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In a carbon-constrained world, future uses of nuclear power technologies can contribute to

climate change mitigation as the installed electricity generating capacity and range of

applications could be much greater and more diverse than with the current plants. To

preserve the nuclear industry competitiveness in the global energy market, prognostics

and health management (PHM) of plant assets is expected to be important for supporting

and sustaining improvements in the economics associated with operating nuclear power

plants (NPPs) while maintaining their high availability. Of interest are long-term operation of

the legacy fleet to 80 years through subsequent license renewals and economic operation

of new builds of either light water reactors or advanced reactor designs. Recent advances

in data-driven analysis methods—largely represented by those in artificial intelligence and

machine learning—have enhanced applications ranging from robust anomaly detection to

automated control and autonomous operation of complex systems. The NPP equipment

PHM is one area where the application of these algorithmic advances can significantly

improve the ability to perform asset management. This paper provides an updated

method-centric review of the full PHM suite in NPPs focusing on data-driven methods

and advances since the last major survey article was published in 2015. The main

approaches and the state of practice are described, including those for the tasks of

data acquisition, condition monitoring, diagnostics, prognostics, and planning and

decision-making. Research advances in non-nuclear power applications are also

included to assess findings that may be applicable to the nuclear industry, along with

the opportunities and challenges when adapting these developments to NPPs. Finally, this

paper identifies key research needs in regard to data availability and quality, verification and

validation, and uncertainty quantification.
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INTRODUCTION

Reducing anthropogenic greenhouse gas (GHG) emissions for

climate change mitigation while expanding energy access to
billions of people is a central global challenge of this century.
As the world’s second-largest low-carbon power source (second
only to hydropower), nuclear power makes up more than one-
quarter of annual low-carbon electricity supply worldwide and
has avoided about 60 gigatons of GHG emissions over the past
50 years (IEA, 2019). At present, approximately 10% of global
electricity generation is produced by nuclear power each year
(IAEA, 2021). To achieve deep decarbonization targets, including
the one limiting average global warming to 2°C in 2050 (Gao et al.,
2017), it is imperative to maintain the existing nuclear share of

electricity production (MIT, 2018).
Despite its important role in energy transitions to meet climate

goals, the nuclear industry is facing an uncertain future in many
countries, not only due to the March 2011 Fukushima accident in
Japan but also more fundamentally for economic reasons. In
advanced economies such as the United States, unfavorable
market conditions—including weak growth in electricity
demand, low natural gas prices, and increasing competition
from renewables-based power supply—are putting pressure on
the financial performance of existing nuclear power plants
(NPPs), which may lead to their early retirements. One of the

first thrusts being pursued to support economical nuclear power
has been focused on life extensions of the legacy fleet, from the
initial license period of 40 years (in most cases) to 50–60 years
and possibly beyond. Life extensions are considerably cheaper
than new construction and will be cost-competitive with any
other electricity generation technology, as illustrated in Figure 1

for the projected US levelized cost of electricity associated with
different technologies in 2040. A new joint report (IEA and NEA,

2020) by the International Energy Agency (IEA) and the Nuclear
Energy Agency (NEA) also concludes that prolonging the
operation of existing nuclear assets, known as long-term
operation (LTO), is the most affordable low-carbon solution.

Unfortunately, the LTO of current NPPs alone—mostly light
water reactors (LWRs)—can only provide temporary support for
the transition to clean energy systems. New builds are necessary,
and near-term interests are rising in LWR-based small modular
reactors (SMRs) and mature Generation-IV concepts.

To achieve safe, reliable, and economical operation of NPPs,
attention is turning to enhanced plant asset management
methods within the activities of both legacy fleet LTO and
new construction. Decades of global operational experience
have shown that greater situational awareness of the condition
of key structures, systems, and components (SSCs) is essential for

managing and mitigating plant equipment degradation,
particularly the aging-related degradation due to exposure to a
harsh operating environment. While the traditional approaches
to maintenance and aging management complied with the
defense-in-depth policy (IAEA, 1996) and proved to be
adequate for maintaining safety margins in the past, they were
not optimized in terms of effort, time, or cost (Coble et al., 2012).
Historically, corrective find-and-fix maintenance policies
prevailed in the early days of the nuclear industry, which
would incur overly long facility downtime and excessively high
cost (Ayo-Imoru and Cilliers, 2018). The time-based periodic

maintenance scheduling became widely employed since the
1970s. However, this strategy is generally conservative and
often yields unnecessary planned inspection and maintenance
that challenge the economics of nuclear generation. Meanwhile, it
does not prevent plant downtime caused by unanticipated
equipment failure, which leads to a significant amount of lost
revenue: at least $1.2 million per day of plant shutdown for an

