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Prognostic signatures
of sphingolipids: Understanding
the immune landscape
and predictive role in
immunotherapy response
and outcomes of
hepatocellular carcinoma
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Background: Hepatocellular carcinoma (HCC) is a complex disease with a poor

outlook for patients in advanced stages. Immune cells play an important role in

the progression of HCC. The metabolism of sphingolipids functions in both

tumor growth and immune infiltration. However, little research has focused on

using sphingolipid factors to predict HCC prognosis. This study aimed to identify

the key sphingolipids genes (SPGs) in HCC and develop a reliable prognostic

model based on these genes.

Methods: The TCGA, GEO, and ICGC datasets were grouped using SPGs

obtained from the InnateDB portal. A prognostic gene signature was created

by applying LASSO-Cox analysis and evaluating it with Cox regression. The

validity of the signature was verified using ICGC and GEO datasets. The tumor

microenvironment (TME) was examined using ESTIMATE and CIBERSORT, and

potential therapeutic targets were identified through machine learning. Single-

cell sequencing was used to examine the distribution of signature genes in cells

within the TME. Cell viability and migration were tested to confirm the role of the

key SPGs.

Results: We identified 28 SPGs that have an impact on survival. Using

clinicopathological features and 6 genes, we developed a nomogram for HCC.

The high- and low-risk groups were found to have distinct immune

characteristics and response to drugs. Unlike CD8 T cells, M0 and M2
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macrophages were found to be highly infiltrated in the TME of the high-risk

subgroup. High levels of SPGs were found to be a good indicator of response to

immunotherapy. In cell function experiments, SMPD2 and CSTA were found to

enhance survival and migration of Huh7 cells, while silencing these genes

increased the sensitivity of Huh7 cells to lapatinib.

Conclusion: The study presents a six-gene signature and a nomogram that can

aid clinicians in choosing personalized treatments for HCC patients.

Furthermore, it uncovers the connection between sphingolipid-related genes

and the immune microenvironment, offering a novel approach for

immunotherapy. By focusing on crucial sphingolipid genes like SMPD2 and

CSTA, the efficacy of anti-tumor therapy can be increased in HCC cells.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent type of

primary liver cancer worldwide, accounting for 90% of cases (1). This

disease is often found in individuals with cirrhosis and can be caused

by various environmental factors, such as tobacco and aflatoxin, as

well as etiologies such as HBV infection, alcohol consumption, and

non-alcoholic steatohepatitis (2–4). Like pancreatic cancer,

inflammation is also a significant contributor to the development

of HCC. HCC develops from dysplastic nodules and progresses

through a series of histopathological stages. Despite surgical

resection, patients with HCC often face poor prognoses due to the

high degree of heterogeneity within patients and even within

individual tumors, which leads to drug resistance and recurrence

(5–7). Checkpoint inhibitor immunotherapy has demonstrated

potent anti-tumor effects in a subset of cancer patients (8–10).

Hepatocellular carcinoma (HCC) is also known to be regulated by

the immune system. The combination of the anti-PDL1 antibody

atezolizumab and the VEGF-neutralizing antibody bevacizumab has

been proposed as a first-line therapy for HCC, and is currently

undergoing clinical trials (11). However, a major challenge for HCC

checkpoint immunotherapy is the identification and validation of

reliable predictive biomarkers. To improve treatment outcomes, new

biomarkers that can predict patient outcomes are needed.

Sphingolipids, structural molecules found in cell membranes, play

a crucial role in regulating various biological processes, including

growth, proliferation, migration, invasion, and metastasis in cancer

(12). As second signaling molecules, they also control programmed cell

death, cell differentiation, aging, and growth. The key components of

sphingolipids are sphingomyelin, ceramide, sphingosine-1-phosphate,

sphingomyelin, and glycosphingolipids (13). Alterations in

sphingolipid synthesis can affect various signaling pathways,

promoting or inhibiting tumor progression (14–17). Recent studies

have shown that certainmembers of the sphingolipid class are linked to

the development of HCC and have a prognostic value (18, 19). Despite

the established importance of sphingolipids in HCC, few studies have
02
systematically evaluated the potential of sphingolipid-associated genes

(SPGs) in predicting prognosis. A deeper understanding of these genes

can lead to improved survival rates and treatment responses.

