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Objective. This study was aimed at investigating the prognostic significance of Baculoviral IAP repeat containing 5 (BIRC5) in lung
adenocarcinoma (LAD) lacking EGFR, KRAS, and ALK mutations (triple-negative (TN) adenocarcinomas). Methods. The gene
expression profiles were obtained from Gene Expression Omnibus (GEO). The identification of the differentially expressed
genes (DEGs) was performed by GeneSpring GX. Gene set enrichment analysis (GSEA) was used to execute gene ontology
function and pathway enrichment analysis. The protein interaction network was constructed by Cytoscape. The hub genes were
extracted by MCODE and cytoHubba plugin from the network. Then, using BIRC5 as a candidate, the prognostic value in LAD
and TN adenocarcinomas was verified by the Kaplan-Meier plotter and The Cancer Genome Atlas (TCGA) database,
respectively. Finally, the mechanism of BIRC5 was predicted by a coexpressed network and enrichment analysis. Results. A total
of 38 upregulated genes and 121 downregulated genes were identified. 9 hub genes were extracted. Among them, the mRNA
expression of 5 genes, namely, BIRC5, MCM4, CDC20, KIAA0101, and TRIP13, were significantly upregulated among TN
adenocarcinomas (all P < 0 05). Notably, only the overexpression of BIRC5 was associated with unfavorable overall survival
(OS) in TN adenocarcinomas (log rank P = 0 0037). TN adenocarcinoma patients in the BIRC5 high-expression group suffered
from a significantly high risk of distant metastasis (P = 0 046), advanced N stage (P = 0 033), and tumor-bearing (P = 0 031) and
deceased status (P = 0 003). The mechanism of BIRC5 and coexpressed genes may be linked closely with the cell cycle.
Conclusion. Overexpressed in tumors, BIRC5 is associated with unfavorable overall survival in TN adenocarcinomas. BIRC5 is a
potential predictor and therapeutic target in TN adenocarcinomas.

1. Introduction

Lung adenocarcinoma (LAD), which accounts for more than
50% of all lung cancers, is the most frequent pathological type
[1]. There have been several studies focusing on gene
mutations in LAD. Epidermal growth factor receptor (EGFR)
mutation occurs in up to 20–50% of LAD cases in Asian
countries [2], making patients respond to EGFR tyrosine
kinase inhibitors (TKI), such as gefitinib; thus, they demon-
strate modest survival benefits [3]. A previous report revealed
that Kirsten rat sarcoma viral oncogene homolog (KRAS)
gene mutations occur more frequently in patients from
western countries (approximately 20-25%) than in those

from Asian countries [4]. Unfortunately, KRAS inhibitors
are still being evaluated in experiments. On the other hand,
anaplastic lymphoma kinase (ALK) rearrangements occur
in 3-5% of patients with non-small-cell lung cancer (NSCLC)
[5], and ALK-positive patients can benefit from ALK inhibi-
tors [6]. In contrast, a subset of LAD patients remain without
EGFR, KRAS, and ALKmutations (triple-negative (TN) ade-
nocarcinomas). A poor prognosis of TN adenocarcinomas is
attributed to a lack of sufficient genetic information and
therapeutic targets.

Gene expression profiling is a powerful method that can
aid in identifying important mechanistic pathways. High-
throughput bioinformatic approaches provide strong tools
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to comprehensively quantify gene expression [7]. Bioinfor-
matic analysis, including mechanistic pathway and gene
ontology strategies, enable investigators to assess cell states
by categorizing discrete and recurrently upregulated or
downregulated genes [8]. Currently, the acquisition of big
data on multiple platforms has increasingly been performed
not only to understand the mechanisms of oncogenesis
inherent to specific cancers, but also to provide us with
drug targets and molecular diagnostic and prognostic fac-
tors, as well as biomarkers for patient risk stratification
and treatment [9–11].