FIGURE 1 | Projected US LCOE by technology in 2040 [modified from IEA (2019)]. Note for Figure 1: LCOE � levelized cost of electricity, average cost to

build and operate a power plant over its lifetime divided by the total electricity output of the plant over the same period; it represents the break-even price of

electricity generation at a power production facility. CCGT � combined-cycle gas turbines. Estimates of nuclear lifetime extension are based on a 500 million

USD investment to extend operations for 20 years. Other cost assumptions can be found in IEA (2019).
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average NPP in the United States and France (NEI, 2011; Power
Engineering International, 2017). Therefore, it is necessary to
move from uneconomic find-and-fix or periodic maintenance
strategies to the more cost-effective just-in-time repair policies.

The just-in-time repair is a predictive maintenance strategy
that relies on continuous monitoring and full awareness of the
equipment health condition throughout its life cycle, or in other
words, the use of prognostics and health management (PHM)
principles. The full PHM suite includes five modules: data
acquisition, monitoring and anomaly detection, fault
diagnostics, prognostics, and planning and decision-making.
Through appropriate detection, diagnosis and prognosis, and
mitigation actions, a robust PHM system will allow early
warning of degradation in NPPs and will potentially preclude
serious consequences due to faults and failures while helping

alleviate the burden of unnecessary maintenance activities.
This paper provides an updated method-centric review of the

full PHM suite in NPPs since the last major survey article by
Coble et al. (2015) was published in 2015. The results of that
survey are augmented with new progress made in the intervening
years. In particular, recent advances in data-driven analysis
methods—largely represented by those in artificial intelligence
(AI) and machine learning (ML)—have enhanced applications
ranging from robust anomaly detection to automated control and
autonomous operation of complex systems. PHM in NPPs is one
area where the application of those algorithmic advances can

significantly improve the ability to perform enhanced asset
management. Therefore, special attention is dedicated to the
advances in data-driven diagnostic and prognostic methods.
PHM technologies in non-nuclear power applications are also
included to assess findings that may be applicable to the nuclear
industry, along with the opportunities and challenges when
adapting these developments to NPPs. “US NPP Monitoring
and Maintenance: Historical Approach and Motivations for
Prognostics and Health Management” Section summarizes the
historical approach to monitoring and maintenance in US NPPs
and outlines the PHM needs for improving the safety and

economy of both LTO and new builds. “Prognostics and
Health Management Framework and Modeling Approaches”
Section describes the PHM framework, followed by the state
of practice for each of its five modules with a focus on data-driven
methods. “Research Needs for Deployment of Prognostics and
Health Management in Nuclear Power Plants” Section identifies
the overarching research needs to support the development and
deployment of PHM in NPPs. “Summary” Section summarizes
the key findings of this paper.

US NPP MONITORING AND
MAINTENANCE: HISTORICAL APPROACH
AND MOTIVATIONS FOR PROGNOSTICS
AND HEALTH MANAGEMENT

The United States has the largest number of commercial nuclear
reactors in the world. Its operating fleet [94 LWRs in 56 NPPs
(IAEA, 2021) as of January 2021] has steadily generated about

20% of the nation’s electricity since the mid-1990s (NEI, 2021a) at
by far the highest capacity factor [93.4% in 2019 (US DOE, 2019)]
of any energy source. Despite this performance and the fact that
nuclear makes up more than half of the nation’s clean energy

(NEI, 2021b), nine reactors have been shut down in the
United States before their licenses expired since 2012 due to
unfavorable market conditions, and an additional five units are
scheduled to retire in 2021 (US DOE, 2020a; US EIA, 2021a). The
average age of US operating reactors is almost 40 years. The
youngest unit, Tennessee’s Watts Bar Nuclear Plant Unit 2, began
operation in 2016 and was the nation’s first new reactor in
20 years (US EIA, 2021b). Meanwhile, only two commercial
reactors—2 AP1000 units at Georgia’s Vogtle plant—are
currently under construction (IAEA, 2021) in the country. To
keep America’s nuclear capacity from sharply declining and to

enable clean energy transition, the current LWR fleet is
undergoing 20-years life extensions from the original 40-years
licenses; 85 reactors1 have been approved by the US Nuclear
Regulatory Commission (NRC) to operate 60 years through the
initial license renewal applications (NEI, 2021c). To date, 53
reactors have already entered extended operation or LTO (US
NRC, 2021a). Additionally, utilities are intending to operate up to
80 years through second 20-years extensions or subsequent
license renewals; four reactors have been issued a second
renewed license for extended LTO and six additional
applications are under review (US NRC, 2021b).

