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Prognostics and health management (PHM) is a framework that offers comprehensive yet individualized solutions for managing
system health. In recent years, PHM has emerged as an essential approach for achieving competitive advantages in the global
market by improving reliability, maintainability, safety, and affordability. Concepts and components in PHM have been developed
separately in many areas such as mechanical engineering, electrical engineering, and statistical science, under varied names. In
this paper, we provide a concise review of mainstream methods in major aspects of the PHM framework, including the updated
research from both statistical science and engineering, with a focus on data-driven approaches. Real world examples have been
provided to illustrate the implementation of PHM in practice.

1. Introduction

To fulfill the increasing demand on functionality and quality,
modern systems are often built with overwhelming complex-
ities. These systems are often featured rich electronics and
intricate interactions among subsystems/components. For
example, a typical car consists of about 2,000 functional com-
ponents, 30,000 parts, and 10 million lines of software code
[1].

Additionally, extremely high requirements of system
reliability are essential since a single failure can result in catas-
trophic consequences. Despite every effort made in the past,
disasters keep occurring with profound implications. In June
2009, the Metro rail crash in Washington D.C. killed nine
people and injured dozens more, suspiciously due to sensor
circuit “anomalies” under the rail track [2]. Brazil blackouts
in November 2009 affected more than 60 million people
and shut down everything from subway to light bulbs [3].
Despite the explanation attributed to lightning, wind, and
rain, it was still believed that “there was obviously some fail-
ure, either technical or human” Other examples include the

failure of LED lighting system in Xiamen, China, two months
after installation although the manufacturer promised five
years’ lifespan of their products, not to mention the infamous
sudden acceleration failures of Toyota automobiles which
have significantly damaged the company’s profit and reputa-
tion [4].

In view of the high impact and extreme costs usually
associated with system failures, methods that can predict and
prevent such catastrophes have long been investigated. Appli-
cations of developed methods are not rare in domains such as
electronics-rich systems, aerospace industries, or even public
health environment [5, 6]. In general, these methodologies
can all be grouped under the framework of prognostics and
health management (PHM). Particularly, prognostics is the
process of predicting the future reliability of a product by
assessing the extent of deviation or degradation of the prod-
uct from its expected normal operating conditions; health
management is the process of real time measuring, recording,
and monitoring the extent of deviation and degradation from
normal operation condition [7, 8]. Different from traditional
handbook based reliability prediction methods (e.g., U.S.



Department of Defense Mil-Hdbk-217 and Telcordia SR-332
(formerly [9])), which assumed that constant hazard rate of
each component can be tailored by independent “modifiers”
to account for various quality, operating, and environmental
conditions, PHM methodologies instead monitor the health
state in real time and dynamically update the reliability
function (hazard rates) based on in situ measurements and
tailored evolution models obtained from historical data. Due
to the success of existing PHM methodologies, there is no
need to exhibit the growing interests of studying new PHM
techniques and applying PHM to underdeveloped domains.
Nevertheless, the increasingly complex modern systems
pose new challenges on PHM. One of the most prominent
problems is called No Fault Found (NFF) problem (related
terminologies include “cannot duplicate,” “re-test OK,” “trou-
ble not identified,” and “intermittent malfunctions”) [10-12],
particularly in electronic-rich systems. As the name sug-
gests, it refers to the situation that no failure/fault can be
detected/replicated during laboratory tests even when the
failure has been reported in the field [13]. NFF issues not only
make the prognosis and diagnosis extremely difficult, but
also can cause skyrocketing maintenance cost. As reported
by Williams et al. [13], NFF failures account for more than
85% of all filed failures and 90% of overall maintenance costs
in avionics; it is estimated that NFF related activities cost the
U.S. Department of Defense 2~10 billion U.S. dollars per year
[14]. Evidently, NFF contributes a lot in operational cost in
many different application areas. On top of the maintenance
costs, potential safety hazards related to NFFs are even more
striking. For example, both Toyota and National Highway
Traffic Safety Administration (NHTSA) spent quite a long
time to investigate the root causes of sudden acceleration
failures in some car models, a problem that might be linked
to 89 deaths in 71 crashes since 2000 according to NHTSA
[15]. Unfortunately, no conclusive finding has been reached
despite the efforts in trying to repeat the failures in a variety
of laboratory conditions. These intermittent faults are also
suspected to be the main reason for other catastrophes, like
Washington Metro crashes and Brazil blackouts.
Intermittent faults or NFF problems pose significant bar-
riers to apply traditional methods for reliability prediction,
which are often empirical and population based. From the
aforementioned examples, we can find that intermittent faults
are often tightly related to the environmental conditions and
operation histories of the particular individual system. They
can hardly be repeated due to unknown random disturbances
involved. Therefore, laboratory testing and assessment can
only provide a reference on the “average” characteristics of
the whole population and are insufficient to provide accurate
modeling and prediction for each individual. To reduce the
maintenance cost and eliminate safety hazards caused by NFF,
the paradigm of PHM needs to shift from empirical to data
supported and from population based to individual based.
Companioned with the challenges, the fast development
of information and sensing technology has enabled the
collection of many in situ measurements during operations
and provided the capability of real time data management and
processing for each individual. These advancements provide
us great opportunity to develop sophisticated models with
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increasing accuracy of prognostics for individual items. For
instance, many different types of data during the whole life
cycle of the products can be easily retrieved, especially in crit-
ical applications. These data could include production pro-
cess information, quality records, operation logs, and sensor
measurements. Moreover, unlike manually entered data used
before which are slow, costly, and error-prone, most of
current records are automatic, accurate, and timely entries
due to the advancements of technology. The use of Radio Fre-
quency Identification (RFID) technology, for example, is not
rare in supply chain distribution network, healthcare, and
even military applications, to provide reliable and timely
tracking or surveillance of products/components. Advanced
sensor technologies also enable abundant measurements at
both macro and micro scale, such as vibration, frequency
response, magnetic fields, and the current/voltage, to name
a few.

