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This study assessed the prognostic value of several markers involved in gliomagenesis, and compared it with that of other clinical and
imaging markers already used. Four-hundred and sixteen adult patients with newly diagnosed glioma were included over a 3-year
period and tumour suppressor genes, oncogenes, MGMT and hTERT expressions, losses of heterozygosity, as well as relevant clinical
and imaging information were recorded. This prospective study was based on all adult gliomas. Analyses were performed on patient
groups selected according to World Health Organization histoprognostic criteria and on the entire cohort. The endpoint was overall
survival, estimated by the Kaplan–Meier method. Univariate analysis was followed by multivariate analysis according to a Cox model.
p14ARF, p16INK4A and PTEN expressions, and 10p 10q23, 10q26 and 13q LOH for the entire cohort, hTERT expression for high-grade
tumours, EGFR for glioblastomas, 10q26 LOH for grade III tumours and anaplastic oligodendrogliomas were found to be correlated
with overall survival on univariate analysis and age and grade on multivariate analysis only. This study confirms the prognostic value
of several markers. However, the scattering of the values explained by tumour heterogeneity prevents their use in individual
decision-making.
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The estimated incidence of adult gliomas in Europe and the United
States is 4–5 per 100 000 inhabitants. The most malignant form is
glioblastoma multiforme (GBM), the commonest primary brain
tumour in adults with an estimated incidence of 2–3 per 100 000
inhabitants and that has a very poor prognosis with a median
survival of about 40–48 weeks despite surgery, radiotherapy and
chemotherapy (Laws et al, 2003; Stark et al, 2005). Chemotherapy
provides a sometimes questionable and, at best, limited benefit
(Stewart, 2002; Stark et al, 2005; Stupp et al, 2005). However, the
development of new treatment protocols over recent years (Board
and Jayson, 2005) and the emergence of new therapeutic concepts
(Board and Jayson, 2005; Galanis et al, 2005; Haas-Kogan et al,
2005; Mellinghoff et al, 2005; Hall and Vallera, 2006; Sathornsumetee
et al, 2007) have accentuated the need to characterize potential
candidates for treatments as precisely as possible. Although the
diagnostic standard is the World Health Organization (WHO)
histoprognostic classification, which can be used to define
homogeneous patient groups in terms of prognosis (Kleihues
and Webster, 2000), some patients do not present the expected

outcome. In parallel, recent progress in molecular biology has
allowed determination of numerous markers in routine clinical
practice, but raises the question of their capacity to improve
patient management (Boudreau et al, 2005). The purpose of the
present study was to answer this question with respect to certain
markers that have already been shown to play a role in
gliomagenesis. Published studies on this subject are retrospective
and usually based on patients selected according to a particular
histoprognostic group or treatment modalities. To the best of our
knowledge, this is the first large-scale prospective study based on
all adult gliomas.

PATIENTS AND METHODS

Study design and inclusion criteria Two centres participated in
the study: the Poitiers and Angers university hospitals, in France.
Tissues from these glial tumours were collected during surgery
after obtaining signed informed consent from all patients, approval
from the Poitou-Charentes ethics committee and in accordance
with the precepts established by the Helsinki Declaration. All adult
patients in whom a diagnosis of glioma was suspected were
prospectively and consecutively preincluded and were definitively
included after confirmation of the diagnosis based on WHO
histopathologic criteria. These glial tumors encompass: (i)
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diffusely infiltrating astrocytomas (i.e., diffuse astrocytomas,
anaplastic astrocytomas and glioblastoma multiforme), (ii) oligo-
dendroglial tumours (i.e., oligodendroglioma and anaplastic
oligodendroglioma) and (iii) mixed gliomas (i.e., oligoastrocytoma
and anaplastic oligoastrocytoma) (Kleihues and Webster, 2000).
These patients had no particular past medical history, especially no
history of brain surgery, brain radiation therapy or chemotherapy.
Distribution of the patients according to the WHO classification is
presented in Table 1. Tumour diagnosis and grading were
established according to the WHO criteria (Kleihues and Webster,
2000) and were systematically revised in each centre by two expert
neuropathologists. Four-hundred and sixteen patients were
included from 1 September 2002 to 31 December 2005, and
patients not satisfying the inclusion criteria after quality control
were excluded from the analysis. Median follow-up is 14 months
for all patients, and 29 months for patients who were alive. This
series also included three tumour-free patients, operated for
refractory epilepsy, obtained from Neurobiotecs (Lyon, France)
after ethics committee approval. The main demographic data are
presented in Table 1. The primary endpoint was overall survival (OS).