In our analysis, we identified differentially expressed
genes (DEGs) between tumor and nontumor tissues in
LAD patients from the Gene Expression Omnibus (GEO)
database, enriched potential pathways, and ontology func-
tions using gene set enrichment analysis (GSEA) and
conducted survival analysis of hub genes, in the hope of
assessing the prognostic significance and potential molecu-
lar mechanism of prognostic candidates for TN adenocar-
cinoma patients.

2. Materials and Methods

2.1. Source of Data. Three mRNA expression datasets, namely,
GSE10072, GSE32863, and GSE85841, were obtained from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
GSE10072 was based on the GPL96 platform (Affymetrix
Human Genome U133A Array), and it included 58 LAD
and 49 nontumor tissues. GSE32863 was based on
GPL6884 (Illumina HumanWG-6 v3.0 expression bead-
chip), and it included 58 LAD and 58 adjacent nontumor
tissues. GSE85841 was based on GPL20115 (Agilent-
067406 Human CBC lncRNA+mRNA microarray V4.0),
and it included 8 LAD and 8 adjacent nontumor tissues.
All of the data can be viewed online.

2.2. Differentially Expressed Gene (DEG) Identification.
GeneSpring GX 12.5 software (Agilent Technologies Inc.,
Santa Clara, CA, US) was used to screen DEGs in the three
datasets. The gene expression data was normalized by the
robust multiarray average (RMA) quantile normalization
analysis algorithm. Quality control was performed by 3D
principal component analysis (PCA) scores. t-Test unpaired
analysis and an asymptotic P value computation with
Benjamini-Hochberg multiple testing correction was used
to detect DEGs whose fold change FC ≥ 2 with a false dis-
covery rate (FDR) cutoff < 0 05 between LAD and adjacent
nontumor tissues.

2.3. Enrichment Analysis of DEG Candidates. An enrichment
analysis was performed on pathways and gene ontology to
determine the functions of the overlapping DEGs by using
gene set enrichment analysis (GSEA) (version 3.0, http://
software.broadinstitute.org/gsea/), a computational method
that determines whether a defined set of genes shows statisti-
cal significance [12, 13].

2.4. Protein-Protein Interaction (PPI) Network Construction.
The Search Tool for the Retrieval of Interacting Genes
(STRING) database (version 10.5, https://string-db.org/)

was used to analyze potential interactions between overlap-
ping genes at the protein level, and a medium confidence
score > 0 4 was considered significant. Subsequently, the
PPI network was constructed by Cytoscape software (version
3.6.0, https://cytoscape.org/). TheMolecular Complex Detec-
tion (MCODE) plugin was used for searching the most sig-
nificant module from the network [14]. The MCODE
criteria for selection were as follows: MCODE scores ≥ 5,
degree cutoff = 2, node score cutoff = 0 2, K − core = 2, and
max depth = 100.

2.5. Hub Node Extraction and Verification. We used the
cytoHubba plugin, which integrates eleven topological analy-
sis methods and six centralities with the Maximal Clique
Centrality (MCC) algorithm, to explore the top 10 candidates
as hub genes in the PPI network [15]. Finally, we combined
the results of MCODE and cytoHubba analysis, and
candidates were extracted from the network. UCSC Xena
(version 2.0, https://xena.ucsc.edu/welcome-to-ucsc-xena/),
a securely analyzed and visualized functional genomic data-
set in TCGA datasets, was utilized to verify the differential
expression of these candidates between LAD and nontumor
tissues.

2.6. Survival Analysis. We investigated the prognostic
significance of hub genes among TN adenocarcinomas.
Clinical data, mRNA expression, and mutation data in the
lung adenocarcinoma (TCGA, Provisional) database were
obtained from the cBioPortal online platform (version
1.17.1, http://www.cbioportal.org/) [16, 17]. TN adenocarci-
noma patients were included for further analysis to inves-
tigate the association between BIRC5 and survival by using
the median cutoff of mRNA expression. The Kaplan-Meier
plotter (http://kmplot.com), an online database which
includes both clinical and expression data, was utilized to
verify the relationship between BIRC5 and the survival time
of LAD [18].

