkage factor. This may be achieved by considering the number of
candidate predictors in the heuristic formula (instead of the number of selected predictors) [3].
For our evaluations, we included the selection process in step 2 of the bootstrapping procedure as
described above [1]. For penalized estimates of the regression coe$cients after selection, we
applied the penalty factor that was identi"ed as optimal for the full model.

Further, techniques have recently been developed which select predictors by shrinking some
coe$cients to zero [24}26]. We applied the &Lasso' (least absolute shrinkage and selection
operator), which can readily be applied to linear regression models but also to generalized linear
models such as the logistic or Cox model [24, 25]. The Lasso estimates the regression coe$cients
b of standardized covariables by minimizing the log-likelihood subject to &Db D)t, where
t determines the shrinkage in the model. We varied s"t/& Db0 D over a grid from 0.5 to 0.95, where
b0 indicates the standard ML regression coe$cients and s may be interpreted as a standardized
shrinkage factor. We estimated b with the value of t that gave the lowest mean-squared error in
a generalized cross-validation procedure [24].

2.4. External information

For selection and estimation,we may use information from outside the data set under study, for
example, quantitative results from published studies. Hereto, we previously developed an &adapta-
tion' method, which enabled us to combine estimates of the univariable regression coe$cients
from published studies with multivariable regression coe$cients estimated in the data set under
study [27, 28]. The formula for the adapted coe$cients is

b
. DL

"b
. D I

#c(b
6 DL

!b
6 D I

)

where b
. DL

indicates the multivariable coe$cients, adapted for univariable literature information,
b
. D I

indicates the multivariable coe$cient estimated in the data set with individual patient data
(standard ML estimates), and b

6 DL
and b

6 D I
indicate the univariable coe$cients in the literature

data and individual patient data. The adaptation factor &c' is estimated as

c"o (uni, mult) [SE(b
. D I

)SE(b
6 D I

)]/[var(b
6 DL

)#var(b
6 D I

)]

where o (uni, mult) indicates the correlation between univariable and multivariable regression
coe$cients (estimated from 300 bootstrap samples), SE indicates the estimated standard error,
and var the estimated variance. The value of &c' can also simply be set to 1 [29], which gave very
similar results in our analyses [28].

Further, we might make assumptions on the direction of the e!ect of a predictor. This may be
di$cult for the multivariable context, since correlations between predictors may explain
a counterintuitive sign of a regression coe$cient. However, for many prognostic problems it may
be reasonable to suppose that predictors that indicate a higher risk in univariable analyses also
increase a patient's risk while adjusting for other predictors in a multivariable analysis. We might
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therefore select only predictors in the multivariable model which have a multivariable coe$cient
with a sign that is identical to the sign in univariable analyses in the literature. We realize that this
may introduce some selection bias, since chance dictates that coe$cients sometimes have
a counterintuitive sign. Exclusion of these predictors hence gives some bias to higher values of
regression coe$cients of selected predictors.

We note that this &Sign OK' approach has some similarity with what has been labelled
&Bayes-empirical-Bayes estimation [30]. It may also prevent what epidemiologists have labelled
the type III error, that is, the inclusion of covariables with an incorrect sign [31].

We applied &Sign OK' selection on full models, and on models containing predictors with
p-values(0.50 as selected with backward stepwise selection. When the multivariable sign was
di!erent from the univariable sign, the predictor was excluded from the model. The model was
re"tted, and the sign of the remaining covariables checked. This procedure was repeated until all
selected predictors had a correct sign.

2.5. Small data sets

For testing of logistic regression coe$cients, the statistical power is predominantly determined by
the smallest of the two frequencies of the binary outcome. To prevent problems of over"tting, or
more speci"cally, overestimation of regression coe$cients, the number of candidate covariables
considered should be in reasonable balance with the number of events [1, 10]. It has been
suggested as a general rule, but without full study, that the number of events per variable (EPV)
should be at least 10 [4, 10, 31, 32]. In this study we focus on small data sets, which means that
logistic models are constructed in data sets where the 1:10 rule is violated. For comparison, we
also study models in the situation that the EPV exceeds 10, 20 or 50.

2.6. Software

All calculations were performed with S-plus software (version 3.3, MathSoft, Inc., Seattle WA)
and/or SAS 6.08 (SAS Institute Inc., Cary NC). We used Harrell's Design [33, 34] and Tib-
shirani's Lasso library [35]. An example of a S-plus program including the various modelling
approaches is available in the public domain [36].