Methods

The following molecular markers were included in this study: (i)
expression of oncogenes EGFR, PDGF and VEGF, (ii) expression of
tumour suppressor genes p14ARF, p16INK4A and PTEN, (iii)
expression of O6-methylguanine DNA methyltransferase (MGMT)
and (iv) expression of the catalytic subunit (hTERT) of telomerase.
In addition, cytogenetic parameters, including loss of hetero-
zygosity (LOH), were also collected: 1p, 2p23, 9p, 10p, 10q23,
10q26, 11q, 13q, 17q, 19q, 22q. Clinical data were recorded:
age, treatment received, comprising various combinations of
surgery, radiotherapy and chemotherapy, including temozolomide
(TMZ), OS, histoprognostic types and grades according to WHO
grading criteria. Finally, preoperative CT and MRI imaging data
systematically performed without and with injection of contrast
agent and were recorded. Gene expression was determined by
quantitative RT-PCR using the Taqmans gene expression assays
kit for each gene, and the device ABIPrism 7000 (Appleras) was
used. The method used has been previously described (Wager
et al, 2006). Three modalities of gene expression were defined
according to the following cutoff values: decreased: more than one
and a half times lower than the control value, normal: from one
and a half times lower to one and a half times higher than the
control value and increased: more than one and a half times higher
than control value. LOH was determined by the microsatellite
method. Microsatellite markers and cytogenetic bands and the
corresponding genes, when they are known, are shown as
additional data. The end point was the correlation between the
parameters available on inclusion and OS. Two types of parameters

were selected: those already known to be independent prognostic
factors and those tested by studying the levels of expression and
LOH. This study is not a therapeutic trial. Individual therapeutic
options and treatments were proposed and decided independently
of inclusion in the study. Of note, TMZ was used since the start of
the study (2002). Details of patient treatment appear on Table 2.

Statistical analysis

Data were collected from the date of inclusion. Differences between
groups in presenting characteristics were tested using the Mann–
Whitney U-test. OS was analysed by calculating the time interval
between date of inclusion and date of death from any cause, or
date of the last follow-up for surviving patients, and then estimated
by the Kaplan–Meier method. The following clinical and biological
features were analysed as potential prognostic factors for
survival: age, grade (‘high’ vs ‘low’), treatment (surgeryþ radiotherapy
þTMZ, vs surgeryþ radiotherapy±other chemotherapy, vs others),
loss of heterozygosities, relative expression of p14ARF, p16INK4A,
PTEN, EGFR, PDGF, VEGF, MGMT and expression of hTERT.
Tested transcripts were categorized in three groups according to
the fold change as compared with control, cutoff being set at 1.5
above for overexpression level or 1.5 below the normal expression
value for underexpression level. Age and hTERT expression were
categorized according to the upper and lower quartiles of their
respective values. All variables were assessed in univariate analysis
using the two-tailed log rank or Wilcoxon test as appropriate. To
summarise prognostic information, variables found to be asso-
ciated at the 20% level with the outcome were entered into a Cox
regression model on the basis of likelihood ratio test and potential
interactions were tested. A step-down procedure allowed to retain
those variables adding to each other prognostic information.
Levels of significance were represented by P-values derived from
two-sided tests. A P-value o0.05 or less was considered to indicate
statistical significance. SAS v 8 (Statistical Analysis System, Cary,
NC, USA) software package was used.

Results

Expression values are presented in Table 3.