2.7. Coexpression Network Construction and Topology
Analysis. To further explore the mechanism of BIRC5 as a
potential prognostic significance molecule for TN adenocar-
cinomas, BIRC5 and coexpression genes were analyzed by
using cBioPortal. The coexpression network was visualized
by Cytoscape, and degree≥ 160 (average degree) was set as
a cutoff criterion.

2.8. Statistical Analysis. The differences of gene expression
between the individual groups were analyzed using the
Student t-test, Mann–Whitney U test, chi-squared test, and
Ridit analysis based on the types of variables. Kaplan-Meier
analysis was conducted by GraphPad Prism 7 (GraphPad
Software Inc., CA, USA). Factors associated with LAD overall
survival were assessed by both Cox univariate and multivar-
iate analyses. Only covariates significantly associated with
outcomes in the univariate analysis (two-sided P < 0 10) were
included in the multivariate model. PASW Statistics software
version 23.0 from SPSS Inc. (Chicago, IL, USA) was used. A
two-tailed P < 0 05 was considered significant for all tests.
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3. Results

3.1. Identification of DEGs. A total of 508, 583, and 1486
upregulated DEGs and 293, 787, and 2153 downregu-
lated DEGs were identified in GSE10072, GSE32863,
and GSE85841 profiles, respectively. Using a Venn diagram,
159 overlapping genes, including 38 upregulated genes
(Figure 1(a)) and 121 downregulated ones (Figure 1(b)), were
identified among these three GEO profiles.

3.2. Functional Enrichment Analysis of DEGs. To classify the
biological function of DEGs, gene ontology and pathway
enrichment analyses were performed using GSEA. As shown
in Figure 2(a), GO analysis revealed that 159 DEGs were sig-
nificantly enriched in the following biological processes (BP),
including response to an oxygen containing compound,
response to an endogenous stimulus, tissue development,
response to an organic cyclic compound, and response to
lipids. Cellular component (CC) analysis showed that
extracellular space, proteinaceous extracellular matrix, extra-
cellular matrix, membrane microdomain, and membrane
region were mostly classifications. In terms of molecular
functions (MF), the DEGs were mainly associated with the
molecular function regulator, enzyme regulator activity,
enzyme inhibitor activity, protein dimerization activity, and
macromolecular complex binding. In addition, the pathways
that had the most significant enrichment terms were shown
by KEGG and Reactome. As shown in Figure 2(b), KEGG
pathways included leukocyte transendothelial migration,
tight junction, tyrosine metabolism, vascular smooth muscle
contraction, and focal adhesion and Reactome pathways
included hemostasis, developmental biology, phase 1 func-
tionalization of compounds, biological oxidations, and cell
surface interactions at the vascular wall.

3.3. PPI Network Construction and Hub Gene Identification.
Protein interactions among DEGs were predicted by the
STRING online platform. The PPI network, which included
a total of 104 nodes and 188 edges, was visualized by

Cytoscape (Figure 3(a)). Subsequently, we utilized the
MCODE plugin to analyze the whole network and 4 modules
were chosen (Figure 3(b); Module 1, Module 2, Module 3,
and Module 4). Among them, Module 1 showed the most
significant scores.

To further identify the hub genes in the PPI network, we
used the cytoHubba plugin to extract the following top 10
genes as hub genes (Figure 3(c)): TOP2A, BIRC5, KIAA0101,
CDC20, UBE2C, AURKA, TRIP13, MCM4, KIF20, and
GNG11. Notably, 9 genes of Module 1 were all included in
the hub genes. Finally, we confirmed 9 candidates for our
further study: TOP2A, BIRC5, KIAA0101, CDC20, UBE2C,
AURKA, TRIP13, MCM4, and KIF20. Interestingly, all of
candidates were upregulated in LAD tissues.