3. EMPIRICAL EVALUATION

3.1. Patients

For evaluation of the selection and estimation methods we used the data from 40 830 patients
with complete follow-up from the GUSTO-I clinical trial [37, 38]. In brief, this data set consists of
patients with an acute myocardial infarction, who were randomized to one of four thrombolytic
regimens. The di!erences between these regimens were small relative to the e!ect of predictive
covariables, and are ignored in the present analyses. Mortality at 30 days was the primary
endpoint, and occurred in 2851 patients (7.0 per cent). Within the total data set, we distinguished
16 regions: eight in the United States (U.S.); six in Europe, and two others (Canada and
Australia/New Zealand). These regions included 2552 patients and 178 deaths on average. Within
regions, &large' and &small' multi-centre subsamples were created by grouping hospitals together
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on a geographical basis. The large subsamples were created such that they each contained at least
50 events. The subgrouping procedure was repeated to create small subsamples with at least 20
events. These subsamples are not strictly random samples, but aimed to re#ect the real-life
situation where a small multi-centre data set containing patients from several nearby hospitals is
available to construct a prognostic model which should be applicable to the total patient
population.

The data set was split into a training and test part [28]. These parts each consisted of eight
regions with geographical balance and similar overall mortality (7.0 per cent). The training part
(n"20 512) contained 61 small and 23 large subsamples containing on average 336 and 892
patients of whom 23 and 62 died, respectively. Logistic regression models were constructed in the
subsamples from the training part and evaluated in the test part. We do not advise analysts to
hold back data for model validation in routine practice, as internal validity can more e$ciently be
studied with re-sampling techniques such as the bootstrap [17, 18, 39]. For our evaluation, an
independent test part was, however, considered most convenient.

3.2. Predictors considered

We considered previously de"ned prognostic models for acute MI. The selection of predictors
was hence kept external to the "ndings in the GUSTO-I data set. We focused on evaluations of an
eight-predictor model, as de"ned in the TIMI-II study [40]. This included shock, age'65 years,
anterior infarct location, diabetes, hypotension, tachycardia, no relief of chest pain, and female
gender. The dichotomization of predictors is generally not advisable, as will be illustrated
empirically (Section 6). A three-predictor model was considered that contained the continuous
variables age, Killip class (a measure for left ventricular function) and the dichotomous variable
anterior infarct location [41]. In the GISSI-2 data set (n"9720; 772 in-hospital deaths), the
continuous variable &number of leads with ST elevation' was selected in addition to these three
variables [42]. In the large subsamples and in the regions, we further considered a 17-predictor
model, consisting of the TIMI-II model plus nine other covariables considered in previous
analyses [38, 40}43].

Table II shows the distribution of the 17 covariables and their uni-variable and multivariable
logistic regression coe$cients in the eight-predictor and 17-predictor model. Results are
shown for the training part only, since results for the test part were very similar. We note that the
dichotomous predictors &hypotension' and &shock' had a low prevalence, but a strong e!ect
in the multivariable models. This low prevalence led to zero cells and non-convergence of
the eight-predictor model in 12 of the 61 small subsamples. These subsamples were excluded
from the evaluations. Most multivariable coe$cients were smaller (closer to zero) than the
univariable coe$cients, re#ecting (modest) positive correlations between the predictors (r gener-
ally around 0.1}0.2). All predictors had an identical sign in univariable and multivariable
analyses. The signs shown in Table II were used for &Sign OK' selection. Note that some
predictors had a sign that might not have seemed plausible a priori; smokers, patients
with hypercholesterolaemia or a family history of MI were at a decreased risk of 30- day
mortality. This "ndings con"rms that risk factors for developing the disease (acute MI) do not
have to correspond to prognostic factors in patients with the disease. All coe$cients in the
eight-predictor model were signi"cant at p(0.001. The 17-predictor model contained
covariables with relatively small coe$cients, such as sex, hypertension, previous angina and
family history in the training part.
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Table II. Distribution of predictors and logistic regression coe$cients (standard error) in
the eight-predictor and 17-predictor models. Results are shown for the training sample

(n"20 512, 1423 died) in the GUSTO-I data set.

Predictors Prevalence* Logistic regression coe$cients
Univariable 8-predictor model 17-predictor model

Age'65 years 41% 1.52 (0.06) 1.38 (0.06) 1.14 (0.07)
Female sex 24% 0.77 (0.06) 0.45 (0.06) 0.08 (0.09)
Diabetes 13% 0.58 (0.07) 0.27 (0.08) 0.29 (0.08)
Hypotension (BP(100 mmHg) 8% 1.28 (0.07) 1.24 (0.08) 1.25 (0.08)
Tachycardia (pulse'80) 31% 0.75 (0.06) 0.67 (0.06) 0.65 (0.06)
Anterior infarct location 39% 0.93 (0.06) 0.76 (0.06) 0.43 (0.07)
Shock (Killip III/IV) 2% 2.51 (0.10) 1.74 (0.12) 1.69 (0.12)
No relief of chest pain 65% 0.55 (0.06) 0.52 (0.07) 0.53 (0.07)
Previous MI 16% 0.79 (0.06) 0.59 (0.07)
Height (]10 cm)s 17.1 !0.47 (0.03) !0.16 (0.05)
Weight (]10 kg)s 7.9 !0.29 (0.02) !0.11 (0.03)
Hypertension in history 37% 0.30 (0.06) 0.11 (0.06)
Smokingst 1.9 0.48 (0.03) 0.17 (0.04)
Hypercholesterolaemia 35% !0.27 (0.06) !0.18 (0.07)
Previous angina 37% 0.40 (0.06) 0.14 (0.06)
Family history 41% !0.37 (0.06) !0.13 (0.06)
ST elevation in'4 leads 37% 0.65 (0.06) 0.35 (0.07)