Univariate analysis

Relation of expressions with OS The prognostic importance
(Figure 1 and Table 4A) of clinical features at baseline, treatment,
relative gene expression of p14ARF, p16INK4A, PTEN, EGFR, PDGF
and VEGF and the expression of hTERT in univariate analysis is
summarized in Table 4A.
Of clinical relevance, three factors were considered: age, grade

(‘high’ vs ‘low’) and contrast enhancement (Po10�4). When tested

Table 1 Demographic and pathological characteristics (N¼ 296)

Histologic subtypes and grades Patients number N¼ 296 Patients (%) Age (years) (minimum–maximum)

Grade II astrocytomas 10 3.38% 45 (20–69)
Grade III astrocytomas 8 2.70% 59 (40–74)
Grade II oligoastrocytomas 10 3.38% 44 (35–63)
Grade III oligoastrocytomas 21 7.09% 53 (22–76)
Grade II oligodendrogliomas 31 10.47% 41 (24–76)
Grade III oligodendrogliomas 40 13.51% 52 (24–79)
Glioblastomas 169 57.09% 64 (30–80)
Giganto-cellular glioblastomas 5 1.69% 56 (45–73)
Undetermined malignant gliomas 2 0.68% 52 (46–59)
Low-grade gliomas 51 17%
High-grade gliomas 245 83%

Grades II and III: according to the World Health Organization
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individually, p14ARF, p16INK4A and PTEN provided prognostic
information (Po0.05), overexpression being associated to a better
survival (Figure 1). Among other factors, the relative expression of
VEGF, the expression of hTERT were considered as potential
prognostic factors, underexpression or low expression, respec-
tively, showing a slight advantage, as well as EGFR with a very
slight advantage when overexpression. Treatment was also consi-
dered and categorized as follows: surgeryþ radiotherapyþTMZ,
vs surgeryþ radiotherapy±other chemotherapy vs others.
No correlation was observed between MGMT expression and

survival, either for the entire cohort or for each WHO
histopathologic group but a correlation was observed between
MGMT expression and grade classified as ‘high-grade’ (higher
expression) vs ‘low-grade’ (P¼ 0.0126). No correlation was
observed between astrocytic or oligodendroglial tumour pheno-
types and the level of MGMT expression.

Relation of LOH with OS For the entire cohort, 10p15 (carrying
KLF6), 10q23 (PTEN), 10q26 (DMBT1) and 13q (Rb1) LOH were
correlated with OS. 10q26 was correlated with OS of high-grade
tumours and also with grade III oligodendrogliomas OS. No
correlation was observed between OS of patients with low-grade
tumours and the various laboratory parameters studied (Figures 2
and 3 and Table 4A).

Multivariate analysis

When the eight factors that were identified in univariate analysis
(Po0.20), treatment, grade and interaction between grade and
treatment were entered into a Cox model, only three variables were
selected with a P-value less than 0.05, namely age (Po10�4), grade
(P¼ 0.0017) and VEGF (P¼ 0.0071) (Table 4B). The relative
expression of VEGF was not retained after stepwise regression
procedure. Factors that were considered adding to each other
prognostic information were age and grade, which remained highly
significant. The final model is presented in Table 4B.
MGMT was of no prognostic value by univariate analysis.

However, when this factor was added into the Cox model based on
previously published therapeutic approaches considerations, the
results remained strictly similar.

Discussion

The correlations with OS observed in this study confirm data
already reported for smaller retrospective series. These results will
be discussed globally after a few comments on each of the main
markers considered.

Expressions

A very strong analogy was observed for the results concerning
p14ARF and p16INK4A, which is coherent with their localization
corresponding to the ‘INK4A locus’. Hypermethylation of p14ARF