Our study aimed to create a prognostic model utilizing

sphingolipid-associated genes (SPGs) from the TCGA-LIHC

cohort, which we then combined with clinicopathological

characteristics to build a nomogram for predicting prognosis and

providing clinical treatment guidance. The nomogram’s clinical

prognostic value was verified through time-dependent ROC and

DCA curve analysis. Our findings suggest that sphingolipid-

associated genes have the potential to predict the prognosis of

HCC patients and provide new, experimentally validated

biomarkers for precision targeted therapy.
2 Materials and methods

2.1 Data acquisition

In our study, we obtained gene expression profiles and clinical data,

such as TNM classification, age, gender, and overall survival, from the

TCGA-LIHC cohort (including 374 LIHC and 50 normal tissue

samples) on the TCGA data portal (https://portal.gdc.cancer.gov/).

We also downloaded the GSE14520 dataset, which contained 221

HCC samples, from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) and the ICGC dataset, which contained 240 HCC samples, from

https://icgc.org/. Only data that had complete clinical information was

used for analysis. We normalized the transcripts per million (TPM)

data and then applied a log2 transformation (20).
2.2 Access to sphingolipid-associated
genes

We utilized the InnateDB portal, a publicly available database of

genes, proteins, and experimentally validated interactions, to gather
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a set of 97 sphingolipid-associated genes (SPGs). This database

currently contains 18,780 curated interactions, allowing for easy

querying of various gene sets. The SPGs were downloaded directly

from the InnateDB portal (http://www.innatedb.com) (21).
2.3 Consensus clustering

To investigate the involvement of sphingolipid-associated genes

in HCC, a set of 97 SPGs with a statistical significance of

P < 0.01 were subjected to Consensus Clustering using the

‘ConsensusClusterPlus’ R package (22). The HCC cohort was

classified into two distinct groups (k = 2) based on this analysis. To

validate the reliability of the clustering, we then applied the UMAP

method using the package “ggplot2” in R.
2.4 GSVA analysis

To analyze the functional significance of the identified SPGs, we

used the file “c2.cp.kegg.v7.4.symbols.gmt” from the MSigDB

database and performed GSVA enrichment analysis using the

“GSVA” R package (23–25)

. We applied the “limma” R package to adjust for P values (P <

0.05) and determine statistical significance of subgroup differences

(26, 27). Additionally, we used functional enrichment analysis to

investigate the pathways and functional annotations associated with

DEGs related to SPGs in HCC. We also used the “heatmap” R

package to create a visual representation of the data.
2.5 LASSO regression analysis

In this study, we used univariate Cox regression analysis to

identify a total of 28 sphingolipid-associated genes (SPGs) that were

associated with the survival of HCC patients. Next, we employed

LASSO regression analysis using the “glmnet” R package and

determined the parameter l through tenfold cross-validation.

Finally, we selected 6 core genes through a multivariate Cox

regression model. We used the best lambda scores and

coefficients to construct a 6-SPG risk signature. The risk score for

each patient was calculated as follows: risk score = e^(…

corresponding coefficient +… + SELL expression). Overall, this

study identified and validated 6-SPGs associated with prognosis in

the TCGA-LIHC, GSE14520, and ICGC cohort using univariate

Cox regression analysis.
2.6 Immune cell Infiltration

To evaluate the infiltration of immune cells in our samples, we

employed both CIBERSORT and ssGSEA R scripts (28, 29). By

utilizing CIBERSORT, we calculated a score for each sample

reflecting the estimated proportion of immune cell types present.