* Percentage of patients with the characteristic or average value (continuous variables).
s Continuous predictor, modelled as linear term in logistic regression analysis.
t Smoking was coded as 1 for current smokers, 2 for ex-smokers, 3 for never smokers.

3.3. Evaluation

The evaluation of model performance considered discrimination, calibration and overall perfor-
mance [1, 44]. Discrimination refers to the ability to distinguish high risk patients from low risk
patients, and is commonly quanti"ed by a concordance statistic (c) [45]. In logistic regression c is
identical to the area under the receiver operating characteristic (ROC) curve.

Calibration refers to whether the predicted probabilities agree with the observed probabilities.
Several &goodness-of-"t' statistics are available to quantify calibration [3, 44, 46]. We used the
slope of the prognostic index, since this measure is readily interpretable in the context of
overestimation of regression coe$cients. The prognostic index was calculated as the linear
combination of the regression coe$cients as estimated in the subsample with the values of the
covariables in the test part. Models with overestimated regression coe$cients will show a slope of
the prognostic index which is less than 1, indicating that low predictions are too low, and high
predictions are too high.

Finally, we quanti"ed the overall model performance in one number, the model s2, which is
closely related to the Kullback}Leibler distance [47]. The model s2 was calculated as
the di!erence between the 2-log-likelihood of a model with an intercept and the prognostic index
as an o!set variable (slope "xed at unity, that is, the prognostic index was taken literally), and the
!2-log-likelihood of a model with an intercept only. A negative model s2 implied that a model
performed worse than predicting the average risk for every patient.
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Table III. Logistic regression coe$cients and evaluation of performance for a small subsample
(429 patients, 24 died, see text).

Full model Backward stepwise, a"0.05 Lasso Full Stepwise Lasso

Standard Shrunk Penalized Standard Shrunk Penalized Gold standard

Predictors
Shock 2.96 2.44 2.71 3.67 2.84 3.22 2.90 1.73 2.07 1.75
Age'65 years 1.37 1.13 0.93 1.36 1.05 0.94 1.11 1.37 1.49 1.46
Anterior MI 0.76 0.62 0.55 0 0 0 0.58 0.76 0 0.73
Diabetes !0.11 !0.09 0.03 0 0 0 !0.03 0.29 0 0.32
Hypotension 1.39 1.15 1.04 1.19 0.92 0.94 1.16 1.25 1.12 1.26
Tachycardia 0.89 0.73 0.61 0 0 0 0.69 0.66 0 0.69
No relief 0.68 0.56 0.43 0 0 0 0.50 0.55 0 0.51
Sex !0.04 !0.03 0.04 0 0 0 0 0.44 0 0

Model performance in test sample (n"20 318)
Area under ROC 0.77 0.77 0.78 0.74 0.74 0.73 0.78 0.79 0.74 0.79
Slope 0.75 0.91 0.91 0.71 0.92 0.83 0.84 0.94 0.97 0.95
Model s2 1279 1399 1341 941 1101 987 1323 1604 1250 1558

4. RESULTS IN SMALL DATA SETS

4.1. Illustration: a small subsample

We illustrate the use of the selection and estimation methods with a small subsample, which
showed results that were typical for the other small subsamples [36]. Table III shows the
regression coe$cients as estimated in the subsample, and the performance in the test part, which
was independent from the subsample (n"20 318). The subsample was created by combining the
patient data from 10 hospitals in the Western region of the U.S.A. that participated in the
GUSTO-I trial. The sample included 429 patients, of whom 24 died.

The full eight-predictor model had large estimated regression coe$cients for shock, age and
hypotension. The coe$cients were shrunk with a factor 0.824 according to the bootstrapping
procedure. Penalized estimates of the regression coe$cients were obtained with a penalty factor
of 8. Backward stepwise selection with a"0.05 led to the inclusion of three predictors. Shrinkage
was calculated as 0.773, in a bootstrapping procedure which included the stepwise selection in
each bootstrap sample. The Lasso parameter &s' was 0.8375, and resulted in the coe$cient of &sex'
to be set at 0. Hence, seven predictors were selected, with coe$cients that were shrunk compared
to the standard estimates in the full model. As a reference, the "nal columns show the coe$cients
obtained in the total training part (&gold standard', n"20 512).

