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Abstract

Purpose—To determine whether pretreatment CT texture features can improve patient risk 

stratification beyond conventional prognostic factors (CPFs) in stage III non-small cell lung 

cancer (NSCLC).

Methods and Materials—We retrospectively reviewed 91 patients with stage III NSCLC 

treated with definitive chemoradiation. All patients underwent a pretreatment diagnostic contrast 

enhanced CT (CE-CT) followed by a 4D-CT for treatment simulation. We used the average 

(average-CT) and expiratory (T50-CT) images from the 4D-CT along with the CE-CT for texture 

extraction. Histogram, gradient, co-occurrence, gray-tone difference, and filtration-based 

techniques were used for texture feature extraction. Penalized Cox regression implementing cross-

validation was used for covariate selection and modeling. Models incorporating texture features 

from the 3 image types and CPFs were compared to models incorporating CPFs alone for overall 

survival (OS), local-regional control (LRC), and freedom from distant metastases (FFDM). 

Predictive Kaplan-Meier curves were generated using leave-one-out cross-validation. Patients 

were stratified based on their predicted outcome being above/below the median. Reproducibility 

© 2014 Elsevier Inc. All rights reserved.

Corresponding Author: Laurence E. Court, PhD, Address: 1515 Holcombe Blvd, Houston, TX 77030, LECourt@mdanderson.org, 
Phone: 713-563-2546. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 

customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 

the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 

discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of interest: None

HHS Public Access
Author manuscript
Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2015 November 15.

Published in final edited form as:

Int J Radiat Oncol Biol Phys. 2014 November 15; 90(4): 834–842. doi:10.1016/j.ijrobp.2014.07.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of texture features was evaluated using test-retest scans from independent patients and quantified 

using concordance correlation coefficients (CCC). We compared models incorporating the 

reproducibility seen on test-retest scans to our original models and determined the classification 

reproducibility.

Results—Models incorporating both texture features and CPFs demonstrated a significant 

improvement in risk stratification compared to models using CPFs alone for OS (p=0.046), LRC 

(p=0.01), and FFDM (p=0.005). The average CCC was 0.89, 0.91, and 0.67 for texture features 

extracted from the average-CT, T50-CT, and CE-CT, respectively. Incorporating reproducibility 

within our models yielded 80.4 (SD=3.7), 78.3 (SD=4.0), and 78.8 (SD=3.9) percent classification 

reproducibility in terms of OS, LRC, and FFDM, respectively.

Conclusions—Pretreatment tumor texture may provide prognostic information beyond what is 

obtained from CPFs. Models incorporating feature reproducibility achieved classification rates of 

~80%. External validation would be required to establish texture as a prognostic factor.

Introduction

Lung cancer is currently the most common cause of death from cancer in the United States.1 

Frequently, patients present with Stage III disease and are not amenable to surgical 

resection. For these patients, standard of care consists of definitive chemoradiotherapy. Even 

when treated aggressively, patient 3-year survival is approximately 27%.2 Inoperable non-

small-cell lung cancer (NSCLC) patients are a very heterogeneous population with varying 

degrees tumor extent, comorbidity, etc. This presents a significant challenge to clinicians 

when attempting to provide optimal treatment. Traditional TNM staging is not ideal for 

stratifying patients and there is a tremendous need to develop better tools for assessing 

prognosis.

Efforts have been made to address this issue by identifying prognostic genetic expression 

signatures and using functional imaging techniques such as FDG-PET.3–5 Recently, tumor 

heterogeneity as assessed by computed tomography (CT) has yielded promising preliminary 

results in a variety of cancers.6–8 These techniques assess the spatial variation of tumor 

density within a patient’s tumor. Since CT is routinely obtained for all patients undergoing 

radiation therapy, prognostic markers generated in this manner would be less costly and less 

time consuming than genetic or functional imaging based techniques.

In this study we examine the impact of CT texture features to enhance patient risk 

stratification beyond conventional prognostic factors (CPFs) for patients with Stage III 

NSCLC.