To comply with the NRC’s license renewal rule [Title 10, Part
54 of the Code of Federal Regulations, or 10 CFR 54 (US NRC,
1995)] and to continue to provide secure nuclear power
generation, it is imperative to understand and manage the
effects of SSC aging in NPPs. As described in Coble et al.
(2012), the NRC monitoring and maintenance programs
usually draw a distinction between active and passive SSCs.2

The active SSCs—such as control rod drives, generators, sensors,
motors, pumps, and valves—must move to perform their
intended functions. Their performance monitoring and aging
management have been historically covered by the Maintenance

Rule (10 CFR 50.65) (US NRC, 2021c). The Maintenance Rule
provides a performance-based approach to monitoring and
improving the overall effectiveness of active component
maintenance. However, it does not directly improve the
economics of performing maintenance (Coble et al., 2012).
Under the Maintenance Rule, a large majority of maintenance
activities remain periodically scheduled. The passive SSCs—such
as reactor pressure vessels (RPVs), heat exchangers, transformers,
cables, support structures, and piping—do not move during
normal functions. Their degradation and maintenance are
managed through periodic in-service inspection as dictated by

the plant’s aging management program. As codified in 10 CFR
50.55a (US NRC, 2021d), nondestructive inspection

1The NRC has approved initial license renewal applications for 93 reactors.

Unfortunately, eight of them have since ceased operations prematurely.
2The distinction between active and passive SSCs can be complicated. For example,

pumps are active components, but their casings and support structures are

considered passive.
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requirements are specified for the in-service inspection of passive
components.

As plants enter LTO, aging becomes a more challenging
problem. Because it is of paramount importance to be warned

of impending SSC faults and failures, the frequency of periodic
inspection and maintenance will need to increase to compensate
for potentially growing failure rates over time due to wear-out
failures in active SSCs and for reduced safety margins toward the
lowest allowable level due to degraded material characteristics in
passive SSCs. The increased inspection frequency would cause
extended (and sometimes unnecessary) downtime of plant safety-
critical systems and eventually affect the industry’s
competitiveness. Transitioning from periodic maintenance
scheduling to a more continuous, just-in-time health
management approach is essential to ensure that the intended

functions of NPP assets are maintained for the period of extended
operation. Advanced monitoring techniques will provide the
necessary support to this transition, along with advances in
diagnostic and prognostic methods.

Currently, there is a growing interest in applying condition-
based (rather than time-based) maintenance for active
components and automated online monitoring (instead of
periodic inspection) for passive components through the use
of PHM. In fact, well-applied PHM technologies will benefit
not only aging LWRs but also new builds, especially LWR-based
SMRs [such as the pressurized water NuScale720 (US DOE,

2020b) and the boiling water GEH BWRX-300 (US DOE,
2020c)] and mature advanced reactor designs as part of the
Generation-IV initiative [such as TerraPower’s Natrium and
X-energy’s Xe-100 under the US Department of Energy
[DOE]’s Advanced Reactor Demonstration Program (US DOE,
2020d)], into which inherent and passive safety features are
extensively incorporated. These reactors have additional
monitoring and surveillance needs over currently operating
LWRs due to extended fuel cycles, exposure to harsher
operating environments, use of innovative materials, and
remote siting with reduced maintenance staffing levels (Coble

et al., 2015). Traditional inspection techniques and maintenance
policies will not meet such needs.