The performance of the stepwise models was worse than the full models, with respect to
the area under the ROC curve and overall performance as indicated by the model s2. As expected,
the slope of the prognostic index was closer to 1 for the shrunk and penalized models than
the standard ML estimates. The Lasso performed similarly to the shrunk or penalized full
model. The performance of the gold standard models in the evaluation sample indicates
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Table IV. Logistic regression coe$cients and evaluation of model performance, combining
data from a small subsample (429 patients, 24 died) with external information (see text).

Sign OK Full Stepwise Sign OK

Standard Shrunk Penalized Adaptation

Predictors
Shock 2.94 2.42 2.71 2.20 2.89 2.18
Age'65 years 1.36 1.12 0.93 1.75 1.71 1.74
Anterior MI 0.76 0.62 0.55 0.62 0 0.62
Diabetes 0 0 0.03 !0.12 0 0
Hypotension 1.38 1.13 1.04 1.59 1.39 1.58
Tachycardia 0.87 0.72 0.61 0.63 0 0.61
No relief 0.67 0.55 0.43 0.59 0 0.59
Sex 0 0 0.04 0.59 0 0.63

Model performance in test sample (n"20 318)
Area under ROC 0.78 0.78 0.78 0.78 0.74 0.79
Slope 0.76 0.92 0.91 0.79 0.77 0.80
Model s2 1308 1422 1341 1481 1131 1496

that the stepwise model, which contained only three of the eight predictors, might have a model s2

of 1250 if regression coe$cients were (almost) correctly estimated. By contrast, the Lasso
selection could achieve a model s2 of 1558, which is close to the performance of the full
eight-predictor model (1604). These "ndings are consistent with the omission of only one
predictor (Lasso) or "ve predictors (stepwise) from the full model.

Table IV shows the results for the same subsample when qualitative or quantitative external
information was taken into account. &Sign OK' selection led to the exclusion of the predictors
&diabetes' and &sex' from the standard or shrunk full model. This exclusion improved the model
performance slightly. No implausible signs were noted for the penalized full model. For the
adaptation method, univariable regression results were used from the training sample, excluding
the subsample (n"20 512!429"20 083 patients). The estimated correlation between univari-
able and multivariable regression coe$cients was around 0.85 for most covariables (range
0.80}0.98), and the adaptation factors were between 0.95 and 1.0. For most predictors in the full
or stepwise models, the adapted regression coe$cients were somewhat closer to the gold standard
coe$cients. Model performance improved, with the best model s2 with sign OK selection and
adapted estimation of the regression coe$cients. We note that the adaptation method may show
an unrealistically favourable performance in our evaluations, since the comparability between
the subsample and the &literature data' will be higher than generally may be expected in practice.
The results from the analyses with adapted coe$cients should be considered as indicating the
maximal obtainable bene"t by this estimation method.

4.2. Numbers of covariables selected

In the small subsamples, backward stepwise selection on average led to the inclusion of 1.8
predictors with a"0.01, and to selection of 5.2 predictors with a"0.50 (Table V). When we
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Table V. Number of predictors selected from 8 or 17 candidate predictors (averages (standard deviation)).
Results shown for standard ML estimation in 61 small subsamples (336 patients, 23 deaths on average) and

23 large subsamples (892 patients, 62 deaths on average).

Predictors Sample Backward stepwise Full Sign OK Lasso
size

a"0.01 a"0.05 a"0.157 a"0.50 a"0.50 Full

8 small 1.8 (0.9) 2.3 (1.0) 2.7 (1.2) 5.2 (1.9) 8 5.1 (1.8) 7.0 (0.9) 7.5 (0.6)
8 large 4.2 (1.0) 5.0 (1.0) 5.7 (1.3) 7.0 (1.2) 8 7.0 (1.2) 7.8 (0.4) 7.9 (0.4)

17 large 4.7 (1.5) 5.9 (1.4) 6.8 (1.7) 8.9 (2.1) 17 7.7 (1.8) 14.3 (1.3) 16.3 (1.0)

required that the sign of the coe$cient had to be correct (&Sign OK'), the selection with a"0.50
remained similar. From the full model, &Sign OK' selection on average excluded 1.0 predictor with
standard or shrunk estimation, and 0.8 or 0.3 predictors with penalized or adapted estimation,
respectively. The Lasso led to the selection of 7.5 predictors, with an average value of 0.80 for the
Lasso parameter &s'.

4.3. Average performance

Figure 1 shows the average performance of the models constructed in the small subsamples when
evaluated in the test part. In addition to the results shown in Tables III and IV, we show the
performance of backward stepwise selection with a"0.01, 0.157 or 0.50. A full model may be
interpreted as stepwise selection with a"1.0. For the stepwise and &Sign OK' models, we show
results with standard, shrunk, penalized and adapted regression coe$cients.