Methods and Materials

Patients

We retrospectively reviewed the medical records of patients with stage III NSCLC treated 

with definitive radiation therapy between July 2004 and January 2012. These dates were 

chosen in order to include patients receiving 4DCT, which our institution implemented in 

early 2004, and provide adequate follow-up time. We excluded all patients receiving 
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induction chemotherapy, proton based radiation therapy, <5 years post treatment for solid 

tumor, multiple primary lesions, non-platin based concurrent chemotherapy, and those not 

receiving a diagnostic contrast enhanced scan prior to 4DCT treatment planning. Additional 

patients were excluded for the following reasons: non-identifiable or small primary tumor 

(16), image restoration error (7), uncertainty in tumor extent (8), having a break from 

treatment longer than one week (2), and image artifacts (8). This yielded 91 out of the 132 

patients for analysis. The median follow-up for all living patients at time of analysis was 59 

months (range, 17 – 97 months). The primary endpoints of our analysis were overall 

survival (OS), local-regional control (LRC), and freedom from distant metastasis (FFDM). 

The endpoints were defined from first day of definitive radiation treatment until death, local-

regional failure, or presentation of metastatic disease for OS, LRC, and FFDM, respectively. 

Patients not experiencing an event were censored for the corresponding endpoint at the date 

of death or last follow-up. The institutional review board approved this retrospective chart 

review study and waived the need for informed consent. We also complied with all Health 

Insurance Portability and Accountability Act (HIPAA) regulations.

Imaging

All patients received a diagnostic contrast enhanced CT (CE-CT) and a non-contrasted 

4DCT scan prior to treatment. For contrast enhanced scans, patients were scanned using 120 

kVp, 400–1160mA, and an exposure time of 265–570ms. All images were reconstructed 

using the standard reconstruction kernel. Axial images were 512 × 512 pixels with voxel 

dimensions of 0.059–0.090cm × 0.059–0.090cm × 0.25cm.

For the 4D-CT scans, the average intensity projection (AVG-CT) and expiratory phase 

(T50-CT) images were used in this study. Patients were scanned using 120 kVp, 100–

200mA, and an exposure time of 500–800ms. All images were reconstructed using the 

standard reconstruction kernel. Axial images were 512 × 512 pixels with voxel dimensions 

of 0.096cm × 0.096cm × 0.25–0.30cm.

Conventional Prognostic Factors

The CPFs included in our analysis were T stage (T1/2 vs T3/4), N (N0/1 vs N2/3 Stage, 

Overall Stage (IIIa vs. IIIb), age (≥65 vs. <65), gender, histology (SCC vs. Other), Charlson 

Comorbidity Index (CCI) (>0 vs. 0), ECOG performance status(>0 vs 0), Karnofsky 

Performance Status (KPS) (≥80 vs. <80), smoking status (current vs. former/never), 

estimated pack years (continuous), and gross tumor volume (GTV) (continuous). These 

factors were included as they have all been suggested to be prognostic in stage III NSCLC.9 

All TNM staging was performed according to the 7th edition American Joint Committee on 

Cancer staging manual.10 GTV was measured by the volume of the initial tumor contoured 

for patient treatment which included both the primary and nodal disease.

Texture Analysis

Tumor texture analysis was conducted using the gross tumor volume contour delineated by 

each patient’s treating physician. The nodal tumor volumes were excluded from texture 

analysis. In some cases further contour modification was performed. The reason for further 

modification is due to the goal of analyzing tissue with an extremely high likelihood of 
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representing tumor whereas clinically physicians routinely include any and all tissue with a 

reasonable likelihood of representing tumor. Therefore, overly generous portions of the 

contour such as invasion into bone and other normal tissue structures such as the aorta were 

modified (DF). Contours were extracted and analyzed directly from our treatment planning 

system using in-house software built using a commercial software package (Matlab version 

8.1.0. Natick, Massachusetts: The MathWorks Inc., 2013). For the AVG-CT and T50-CT, a 

lower and upper threshold of −100 to 200 Hounsfield units (HU) was implemented to 

exclude lung tissue, air, and/or bone in order to determine our final region of interest (ROI). 