These scores were then used to compare the distribution of low-risk

and high-risk immune cell types. We also performed a spearman
Frontiers in Immunology 03
rank correlation analysis to investigate the relationship between our

calculated risk scores and the presence of different immune cells.
2.7 Nomogram

We used clinicopathological characteristics and risk scores to

create nomograms, which are diagrams that predict the likelihood

of a certain outcome. To ensure accuracy, we conducted a

calibration plot. Additionally, we used decision curve analysis

(DCA) to evaluate the clinical utility of these nomograms (30, 31).
2.8 Predicting chemotherapy response

QuartataWeb (http://quartata.csb.pitt.edu) is a user-friendly

server that allows users to analyze drugs and genomics. The

platform allows easy access to the DrugBank and STITCH

databases, which facilitate the exploration of protein-drug and

protein-chemical interactions (32). Additionally, the “pRRophetic”

R package was utilized to calculate the median inhibitory

concentration (IC50) of small molecule drugs.
2.9 Cancer cell line encyclopedia (CCLE)

We obtained the mRNA expression matrix for tumor cell lines

from the CCLE dataset (33). The data was visualized using the

“ggplot2” package in R v4.1.3.
2.10 Human protein atlas (HPA)

The HPA portal (Human Protein Atlas proteinatlas.org) is a

valuable resource for researchers, providing immunohistochemical

(IHC) data for proteins found in all major human tissues. The

portal also allows users to view the subcellular localization of

proteins in individual cells (34).
2.11 Cell culture

The Huh7 HCC cell line was obtained from the ATCC company

and cultured at 37°C in a 5% CO2 atmosphere in DMEM (Thermo

Scientific HyClone) supplemented with 10% fetal bovine serum

(Gibco FBS). Lipofectamine™ 3000, the CCK-8 assay kit, and

Lapatinib were purchased from Invitrogen, Dojindo, and

MedChemExpress, respectively.
2.12 RNA transfection

Huh7 cells were transfected with siRNA specific for CSTA (sc-

44430, Santa Cruz), SMPD2 (sc-106277, Santa Cruz), and a control

siRNA (sc-37007, Santa Cruz) using Lipofectamine 3000 (Thermo

Fisher Scientific) for a duration of 48 hours
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2.13 RNA Extraction and real-time PCR

Before beginning the real-time PCR process, we briefly

centrifuged the samples and used 1 microgram of total RNA as the

template. We followed the instructions provided by the FastKing One

Step RT-qPCR kit (SYBR Green) (TIANGEN, Beijing, China) and

ran the standard PCR reaction program as follows: the reverse

transcription step was performed at 50 Celsius for 30 minutes,

followed by an initial denaturation step at 95 Celsius for 3 minutes

and 40 consecutive cycles of 15 seconds at 95 Celsius and 30 seconds

at 60 Celsius. The sequences for the CSTA, SMPD2, and GAPDH

primers can be found in the Supplementary Figure S1.
2.14 Cell viability and wound-healing
migration assay

The cell viability of Huh7 cells was determined using the Cell

Count Kit-8 (Dojindo, Japan). The CCK8 reagent (10 ml) was added to
each well and the cells were incubated at 37°C in 5%CO2 for 1.5 hours.

The optical density (OD) value at 450 nm was then measured. The

migration ability of the Huh7 cells was also assessed after being treated

with siRNA for 48 hours. The photographs were taken at the same

location at both 48 hours and 0 hours after scratching.
2.15 TISCH database and best database

The Tumor Immune Single-Cell Hub (35) (TISCH) acts as a

web-based resource for single-cell RNA-Seq data pertaining to the

tumor microenvironment (TME). By utilizing this tool, we were

able to investigate the distribution of 6-SPGs among various cell

types within the microenvironment of hepatocellular carcinoma

(HCC). Additionally, we utilized the “BEST” analytical pipeline

available on the website “rookieutopia.com” to analyze cancer

biomarkers and predict immunotherapy outcomes by examining

different subgroups of risk.
2.16 Statistical analysis

We utilized R version 4.1.3 for statistical analysis. The survival

rates of the two groups were compared using Kaplan-Meier curves

and a log-rank test, with the aid of the R package “survminer” to

generate the survival curves. Additionally, LASSO-Cox analysis was

applied to construct prognostic gene signatures following Cox

regression evaluation. The groups were divided into high- and

low-risk based on the Wilcox test for immune function and

tumor-infiltrating immune cells. Results were considered

statistically significant if the p-value was less than 0.05 and the

false discovery rate (FDR) q was less than 0.05. All experimental

data was presented as the means ± SEM. Statistical analysis was

performed using Student’s t-test for comparisons between two

groups or one-way ANOVA with Tukey post hoc test for multiple

comparisons. Statistical analysis was conducted using GraphPad
Frontiers in Immunology 04
Prism 8 (GraphPad Software, USA). Significance was determined as