The area under the ROC curve (c) increased when a higher a was used for stepwise selection
(range 0.01 to 0.50). Areas for the models with standard or shrunk coe$cients are by de"nition
identical, since the ordering of the predicted probabilities does not change by applying a linear
shrinkage factor. The penalized models performed similarly to the standard or shrunk models,
except for the full model, where penalized models were somewhat better (area 0.760 versus 0.754).
Selection of covariables with the correct sign improved the performance for the full models. The
Lasso performed similar to the selection of a full model with shrunk or penalized estimation of
regression coe$cients. Adapted models performed best for all selection strategies. If covariables
were selected with a correct sign from full models (&Sign OK, full'), the average c (0.782) was very
close to the performance of the gold standard model (c"0.786).

The slope of the prognostic index should ideally be 1.0; it was 0.944 for the gold standard
model, consistent with the observation that the regression coe$cients were somewhat larger in
the training part than in the test part. The standard ML estimates had slopes around 0.7. This
"gure was the result of the combination of overestimation for predictive purposes (in a prespeci-
"ed model) and selection bias (caused by stepwise selection). Apparently, when a higher a was
used for selection, that is, going from 0.01 to 0.50, the decrease in selection bias was o!set by an
increase in overestimation bias, such that the sum of both biases was approximately constant. The
shrunk or penalized estimates were better calibrated, although some overestimation remained
when stepwise selection was applied with a low a. The adapted estimates showed a remarkable
pattern. Selection with a low a led to a better calibration than selection with a"0.50 or a full
model. This may be explained by the extent of estimation bias, which was very limited when only
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Figure 1. Average performance of models constructed in small subsamples (average: 23 deaths) of the
GUSTO-I data set. Eight dichotomous predictors were considered. For stepwise and &Sign OK' selection,
results are shown for standard, shrunk, penalized and adapted estimation of the logistic regression
coe$cients (see text). The dotted line indicates the performance in the test part for the model estimated in the

total training set and serves as a reference.

a few covariables were selected (for example, a"0.01), and was largest when full models were "t.
Some shrinkage might hence improve the performance of the adapted models [28]. The Lasso led
to an average slope of 0.83.

Finally, we consider the overall model performance, as expressed by the model s2 in the test
data set. The gold standard model had a model s2 of 1604. The patterns in overall model
performance closely re#ect the patterns observed with respect to the area under the ROC curve.
The main di!erence is the poor performance of the models with standard ML estimates, especially
full models. This is explained by their poor calibration. The average Lasso model s2 was 1079,
compared to 1073 for a"0.50 selection and shrunk estimation, and 1112 for penalized full
models.
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5. RESULTS IN LARGER DATA SETS

5.1. Numbers of covariables selected

Starting with the eight-predictor model, backward stepwise selection on average led to the
inclusion of 4.2 to 7.0 predictors with a"0.01 to 0.50 in the large subsamples (Table V). The
Lasso led to the selection of 7.9 predictors on average, with an average value of 0.87 for the Lasso
parameter &s'.

More predictors were selected when the 17-predictor model was considered. The variability
increased too, as indicated by the larger standard deviation. &Sign OK' selection excluded around
one predictor from those selected with a"0.50 (7.7 instead of 8.9), and around two from a full
17-predictor model. The Lasso parameter &s' was 0.81 on average, leading to an average selection
of 16.3 of the 17 covariables.

5.2. Performance of eight-predictor models

Figure 2 shows the average performance of the 23 eight-predictor models constructed in the large
subsamples. The area under the ROC curve increased when a higher a was used for stepwise
selection and was highest for full models. The areas for the models with standard, shrunk or
penalized coe$cients were very similar. Selection of covariables with the correct sign had
a negligible e!ect, which is explained by the fact that most covariables already had the correct
sign in the full model and in a"0.50 selected models (see Table V). The Lasso had the highest
ROC area of the methods that use only information from the data set under study. Models with
adapted coe$cients performed best for all selection strategies.

The slope of the prognostic index was clearly less than 1 for the models with standard estimates
of the regression coe$cients. The Lasso performed very well with an average slope of 1.01.

The model s2 re#ects the patterns seen with discrimination and calibration. For the estimation
methods, the worst performance was seen with the standard ML estimates of the regression
coe$cients, and the best performance with the adaptation method. Selection of full models, or
with the Lasso, was much better than backward selection with a low a (0.01/0.05).

When we compare Figure 2 with Figure 1, we note that the performance for all models
increased, which is explained by the larger number of patients considered. Especially, backward
stepwise methods performed much better in the large subsamples than in small subsamples. For
example, the model s2 increased from around 600 to over 1200 for the models with a"0.05
selection and standard estimates. In the large subsamples, full models performed better than
stepwise selected models, while a"0.50 selection was better than a full model in the small
subsamples. The relative improvement was smaller for the Lasso (model s2 from 1079 to 1517)
and for the &Sign OK' selection in full models with adapted estimation of the regression
coe$cients (from 1397 to 1558). The latter methods achieved a model quality in the small
subsamples which was only achieved by other methods in data sets that were over twice as large.