A lower threshold of −100 HU was used for the contrast enhanced images with no upper 

threshold. Only voxels within the defined threshold bounds were included in the texture 

analysis. We extracted 66 texture features from the windowed tumor contours for each of the 

three image types (AVG-CT, T50-CT, and CE-CT) and these are shown below in Table 1 

organized by method. The methods used were histogram (IHIST), absolute gradient 

(GRAD), nearest gray tone difference matrix (NGTDM)11, co-occurrence matrix (COM)12, 

Laplacian of Gaussian filtration (LoG)13. When reporting texture metrics, the notation 

convention of method_feature will be used. For instance, the NGTDM coarseness feature 

would be identified by NGTDM_coarseness.

The ROIs were scaled into 8-bit images and then filtered using a Wiener filter, a two 

dimensional adaptive noise-removal filter, in an attempt to reduce any Gaussian noise 

present within the ROI. This was done for all texture feature methods except the LoG based 

method as this employs its own blurring step within the filtration process. For metrics using 

a histogram for calculation (IHIST, LoG_Uniformity, and LoG_Entropy) 256 bins were 

utilized (i.e. 4096/256 = 16 HU/bin). Calculation of the NGTDM and COM features were 

performed for three dimensions (i.e. each reference pixel has 26 neighbors [NGTDM] and 

13 unique directions [COM]). The process is the same as described by Haralick and 

Amadasum, however averages over all neighbors (NGTDM) and directions (COM) were 

performed.11,12 This allowed for COM features to be non-directional and NGTDM features 

to use all adjacent pixel values in calculations and not only those within the same axial slice.

Reproducibility Analysis

We obtained test-retest scans from 10, 10, and 13 independent patients for the AVG-CT, 

T50-CT, and CE-CT, respectively. The test-retest scans of the AVG-CT and T50-CT images 

were taken at our institution and on average separated by 27 min (range: 16–47). We were 

unable to acquire CE-CT test-retest images from patients within a close time period. We 

therefore used contrast enhanced scans taken outside our institution prior to treatment and 

compared them to the diagnostic CE-CT taken within our institution. The average separation 

between these scans was 38 days (range: 17–72). The contours for the test-retest scans were 

performed by a single observer (DF) on separate occasions for the test and retest scans in 

order to incorporate intra-observer contour variability. We calculated the classification 

reproducibility of our models incorporating the reproducibility seen via the test-retest scans. 

The classification reproducibility is defined as what percent of patients were categorized 

into the same group as our original models when incorporating the test-retest variation into 

our texture parameters. This was done for the models incorporating texture and CPFs.
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Statistical Analysis

All statistical analyses were conducted in R 3.0.2 with the following R packages: survival 

v(2.37–4), penalized (0.9–42), survcomp v(1.10.0), and risksetROC v(1.0.4). The 13 clinical 

factors and 66 texture features from each image type (198 total texture features) were 

entered into a penalized multivariate Cox proportional hazards model which simultaneously 

performs covariate selection in addition to model development. This process is governed by 

the L1 penalty parameter which governs the balance between model fit and model 

complexity. The L1 parameter was chosen since it results in many covariate coefficients 

being penalized down to zero yielding few covariates with non-zero coefficients. Covariates 

with non-zero coefficients can be seen as the only ones “included” in the model as 

covariates with coefficients of zero will not contribute. This penalty parameter is estimated 

based on the cross-validated likelihood to optimize the model performance from a predictive 

perspective for future observations. All covariates were standardized prior to penalization in 

order to disregard the different scales present between texture features. The resulting 

covariate coefficients are rescaled to their original values when reporting the final model.14