P < 0.05. * denotes P < 0.05, ** denotes P < 0.01, *** denotes

P < 0.001.
3 Results

3.1 Identification of prognostically
associated SPGs

By merging data from TCGA-HCC and GSE14520, we were able

to eliminate batch effects and create the “LIHC-GSE14520” cohort,

which contained 14,490 genes. We then sourced 97 SPGs from the

InnateDB portal and used a Venn plot to identify 63 SPGs present in

both the TCGA-LIHC and GSE14520 cohorts (Figure 1A). We then

compared these SPGs to normal adjacent tissue samples and identified

49 DEGs in HCC samples. We conducted a univariate Cox regression

analysis on these 49 SPGs and found that 28 were significantly

associated with survival (P < 0.05, km < 0.05), and 26 of these,

excluding SELP and SELL, were associated with poor prognosis

(Figure 1B). Additionally, a network plot was created to better

understand the relationships between these 28 SPGs (Figure 1C). We

also analyzed CNV data from the TCGA portal, as chromosomal

alterations are a common feature of tumors (36). We examined the

location of each SPG on the chromosome and the extent to which they

were altered (Figures 1D, E). Figures 1D, E shows that the most notable

“gains” and “losses” occurred on chromosome 17 with SPHK1 and on

chromosome 19 with CSNK1G2.
3.2 Consistent clustering

To gain a deeper understanding of the role of 28 specific

proteins in HCC, we utilized Consensus Clustering with the

“ConsensusClusterPlus” R package. Our results, shown in

Figure 2A, revealed a well-defined grouping of the cohort when

k = 4. Furthermore, Kaplan-Meier survival curves indicated that

these four clusters had significant differences in overall survival (P <

0.001) as shown in Figure 2B. The UMAP analysis also confirmed

the correct assignment of the four clustering subtypes at k=4, as

shown in Figure 2C. Additionally, we examined the correlation

between clinicopathological features and the expression of the 28

specific proteins in the four clusters. The heat map in Figure 2E

revealed that LAMB1 and SPHK1 were notably present in cluster D,

suggesting their potential involvement in tumor progression. To

further investigate the differential expression of these 28 specific

proteins in the subtypes, we applied the GSVA package for KEGG

pathway enrichment analysis between cluster D and B, which

showed a significant difference in survival between them as

shown in Figure 2D. Cluster D, associated with the worst

prognosis, was found to mainly involve the Cell Cycle, Focal

Adhesion, ECM Receptor Interaction, and other pathways in

cancer, which may partially explain the poor survival. Finally, the

Venn diagrams in Figure 2F illustrated the distinct distribution of

differentially expressed genes within the four subtypes.
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3.3 Immune infiltration in the subtypes

We used boxplots to illustrate the expression patterns of the 28

SPGs across the four subgroups. As shown in Figure 3A, most SPGs

had high expression levels in subgroup D, with the exception of

SELP. Notably, a previous study found that high expression of the

SELL gene was linked to a positive prognosis. We therefore suggest

that SELL may be a crucial sphingolipid gene involved in the body’s

natural defense against tumor growth. Given that subgroup D had a

poor prognosis, these SPGs may play a role in HCC progression and

may be potential targets for HCC-specific treatments. Additionally,

we observed notable variations in immune cell infiltration among

the subtypes (Figure 3B; Supplementary Figure S2). Subgroup D

had higher levels of immune infiltration, including MDSC cells with
Frontiers in Immunology 05
immunosuppressive properties, indicating that SPGs may

contribute to an immunosuppressive microenvironment.
3.4 SPGs signature construction