has been associated with progression of astrocytomas (Watanabe
et al, 2007) and has been described as a factor of poor prognosis of
grade II diffuse gliomas (Watanabe et al, 2003), although its
prognostic value in oligodendroglioma is more controversial
(Korshunov and Golanov, 2001; Kamiya and Nakazato, 2002).
p16INK4A deletion is a factor of poor prognosis of these tumours
(Jeon et al, 2007). Globally, these data are coherent with
concomitant inactivation of these genes during the late stage of
gliomagenesis. Loss or inactivation of PTEN has been described in
solid tumours of various organs, and it is mutant in about 30% of
GBM, but not in low-grade gliomas and very rarely in anaplastic
gliomas (Duerr et al, 1998; Zhou et al, 1999). EGFR is the main
oncogene identified in brain tumours, but its prognostic value is
controversial (Chakravarti et al, 2001; Muracciole et al, 2002;
Miracco et al, 2003; Shinojima et al, 2003; Heimberger et al
2005a, b; Kleinschmidt-DeMasters et al, 2005; Lopes-Gines et al,
2005; Quan et al, 2005; Rich et al, 2005), although a fairly
strong correlation with OS was observed in the present study.
PDGF is often overexpressed in gliomas, with an elevation
correlated with tumour grade (Shih and Holland, 2006) and was
considered to be predictive of poor prognosis in a study on grade
II tumours (Varela et al, 2004). The interest in PDGF is largely due
to the growing importance, over recent years, of tyrosine kinases
as useful targets in the treatment of cancer (Board and Jayson,
2005). The expression of certain VEGF receptors appears to be
correlated with glioma grade (Plate et al, 1992), conferring a
diagnostic and prognostic value and also making VEGF a
candidate for targeted therapies (Grau et al, 2006). The hTERT
gene codes for the catalytic subunit of telomerase and the

Table 2 Treatment modalities

Grade II tumours N¼51 Grade III tumours N¼ 69 Grade IV tumours N¼176

(A) General data – grades according to World Health Organization
Gross complete removal (%)/biopsy (%) 38 (75%)/13 (25%) 43 (62%)/26 (38%) 124 (70%)/52 (30%)
Radiation therapy Yes (%)/no (%) 10 (20%)/41 (80%) 39 (57%)/30 (43%) 123 (70%)/53 (30%)
Chemotherapy yes (%)/no (%) 20 (39%)/31 (61%) 51 (74%)/18 (26%) 118 (67%)/58 (33%)

(B) Details of combined treatment modalities – grades according to World Health Organization
Removal N¼ 38 N¼ 43 N¼ 124
S only 25 (49%) 5 (7%) 14 (8%)
S+RxTh n (/%) 2 (4%) 7 (10%) 23 (13%)
S+RxTh+TMZ n (/%) 3 (6%) 11 (16%) 69 (39%)
S+RxTh+ChTh n (/%) 0 8 (12%) 10 (6%)
S+TMZ n (/%) 2 (4%) 4 (6%) 7 (4%)
S+ChTh n (/%) 6 (12%) 8 (12%) 1 (1%)

Biopsy N¼ 13 N¼ 26 N¼ 52
B only n (/%) 4 (8%) 6 (9%) 17 (10%)
B+RxTh n (/%) 0 0 6 (3%)
B+xTh+TMZ n (/%) 3 (6%) 9 (13%) 12 (7%)
B+RxTh+ChTh n (/%) 2 (4%) 4 (6%) 3 (2%)
B+TMZ n (/%) 1 (2%) 4 (6%) 12 (7%)
B+ChTh n (/%) 3 (6%) 3 (4%) 2 (1%)

B, Biopsy; ChTh, chemotherapy other than TMZ; RxTh, radiotherapy; S, surgery; TMZ, temozolomide.
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potential diagnostic value of hTERT expression was recently high-
lighted (Chakravarti et al, 2001; Tchirkov et al, 2003; La Torre
et al, 2005; Boldrini et al, 2006; Maes et al, 2007; Shervington et al,
2007).
Methylation of the MGMT promoter, a frequent phenomenon,

makes gliomas more sensitive to alkylating agents by reducing
gene expression (Esteller et al, 2000). Several teams have reported
this increased chemosensitivity for various types of gliomas
(Balana et al, 2003; Paz et al, 2004; Hegi et al, 2005; Watanabe
et al, 2005; Herrlinger et al, 2006; Chinot et al, 2007) and MGMT
status, either methylation or level of expression, has become a
predictive marker of chemosensitivity. However, although deter-
mination of this marker is recommended in the context of clinical
trials involving alkylating agents, it cannot be recommended in
routine clinical practice (Stupp and Hegi, 2007). It must be kept in
mind that most previously reported correlative studies examined
MGMT promoter methylation, whereas in the present study, the
authors chose to examine MGMT gene expression and that
comparison of data obtained from these different approaches are
not appropriate. MGMT appeared to be more markedly over-
expressed in low-grade tumours but MGMT expression was not
correlated with a specific phenotype, and its level of expression has
no specific prognostic value. Patients with low MGMT expression
treated with alkylating agents presented a better OS than patients
not treated by alkylating agents, but it must be remembered that
this was not a clinical trial with randomised treatment.