3.4. Differentially Expressed Analysis of Hub Genes. To verify
the results of the GEO dataset analysis, UCSC Xena was
carried out to exhibit the differential expression of 9 hub
genes between LAD and nontumor tissues. As shown in
Figure 4(a), the hierarchical clustering revealed similar
results in the TCGA datasets and all of 9 hub genes were
more upregulated in LAD than in nontumor tissues. Follow-
ing which, to investigate the relationship of hub genes and
TN adenocarcinomas, the mRNA expression levels of the 9
hub genes were calculated between TN adenocarcinomas
and non-TN adenocarcinomas in TCGA datasets. The pro-
files of a total of 544 LAD patients were available for analysis.
As shown briefly in Figures 4(b)–4(f), the mRNA expression
levels of 5 genes, namely, BIRC5, MCM4, CDC20,
KIAA0101, and TRIP13, were significantly upregulated in
TN adenocarcinomas (allP < 0 05) compared with those in
non-TN adenocarcinomas, while the mRNA expression
levels of 4 genes, namely, TOP2A (P = 0 259), UBE2C
(P = 0 0569), AURKA (P = 0 0778), and KIF20 (P = 0 1634)
were not upregulated in TN adenocarcinomas.

3.5. Prognostic Analysis of BIRC5 in TN Adenocarcinomas.
The TCGA mRNA profile and clinical and mutation data-
sets were matched, and 199 TN adenocarcinomas were
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Figure 1: DEGs between tumor and adjacent tissues in GSE10072, GSE32863, and GSE85841. (a) Venn diagram of 38 overlapping
upregulated genes. (b) Venn diagram of 121 overlapping downregulated genes.
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grouped by the median cutoff of the mRNA expression
levels of 5 genes. Notably, only the high level of mRNA
expression of BIRC5 was associated with poor overall
survival (OS, log rank P = 0 0037, Figure 5(a)), but not
the relapse-free survival (RFS, log rank P = 0 1126,
Figure 5(b)). Meanwhile, this significant difference was
not observed in MCM4, KIAA0101, CDC20, and TRIP13
among TN adenocarcinomas.

We described clinicopathological features in the BIRC5
high- and low-expression groups in TN adenocarcinomas,
as shown in Table 1. The BIRC5 high-expression group had
more male patients (P = 0 023) and smoked packs per year

(P = 0 025), and TN adenocarcinoma patients in the BIRC5
high-expression group suffered from a significantly higher
risk of distant metastasis (P = 0 046) and advanced N stage
(P = 0 033). Tumor-bearing (P = 0 031) and deceased status
(P = 0 003) are also related with BIRC5 high expression.
There were also more patients who received additional
radiation therapy in the BIRC5 high-expression group than
those in the BIRC5 low-expression group (26.3% vs. 14.1%,
P = 0 034, Table 1).

In order to further evaluate the prognostic significance of
BIRC5 in TN adenocarcinomas, the potential risk factors
associated with OS of TN adenocarcinoma patients were

(a)

(b)

Figure 2: Enrichment analysis of DEGs. (a) GO analysis: top 5 of biological processes (BP), cellular components (CC), and molecular
function (MF). (b) Pathway analysis: top 5 KEGG pathways and Reactome pathways.
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analyzed using Cox regression analysis. Univariate analysis
revealed that high-level BIRC5, recurrence/metastasis, new
tumor event after initial treatment, advanced TNM stage,
and person neoplasm cancer status with tumor are potential
risk factors significantly associated with OS in TN adenocar-
cinoma patients (all P < 0 05, Table 2). When these variables
were included in the multivariate analysis using the forward
LR method, high-level BIRC5, advanced TNM stage, and
person neoplasm cancer status with tumor were the risk

factors that significantly contributed to worse OS in TN ade-
nocarcinoma patients (P = 0 015, P = 0 049, and P < 0 001,
respectively, Table 2).