To create a model that accurately predicts the risk for each patient,

we divided the samples in the “TCGA-LIHC” cohort into two groups: a

training group and a test group. We applied LASSO-Cox regression

analysis to the differentially expressed genes in the training group and

identified 6 signature genes associated with risk (Figures 4A, B). We

named this risk score “riskscore”, and the coefficients for each signature

gene are listed in Supplementary Table 1. The time-dependent ROC

curves for overall survival at 1 and 3 years in both the train/test group
D

A B

E

C

FIGURE 1

Characteristics and differences of sphingolipid-associated genes in HCC. (A) 63 sphingolipid-associated genes identified from TCGA-LIHC and
GSE14520 cohort. (B) 28 SPGs (P < 0.05) via the univariate Cox regression analysis. (C) Linkage between the 28 SPGs. (D) CNVs of 28 SPGs in TCGA-
LIHC. (E) Chromosome site of SPGs.
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and validation groups (GSE14520, ICGC cohort) showed strong

performance in predicting overall survival (Figures 4C, D, K, L).

Furthermore, a significant survival advantage was observed in the low-

risk group compared to the high-risk group (P < 0.05) (Figures 4E, F, M,

N). The DCA curve indicated that this risk model is useful for clinical

application and could improve overall survival and progression-free

survival for patients with HCC (Figures 4G, H). As shown in Figures 4I,

J, the risk scores varied significantly across four subtypes related to the

signature genes. We also described the link between the signature gene

clusters, riskscore, and living status in an alluvial diagram.
Frontiers in Immunology 06
3.5 Immune infiltration

The microenvironment of a tumor, specifically the immune

system, plays a critical role in the development of tumors. When

the immune system is not functioning properly, it allows for

tumor cells to evade immune surveillance (37, 38). To quantify the

landscape of the microenvironment in patients with high and low

risk of HCC, we used the CIBERSORT R script. We first ranked

patients according to their risk score and calculated the

proportion of different immune cells present in each patient
D

A B

E

F

C

FIGURE 2

HCC Subgroups classified by SPGs. (A) Consensus matrix for k = 4 was accepted using consensus clustering. (B) Survival probability of 4 subtypes
(P < 0.01). (C) UMAP distinguished 4 subtypes based on SPGs expression level. (D) Clusters D and B were analyzed differently using GSVA in terms of
KEGG pathway enrichment. (E) Clinical and pathological features of four subtypes of SPGs expression. (F) Differential SPGs-based clusters
intersected on Venn plots.
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(Figure 5A). We found a significant correlation between the

proportion of Macrophage M2 cells and the risk score (R =

0.42) (Figure 5B). Additionally, in HCC tissue, the majority of

immune cells present were macrophages M0 and M2 (Figure 5C),

indicating that these macrophages likely play a significant role in

the development of HCC (39). We also observed a negative

correlation between macrophages M0 and CD8 T cells in the

microenvironment of HCC tissue (R = -0.61) (Figure 5D). The 6-

SPGs signature that was used to construct the risk score model had

different expression patterns and was strongly correlated with

multiple immune cell infiltrations. CD8 T cells were positively

correlated with SELL, while the opposite relationship was

observed with CTSA and LAMB1 (Figures 5E, F). Furthermore,

we calculated stromal, immune, and tumor scores in patients with

different risk levels using the “estimate” R package for expression

profiles (Figure 5G). Overall, the high-risk group had a weaker

immune response, in addition to increased tumor proliferation

and DNA replication (Figure 5H).
3.6 Nomogram predicts HCC
patients survival

In order to account for the influence of clinical factors such as

age, gender, and stage on tumor progression, we incorporated them
Frontiers in Immunology 07
into a nomogram (Figure 6A) along with the riskscore. The

nomogram’s accuracy was verified using a calibration plot

(Figure 6B) and cumulative risk curves that demonstrated an

increasing survival risk for HCC patients with high scores

(Figure 6C). A decision curve analysis revealed that this

nomogram has long-term benefits for HCC patients and can

serve as a reference tool for clinical decision-making (Figure 6D).