In response to the emerging challenges as well as opportu-
nities, this paper tries to review recent advancements of PHM
methodologies, with a focus on data-driven approaches, and
their applications in practice, and identify research problems
that may lead to further improvement of PHM in both theory
and practice. Before we move on to the next section, we would
like to use an example from real practice to better illustrate the
ideas in PHM.

A Motivating Example. Bearings are found in most mechan-
ical systems with rotational components. They provide nec-
essary support as well as constraining the moving parts
to desired motion mode. It is hard to overemphasize the
importance of keeping bearings under normal working con-
ditions in engineering applications. Breaking down of a single
bearing may cause failure of an entire system. For example,
on August 30th 2010, a Qantas Boeing 747 aircraft departing
from San Francisco International Airport encountered an
accidental engine shutdown, which has later been confirmed
to be caused by a fractured turbine blade and a failed bearing
[16].

As a bearing tends to exhibit larger vibration as it
degrades, its health condition can thus be assessed via the
vibration signal collected by sensors. Such signal is often
referred to as degradation signal in the literature of PHM.
When the amplitude of a bearing’s vibration exceeds certain
threshold, the bearing can be considered as no longer suitable
for further operations. Figure 1 demonstrates the degradation
paths of three different bearings, where the x-axis is the work-
ing time of bearings (in minutes), the y-axis is the average
amplitude of the vibration at different harmonic frequencies,
and the horizontal line is the vibration threshold considered
as indicator of bearing failures [17, 18].

Unlike conventional reliability analysis which mostly
provides population-based assessment, individualized pre-
diction results are possible by taking advantage of the degra-
dation signal. Based on the vibration data collected up to the
current time, we can build models to predict the evolution
path of vibration signal in the future and consequently
predict the remaining useful life (RUL) of an in-service
bearing by assuming its failure as the vibration signal hits
the threshold for the first time. Unfortunately, many factors
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FIGURE 1: Evolution of vibration signals of three bearings.

in the degradation make the exciting task very challenging.
Figure1 demonstrates several important features of the
degradation signals. For example, the degradation of bearings
exhibits two distinctive phases. At the initial stage, the vibra-
tion signals emitted are small and stable. However, after a
change point (often a crack appears), the magnitude of vibra-
tions increases dramatically and features large variability.
Despite similar shapes of degradation paths, the location of
changing point, increasing rate of vibration magnitude, and
so forth vary from one bearing to another. We will return to
this example in Section 3 for more technical details.

The rest of the paper is organized as follows. Section 2
reviews advancements in PHM. Section 3 uses three exam-
ples to illustrate the procedures and strategies of PHM.
Section 4 concludes the paper with summing up comments
and future works that drive PHM further in academia and
industries.

2. Overview of Data-Driven PHM Approaches

In general, typical workflows in a PHM system can be con-
ceptually illustrated, as shown in Figure 2. Three major tasks
can be identified in the flowchart: fault diagnostics, prognos-
tics, and condition-based maintenance. The first task is to
diagnose and identify the root causes of system failures. The
root causes identified can provide useful information for
prognostic models as well as feedback for system design
improvement. The second task takes the processed data and
existing system models or failure mode analysis as inputs
and employs the developed library of prognosis algorithms to
online update degradation models and predict failure times of
the system. The third task makes use of the prognosis results
(e.g., the distribution of remaining useful life) and considers
the cost versus benefits for different maintenance actions to
determine when and how the preventive maintenance will be
conducted to achieve minimal operating costs and risks. All
of these three tasks need to be executed dynamically and in
real time.

Other than these three major tasks, there are also some
other important components listed in Figure 2. Nevertheless,
they are often prepared offline and only timely updating may
be needed during the system operations. For example, signal
processing/feature extraction is the procedure to preprocess
the signals using rules or methods developed according to
engineering knowledge, expert experience, or statistical find-
ings from historical data. They serve the purpose to eliminate
noise, reduce data dimensions (complexities), and transform
the data into proper space for future analysis. Similarly,
prognosis and diagnosis algorithms can also be developed
offline to cater the special characters of the signals and system
properties. Upon new arrival of sensing signals, appropriate
algorithms can be selected to compute distribution of RUL,
determine maintenance actions, or find root causes of abnor-
malities.

Due to its undeniable importance, recent years have seen
prosperous development in different aspects of PHM. The
reviews on statistical data-driven approaches by Si et al. [19]
and Sikorska et al. [20] have covered most of the models
used in RUL estimation with a statistical orientation, but
our work focuses on a wide range of the varied models
in PHM methodologies from diagnosis to prognosis with
their motivations. The subsequent sections are devoted to
discussion of research progress and open issues of these tasks/
components in PHM to provide us with an overview for
further advancement.

2.1. Signal Processing and Feature Extraction. In current
data rich environment, huge amounts of data are often
automatically collected in a short time period. Different from
the problem that very limited data was available decades
ago, this overwhelming data poses new challenges in data
management, analysis, and interpretation. Consequently,
data preprocessing and feature extraction procedures become
standard in many complex systems to improve data quality,
reduce data redundancy, and boost efficiency of analysis. Due
to its importance, many researchers have investigated this
problem in the literature, as summarized in some of the
review papers in different application areas (e.g., [21-23]).
Instead of giving a comprehensive review on different
techniques in the literature, in this section we will list some
of the commonly used methods in the context of PHM. These
techniques can be roughly classified as statistical methods
and engineering knowledge based methods. In the first
category, data can be transformed to optimize certain prede-
termined criteria without the input of the domain knowledge.
For example, principle component analysis (PCA) and inde-
pendent component analysis (ICA) have been used widely
to reduce data dimensions. Similar to analysis of variance
(ANOVA), distance evaluation technique (DET) [24] is also
preferred and its varied versions are applied, such as a two-
stage feature selection and weighting technique (TFSWT)
via Euclidean distance evaluation technique (EDET) [25], a
modified version of ANOVA, which takes both the difference
between the variances in each group and the maximum
versus the minimum differences between the mean of each
group into consideration. However, certain useful informa-
tion cannot be retained when dealing with highly nonlinear
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FIGURE 2: An illustration of typical flows of PHM systems.

data, as reported in [26]. Other techniques include mutual
information (MI) based method [27], self-organizing map
(SOM) [28], and density based methods [29]. These tech-
niques work well on nonlinear data and hence are employed
broadly in many applications.