In addition to improving plant safety and reliability, PHM is
also economically attractive for reducing operations &
maintenance (O&M) costs compared to time-based and even
traditional condition-based (i.e., without the use of PHM)3

policies. The O&M costs represent a crucial disadvantage for
the nuclear industry and comprise about two thirds of total
generating costs in NPPs (Coble et al., 2015; Al Rashdan et al.,
2018). As discussed in “Introduction” Section, periodic

inspection and maintenance could lead to unnecessary and
unanticipated repair or replacement of SSCs, incurring
significant additional downtime and costs. Besides, compared
to the traditional concept of condition-based maintenance

(CBM), PHM-enabled CBM provides capabilities to achieve
more proactivity in O&M, places stronger emphasis on the
operation stage than the design stage, and rely on condition-
based, facility-specific status identification rather than population
statistics. While detailed cost-benefit analyses of using PHM in
specific NPPs are yet to be conducted, Bond et al. (2011) suggest
that applying PHM technologies to all key SSCs in the nation’s
legacy plants could result in an annual fleet-wide savings of more
than $1 billion.4 Furthermore, proper application of the complete
PHM suite—especially with automated planning and decision-
making capabilities—can effectively reduce labor reliance and

frequency of O&M activities because labor costs account for
approximately 80% of O&M costs in US plants.

PROGNOSTICS AND HEALTH
MANAGEMENT FRAMEWORK AND
MODELING APPROACHES

This paper reviews the full PHM suite, which utilizes sensor
technologies and data analytics to monitor health conditions,
detect anomalies, diagnose faults, predict the remaining useful life
(RUL), and proactively manage failures (Droguett, 2020) in
complex engineering systems such as NPP assets. The five
modules/steps of a full PHM system are depicted in Figure 2,
and each module will be elaborated on in the following
subsections. To date, there has been no universally well-
defined categorization of PHM systems partly due to lack of
unifying PHM standards, which are needed for harmonized
terminology, consistency of PHM methods, and compatibility/
interoperability of PHM technology. A number of disparate

industrial standards—mostly developed by the International
Organization for Standardization (ISO) and the Institute of
Electrical and Electronics Engineers (IEEE)—exist which
pertain to different modules of a PHM system, such as ISO
13374 series for condition monitoring (CM) of industrial
machines, ISO 13379 for diagnostics, ISO 13381 for
prognostics, and IEEE P1856 for PHM of electronic systems.
Vogl et al. (2014) surveyed existing PHM-related standards and
identified areas for development of future standards.

In a PHM system, sensory data collected from a target SSC are
continuously monitored for deviations from normal behavior,

which are indicators of incipient faults or anomalies.5 Once an
anomaly is detected, it is important to diagnose the fault, or in

3It is important to notice that PHM is not a type of maintenance by itself but rather

a set of tools that yield information which can be used as input to CBM. In other

words, CBM can be adopted with or without the use of PHM. In fact, many

traditional frameworks considered CBM but did not include the treatment of PHM

techniques/methods. To mark the difference with the traditional concept of CBM

(i.e., CBM without implementation of PHM), new terms for PHM-enabled CBM

have been introduced in the literature, including CBM+ and CBM/PHM. A

comprehensive review on the role of PHM in CBM systems, which is not the

focus of this paper, can be found in Guillén et al. (2016).

4The annual fleet-wide O&M costs in the US are estimated to be around $12 billion

in 2017 US dollars. This is calculated with an annual O&M cost of $120 per kW for

an average US plant of 36 years old (in 2017) (SargentLundy, 2018) and a total

capacity of 100 GW (NEI, 2021c).
5The terms “faults” and “anomalies” have been used interchangeably in the

literature. Technically speaking, they have a subtle difference in meaning:

anomalies refer to deviations indicated by sensor measurements, whereas faults

refer to the actual physical manifestations of such deviations in a monitored SSC.
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other words, to locate the fault to a specific component or area of
a structure (i.e., fault isolation) and to determine the root cause of
the fault (i.e., fault identification). Depending on how the SSC will
degrade, an appropriate prognostic model is then applied to
estimate its RUL. Finally, O&M planning is informed by

integrating prognostic calculations and risk assessment of
proposed mitigation actions based on the current and
postulated future health states of the target SSC to achieve
optimal (and ultimately autonomous) control and decision-
making.

Besides traditional modeling tools, the recent advancements in
AI and ML technologies provide opportunities for leveraging
emerging data-driven algorithms to effectively address PHM
problems, especially those of diagnostics and prognostics.
Details will be provided in the corresponding subsections.
Figure 3 illustrates the growing research interest in the

application of one such algorithmic example for PHM: deep
learning (DL), a quickly developing subfield of ML. Through a
systematic review of state-of-the-art DL-based PHM frameworks,
Rezaeianjouybari and Shang (2020) recently presented the

benefits and potentials of DL technologies in the PHM
paradigm, especially in the presence of high-volume and
multidimensional data streams that contain real-time
information about the degradation and health condition of the
system of interest.