Additionally, the Kaplan-Meier plotter was utilized to
verify if the high level of mRNA expression of BIRC5
predicted an unfavorable OS (log rank P = 1 2e − 14,
Figure 5(c)), progression-free survival (FPS, log rank P =
0 0098, Figure 5(d)), and postprogression survival (PPS, log
rank P = 0 0098, Figure 5(e)) among LAD.
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3.6. Coexpression Network Construction and Enrichment
Analysis of Coexpression Genes. BIRC5 indicated a significant
prognostic correlation, and genes coexpressed with BIRC5
were predicted using the cBioPortal online platform. As
shown in Figure 6(a), the coexpression network was visual-
ized by Cytoscape software, and the network included 73
nodes and 2,613 edges. According to the topological analysis

of the coexpression network, STAG2 is the most relevant
gene with BIRC5.

We next imported BIRC5 and the coexpressed genes into
GSEA to carry out enrichment analysis. As shown in
Figure 6(b), GO terms were most significantly enriched in
BP, including sister chromatid cohesion, sister chromatid
segregation, nuclear chromosome segregation, chromosome
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Figure 4: mRNA expression of hub genes. (a) The mRNA expression of 9 hub genes (TOP2A, BIRC5, KIAA0101, CDC20, UBE2C, AURKA,
TRIP13, MCM4, and KIF20) between LAD and normal tissues based on the UCSC Xena database. 5 hub genes, namely, BIRC5 (b),
MCM4 (c), CDC20 (d), KIAA0101 (e), and TIRP13 (f), were more significantly upregulated in triple-negative (TN) lung adenocarcinomas
based on TCGA database than in non-triple-negative (non-TN) lung adenocarcinomas.
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segregation, and cell cycle process. CC was involved in
the chromosome centromeric region, chromosomal region,
kinetochore, chromosome, and condensed chromosome

centromeric region. MF referred to microtubule binding,
tubulin binding, macromolecular complex binding, protein
complex binding, and cytoskeletal protein binding. Pathway
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Figure 5: Associations between BIRC5 and survival times. OS (a) and RFS (b) in triple-negative (TN) lung adenocarcinomas based on TCGA
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Table 1: Baseline characteristics of TN adenocarcinoma patients between the BIRC5 high- and low-expression groups.

Variables
BIRC5 expression level

P value
Low (n = 99) High (n = 99)

Age, mean ± SD (years) 67 ± 8 63 ± 11 0.045

Male, n (%) 40 (40.4) 56 (56.6) 0.023

Overall survival, median (IQR) (days) 704.5 (745) 658 (579) 0.427

Recurrence-free survival, median (IQR) (days) 624.5 (701) 536 (641) 0.439

Additional pharmaceutical therapy, n (%) 12 (12.1) 15 (15.2) 0.534

Additional radiation therapy, n (%) 14 (14.1) 26 (26.3) 0.034

Targeted molecular therapy, n (%) 26 (26.3) 31 (31.3) 0.433

Partial response, n (%) 1 (1.0) 2 (2.0) 0.561

Stable disease, n (%) 5 (5.1) 7 (7.1) 0.551

Progressive disease, n (%) 20 (20.2) 30 (30.3) 0.096

New primary tumor, n (%) 6 (6.1) 1 (1.0) 0.053

Distant metastasis, n (%) 10 (10.1) 20 (20.2) 0.046

Locoregional recurrence, n (%) 13 (13.1) 6 (6.1) 0.091

New tumor event after initial treatment, n (%) 33 (33.3) 44 (44.4) 0.109

Smoked packs per year, median (IQR), n 35 (25.5) 44 (22) 0.025

TNM stage, n (%) 0.194

I 64 (64.6) 52 (52.5)