Methods in the second category, on the other hand,
utilize some of the domain knowledge in the process of
feature extractions. Based on the procedure of conditional-
based maintenance, the data type could be summarized into
three: value type (e.g., temperature, pressure, humidity, etc.),
waveform type (e.g., vibration data), and multidimensional
type (e.g., image data, X-ray images, etc.) [30].

Waveform data analysis is among the most common
methods in diagnostics of mechanical systems, due to the
popularity of waveform data collected from sensors, particu-
larly in vibration signal analysis of rotating elements [31, 32].
Different kinds of techniques and algorithms are developed
in this field. They can be categorized into time-domain
analysis, frequency-domain analysis, and the combination
of both. These methods often create features that have clear
physical meanings or interpretations. For example, Table 1
summarizes ten commonly used time-domain features [25].
Instead of using the raw waveform data, these ten summary
statistics provide us with extracted information of the sig-
nals. These ten features can be generally applied to many
applications. However, if the mechanism of how the abnor-
malities influence the measured signal is known, extracted
features based on domain knowledge may be more effective.
For example, Lei and Zuo [25] summarized 11 statistical
features specifically developed for gear damage detection.
Another time-domain analysis approach is time synchronous
average (TSA), popularly used in fault detection of rotating
equipment [33, 34]. The idea is to use the average over a
number of evolutions of raw signal in order to remove/reduce
noise. Time series models are naturally applied here as well
[35], in an attempt to extract features based on parametric
models. For example, coeflicients in a fitted autoregressive
moving average model (ARMA) can be indicative of the
health condition [36].

TaBLE 1: Commonly used time-domain features.
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Meanwhile, it is believed that some faults will show
certain characters in frequency domain. Fourier transform is
the most common form of further signal processing, which
decomposes a time waveform into its constituent frequencies.
Fast Fourier transform (FFT) is usually used to generate the
frequency spectrum from time series signals. A high vibra-
tion level at a particular frequency may be the signature of
a particular fault type. Besides FFT spectrum, other methods
such as cepstrum [37], high-order spectra [38], and holospec-
trum analysis [39] are also developed for fault diagnostics in
the frequency domain.
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One limitation of frequency domain analysis is its inabil-
ity to handle nonstationary waveform signals, commonly
observed during machine faults. A combination of both time
and frequency domains, time-frequency analysis, has been
developed to solve the problem [40, 41]. A typical method
is called short-time Fourier transform (STFT) [42], which
divides the whole waveform signal into segments with short-
time window and then applies Fourier transform to each
segment. Wavelet transform is another popular method with
a similar idea. Wavelet analysis has been successfully applied
to feature extraction and fault diagnostics in various applica-
tions (e.g., [43-47]). A review on the application of wavelet
analysis in machine fault diagnosis and fault feature extrac-
tion can be found in Peng and Chu [48]. Other methods of
time-frequency analysis include spectrogram [49], Wigner-
Ville distribution [50-52], and Choi-Williams distribution
[53].

2.2. Fault Diagnostics and Classification. Fault diagnostics
is designed to efficiently and accurately identify the root
cause of the faults. Effective diagnosis can not only reduce
downtime and repair cost, but also provide useful informa-
tion for prognostics to improve its accuracy. Fault detection
is defined to be the task of determining if a system is
experiencing problems. Fault diagnostics, then, is the task
of locating the source of a fault once it is detected. Because
of its importance, researchers from different fields have
investigated the issue of fault diagnostics extensively, such as
in manufacturing processes [54, 55], discrete event systems
[56, 57], and communication systems and networks [58, 59].
We do not attempt to give a comprehensive review but focus
on the approaches that are commonly used in PHM practices.

In general, methodologies in fault diagnostics can be clas-
sified into two categories: model based approaches and model
free approaches. In the model based category, some forms of
underlying models linking failure modes and observations
are proposed. These models are often derived according
to first principles and physical mechanisms. Based on the
model structure and parameters, observations can be used
to infer the root causes or the failure modes using different
algorithms. In contrast, model free methods often do not
assume the knowledge of underlying processes. Although
in many cases implicit or statistical/surrogate models are
used in the fault diagnostics, we use the name to emphasize
that approaches in this category are purely data-driven
without additional assumptions on the systems’ operation
mechanisms.

In fault diagnostics, we would like to know the exact time
when a fault appears, its location, and its severity. Therefore,
the diagnostics consists of three aspects: (1) anomaly detec-
tion, as we first identify any potential performance deviation
from normal operation; (2) fault localization, which localizes
the problem to the specific component or subsystem; (3)
fault classification, which discriminates known and unknown
faults and identifies the type of the fault if it is previously
known [60]. Many popular methods from machine learning
and artificial intelligence are applied in this context, such as
support vector machine [61, 62], k-nearest neighbors [25, 63],
and decision trees [64, 65]. Among them, artificial neural

network has been preferred by many engineers and widely
applied to fault diagnostics of various engineering systems
[28, 66-69]. Unsupervised machine learning algorithms such
as fuzzy c-means and self-organizing maps have been applied
when no response is provided [70-72]. It is worth mentioning
that the sensitivity to a given fault is often a function of oper-
ating conditions and the nature of the anomaly. Therefore,
the environmental conditions need careful consideration. For
example, self-organizing maps are used for regionalization of
the system operating conditions [60]. Excellent reference for
fundamentals of these methods can be found in Bishop [73],
Hastie et al. [74], and Kotsiantis et al. [75].