Data Acquisition: Emerging Sensor
Technologies
Traditional reliability analyses rely on population statistics rather
than condition-based status identification. Thus, they do not
provide any useful insight regarding a specific SSC’s current or
future state. The process of data acquisition from the target
equipment is necessary to make an accurate, reliable
prediction of individual SSC health. Collected data can be
either event or sensory data (Atamuradov et al., 2017). Event

data are O&M logs containing actions taken by the operator or
maintenance staff in response to events that occurred to the
physical asset and are not the focus of this paper. Sensory data are
measurements tracked via sensors installed on the target

FIGURE 2 | Five modules/steps of PHM [adapted and extended from Coble et al., 2015)].

FIGURE 3 | Breakdown of published papers on DL in PHM between 2013 and September 2019 (modified from Rezaeianjouybari and Shang (2020)) Note

for Figure 3: DL architecture–share of total publications as follows: CNN (convolutional neural network)—32.1%; autoencoder—26.8%; RBM (restricted

Boltzmann machine)—19.6%; RNN (recurrent neural network)—9.2%; hybrid/emergent—6.7%; GAN (generative adversarial network)—5.6%.
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equipment. Various types of sensors are needed to monitor key
health related parameters in nuclear SSCs. Examples of such
parameters include vibration, electrical signatures (current/
voltage) and position measures in active SSCs, localized
change in material properties (mechanical, magnetic, optical,

thermal, or electrical) in passive SSCs, as well as general
measurands of process conditions (such as temperature, flow,
pressure) that may be associated with equipment degradation.

Due to the harsh operating environments (such as radiation,
high pressure, high temperature) encountered in some parts of
the NPP systems, many of the existing sensors that are widely
used in other industries for abovementionedmeasurands may not
survive. This section surveys recent research efforts to improve
sensor survivability and measurement sensitivity for nuclear
instrumentation. Some of the emerging sensing techniques,
including those in use for nuclear applications and those

which are deemed useful in the near future for CM inside
NPPs, are briefly described in the following six subsections
and compared in Table 1.

Magnetic Anisotropy
Magnetic properties of ferromagnetic materials depend on the
direction in which they are measured. This phenomenon is
known as magnetic anisotropy (Stefanita, 2008). Magnetic
Barkhausen noise (MBN)—the electromagnetic waves emitted
during a ferromagnetic material’s magnetization process—allows
one to characterize magnetic anisotropy without regard to its

origin (Spasojevic et al., 1996). Several studies have utilized MBN
to continuously or periodically monitor material structure
degradation, such as in structural steels of nuclear reactors
(McCloy et al., 2013). Another effect produced by the
movement of magnetic domain walls is the magneto acoustic
emission (MAE). Acoustic signals are generated by the sudden
and discontinuous changes in magnetization, which involve
localized deformations (Stefanita, 2008). Simply put, the
magnetic signal from a sensing coil corresponds to MBN

(Deng et al., 2018), whereas the acoustic signal from a
piezoelectric (PZT) sensor corresponds to MAE (Makowska
et al., 2017). Li et al. (2015) investigated magnetic anisotropy
of α-iron containing nonmagnetic particles for checking integrity
of a nuclear RPV and suggested the possibility of using magnetic

technologies for nondestructive evaluation of RPV
embrittlement.

Piezoelectricity
Progress in sensor technology development has enabled the use of
PZT transducers, which can be mounted on the surface or
embedded inside host structural materials. Once they are
integrated with the host structure, PZT elements are utilized
as sensors to deliver signals in real-time. Simultaneously, they can
also serve as actuators to generate diagnostic stress waves into the
structure to detect, localize, and quantify damage in the materials.

Various studies have proposed techniques using piezoelectric thin
films attached to a material surface (Komagome and Matsumoto,
2002; Takahashi and Matsumoto, 2009; Sharma et al., 2012). By
measuring the electric potential distribution on the piezoelectric
film, the location, the aperture shape, and the defect’s depth can
be estimated. The piezoelectric wafer active sensor (PWAS),
another type of PZT sensor, has emerged as one of the major
sensing techniques. PWASs were developed as convenient
enablers for generating and receiving Lamb waves—a type of
ultrasonic guided waves propagating between two parallel
surfaces without much energy loss—for structural health

monitoring in space applications (Cuc et al., 2007). Radiation
influence on their sensing capability and survivability has been
investigated to determine the reliability of PWAS-based methods
for PHM in extreme nuclear environments (Haider et al., 2017).
Additionally, research of PZT sensors using Lamb waves has been
ongoing, and their capabilities for impact localization (Si and
Baier, 2015; Park et al., 2017; Qiu et al., 2018), acoustic emission
detection (Bhuiyan et al., 2018; Bhuiyan and Giurgiutiu, 2018),
and damage detection in isotropic and composite plates

TABLE 1 | Comparison of different sensor technologies.