5.3. Performance of 17-predictor models

Figure 3 shows the average performance of the 23 17-predictor models constructed in the large
subsamples. We focus on the comparison with Figure 2, where eight predictors were considered
from the set of 17 in Figure 3. We would expect that consideration of more predictors would
increase the performance of the model. This was not the case when backward stepwise selection
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Figure 2. Average performance of models constructed in large subsamples (average: 62 deaths) of the
GUSTO-I data set. Eight dichotomous predictors were considered. The dotted line indicates the perfor-

mance in the test part for the model estimated in the total training set and serves as a reference.

was used. For a ranging from 0.01 to 0.50, the area under the ROC curve was around 0.01 lower
for all estimation methods. The slope of the prognostic index remained around 1 for the shrunk or
penalized models, but was further away from 1 for the standard or adapted models. The model s2

decreased by around 150.
For the full models, a slightly worse performance was noted for the standard or shrunk

estimates, and a slightly better performance for the penalized or adapted estimates. &Sign OK'
selection was helpful; when only predictors with a correct sign were included from the 17
covariables, model performance was better than selection from eight covariables with the correct
sign. Finally, the Lasso performed slightly worse when starting with 17 instead of eight
covariables (model s2 decreased from 1517 to 1492).
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Figure 3. Average performance of models constructed in large subsamples (average: 62 deaths) of
the GUSTO-I data set. 17 predictors were considered, including the eight dichotomous predictors from
Figure 2. The dotted line indicates the performance in the test part for the model estimated in the total

training set and serves as a reference.

5.4. Larger subsamples: regions

The eight- and 17-predictor models were also constructed with the selection and estimation
methods in the eight regions distinguished in the test part of the GUSTO-I data set. Since the
number of events was 178 on average, these models ful"lled the 1:10 criterion and no major
problems might be expected. Indeed, di!erences between the di!erent selection and estimation
methods were small. However, the average performance of full 17-predictor models was better
than stepwise selected models (starting with the 17-predictor model). For example, the average
model s2 was 1634 for a full 17-predictor model, and 1546 when stepwise selection with a"0.05
was applied (both with standard ML estimates). Shrunk, penalized, adapted or Lasso estimates
were only slightly better than the standard ML estimates. The full 17-predictor model performed
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better than the full eight-predictor model. For example, the average model s2 was 1660 and 1548
for the full 17- and eight-predictor model with shrunk estimation of the regression coe$cients,
and 1675 and 1545 with penalized estimation, respectively. In the full eight-predictor model, use
of the standard ML estimates of the regression coe$cients led to an average performance (model
s2 1537) that was close to shrunk or penalized estimation (model s2 1548 or 1545, respectively).
Apparently, when the number of events per variable exceeded 20 (178/8+22), the standard ML
estimates in a full model were satisfactory.

6. COMPARISON OF DIFFERENT FULL MODELS

Comparison of Figure 3 with Figure 2 indicated that considering more predictive covariables did
not imply that model performance improved. To provide more insight, we compared full models
including 3, 4, 8 or 17 predictors (Table VI). It is important to note that the three- and
four-predictor models contain continuous versions of the (rather strong) predictors age and Killip
class. The three-predictor model is nested in the four-predictor model, and the eight-predictor
model is nested in the 17-predictor model. The three- and four-predictor models are not nested in
the eight- or 17-predictor models.

6.1. Total training part

The performance of the models "tted in the total training part is considered as the gold standard.
The gold standard four-predictor model performed slightly better than the three-predictor
model; the model s2 increased from 1597 to 1622. The eight- and 17-predictor models contained
dichotomized versions of age ('65) and Killip class ('2), which caused a considerable loss of
information. For example, age as a single continuous predictor had a model s2 of 1032 in the
training part, which decreased to 694 when dichotomized at 65 years. This explains why the gold
standard performance of the eight- and 17-predictor models were rather similar to that of a three-
or four-predictor model. The increase in model performance by adding nine, less powerful,
predictors to the eight predictor was modest (model s2 increased from 1604 to 1785).

6.2. Small subsamples

The three-predictor model performed best in the small subsamples with 23 events on average
(Table VI). The extension of this model with the predictor &ST elevation' on average led to
a slightly worse performance for all estimation methods. The performance of the eight-predictor
models was relatively poor, especially when the standard ML estimates of the regression
coe$cients were used. This is explained by considerable overestimation of the coe$cients, as
indicated by the slope of the prognostic index (0.66 on average). This overestimation was also seen
for the adapted estimates (0.81 on average), but much less with shrunk or penalized estimates (see
also Figure 1). We further note that the variability of the model performance increased consider-
ably when eight predictors were considered.