2.3. Data-Driven Prognostics Method. As mentioned in
the introduction, prognostics algorithms predict the future
reliability of a product considering current and past health
information collected. Through constant inspection, the
observed health information is often referred to as condition
monitoring (CM) data. CM data may be directly or indirectly
related with the system health status and hence can be
viewed as system health indicators. Examples of CM data
are amount of tire wear, chemical concentration, size of a
fatigue crack, power output of an amplifier, and the light
intensity of LED. As a system degrades inevitably through
usage, its health status deteriorates and is manifested through
the observed CM data (e.g., the light intensity decreases as
the LED degrades). Hence, CM is normally viewed as the
system degradation signal. Failures are often defined as
the degradation reaches a predetermined threshold set by
experts. Thus, by modeling the evolution of degradation and
calculating the time it first hits the failure threshold, we will
be able to predict the system remaining useful life (RUL).
Due to randomness in the evolution paths of the degradation,
the calculated RUL will be in the form of some probability
distribution. Two excellent comprehensive review papers in
RUL research can be found in Si et al. [19] and Sikorska et al.
[20]. The main difference between our paper and Si et al.
[19] could be understood through the illustration in Figure 2.
Our paper describes the entire process of data-driven
approach related to PHM, addresses the three PHM
objectives (fault diagnostics, prognostics, and conditional-
based maintenance), and discusses additional prognostics
approaches developed from other areas and relationships
among different approaches. On the other hand, Si et al. [19]
focus mainly on various modeling approaches for prognostics
and do not address the tasks before the three PHM
objectives. Sikorska et al. [20] focus on evaluating the various
prognostics approaches from the industry point of view
without details on methodologies.

As a core ingredient of PHM, we summarize the major
categories of data-driven prognostics in this section.

2.3.1. Independent Increment Process Based Model. Generally
speaking, the stochastic process models (Table 2) consist of
two basic components: (1) a stochastic process {X(t),t €
J,X € x} with initial value X(0) = x,, where I is the
time space and y is the state space of the process, and (2) a
boundary set B, where B C y. Taking X(0) = x,, outside the
boundary set B, the first hitting time (FHT) is the random
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TABLE 2: Summary of three stochastic processes.

Models FHT distributions

Model parameters Shapes of hazard functions

Wiener process
Gamma process
Inverse Gaussian process

Inverse Gaussian distribution
Approximate inverse Gaussian or B-S distributions
Approximate B-S distribution

Drift v and variance o” Upside down bathtub
Shape « and scale 8 Upside down bathtub
Mean y and shape A Upside down bathtub

variable T, defined as T = inf{t : X(¢) € B}. In most cases, B
is simplified as a threshold x* (or D) and the FHT is the first
time when X(¢) reaches x*.

In stochastic process model, it is supposed that the
degradation signal {X(¢),t € J,X € yx} has stationary
independent increment, which means for any time ¢, and
At > 0, the increment AX(t) = X(t + At) — X(¢) only
depends on At and some other parameters denoted as ¢.
Usually, AX(t) follows a distribution that possesses the
property of additivity. For example, if AX(¢) follows a Normal
distribution N (uAt, o At) and X(0) = 0, then X (¢) will follow
a Normal distribution N(ut, o’t) and {X(t)} is the Wiener
process. Other typical choices of the AX(t) distribution are
Gamma distribution and inverse Gaussian distribution, in
which cases {X(t)} will be correspondingly called Gamma
processes and inverse Gaussian processes.

Wiener Process. A Wiener process {X(t),t > 0} can be repre-
sented as X (t) = At+0B(t) where A is a drift parameter, o > 0
is a diffusion coeficient, and B(t) is the standard Brownian
motion. The Probability Density Function (PDF) of the first
hitting time T is the inverse Gaussian distribution IG((x™ —
x0) /A, (x* — x0)2 /o?). The process varies bidirectionally over
time with Gaussian noises. It only uses information contained
in the current degradation status. Please refer to [76-81] for
more information. Recently, there are some new researches
under this framework and use the history information given
by the entire sequence of observations. These models update
the parameters recursively so the prognostics is history
dependent [82, 83].

Gamma Process. One disadvantage of the Wiener process is
that it is not monotone with the Brownian motion embedded.
For modeling monotonically increasing/decreasing degrada-
tion signals, the Gamma process is a better choice. Here,
the increment AX(t) = X(t + At) — X(t) for a given time
interval At has a Gamma distribution Ga(aAt, o) with shape
parameter oAt > 0 and scale parameter 0 > 0. A Gamma
process has monotonic sample paths and can be viewed as
the limit of a compound Poisson process whose rate goes
to infinity while the jump size tends to zero in proportion.
The first hitting time has an inverse Gamma distribution,
defined by the identity P(T' > t) = P(X(t) < x¥). Details
of modeling degradation with Gamma process are given by
Singpurwalla [84], Lawless and Crowder [85], and Ye et al.
[86], and maintenance related issues are considered by van
Noortwijk [87].

Inverse Gaussian Process. An inverse Gaussian process
{X(#), t > 0} with mean function v(¢) and scale parameter
n has the following properties. The increment AX(t) has

an inverse Gaussian distribution IG(At,n(At)Z). Like the
Gamma process, the inverse Gaussian process also has a
monotone path, and the failure time distribution approx-
imated a Birnbaum-Saunders type distribution, which has
excellent properties for future computation. The IG process is
relatively new and has not been widely applied in degradation
modeling, even though it is more flexible in incorporating
random effects and covariates. It was introduced in Wang
and Xu [88] to incorporate random effects. The random
drift model, random volatility model, random drift-volatility
model, and incorporating covariates are thoroughly studied
by Ye and Chen [89].