A forest plot showed that T stage and riskscore were the primary

factors affecting the nomogram (Figure 6E).
3.7 SPGs expression in HCC

To investigate the impact of key metabolic genes of SPGs on the

development of HCC, we first screened for the optimal HCC cell

lines for our experiments by evaluating the expression levels of

SPGs. The Huh7 cell line was chosen due to its high expression

levels of SPGs that closely matched the identified risk factors

(Figure 7). As CSTA and SMPD2 were identified as having the

highest weight in the risk model, we hypothesized that they may

play a major role in HCC development. The HPA portal was used to

examine the expression levels of CSTA and SMPD2 proteins in

HCC tissues. As shown in Figure 8A, the results of IHC revealed

that CSTA protein levels were significantly higher in HCC tissues

compared to normal tissues, with stronger staining intensity.
A

B

FIGURE 3

Patterns of immune infiltration and gene expression among four SPGs-based clusters. (A) SPGs expression of four subtypes. (B) Immune infiltration
patterns of four subtypes. (Wilcox test, *P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 4

Identify sphingolipid-associated predictive signature. (A, B) LASSO analysis identified 6 prognostic SPGs. (C, D) The time-dependent ROC exhibited
the sensitivity and specificity of constructed riskscore model. (E, F) Survival probability of differential risk subgroups. (G, H) Decision curve analysis of
6-SPGs riskscore model for predicting survival status, including OS and PFS. (I) Risk score in 4 SPGclusters. (J) Alluvial diagram of SPGcluster and
associated living status. (K, L) Validity of the model in the external validation sets. (M, N) Survival probability of differential risk subgroups in external
validation cohorts.
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Interestingly, despite the low staining of SMPD2 in tissues, we

found that SMPD2 protein expression was detected in over 75% of

HCC tissues, significantly higher than the 25% found in normal

samples. In addition, Figure 8B highlights the localization of CSTA
Frontiers in Immunology 09
and SMPD2 proteins in the cell, with CSTA present in the

nucleoplasm and cytosol and SMPD2 found in vesicles, the

plasma membrane and cell junctions, suggesting different

functions between CSTA and SMPD2.
D

A B

E F

G

H

C

FIGURE 5

HCC immune microenvironment at differential risk score. (A) Risk score associated with different proportions of infiltrating immune cells. (B)
Correlation between risk score and Macrophage M0 cells in HCC tissues. (C) A comparison of immune cell components between high-risk and low-
risk groups. (D) Correlation between immune cells. (E) Expression patterns of 6-SPGs. (F) Correlation between immune cells and 6-SPGs. (G)
Estimate score of the risk subgroups. (H) Correlation between riskscore and cancer-immunity cycle as well as functional pathways. (Wilcox test, *P <
0.05, **P < 0.01, ***P < 0.001).
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3.8 Prevention of SPG damages HCC cell
migration ability

The recurrence of cancer through metastasis is a significant

contributor to poor outcomes in HCC (40). The spread of tumor

cells to other parts of the body makes treatment more difficult (41).

To understand the impact of silencing specific genes on the

migration of HCC cells, we used siRNA to study this effect

(Figure 9A). Our results, shown in Figure 9B, indicate that the

silencing of CSTA and SMPD2 genes significantly decreased the

migration of Huh7 cells. Furthermore, the impact of CSTA on the

mobility of Huh7 cells was greater than that of SMPD2.
Frontiers in Immunology 10
3.9 Inhibition of SPGs makes HCC cells
sensitive to lapatinib drug

Alterations in the levels of certain genes involved in

sphingolipid metabolism may have a significant impact on the

effectiveness of chemotherapy (42, 43). Using gene expression

data from different risk subgroups, we utilized the pRRophetic

package to predict variations in the sensitivity to clinical

antitumor drugs across different risk groups (Supplementary

Table S2; Figure 10). Additionally, we employed the BEST

da t aba s e to p r ed i c t the e ff e c t s o f immuno the rapy

(Supplementary Figure S3). Our findings indicate that HCC
D

A B

E

C

FIGURE 6

Nomogram construction for HCC patients. (A) Nomogram established based on risk scores and clinicopathological features. (B) Calibration plot
validates the reliability of this nomogram. (C) Survival probability was represented by the cumulative hazard curve over time. (D) DCA curves of the
nomogram for survival status of HCC patients. (E) Multivariable Cox regression analyses of the clinical features as well as risk score in HCC patients.
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A B

FIGURE 8

Protein expression of SPGs. (A) IHC results of CSTA and SMPD2. (B) The subcellular distribution of CSTA and SMPD2 proteins in human cell lines.
FIGURE 7

6-SPGs expression patterns in HCC cell lines based on CCLE database.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2023.1153423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1153423
patients with high expression levels of sphingolipid metabolism

genes (SPGs) may be more responsive to CAR-T treatment.