6.3. Large subsamples

In the large subsamples, we observed a similar performance for the three- or four-predictor model
(Table VI). The performance of the 17-predictor model was slightly worse than the eight-predictor

1074 E. W. STEYERBERG ET AL.

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1059}1079



Table VI. Performance of three-, four-, eight- and 17-predictor models in the small and
large subsamples (average n"336 and n"892, respectively), and in the total training
part (n"20 512), as evaluated in the test part (n"20 318). Mean (standard deviation)

shown for several estimation methods with a "xed selection of predictors.

Three predictors Four predictors Eight dichotomous 17 predictors
predictors

¹otal training part (0gold standard1) (1423 deaths)
Area under ROC 0.789 0.791 0.789 0.802
Slope of prognostic index 0.973 0.969 0.944 0.959
Model s2 1597 1622 1604 1785

61 small subsamples (23 deaths on average)
Area under ROC

Standard/shrunk 0.78 (0.017) 0.77 (0.019) 0.75 (0.029)
Penalized 0.78 (0.017) 0.77 (0.018) 0.76 (0.021)
Adapted 0.79 (0.003) 0.79 (0.005) 0.78 (0.027)

Slope of prognositc index
Standard 0.86 (0.19) 0.82 (0.19) 0.66 (0.18)
Shrunk 0.94 (0.22) 0.94 (0.24) 1.01 (0.29)
Penalized 0.97 (0.26) 0.97 (0.26) 0.93 (0.30)
Adapted 0.95 (0.11) 0.91 (0.11) 0.81 (0.19)

Model s2
Standard 1292 (383) 1235 (391) 673 (1211)
Shrunk 1339 (312) 1309 (299) 1045 (776)
Penalized 1324 (320) 1309 (298) 1112 (384)
Adapted 1552 (57) 1526 (78) 1261 (684)

23 large subsamples (62 deaths on average)
Area under ROC

Standard/shrunk 0.79 (0.003) 0.79 (0.005) 0.79 (0.009) 0.78 (0.010)
Penalized 0.79 (0.003) 0.79 (0.005) 0.78 (0.009) 0.79 (0.009)
Adapted 0.79 (0.001) 0.79 (0.003) 0.79 (0.002) 0.79 (0.005)

Slope of prognostic index
Standard 0.94 (0.15) 0.91 (0.13) 0.86 (0.13) 0.76 (0.12)
Shrunk 0.97 (0.15) 0.97 (0.14) 0.97 (0.16) 0.95 (0.16)
Penalized 0.98 (0.16) 0.98 (0.15) 0.96 (0.17) 0.98 (0.19)
Adapted 0.97 (0.09) 0.96 (0.09) 0.92 (0.08) 0.86 (0.10)

Model s2
Standard 1510 (102) 1502 (123) 1422 (120) 1294 (277)
Shrunk 1518 (89) 1515 (105) 1461 (95) 1441 (163)
Penalized 1514 (95) 1515 (107) 1455 (102) 1497 (142)
Adapted 1580 (73) 1583 (41) 1558 (35) 1578 (135)

* The three-predictor model is nested in the four-predictor model; these models are not nested in the eight- or
17-predictor models.
s The eight-predictor model contains dichotomous predictors only and is nested in the 17-predictor model (see text).

model when the standard or shrunk estimation was applied, and slightly better for penalized or
adapted estimation. Hence, including more predictors did not clearly improve performance. The
variability of the performance was large for the 17-predictor model. Further, we note that models
constructed in the large subsamples were more stable than those constructed in the small
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subsamples, which might be expected since the sample size was 2.7 times as large (62 compared to
23 events).

6.4. Regions

The models listed in Table VI were also evaluated in the eight regions with 178 events on average.
The four-predictor model performed similarly to the three-predictor model, but adding nine
predictors improved the eight-predictor model (average model s2 from 1537 to 1634, standard
ML estimates). The best performance was noted for the 17-predictor model with adapted
estimation of the coe$cients, followed by penalized, shrunk or standard ML estimation (average
model s2 1755, 1675, 1660 or 1634, respectively).

7. DISCUSSION

This study provides a number of insights to prognostic modelling in general, and logistic
regression modelling in small data sets in particular. First, it emphasizes the importance of the use
of external information in selection and estimation processes. This may not only improve the
predictive performance of the model in future patients, but may also improve the clinical
credibility of the model. Clinicians may be more inclined to apply a model which includes
well-known predictors with a plausible sign [4, 31]. Second, the limited value of stepwise selection
as a tool for prognostic modelling is con"rmed [2, 10, 16]. The power for selection of important
predictors may often be too low to make stepwise selection valuable; more information is lost
than is gained. Third, shrinkage of regression coe$cients may improve the performance of
a prognostic model substantially. We found no major di!erences between application of a linear
shrinkage factor, a penalized maximum likelihood procedure, or the Lasso. The Lasso is
a promising technique, since shrinkage is de"ned such that some coe$cients may be set to zero.
The number of selected predictors was however quite large in our evaluations (for example, 16.3
of 17 predictors in samples with 62 events on average).