2.3.2. Markovian Process-Based Models. Another set of meth-
ods are built based on the memoryless Markov processes.
Although Markov process still belongs to stochastic pro-
cesses, these methods are different from the previously
mentioned models in the sense that they assume a finite state
of the degradation and focus on the transition probability
among those states. The methods in this category have the
following major variations.

Markov Chain Model. In general, it is assumed that the
degradation process {X,,, n > 0} evolves on a finite state space
® ={0,1,..., N}, with 0 corresponding to the perfect healthy
state and N representing the failed state of the monitored
system. The RUL at time instant n can be defined as T' =
inf{t : X,.,, = N | X,, # N}. The probability transition matrix
and the number of the states can be estimated from historical
data. By dividing the health status into discrete states such as
“Good,” “OK,” “Minor defects,” “Maintenance required,” and
“Unserviceable,” the method can provide meaningful results
that are easier to be understood by field engineers.

Semi-Markov Processes. A semi-Markov process {X(t),t > 0}
extends the Markov chain model by including the random
time that the process resides in each state. Although the
Markov property is generally lost by this extension, the model
remains of great practical value. In a semi-Markov model, the
first hitting time represents the time that the process resides
in the initial and subsequent states before it first enters one of
the states that define set B.

Hidden Markov Model (HMM). HMM consists of two
stochastic processes, a hidden Markov chain {Z,,n > 0},
which is unobservable and represents the real state of the
degradation, and an observable process {Y,,,n > 0}, which is
the observed signal from monitoring. Similar to Markovian-
based models, it is assumed that the degradation process
evolves according to a Markov chain on a finite state space.
Generally, a conditional probability measure P(Y,, | Z, = i),
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i € ®,is used to link {Y,,n > 0} and {Z,,, n > 0}. As such the
RUL at time instant n can be defined as T = inf{t : Z,,, =
N|Z, # N,Y;,0 < j < n}. The model is preferred when only
indirect observations are available [90].

2.3.3. Filtering-Based Models. Similar as the HMM, the
Kalman filtering model does not use the CM directly as the
true degradation signal. It assumes that the true state of the
degradation is unobservable but related with CM data. The
Kalman filtering model considers the unobserved condition,
x,, and the observed CM data, y,, such that x, = ax,_; + €,
and y, = Bx, + 1,, where ¢, and #, are Gaussian noises and
« and f3 are the parameters of the state space model. The
Kalman filtering model takes advantage of all historical data,
unlike many methods that only depend on the last CM
status. However, the linear assumption and Gaussian noise
assumption limit its applications. Efforts have been made to
overcome these problems (e.g., [91, 92]).

2.3.4. Regression Based Model. Methods in this category
mostly involve building parametric evolution path (linear or
nonlinear) of CM data with random effects. Most existing
methods in RUL estimation assume that products of the
same type or from the same batch have exactly the same
failure characteristics probabilistically. While the population
behavior can provide some reference, they cannot accurately
reflect the health evolution for each individual item since
individual products often experience different usage patterns,
distinct environments, or even different quality due to process
variations. Consequently, it is crucial to adapt to the health
evolutions of each individual product rather than perceived
group averages for better reliability prediction. In recent
years, some methods have been proposed to incorporate the
population information with observations from individual
items to get better RUL estimation.

Meeker and Escobar [93] give an example of a linear
degradation with Log-normal rate:

X(t) =By + Bt M

where f3, is fixed, B; ~ LOGNOR(y,0), and D is the
predetermined threshold; thus the distribution of failure time
will be

E(t, By p»0) = P(By + it > D) :P<ﬁ1 >
_ q)nm(log(t)— [log (D - f) —#])) )

o

D—%)

t

t>0.

Luand Meeker [94] proposed several random coefficients
model to describe individual health degradation by consider-
ing both population trend and individual unit characteristics
through fixed and random effects, respectively:

yij=f (tj;‘P» 91') + &) 3)

where y;; is the degradation signal of item i at time ¢ ;; ¢ is the
parameters for the fixed effects, and 0; is the parameters of

random effects for item i. Based on (3), the distribution of fail-
ure time, definedas T' = inf{t : f(t; ¢, 6i)+eij > D} where Dis
the predetermined threshold, can be computed analytically or
numerically. Different examples were illustrated for different
degradation models and distributions of random effects 6, in
the paper. K. Yang and G. Yang [95] extended the idea and uti-
lized both the life time data of failed devices and degradation
information from unfailed ones to improve the model esti-
mation. Along this line with applications in a variety of fields,
other representative works include Yang and Jeang [96],
Tseng et al. [97], and Goode et al. [98]. Although in these
results the individual-to-individual variation has been con-
sidered using random effects, the data from individual item
are only used to assess the variability among items in the
population and fit the random effects distribution Gy. The
prediction of failure time is still population-wise although
it considers the variability within the population. In certain
sense, the prediction interval is inflated to cover different
degradation paths.