Furthermore, the level of SPGs exhibited good predictive

power for response to immunotherapy (AUC = 0.712). Among

the drugs tested, lapatinib was found to be more effective in low-

risk groups (Figure 10). As CSTA and SMPD2 were identified as

key SPGs, we investigated the effects of silencing these genes on

the sensitivity of HCC cells to lapatinib (Figure 11A). Our results

revealed that downregulation of CSTA or SMPD2 through

siRNA transfection significantly increased the sensitivity of

Huh7 cells to lapatinib (Figure 11B).
3.10 Investigating the distribution of SPGs
using single-cell analysis

Next, we performed single-cell analysis to investigate the

expression levels of SPGs in various immune cells from HCC

patients. Utilizing the GSE125449 dataset, we identified 8

major cell types (Figure 12A) and visualized the expression

levels of 6 SPGs using the single-cell dataset GSE125449 from

the TISCH database (Figures 12B, C). As previously observed,

CSTA was primarily expressed in malignant cells, while SELL

was primarily expressed in CD8T and B cells. These findings

have the potential to inform the development of targeted gene

therapy strategies for specific types of cells. Additionally, we

further explored potential gene-targeted drugs through
Frontiers in Immunology 12
Quartata Web. The red node links represent predicted

protein-chemical interactions, and gray links represent

known protein-chemical interactions. The color of the red

nodes represents a chemical (Figure 12D).
4 Discussion

Hepatocel lular carcinoma (HCC) is a chal lenging

malignancy that poses a significant threat to human life (1).

The complexity of the molecular mechanisms underlying HCC

makes it difficult to improve the prognosis. Single-targeted

pathway or drug therapy alone is not sufficient to effectively

improve the prognosis of HCC (44–46). Therefore, using

multiple genes in constructing predictive models may be a

more effective approach. However, there is currently a lack of

sufficient biomarkers for this purpose. It is important to identify

more biomarkers to improve the accuracy of predictive models

for early intervention in HCC.

Cell membranes are composed of various lipids, including

sphingolipids, which play a critical role in maintaining the

structural integrity of the barrier and regulating fluidity (12).

Nutrient metabolism is critical to the survival of tumor cells (46).

Sphingolipids are members of a class of lipids. Additionally,

sphingolipids act as secondary messengers in cell signaling and

are involved in regulating various biological processes (47). In

recent years, scientists have made significant strides in identifying
A

B C

FIGURE 9

Inhibition of SPGs impairs HCC cells migration ability. (A) realtime-PCR. (B) Wound-healing assay. (**P < 0.01, ***P < 0.001).
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and cloning the metabolic enzymes that control sphingolipid

content. The activity of these enzymes can have a significant

impact on how cancer develops and how it responds to treatment

(48). Research suggests that sphingolipids may contribute to the

development of various types of cancer, including HCC. The tumor

microenvironment (TME) is a complex and dynamic system

composed of diverse cells and non-cellular components, such as

TAM, T cells, and B cells (49–54). These elements interact with

cancer cells to create the TME, which can have a significant impact

on treatment outcomes. Increasing evidence suggests that the
Frontiers in Immunology 13
diversity of the TME is responsible for variations in treatment

outcomes (55–59).

We used 28 SPGs to classify HCC patients into four subtypes,

with the clusterD subtype having the worst prognosis. This subtype

was characterized by higher levels of SPG expression and increased

immune infiltration involving MDSC cells and Treg cells with

immunosuppressive properties, as shown in Figure 3. The poor

prognosis associated with HCC may be partly attributed to the

immunosuppressive microenvironment promoted by SPGs.