With modelling in a small data set, some general statistical principles deserve special attention.
The data set is only a sample from an underlying population. Our aim is not to describe the
sample as best as we can, but to learn about the population. We might expect that the more we
study the data set, the more we learn about the population. This is only partly true with
regression modelling. Data-driven decisions imply a better "t to the data under study, but
much less so for the underlying population. This has been labelled the &cost of data-analysis'
[48, 49]. Examples of data-driven decisions include stepwise methods for selection of covari-
ables (main e!ects, but also non-linear and interaction terms), univariable or graphical inspec-
tions, re-grouping of categorical variables based on the relation with the outcome, or the
choice of an appropriate type of regression model based on the "t on the data. Data-driven
model speci"cation may make the apparent model performance severely overoptimistic [1}3,
15}17, 49].

In a small data set, we should not expect to be able to "nd a &true'model, if such a model exists
at all [14, 15, 50]. Rather a model should be speci"ed based on external knowledge, which can be
expected to describe the patterns in the data set su$ciently. If a large model is prespeci"ed,
stepwise selection may often not be able to help us in "nding an adequate subset of this model.

1076 E. W. STEYERBERG ET AL.

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1059}1079



A small data set has in this respect been de"ned as one with less than 10 events per variable (EPV)
[31]. The 1:10 rule is somewhat arbitrary, and we may try to re"ne this criterion. First, it is
evident that the total sample size is also important, in addition to the EPV. This was illustrated by
the modelling of 17 predictors in data sets with 62 events, which was much less problematic than
modelling eight predictors in data sets with 23 events, although the EPV value was only slightly
larger (3.7 or 2.9). Second, we propose two additional critical EPV values: 20 and 50. When the
1:10 rule is violated, the number of parameters to be estimated may in fact be too large for the
data under study. A small prespeci"ed model should be "t with shrinkage of the regression
coe$cients. When the EPV is larger than 10 but smaller than 20, a prespeci"ed model may
adequately be "t, but shrinkage is advisable. When the EPV exceeds 20, shrinkage may not be
necessary anymore for full models. Criteria for application of stepwise selection with a"0.05 are
di$cult to provide. We performed some additional analyses with 17-predictor models where nine
covariables were made randomly associated with the outcome. These analyses indicated that
stepwise selection did not improve predictive performance compared with shrunk full models
unless EPV exceeded 50 (that is, only in the total training data set). Note that the number of
candidate predictors should be considered in this reasoning, not the number of predictors
included in the "nal model. It may hence often be impossible to study a comprehensive set of
potential predictors, since this may easily amount to 50 to 100 predictors in prognostic problems.
Further research of EPV criteria is indicated.

In our evaluations, we focused on the quality of the predictions resulting from a logistic
regression model (&best predictions'). This focus should be distinguished from learning about the
most important prognostic relationships (&best predictors'). Stepwise methods are attractive for
the latter, although several drawbacks should be considered, such as instability of the selection,
limited power and biased estimation of regression coe$cients [5, 23]. Selection from a prede"ned
set of predictors with external information (for example, plausibility of the sign) and a limited use
of stepwise methods with a high a may be a reasonable compromise between predictive accuracy
and insight in important predictive relationships.

Several limitations apply to our study. Foremost, the analyses with the GUSTO-I data
represent essentially a case study. Although the structure of the data set may be representative of
other clinical prediction problems, exceptions can probably be identi"ed, for example, where
covariables have stronger collinearity or stronger relative e!ects. Also, predictive factors for
30-day mortality after an acute MI have been widely studied, and models containing relevant
predictors could be readily prespeci"ed. When plausible prior predictive relationships are not
known, prognostic modelling in a small data set will be harder. Next, heterogeneity of patient
populations between centres or geographic locations was not taken into account in our analyses,
while this may be an important consideration in clinical practice [51, 52]. Further, our considera-
tion of selection and estimation methods was far from complete. We have only attempted to
include techniques that are commonly used with logistic regression in the medical domain
(backwards stepwise selection), or that may be used in the future (shrinkage techniques, quantitat-
ive or qualitative external information). Other modelling approaches may provide better predic-
tions. We encourage comparative study of such methods and methods that look promising from
our analysis (penalized ML, Lasso, adaptation, sign OK).

In conclusion, we have severe reservations regarding the routine use of stepwise selection for
prognostic modelling in small data sets. Instead, full models should be considered, with shrinkage
of the coe$cients [1}3, 16]. External knowledge should be incorporated as much as possible in
the modelling process.
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