Gebraeel and his colleagues [17,18, 99] instead developed
a Bayesian framework to model the degradation signals and
predict the residual life distribution. Different from previous
works, the residual life prediction is “customized” based on
the data from each individual. For example, the degradation
signal can be modeled by

L(t;)=0+p-t;+e(t), (4)

where 0 and f are random variables following certain dis-
tribution, and ¢ is measurement error (independent normal
or Brownian motion). From historical data, the joint distri-
bution of 8 and f3, denoted by P(0, f8), can be estimated as
prior knowledge regarding the population characteristics of
degradation. For each operating new individual, the vibration
signals are collected and used to update the degradation
model using Bayesian method:

P{O.BIL(t;),L(t2)s-- > L(8)}
oc PL(t;),L(t),.., L (t) 1 6 B} - P (6, B).

where the left hand side of (5) represents the posterior
distribution of parameters of the degradation model (4) given
observations up to time t;; the first term on the right hand
side corresponds to the likelihood function of the observed
data implied by (4) with fixed 0 and f3; and the last term is the
(estimated) prior distribution of the model parameters within
the population. In other words, the degradation model for
each individual is self-updating when new observations are
available. It is expected that the predicted failure time based
on the posterior degradation model will be more accurate.
Due to its simplicity and natural integration, Bayesian
framework has continuously been investigated in the liter-
ature to provide more accurate degradation modeling and
failure prognostics. For example, Xu and Zhou [100] studied
the modeling and prognostics using general nonlinear degra-
dation paths, where the Bayesian based model estimation and
Monte Carlo based failure time prediction were presented.
Chen and Tsui [101] extended this to a two-phase model,
which allows for a change point of the linear degradation.

(5)



This model captures the deterioration of the bearing indicated
by the vibration signal. Other references on this topic are
Gebraeel and Lawley [102] and Si et al. [82, 83].

2.3.5. Proportional Hazard Model. Proportional hazard
model [103] has been extensively studied in various areas.
Proportional hazard model with time-dependent variable(s)
is able to incorporate both event data and CM data, which
can be particularly useful in cases of uncertain failure
thresholds or hard failures [104-106]. The model assumes the
following form for hazard rate:

h(t) = hy () exp (yz (1)), (6)

where h(t) is the baseline hazard rate, y is a vector of coef-
ficients, and z(t) contains time-dependent variables. h(t)
can be either parametric (e.g., Weibull) or nonparametric,
and model parameters can be estimated by the maximum
likelihood method. In this model, the condition monitoring
data are viewed as time-dependent covariates in z(¢). System
failure distribution can be calculated based on (6).

2.3.6. Threshold Regression Model. The parent process X(t)
and boundary set B of the FHT model will both generally
have parameters z that depend on covariates that vary across
individuals: gg(z;) = z;B [107]. Cox Proportional Hazard
regression is, for most purposes, a special case of Thresh-
old Regression [108]. Any family of proportional hazard
functions can be generated by varying the time scales or
boundaries of a TR model, subject to only mild regulatory
conditions. There is a connection between the shape of the
hazard function (HF) and the type of failure mode (cause of
failure). For example, an increasing HF corresponds to aging/
wear-out and a decreasing hazard function generally suggests
a mixture of defective or other weak units leading to infant
mortality.

2.4. Condition Based Maintenance. Maintenance is defined as
a set of activities or tasks used to restore an item to a state in
which it can perform its designated functions. Maintenance
strategies can be broadly classified into Corrective Main-
tenance and Preventive Maintenance strategies [109, 110].
In corrective maintenance, maintenance activities are only
carried out after the failure happens and hence should only be
used for noncritical systems. On the other hand, preventive
maintenance tries to prevent the failure from happening by
using either predetermined maintenance such as time-based
maintenance or condition-based maintenance (CBM). An
example of predetermined maintenance is the commonly
suggested practice of changing engine oil every 3,000 miles or
three months (whichever comes first), regardless of the actual
oil condition. In recent decades, some companies such as GM
have developed oil life monitoring systems which allows car
owners to change oil only when necessary (e.g., [111]). Such
system is an excellent example of CBM implementation. In
recent years, CBM has become the most modern technique
discussed in the literature and falls well within the framework
of PHM.

CBM is a maintenance program that makes maintenance
decisions based on the information collected about the
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underlying system, allowing maintenance activities to be
performed only when necessary. The dominating objective
of CBM in literature is to minimize the cost for maintenance
activities. It is worth pointing out that, in some literature, the
term “condition based maintenance” has a broader definition
that also involves the preceding steps of data manipulation,
diagnosis, and prognosis (e.g., [30]). In this section, we
restrict our discussion to maintenance decision-making in
CBM.

The underpinning assumption of the PHM framework
is that systems are subject to stochastic deteriorations. The
natural choice of maintenance strategy for stochastic deterio-
rating systems is called “control-limit policy,” or “failure limit
policy” [110, 112], where maintenance activities are conducted
when the system deterioration reaches a certain level. Under
such policy, prognostic results on system deterioration can
be used for maintenance decision-making. The control-limit
policy has been shown to be the optimal replacement rule
for systems with increasing deteriorations when considering
the average long-run cost per unit time [113]. Existing work
on CBM can be classified in several ways depending on the
nature of the system and the assumptions they make, which
are (1) whether the system health condition is completely
observable or partially observable; (2) whether the condition
monitoring is continuous or intermittent; (3) whether the
maintenance program deals with single component or mul-
tiple components. Note that these are not mutually exclusive
and a single work usually falls into multiple categories. Below
we discuss these topics in more detail.

In condition monitoring, the system health condition
can be either completely or partially observed/identified. The
system health information obtained in the former case is
called direct information, while that in the latter case is called
indirect information. While it is a critical issue for the degra-
dation modeling and prognosis previously reviewed in this
paper, it has no major impact on the maintenance decision-
making. For this reason, we do not discuss this issue again
here; interested readers are referred to Jardine et al. [30],
which summarized many works in this regard.