Sensor technology Location (surface/

embedded/remote)

Operation

type (active/

passive)

Used in nuclear/

non-nuclear

industry

References

Magnetic

anisotropy

MBN Surface Passive Nuclear/non-

nuclear

Spasojevic et al. (1996), Stefanita (2008), McCloy et al. (2013),

Li et al. (2015), Deng et al. (2018)

MAE Surface Passive Nuclear/non-

nuclear

Stefanita (2008), Li et al. (2015), Makowska et al. (2017)

Piezoelectricity Piezoelectric

thin film

Surface Active/passive Nuclear/non-

nuclear

Komagome and Matsumoto (2002), Takahashi and

Matsumoto (2009), Sharma et al. (2012)

PWAS Surface Active/passive Nuclear/non-

nuclear

Cuc et al. (2007), Daw et al. (2014), Si and Baier (2015),

Dziendzikowski et al. (2016), Ebrahimkhanlou et al. (2016),

Haider et al. (2017), Park et al. (2017), Bhuiyan et al. (2018),

Bhuiyan and Giurgiutiu (2018), Hong et al. (2018), Qiu et al.

(2018), Reinhardt et al. (2018)

Optical fiber FBG Surface/embedded Active/passive Nuclear/non-

nuclear

Morana et al. (2016), Chen (2018), Calderoni et al. (2019)

Hybrid PZT/FBG Surface/embedded Active/passive Non-nuclear Qing et al. (2005), Wu et al. (2009), Wang et al. (2020a)

Visual vibrometry Remote Active Non-nuclear Wadhwa et al. (2013), Chen et al. (2017), Davis et al. (2017)

Electrical impedance Surface Active Nuclear/non-

nuclear

Lee et al. (2014), Shin et al. (2016), Fleming et al. (2019)
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(Dziendzikowski et al., 2016; Ebrahimkhanlou et al., 2016; Hong
et al., 2018) have been explored. In-pile instrumentation
development activities using PZT sensors have also been
conducted recently—such as under several DOE Nuclear

Energy programs investigating the use of new fuels and
materials for advanced and existing reactors—to address
crosscutting needs for irradiation testing by providing higher-
fidelity, real-time data with increased accuracy and resolution
from smaller, compact sensors that are less intrusive (Daw et al.,
2014; Reinhardt et al., 2018).

Optical Fiber
Measurement techniques based on optical fibers have
demonstrated the capability to provide multi-sensing
(measuring different operational parameters within a single

sensor configuration, such as temperature, pressure, and
strain) and multiplexing (communicating data collected at
multiple locations through the single line) instrumentation.
They are intrinsically immune to electromagnetic interference,
electrically passive, and widely available at a reasonable cost.
Beyond the use as a light guide, several optical sensors and related
measurement techniques have been considered for nuclear
applications. Fiber Bragg grating (FBG) sensors have been the
focus of many research efforts due to their demonstrated
potential for high-temperature operation in a radioactive
environment and their multiplexing capability. An FBG is

achieved by creating a periodic modulation of the refractive
index of the fiber core, which generates a distributed reflector
characterized by its period and modulation depth. Several recent
studies (Morana et al., 2016; Chen, 2018; Calderoni et al., 2019)
have shown the effectiveness of certain radiation-resistant FBG
sensor types—such as femtosecond-etched FBGs and
germanosilicate singlemode FBGs—in monitoring diverse
physical parameters for in-reactor instrumentation.

Piezoelectric-Fiber Hybrid Sensor System
A hybrid PZT/FBG system offers the best decoupling of actuator

and sensor signals because the two devices apply different
mechanisms for signal transmission. The PZT transducers rely
on electrical channels to actuate or detect dynamic responses,
whereas the FBG sensors rely on optical means to measure quasi-
static or relatively low frequency responses (Wu et al., 2009). In
other words, such a hybrid system uses piezoelectric actuators to
input a controlled excitation to the structure and uses fiber optic
sensors to capture the corresponding structural response (Qing
et al., 2005). More generally, the accuracy and stability of SSC
health monitoring can be potentially improved by constructing a
hybrid sensor network and integrating multi-source sensor

information (Wang et al., 2020a). Such hybrid sensor systems
have not seen applications in NPPs but should not face hurdles
given the respective success of PZT and FBG sensors.