Additionally, macrophages play a crucial role in innate immunity,
FIGURE 10

Drug predictions based on SPGs risks core. The “pRRophetic” R package was used to estimate the median inhibitory concentration (IC50) of small
molecule drugs.
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and their infiltration levels are often considered a marker of chronic

inflammation. Macrophages in cancer have both pro- and anti-

tumor activities, with macrophage M1 and M2 playing important

roles. Our data in Figures 5B, C showed a significant and positive

association between macrophage M2 infiltration and the risk score.

Further analysis revealed that CSTA, LAMB1, and PRKD1 may be

critical factors that induce macrophage M2 infiltration, as shown in

Figure 5F. Therefore, we hypothesized that HCC cells may promote

macrophage M2 infiltration, but not M1 infiltration, by

upregulating these sphingolipid-related genes. Blocking the

aggregation of macrophage M2 or targeting these SPGs may be

potential interventions to inhibit HCC progression.

Sphingolipids are known to play a crucial role in tumor

growth and its interactions with various pathways related to

cancer (60–65). However, many genes associated with

sphingolipids remain poorly understood and have not been

extensively researched as potential therapeutic targets in

clinical settings (66, 67). We identified six genes that form a

strong risk score signature. To further validate our findings, we

suppressed the expression of SMPD2 in Huh7 cells, as shown in

Figure 9A, and conducted a wound healing assay, as shown in

Figure 9B. These results support the idea that SMPD2 may be a

potential therapeutic target for HCC, as inhibiting its expression

may impede the migration and survival of HCC cells.

In subsequent experiments, SMPD2 and CSTA were chosen

as key factors due to their high importance in the risk model

score. It was found that silencing SMPD2 and CSTA using

siRNA significantly decreased the migration ability and

increased apoptosis in Huh7 cells (Figure 9). Previous research

has shown that changes in sphingolipid metabolism can greatly

affect the tumor cells’ sensitivity to chemotherapy. By analyzing
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drug sensitivity, we discovered that low-risk HCC patients were

more responsive to lapatinib (Figure 10). As a result, we aimed to

confirm whether inhibiting SMPD2 or CSTA enhances the

sensitivity of liver cancer cells to lapatinib (Figure 11B).

Additionally, it is worth noting that SMPD2 is mainly located

on lipid droplets and plasma membranes (Figure 8B), and lipid

droplet formation is known to confer resistance of HCC cells to

chemotherapy (43). This may partly explain why lapatinib

increases the sensitivity of HCC cells to SMPD2 inhibition.

Overall, it appears that cell survival is more affected by

SMPD2, while migration is more affected by CSTA.

The use of gene expression profiling to classify tumor

samples has been well-established in previous research (68–

74). Building on this approach, we classified clinical cohorts of

HCC patients based on the expression levels of six specific genes

associated with sphingolipids. This classification revealed

significant differences in prognostic outcomes, indicating that

our genetic model can effectively predict patient prognosis and

response to treatment options such as immunotherapy and

chemotherapy. This information can aid clinicians in making

treatment decisions for HCC patients. Furthermore, our analysis

using DCA curves showed that patients at 1, 3, and 5 years could

benefit from nomograms constructed using these six genetic

features (Figure 6D).
5 Conclusion

Our study created a six-gene signature and prediction models

that could aid healthcare providers in selecting individualized

treatment options for HCC patients. Additionally, it uncovered
A B

FIGURE 11

Genetic Inhibition of SPGs Sensitizes HCC cells to lapatinib drug. (A) Cytotoxicity at different doses of lapatinib. (B) Cell viability was measured using
the CCK-8 assay at 48 hours after treatment with siRNA of CSTA/SMPD2, combined with or without 3mM lapatinib in Huh7 cells (ns, not significant;
p > 0.05; **p < 0.01; ***p < 0.001).
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the connection between sphingolipid-related genes and the immune

microenvironment, offering a new approach for immunotherapy.

By focusing on crucial sphingolipid genes, such as SMPD2 and

CSTA, the sensitivity of HCC to anti-tumor therapy may

be enhanced.
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