Depending on the budget constraint and/or technologies
used, condition monitoring can be either continuous or
intermittent (periodic or aperiodic), of which the latter is
also known as interval inspection. The case of CBM with
intermittent condition monitoring has been studied exten-
sively in literature, primarily due to its wide implementation
in practice. The important decision variables are the control
limit/critical level and inspection interval; optimal critical
level and inspection intervals are found based on criteria
that are mostly cost-based [114-117]. In some works, critical
levels are assumed to be predetermined by expert knowledge
and only optimal inspection strategies are studied [118-120].
To provide more refined maintenance policies to minimize
cost, some researchers consider multiple control limits. For
example, Castanier et al. [121] used different thresholds for
inspection scheduling, partial repair, preventive replacement,
and restarting for repairable systems. With the development
of sensing and information technology, continuous condition
monitoring has become available at reasonable costs in
many applications [122]. Comparing with interval inspection,
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FIGURE 4: Different crack levels in the gears.

the research in this area is relatively new but has become
increasingly popular. The fundamental difference of CBM
with continuous monitoring is that the real-time system
information allows maintenance decisions to be made at any
time and hence the greater chance to optimize the set criteria
[123-128].

While majority of the existing work deals only with single
component, some researchers extend CBM to maintenance
decision-making for multiple components in the system. The
rationale of developing multicomponent maintenance policy
is that there are economic dependencies among multiple
components [129, 130]. High fixed maintenance cost, such
as sending a maintenance team to a remote wind farm,
can be mitigated by replacing/repairing multiple components
simultaneously [123, 126, 131, 132].

3. Illustrative Case Studies

In this section, we use three examples to illustrate the
implementation of PHM.

3.1. Fault Diagnosis on Gear Crack Development. Gearboxes
are one of the most commonly used parts in machinery.

Diagnosis of gear faults is crucial for preventing system mal-
function. In this example, we demonstrate the fault diagnosis
and classification for identifying different development stages
of cracks on gears in gearboxes [25, 133]. A gearbox test rig
is shown in Figure 3, where gear #3 is the tested gear with
potential cracks. Three different types of gears are tested: (1)
0% crack level; (2) 25% crack level; (3) 50% crack level, as
shown in Figure 4. The vibration signal is measured using
accelerometers under various working conditions: 3 levels of
load from the magnetic brake (no load, half the maximum
load, and maximum load), and 4 levels of motor speed
(1200 rpm, 1400 rpm, 1600 rpm, and 1800 rpm). Three sets of
data sample are obtained under each combination of the two
factors. Hence we obtain 36 data samples for each crack level.
The data are then used for gear crack detection and crack level
classification.

All the ten time-domain features listed in Tablel are
calculated as potential candidate features. Six features, peak,
mean, root mean square (RMS), skewness, kurtosis, and
shape factor, are selected by ANOVA and TESWT. After
feature selection, three methods are applied to classifying
the three levels of gear cracks, namely, multinomial logit
model (MLM), cumulative link model (CLM), and weighted
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k nearest neighbor (WKNN). Interested readers are referred
to Lei and Zuo [25] and Hai et al. [133] for technical details. To
assess the performance of the methods, aleave-one-out cross-
validation approach is used; the classification accuracies for
MLM, CLM, and WKNN are 98.1%, 94.4%, and near 100%,
respectively. The test results demonstrate that the proposed
methods can accurately identify the crack development of
gears, which is very beneficial for early warning of potential
gearbox malfunction.

3.2. Predicting RUL of Rotational Bearings. In this section, we
return to the motivating example in Section 1, which aims to
predict the RUL of bearings. As the purpose of PHM is mainly
to provide individualized prediction results, it is necessary to
adapt the model to specific characteristics of each bearing,
revealed through past observations. A natural choice is to use
Bayesian framework to integrate the prior information from
other bearings with observations of the in-service unit. By
selecting the conjugate prior distributions, model updating
can be efficiently done:

P(B|Y),Yy...,Y,) o< P(Yy, Yo, Y, | B)-1(B), (7)

where f is the model parameters, Y; is the observed vibration
magnitude at time t;, P(Y},Y,,...,Y, | B) is the likelihood
function given the parameter, 77(f3) is the prior distribution
carrying information from historical bearing samples, and
P(B | Y,,Y,,...,Y,) is the posterior distribution of 8 inte-
grating the prior information and current observations. As
new observations are collected, model updating can be done
repeatedly, and correspondingly the predicted failure time
will also be updated:

P(Y|Y,Y,,....Y,)

(8)
- JP([4|Y1,Y2,...,Y”)-P(Y1<|ﬁ)dﬁa

where P(Y; | Y,Y,,...,Y,) is the prediction of the vibration
magnitude at some future time ;. As # increases, the predic-
tion will be more and more accurate with smaller variance,
as demonstrated in Figure 5.

In this example, 25 bearings are tested and Figure 6 shows
the prediction interval of the failure time. The x-axis is the
index of the bearings used in the experiments. The circles
with the same x-axis value represent the 0.05, 0.5, and 0.95
quantiles of the failure time, and the cross shows the true
failure time. The results show that the prediction based on the
above algorithm is acceptably accurate. In certain cases, the
prediction interval is very tight, providing very informative
warnings on the potential failures.

3.3. Predicting RUL of Lithium-Ion Batteries Using Particle
Filter. Lithium-ion batteries are widely used in consumer
electronics as their sole power sources. The importance of
batteries to those devices is arguably critical. As battery ages,
its capacity degrades and is widely used as an indicator of the
battery’s health. As a common rule, a battery is considered
incapable of functioning as intended when its capacity drops
to 80% of its initial value. In this example, a particle filtering
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(PF) based prognostic algorithm is used to predict RUL of
lithium-ion batteries based on accelerating testing data of six
batteries [134].

In the experiment, batteries were tested with full charging
and discharging cycles, under the constant-current/constant-
voltage mode. The discharge rate was set to 1C, which meant
the battery would be fully discharged in one hour. The experi-
ment was conducted under room temperature, and discharge
capacity was calculated based on integrating current over
time for each cycle. Figure 7 shows the capacity degradation
process of one testing battery.