Visual Vibrometry
Visual testing has played a prominent role in inspecting civil
infrastructures. Recently, researchers have been able to use
computer vision techniques to analyze small motions in
videos. Those techniques amplify imperceptibly small motions

in specified frequency bands, effectively producing a visualization
of an object’s operational deflection shapes (Wadhwa et al., 2013).
Video cameras provide the benefit of long-range measurements
and enable the collection of a large amount of data at once since

each pixel can be considered as a sensor. Objects tend to vibrate in
a set of preferred modes, and the shapes and frequencies of the
modes depend on the structure and material properties of an
object. Focusing on the case where geometry is known or fixed,
information about an object’s vibration modes can be extracted
from video and used to make inferences about that object’s
material properties (Davis et al., 2017). A camera-based
vibration measurement methodology was also recently
demonstrated for civil infrastructure by measuring an antenna
tower’s ambient vibration response (Chen et al., 2017). Future
research is needed to investigate the application of visual

vibrometry inside NPPs with radiation exposure, such as for
nuclear containment systems.

Electrical Impedance
Electrical impedance–based sensing is a relatively mature
measurement field with broad nuclear applications, including
passive structure, standby component, and in-pile monitoring.
Lee et al. (2014) proposed laser-based mechanical impedance
(LMI) measurement, utilizing a fiber-guided laser ultrasound
system to generate and measure LMI response for damage
detection in NPP pipes. Shin et al. (2016) suggested an online

monitoring technique for standstill motors based on an
impedance analysis method. More recently, Fleming et al.
(2019) developed an impedance-based diameter gauge
consisting of an electrically conductive concentric ring around
fuel cladding, such that the electrical impedance between the ring
and cladding could be measured.

Condition Monitoring and Fault Detection
Condition monitoring describes a suite of activities for providing
state estimation and early warning of anomalous behavior. It is a
crucial step of the PHM framework, and the effectiveness of PHM

largely depends on the accuracy of the CM process (Ayo-Imoru
and Cilliers, 2018). The process of fault detection attempts to
recognize incipient faults and failures6 from CM data and
quantification of the inconsistencies between the actual and
the expected behavior of the monitored SSC in nominal
conditions (Atamuradov et al., 2017).

The instrumentation and control (I&C) systems in NPPs
receive large amounts of sensory data from various
components to enable and support safe and reliable power
generation by controlling the system variables. However, most
raw data collected by sensors are not ready to be used directly, and

appropriate data manipulation is required. The
multidimensionality of high-volume data and redundancy

6As defined in Isermann and Ballé (1997), a fault is “an unpermitted deviation of at

least one characteristic property or parameter of the SSC from the acceptable/

usual/standard operating conditions;” in contrast, a failure is “a permanent

interruption of the SSC’s ability to perform a required function under specified

conditions.”
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among data attributes are examples of challenges faced by CM
and fault detection. Therefore, the feature selection
process—including choosing high-quality attributes, removing
collinear features, and selecting an optimal subset from the

original data set—is usually needed (Chandrashekar and Sahin,
2014). The objective of feature selection is to find a subset of
variables from the full array of raw sensor data that can efficiently
describe the input data stream while reducing effects from error/
noise or irrelevant information (Guyon and Elisseeff, 2003).

Feature Selection Methods
Feature selection methods can be divided into three categories:
filters, wrappers, and embedded methods. Filter methods pick up
the intrinsic properties of the features measured by univariate
statistics. In general, filter methods use variable ranking

techniques as the principal criteria for variable selection. A
suitable ranking criterion is used to score the input variables,
and thresholds are applied to filter out the less relevant features.
Several studies (John et al., 1994; Blum and Langley, 1997; Kohavi
and John, 1997) have presented various definitions and
measurements for the relevance of a variable. The widely used
metrics such as mutual information, Fisher score, relief,
separability, and correlation are all under the umbrella of the
filter methods. The primary advantage of filter methods is their
speed and ability to scale to large data sets. They are
computationally light and are not prone to overfitting (Lazar

et al., 2012). They also do not rely on the learning algorithm. One
of the drawbacks of filter methods is that the selected subset might
not be optimal because a redundant subset might be obtained.
Besides, essential features that are less informative on their own
but are informative when combined with other features could be
discarded in error (Xu et al., 2010). Bommert et al. (2020) recently
published a comprehensive survey analyzing 22 filter methods
concerning runtime and accuracy in high-dimensional
classification data.