When determining the out-of-sample performance of our generated models, we 

predominantly used methodologies suggested by Simon et al.15 We used leave-one-out 

cross-validation when generating Kaplan-Meier curves rather than data refitting. Cross-

validated Kaplan-Meier curves use a model prediction for a particular patient when they are 

not used during the model training. The patient which is left out is changed and the process 

repeated such that each observation in the sample has a prediction from when it was not 

involved in model development. These predictions are used to stratify patients into risk 

groups which removes the bias associated with testing a model on the same dataset from 

which it was generated. High risk patients were defined as having predicted outcomes less 

than the median. Low risk patients were defined as having predicted outcomes greater than 

or equal to the median. When no covariates were selected during model development, a 

random split was used for illustrative purposes to stratify into high and low risk.

To determine if models generated using both texture and CPFs out performed models using 

CPFs alone in terms of risk stratification, we took the difference of the log-rank statistic 

associated with their respective Kaplan-Meier curves to calculate the associated p-value. In 

order to calculate p-values of our cross-validated stratification, we randomly permuted the 

outcomes with respect to the texture features and CPFs and re-ran our original analysis. This 

process was repeated 200 times in order to determine what proportion of randomly permuted 

data achieved a log-rank score greater than our original models (i.e. the p-value). P-values 

less than 0.05 were considered to indicate statistical significance.

Reproducibility of texture features was evaluated using concordance correlation coefficients 

(CCC).16 To analyze the influence of texture feature reproducibility on our model 

predictions, we determined the mean and standard deviation of the differences between each 

texture feature acquired from the test-retest images. We randomly sampled a normal 

distribution with the aformentioned mean and standard deviation for each texture feature and 

added this uncertainty to our features and re-predicted outcomes.
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Results

CPFs and treatment characteristics of all patients are listed in Table 2.

Model Development and Analysis

Using L1 penalized Cox proportional hazards regression; models for OS, LRC, and FFDM 

were generated. Covariates with non-zero coefficients are shown in Table 3. To illustrate 

patient stratification using these models, cross-validated Kaplan-Meier curves for OS, LRC, 

and FFDM were developed along with their associated 95% confidence intervals (95% CI). 

Models with and without texture features are shown in Figure 1. Models using both texture 

features and CPFs demonstrated a statistically significant improvement in stratification 

compared to models using CPFs alone for OS (p=0.046), LRC (p=0.01), and FFDM 

(p=0.005).

To confirm our results were not due to overfitting and establish p-values for the model 

stratification, we randomly permuted the outcomes with respect to the CPFs and texture 

features and performed the same cross-validation/model fitting used during our original 

model development. This was done 200 times to test how often random data would yield a 

prognostic model with a log-rank statistic greater than that generated using the true 

outcomes. The log-rank statistic from the permuted outcomes was greater than the original 

log-rank statistic in 11/200 (p = 0.055), 0/200 (p < 0.005), and 1/200 (p = 0.005) for OS, 

LRC, and FFDM, respectively.

Reproducibility Analysis

Data from test-retest scans from 10, 10, and 13 independent patients for the AVG-CT, T50-

CT, and CE-CT, respectively were used for our assessment of reproducibility. We found that 

85(56/66), 75(50/66), and 23(15/66) percent of texture features had a CCC>0.9 for features 

generated from T50-CT, Average-CT, and CE-CT, respectively.

Incorporating reproducibility within our models yielded 80.4 (SD=3.7), 78.3 (SD=4.0), and 

78.8 (SD=3.9) percent classification reproducibility in terms of OS, LRC, and FFDM, 

respectively. Figure 2 illustrates an example iteration where we compared the predicted 

outcome with reproducibility to the original predicted outcome in terms of FFDM and 

calculate the classification reproducibility.

Discussion

We have shown that models incorporating both texture features and CPFs demonstrated a 

statistically significant improvement in stratification compared to models using CPFs alone 

in cross-validated Kaplan-Meier curves in terms of OS (p=0.046), LRC (p=0.01), and 

FFDM (p=0.005). Furthermore, we have shown that even when incorporating the 

reproducibility of our metrics within our models, classification rates of approximately 80 

percent are still achieved.