LOH

Tumour progression reflects genetic instability that can be expres-
sed by several alternative pathways in the same tumour phenotype,
resulting in a correlation between the degree of anaplasia of
a tumour and the percentage of LOH detected in tumour cells,
although a constant profile of loss or gain related to a particular
tumour phenotype has not been demonstrated. This phenomenon
has been described in meningiomas, but, to the best of our knowl-
edge, has not been previously described on a very large prospective
series of adult gliomas. As for meningiomas, no constant expres-
sion profile, based on single LOH or combinations of LOH, was
found to be correlated with a particular tumour phenotype.
However, some LOH appear to be correlated with OS: 10q26, which
carries DMBT1 (deleted in malignant brain tumours), is a possible
tumour suppressor gene in glial tumours (Mollenhauer et al,
1997). It is generally accepted that passage from an anaplastic
phenotype to a GBM phenotype is associated with 10q LOH
(Fujisawa et al, 1999; Daido et al, 2004), although the role
specifically played by DMBT1 in this progression is controversial
(Sasaki et al, 2002). Taken all together, these results suggest firstly
that an increased frequency of this LOH is associated with increa-
sing grade. Secondly, its very strong correlation with survival in
the grade III oligodendrogliomas group suggests a participation of
DMBT1 at the anaplastic stage of gliomagenesis. LOH10p is more
frequent in high-grade than in low-grade tumours and is also more
frequent in tumours with a large oligodendroglial component. The
present study demonstrated a link between 10p LOH and poorer
survival in the overall cohort but not in the various histoprog-
nostic groups. As 13q LOH was first observed in low-grade
gliomas, it was initially thought to be involved at an early stage of
gliomagenesis (Lee et al, 1995). However, it was subsequently
associated with anaplastic astrocytomas and GBM (Wooten et al,
1999) and appeared to be mutually exclusive with 19q LOH
(Nakamura et al, 2000).

General discussion

All of the correlations observed with OS in this study cohort, prob-
ably as a result of the large number of patients, which compensatesT
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for the scattering of data, therefore, confirm the results reported
in the literature. The correlation between each marker studied
and OS can, therefore, be confirmed or excluded for the overall
cohort. The results of studies such as this one, can, therefore,
confirm the involvement of these markers in gliomagenesis and
constitute a valuable tool. However, these results have certain
limitations, as these correlations with OS are observed more
rarely and become less robust when based on smaller sample sizes
and the very broad scattering of the results for these markers
prevent any extrapolation of the conclusions drawn from this
study cohort to individual patients. These conclusions, therefore,
have no practical impact as an aid to individual decision-making.
As this scattering is due to tumour heterogeneity, neither studies
based on larger series nor studies conducted over longer
periods would be able to eliminate this obstacle. Moreover, the
relationship between markers and OS was observed at relatively
late stages of these gliomas, and no positive correlation was
observed for low-grade tumours. Finally, these relationships would
only provide a diagnostic contribution when the correlation
observed is higher than that of already identified markers.
However, the markers correlated with OS in this study were much
less robust than other previously identified prognostic indicators,
such as age and treatment modalities. These markers, therefore, do
not provide crucial contribution in clinical practice at the present
time.

Conclusions

Application of relevant data provided by molecular biology to the
treatment of cancers is a major challenge in medical oncology. In
this context, it is a widely held belief that, in the years to come,
these data will allow treatment tailored to each individual patient’s
tumour. However, the results of the present study, which, to our

knowledge, is the largest prospective study ever performed to
evaluate the prognostic value of biological markers in adult
gliomas, tend to suggest that these markers will be of limited value
for individual treatment decisions, particularly for the most
heterogeneous, that is, high-grade, tumours. If tumour markers
were to have a role in treatment decisions in adult gliomas, it
would probably be limited to less heterogeneous, that is, low-
grade, tumours, as illustrated by the study of certain p73 isoforms.
The absence of correlation between LOH and OS of low-grade
tumours observed in this study could be due to lower genetic
instability, whereas the absence of correlation with gene expres-
sions could be due to the fact that the genes studied here are
involved in later stages of gliomagenesis.
MGMT has a special place in this context, as, although it has a