As capacity is used as the default health indicator of
batteries, there is no feature selection needed. We proceed
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directly to the degradation modeling and prognosis. The
model of the degradation curve is assumed as follows:

Cr=y1-exp(y, k) +y5 K + 5 ©)

where C; is the battery capacity at kth cycle and y;’s are
the model parameters. For accurate estimation of C; and
dynamically updating model parameters for better tracking,
a PF approach is used. In the PF, the state-space model for
tracking has a process function f, and a measurement
function hy:

T = fio (Tee1s 0k ) s Vi = hie (T @) » (10)

where y, is the observed capacity, I is the collection of all
y;’s estimated at the kth step, and 0, and ¢, are two ii.d.
noise sequences. In (10), f; and h; actually define conditional
distributions p(I; | [_,) and p(y; | T}), respectively. The
recursive Bayesian filtering is then carried out via the follow-
ing equations:

Pl yisees yier)

= JP(rk | Teet) 2 Ty | p15 -5 Yier) ATy (1)

PG|y yier) P (| Fk)_
POl ype o y)

PGl yi ) =

Equation (11) provides a recursive way to update the dis-
tribution of I}, with newly observed values. For prognosis,
the battery capacity at j step ahead, Cy, ;, can be estimated
by projecting I to its all possible future paths based on
p(Le | Y15+ y). Finally, the RUL distribution is calculated
through p(Cy,; < 0.8Cj,;) where C; is the initial capacity
of the battery.

For demonstration, four batteries are used. Three of them
are used for initializing model parameters and the last one
is used for testing. The predictions are made at 1/3, 2/3, and
4/5 of the battery’s life by treating the data of subsequent
cycles unknown to the algorithm. The results are shown in
Figure 8. It can be seen that the algorithm can track the

1

observed capacity sequence very well. As expected, the
prediction results are better and RUL PDF is narrower at the
later stage of the battery’s life.

4. Conclusions

PHM is a framework that offers a complete set of tools for
managing system health with individualized solutions. In this
paper, we have reviewed methodologies in all major aspects
of the PHM framework, namely, signal processing and feature
extraction, fault diagnosis and classification, fault prognosis,
and condition based maintenance. As can be seen, PHM
involves many subareas and hence a huge body of literature.
These areas are at very different stages of development.
While areas such as signal processing and feature extraction
have long been studied, system failure prognosis based on
condition monitoring is still at its infancy. Some subareas
have already been extensively studied long before the concept
of PHM. Excellent surveys have already been done in some
subareas, for example, in failure prognosis [19] and condition-
based maintenance [30]. Therefore, instead of focusing on an
extensive literature review in all subareas, we have taken a
holistic view to summarize mainstream methods in them, the
role of each area in PHM, and their relationships.

Data-driven methodologies in PHM are closely related
with those in some other major research directions, such as
statistical quality control, reliability engineering, and design
of experiments. It is worthwhile to briefly discuss their
relations with PHM.

4.1. Statistical Quality Control. Statistical quality control is
an area that has been extensively studied for many decades.
The main objective is to detect abnormalities or changes
in a process. It is generally applied to a large number of
homogeneous units and focuses on identifying the abnormal
ones which may be traced back to process faults. PHM, on the
other hand, focuses more on how faults happen and how to
predict future faults so that optimal maintenance policy can
be made, rather than fault detection. Furthermore, research
in PHM focuses more on individual behaviors along time
instead of cross-sectional analysis on the population charac-
teristics.

4.2. Reliability Engineering. The research in PHM is closely
related with those in reliability engineering, such as failure
prediction and maintenance. Many methods in PHM stem
from those originally developed in reliability engineering.
However, they have different focuses of interests. Tradi-
tional reliability engineering focuses on the modeling and
prediction of the entire product population, without much
emphasis on variability of the individuals and their respective
working conditions. Therefore, reliability engineering is most
valuable for manufacturer’s product design and warranty
policy making where population characteristics are crucial,
while PHM is most valuable for end users who care more
about the specific units they have on hand.

4.3. Design of Experiments. Comparing with the PHM which
emphasizes online monitoring and dynamic updating, design
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of experiments (DOE) is an offline methodology. PHM and
DOE are implemented at different stages. DOE is applied
mostly during the system planning and design phase, instead
of its operating phase where PHM is applied. Tools in DOE
are mainly used to analyze relationships between factors and
system response(s), which can be very useful for variable
selection, enhancing system robustness, and design optimiza-
tion.

As promising as PHM is, its application in real world is
still scarce at the current stage. Comparing to traditional fault
diagnosis and maintenance programs, PHM has higher initial
cost and higher requirement for the field workers. Limited
research in prognosis and CBM is also the major hurdle of its

wide application. To achieve cost-effective, robust, and easy-
to-implement solutions so that PHM can be applied to more
real world applications, there are many challenges as well as
research opportunities. These include, but not limited to, (1)
development of robust yet low-cost sensoring technologies
for online monitoring; (2) development of more computa-
tionally efficient techniques for dealing with high-volume
data; (3) development of specialized signal processing and
feature extraction/selection techniques optimized for con-
dition monitoring and failure prognosis; (4) development
of more accurate prognostic methods that can deal with
multiple CM signals and multiple system failure modes;
(5) development of versatile CBM strategies that are capable
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of handling complex situations such as multicomponent sys-
tems, possibly with different maintenance levels and multiple
optimization criteria.

Although there are still many hurdles to clear before PHM
can be widely implemented in real world engineering appli-
cations, its promising future has increasingly attracted many
researchers and engineers from related fields. However, most
of their research work is scattered in respective areas, without
much collaboration by considering the holistic framework of
PHM. As suggested by Lee et al. [135], the authors believe
an integrated platform of diagnostics, prognostics, and
maintenance will be the future trend of PHM.
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