II 22 (22.2) 26 (26.3)

III 9 (9.1) 18 (18.2)

IV 4 (4.0) 3 (3.0)

T stage, n (%) 0.112

T1 44 (44.4) 33 (33.3)

T2 44 (44.4) 58 (58.6)

T3 10 (10.1) 6 (6.1)

T4 0 (0) 2 (2.0)

Tx 1 (1.0) 0 (0)

N stage, n (%) 0.033

N0 72 (72.7) 59 (60.0)

N1 15 (15.2) 24 (24.2)

N2 8 (8.1) 15 (15.2)

N3 0 (0) 1 (1.0)

Nx 4 (4.0) 0 (0)

M stage, n (%) 0.645

M0 62 (62.6) 68 (68.7)

M1 3 (3.0) 3 (3.0)

Mx 33 (33.3) 27 (27.3)

Person neoplasm cancer status, n (%) 0.031

With tumor 28 (28.3) 42 (42.4)

Tumor-free 68 (68.7) 53 (53.5)

Tobacco smoking history indicator, n (%) 0.630

Current smoker 9 (9.1) 12 (12.1)

Current reformed smoker for ≤15 years 17 (17.2) 12 (12.1)

Current reformed smoker for >15 years 12 (12.1) 11 (11.1)

Lifelong nonsmoker 7 (7.1) 4 (4.0)

Vital status, n (%)

Living 79 (80.0) 60 (60.6) 0.003

Deceased 20 (20.2) 39 (39.4)

IQR, interquartile range.
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Table 2: Cox regression analysis of risk factors associated with overall survival of TN adenocarcinoma patients.

Covariates
Univariate analysis,

HR (95% CI)
P value

Multivariate analysis,
HR (95% CI)

P value

BIRC5, high vs. low 2.184 (1.271-3.753) 0.005 2.029 (1.149-3.581) 0.015

Additional pharmaceutical therapy, yes vs. no 1.443 (0.773-2.693) 0.249

Targeted molecular therapy, yes vs. no 0.768 (0.438-1.345) 0.456

Age, per increase of 1 year 1.013 (0.985-1.041) 0.375

Gender, male vs. female 1.064 (0.635-1.781) 0.814

Recurrence/metastasis, yes vs. no 1.890 (1.127-3.171) 0.016

New tumor event after initial treatment, yes vs. no 3.936 (2.215-6.994) <0.001

TNM staging, per increase of 1 stage 1.588 (1.231-2.048) <0.001 1.300 (1.001-1.687) 0.049

Person neoplasm cancer status, with tumor vs. tumor-free 9.554 (4.810-18.975) <0.001 8.539 (4.259-17.120) <0.001

Tobacco smoking history, yes vs. no 0.739 (0.299-1.825) 0.512
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Figure 6: Coexpression network construction and enrichment analysis. (a) Coexpression network: the higher degree is represented by a
redder color. (b) GO analysis: top 5 of biological processes (BP), cellular components (CC), and molecular function (MF). (c) Pathway
analysis: top 5 KEGG pathways and Reactome pathways.
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enrichment analysis in Figure 6(c) showed that oocyte
meiosis, wnt signaling pathway, cell cycle, long-term
depression, and progesterone-mediated oocyte maturation
were enriched in the KEGG pathway. Mitotic prometaphase;
mitotic M-M/G1 phases; DNA replication; cell cycle, mitotic;
and cell cycle were gathered in the Reactome pathway.
Briefly, enrichment results suggested that BIRC5 and coex-
pressed genes may be linked closely with the cell cycle.