poor specific prognostic value, it can be used to predict the
chemosensitivity of these tumours. Although it is recommended to
include MGMT in clinical trials of chemotherapy, it cannot be
recommended as part of everyday clinical practice. For all of these
reasons, it would, therefore, be unrealistic to expect any
contribution of these markers to treatment decisions for adult
patients with glioma.
When this study was initiated, tumour stem cell and pluripotent

stem cell biology was only in the early stages. A growing body of
literature has demonstrated the importance of these stem cells to
propose an explanatory model for gliomagenesis that could
possibly open the way to major therapeutic progress, as these
cells constitute the genuine target of treatments. Preclinical animal
models reproducing all phases of gliomas could also be used to
develop a similar approach to that conducted in this study, based
on whole tumours and not stem cells, which can now be
specifically isolated and studied. Progress in tumour stem
cell (TSC) biology has led to identification of cells possessing
the specific characteristics of true glioma stem cells, specific
markers (e.g. CD133), capacity for self-renewal and capacity for
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Figure 1 Relationship between p14ARF, p16 INK4A and PTEN expressions and Kaplan–Meier estimates of overall survival in the entire series. hTERT
expression is correlated to overall survival in high-grade tumours, but not in the entire series.
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Figure 2 Relationship between 10p15, 10q23, 10q26 and 13q LOH, and Kaplan–Meier estimates of overall survival.

Table 4 Relationship between markers and overall survival

(A) Univariate analysis

Variables All grades P-value

Age (o48 years /48–68 years/468 years) o10�4

Grade II III IV o10�4

Contrast enhancement o10�4

Treatment 0.0692
0: No surgery+radiotherapy
1: surgery+radiotherapy+chemotherapy other than TMZ
2: surgery+radiotherapy+TMZ

Expression Grade II Grade III Grade IV All grades

P14ARFa 0.2441 0.004 0.9708 o10�4

P16INK4a 0.4188 0.0001 0.9357 0.0002
PTENa 0.1499 0.1478 0.0667 0.0001
hTRTa 0.3566 0.0286 0.1846 0.0732
EGFRa 0.4303 0.2626 0.0250 0.1969
VEGFb 0.9794 NA 0.1007 0.0548
PDGFRc 0.3658 0.6677 0.4809 0.2877
MGMTa 0.7493 0.2668 0.4896 0.7423

LOH Grade II Grade III Grade IV All grades

LOH10p (KLF6) 0.2360 0.0493 0.6124 o10�4

LOH10q23 (PTEN) 0.0509 0.1805 0.9487 0.0024
LOH10q26 (DMBT1) 0.3839 0.0041 0.8795 o10�4

LOH13q (Rb1) 0.5345 0.7662 0.5278 0.0161

(B) Cox model multivariate analysis
Final model Cox regression model

Variable Hazard ratio 95% hazard ratio confidence limits P-value

Age 2.345 1.871 2.940 o0.0001
Grade 2.413 1.869 2.357 o0.0001

LOH, loss of heterozygozity; NA, not applicable; TMZ, temozolomide Grades II, III, IV according to World Health Organization. aClassified as overexpression, median expression
and underexpression bClassified as overexpression, and other cClassified as Low expression, normal expression and high expression
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differentiation into the various cell lines of brain tissue (neuronal,
glial) (Gilbertson and Rich, 2007). These results have led to the
development of a gliomagenesis model directly resulting in GBM,
which postulates the malignant transformation of these cells at the
time of ‘insults’, which selectively affect the genes involved in the
initial steps of carcinogenesis. Access to these tumour stem cells
has now been defined by tumour culture protocols, which will
allow molecular studies on much more homogeneous populations.
This type of approach applied to individual tumors should result
in much more effective use of markers currently identified in
heterogeneous cohorts. At the same time, this type of approach
would also allow a more accurate definition of the limits of

treatments (e.g. resistance of TSC to radiotherapy and acquisition
of resistance to chemotherapy) (Rich, 2007).
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