We utilized cross-validation for both model selection and model validation. Commonly, 

researchers split their data into test and validation sets in order to validate their findings. 
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This is problematic since both test and validation sets subsequently have reduced sample 

size and thus reduced statistical power when compared to the initial cohort. To overcome 

this, we used a cross validation approach which employs repeated data-splitting to prevent 

over fitting while simultaneously generating accurate estimates of the model coefficients. 

This process is equivalent to data splitting in terms of producing validated model 

coefficients, but its use of data is more efficient than a dichotomous split into test and 

validation sets.17 With the number of features tested, there remains a high risk of a false 

positive result due to multiplicity of testing. Our methods were designed to minimize this 

likelihood however this possibility certainly still exists.

Preliminary evidence has suggested that texture analysis has the capability to aid clinicians 

in cancer diagnosis, staging/prognostication, and response assessment. Table 4 summarizes 

the literature regarding the use of texture analysis in NSCLC patients.6–8, 18–22 It can be 

seen that significant heterogeneity exists in the literature in terms of study size, patient 

stage(s), imaging modality examined, and patient treatment. Prior work has established a 

relationship between tumor texture and patient outcomes post treatment; however, to the 

best of our knowledge this is the first study to examine this relationship in NSCLC patients 

of the same stage receiving chemoradiotherapy.

Texture analysis has the potential to develop into a clinically useful tool using medical 

images that are already obtained during routine patient staging. Therefore, implementation 

would require little to no added cost and would not require additional time, discomfort, or 

radiation dose to patients. The ability to stratify patients in ways shown to be superior to 

current staging methods might allow physicians to deliver more optimized, patient-specific, 

treatment. Some may argue that for those with a poor prognosis this knowledge is usually 

not beneficial since patients are already receiving the maximum tolerable treatment. We 

would argue that treatment optimization does not necessarily equate to treatment escalation. 

In some instances, perhaps de-escalation of treatment and initiation of early palliative care 

may provide the best care for the patient. An accurate prognosis would also be beneficial to 

patients and their caregivers. Those identified as having a poor prognosis may be better 

equipped to make decisions regarding palliative versus definitive treatment and the role of 

hospice care.23 A study conducted by Huskamp et al. reported that half of all patients with 

metastatic lung cancer are not approached about hospice care until 2 months before their 

death.24 It is important to keep in mind that our analysis was only able to moderately 

separate patient overall survival. While our models appeared more efficacious in terms of 

LRC and FFDM, ultimately stratifying patients in terms of OS is would generate the most 

benefit to physicians and patients alike.

In addition to impacting treatment decisions, accurate, validated models may be used in the 

future to develop more efficient clinical trials. Models could be integrated into the inclusion 

and exclusion criteria. For instance, trials examining the role of local therapies such as 

surgery and radiation may benefit from a prior knowledge regarding a patient’s probability 

of tumor metastasis. This would allow better selection of patients who would be more likely 

to address the underlying question of the trial. Furthermore, previously conducted trials 

could be reanalyzed in order to determine if a particular therapy is only beneficial to those 

with a poor/favorable prognosis.
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While the addition of tumor texture analysis into survival models has shown significant 

potential, various downsides certainly exist. Data is still only available from preliminary 

studies which require external validation and appropriate assessment of predictive power/

accuracy. Careful consideration needs be taken in deciding which texture/analysis methods 

are appropriate for particular tasks. This includes consideration of values for parameters 

involved with each methodology as well as whatever preprocessing steps are applied. 