4. Discussion

BIRC5, 14.7 kb long, is a mitotic spindle checkpoint gene,
located near the telomeric end of chromosome 17 [19].
BIRC5 is not only an essential protein molecule for the
regulation of mitosis and apoptosis, but it is also involved
in pathological processes [20]. It has been shown that BIRC5
was upregulated in tumor tissues. In a variety of human
cancers, such as breast cancer [21], pancreatic cancer [22],
hepatocarcinoma [23], neuroblastoma [24], and esophageal
carcinoma [25], high expression of BIRC5 indicated poor
clinical outcomes. In addition, circulating IgG antibodies
derived from BIRC5 could serve as a biomarker for malig-
nant glial tumor [26] and early diagnosis of cervical cancer
[27]. Therefore, BIRC5, as a target, might be useful for the
treatment of drugs in gastric and colorectal cancers [28].
Targeting BIRC5 may be a promising strategy against esoph-
ageal tumor relapse and chemoradioresistance [29].

In this study, we identified that the high level of mRNA
expression of BIRC5 not only was related to unfavorable
outcomes of LAD, but it also indicated a shorter OS of TN
adenocarcinomas. Coexpression and enrichment analysis
revealed that BIRC5 may serve as a critically coexpressed
gene for mediating the cell cycle-related signaling pathway.
We assumed that the oncogenic role and prognostic value
of BIRC5 in TN adenocarcinomas can be ascribed to this “cell
cycle-mediated” mechanism.

We therefore summarize previous publications. First of
all, BIRC5 was overexpressed in LAD compared to normal
controls [30–32]. Our findings are consistent with existing
investigations. Secondly, the potential prognostic and thera-
peutic value of BIRC5 in LAD was evaluated. Plasma anti-
BIRC5 IgG may be a useful marker for the assessment of
prognosis of NSCLC [33]. BIRC5 expression is an indepen-
dent poor prognostic marker in LAD [34]. In the aspect of
regulating the sensitivity of LAD cells to anticancer drugs,
BIRC5 also plays a critical role [35]. In terms of EGFR
or RAS mutant NSCLC treatment, BIRC5 contributes to
induced cytotoxicity [36]. Briefly, BIRC5 may constitute
a valuable biomarker and therapeutic target. Notably, com-
pared with the previous investigations, our study provided
new evidence that BIRC5 plays an important role in the
prognosis of TN adenocarcinomas. Finally, the mechanism
behind the effect of BIRC5 on tumors was described. Survi-
vin, encoded by BIRC5, has a bifunctional molecule effect
on apoptosis and cell proliferation, mainly from the two
phosphorylation sites on its different domains (Thr34 and
Thr117). Thr117 is a key site on the regulation of prolifera-
tion and cell cycle, and Thr34 is involved in cell apoptosis
[37]. BIRC5 has been identified as a critical target involved

in a variety of cancer cell signaling pathways, and the upreg-
ulation of BIRC5 may serve as a role in the following mech-
anisms: critically antagonizing caspase-dependent apoptosis
and activating P53 and its downstream target P21, which
stalls cell cycle progression as a cyclin-dependent kinase
inhibitor (CDKi) [38]. Additionally, BIRC5 promotes the
migration and invasion of tumor cells mediated by the
TGF-β pathway [39] and the PI3K/AKT pathway [25], inter-
acts with proteins associated with DNA damage repair [40],
and regulates tumor cell proliferation mediated via the
β-catenin pathway [41]. These facts explained why BIRC5
was mainly involved in the regulation of cell cycle and
apoptosis; meanwhile, it is supported in our study that
the overexpression of BIRC5 promoted the development
of TN adenocarcinomas, which may be via regulating the
cell cycle signaling pathway.

In conclusion, for TN adenocarcinomas, BIRC5 may
serve as a promising prognostic predictor and therapeutic
target. The upregulation of BIRC5 may enable the activation
of the cell cycle signaling pathway to participate in the devel-
opment of this specific type of LAD. Our findings provide a
novel insight into TN adenocarcinomas. However, cancer is
a result of highly complex molecular mechanisms, and more
experimental studies are necessary to clarify the cell cycle-
related signaling for TN adenocarcinomas in the context
of BIRC5.
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