Differing quantification methods and their associated parameters have the potential to 

greatly impact study results. Texture analysis is also not applicable to all patients. Those 

with a small primary tumors or severe imaging artifacts are not appropriate to undergo 

analysis. Advances in robust, auto segmentation methods would also be exceedingly useful 

in this field in order to standardize tumor contouring. Using physician generated contours is 

most commonly used in these types of analyses but is far from perfect. Thresholding is a 

useful strategy to enhance contour reproducibility, particularly in lung tumors. Other factors 

that would influence reproducibility which were not included in our analysis are the stability 

of the CPFs between institutions/physicians such as staging, performance status, tumor 

volume, etc. Additionally, in this study the imaging protocols were well controlled. The 

impact of changing image parameters (tube voltage, reconstruction algorithm, pixel size, 

manufacturer, etc.) should be considered when evaluating data from multiple institutions.25

In the future, we hope to conduct additional studies examining the use of texture analysis in 

other imaging modalities. Contrasted CT, PET, and MRI could potentially all yield 

complementary information which would facilitate the creation of more accurate models. A 

variety of future studies are needed in order to better assess the applicability of texture 

analysis and its ultimate potential. Prospective trials are needed in order to determine if these 

techniques could one day be used in the clinic.

Patient outcome modeling has significant implications in many fields of medicine and 

particularly in oncology. Our study found that the combination of CT texture and CPFs can 

be used to generate superior outcome models when compared to CPFs alone in terms of OS, 

LRC, and FFDM. This additional information could be of use to physicians, patients, and 

caregivers. Further work needs to be done in order to generate widely applicable, accurate 

risk prediction tools capable of being implemented clinically.
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Figure 1. 

Cross-validated Kaplan-Meier Curves for Models Using Texture Features and CPFs (A–C) 

versus Models using CPFs alone (D–F)
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Figure 2. 

Impact of Texture Feature Reproducibility on FFDM Estimates

Fried et al. Page 12

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2015 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fried et al. Page 13

Table 1

Extracted Texture Features

Intensity
Histogram

(IHIST)

Absolute
Gradient
(Grad)

Nearest Gray Tone
Difference Matrix

(NGTDM)

Co-Occurrence
Matrix (COM)

Laplacian of
Gaussian

Filtration Metrics

(LoG)*

Mean
Variance
Skewness
Kurtosis
Entropy

Uniformity

Mean
Variance
Skewness
Kurtosis

% non-zero

Coarseness
Contrast
Busyness

Angular 2nd Moment
Contrast

Correlation
Sum of Squares

Inv. Diff. Moment
Sum Average
Sum Variance
Sum Entropy

Entropy
Diff. Entropy

Infomc1
Infomc2

Mean
Uniformity

Standard Deviation
Entropy

*
These features were calculated for sigma values used for the Laplacian of Gaussian Filter of: 1.0, 1.5, 1.8, 2.0, and 2.5 for the largest axial (LA) 

slice and for the entire tumor
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Table 3

Full Models for OS, LRC, and FFDM

Coefficient in OS
Model

Coefficient in LRC
Model

Coefficient in
FFDM Model

Conventional Prognostic Factors:

    Age (65> vs ≤65) 0.089 NI NI

    ECOG (0/1 vs 2) 0.34 NI NI

    Histology (SCC vs Other) 6.5×10−4 NI NI

    Gender (Male vs Female) −0.05 NI −0.44

    GTV 0.0024 NI 0.0011

Texture Features:

  CE-CT

    LoG_LA_Averageσ=1 0.14 NI 0.14

    LoG_Averageσ=1 NI 0.29 NI

    IHIST_kurtosis −0.022 NI −0.019

    NGTDM_busyness NI NI 26.0

    COM_infomc1 2.5 NI

  AVG-CT

    LoG_SDσ=1 0.024 NI 0.065

    LoG_LA_Uniformityσ=1 0.43 NI 6.2×10−4

    LoG_LA_Uniformityσ=2.5 0.55 NI NI

  T50-CT

    GRAD_kurtosis NI NI 0.038

    LoG_LA_Averageσ=1.5 −0.080 NI NI

    COM_sosvariance 0.0011 NI NI

    LoG_LA_Uniformityσ=1.5 NI −0.48 NI

Abbreviations: NI-not included in model, SCC-squamous cell carcinoma, GTV-gross tumor volume, SD-standard deviation, LA-largest axial slice
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