Wrapper methods use the predictor as a black box and the
predictor performance as the objective function to evaluate the

variable subset. They search through the space of feature subsets
using a learning algorithm and calculate the estimated accuracy of
the learning algorithm for each feature that can be added to or
removed from the feature subset. Also, they depend on a
classification algorithm used to evaluate the candidate solutions
(i.e., subsets of features) generated by a search algorithm and thus
are more computationally expensive. Wrapper methods often
provide more accurate results than filter methods (Pudil and
Somol, 2008), although one needs to take extra care to prevent
overfitting and wrappers usually scale poorly to large data sets
(Das, 2001). The selection process is based on a specific learning

algorithm trying to fit on a given data set. In general, it follows a
greedy search approach by evaluating all the possible combinations
of features against the evaluation criterion. For instance, the branch
and bound algorithm (Narendra and Fukunaga, 1977), genetic
algorithm (Goldberg, 1989), particle swarm optimization
(Kennedy and Eberhart, 1995), adaptive floating search (Somol
et al., 1999), recursive feature elimination (Guyon et al., 2002), and
similarity measure (Chen and Chen, 2015) are all under the
category of the wrapper methods.

Embedded methods complete the feature selection process
within the construction of the ML algorithm itself. This
method category combines the qualities of both filters and
wrappers. The search for an optimal subset of features is

embedded into the classifier construction and can be seen as a
search in the combined space of feature subsets and hypotheses.
The embedded methods use an independent measure to decide
the best subsets for a given cardinality and use the learning
algorithm to select the optimal subset among the best subsets
across different cardinalities. Therefore, they are specific to a
given learning algorithm and have the advantage of taking into
consideration the interaction of features with the classification
model (like wrapper methods) while being far less
computationally intensive (like filter methods) (Saeys et al.,
2007). Regularization and tree-based models are some

common methods that use embedded feature selection. The
weights of a classifier can also be used to rank the features for
their removal, and the features can be selected by conducting
sensitivity analysis on the corresponding weights. Several
methods (Archibald and Fann, 2007; Mundra and Rajapakse,
2010; Zhang et al., 2015a) used support vector machines (SVMs)7

as classifiers, optimizing the SVM equation and assigning weights
to each feature. In some other studies (Setiono and Liu, 1997;
Verikas and Bacauskiene, 2002; Romero and Sopena, 2008; Yang
and Ong, 2011), an artificial neural network (ANN) was applied
for the same purpose.

As examples in the nuclear field, Deleplace et al. (2020)
recently used a separability-based feature selection metric
(i.e., filter method) to enhance accuracy of fault detection in
NPP water screen cleaners; Peng et al. (2018a) applied correlation
analysis (i.e., filter method) for dimensionality reduction of NPP
transient data simulated from their personal computer transient
analyzer; Zio et al. (2006) selected features for early transient
detection by means of genetic algorithms (i.e., wrapper method);
Moshkbar-Bakhshayesh (2021) investigated six different feature
selection techniques for parameter estimation in an NPP, among
which the ANN with Bayesian regularization (i.e., embedded

method) gave the most accurate results.

Anomaly Detection Methods
One can attempt to derive first principles–based analytical
models to describe the expected nominal or faulty SSC
behavior if its underlying physical mechanisms/relationships
are well understood. In an engineering system, physics-based
models are attractive for three reasons: first, they consider
mechanical, material, and operational characteristics explicitly;
second, they can be developed and evaluated even before the
system has been built and operated; and third, they can be used to

understand behavior over a broad range of operational and
material conditions (Coble et al., 2012). Unfortunately, it is
challenging, time-consuming, and often impossible to model a
complex, nonlinear system with first principles and mathematical
functions alone (Mirnaghi and Haghighat, 2020). Furthermore,

7SVMs have become the reference for many classification problems because of their

flexibility, computational efficiency, and capacity to handle high-dimensional data.
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the physical foundation in suchmodels is inevitably diluted by the
use of simplifying (sometimes unjustified) assumptions to make
up for runtime performance or incomplete domain knowledge
(Coble et al., 2012; Zhao et al., 2020a). In contrast, data-driven

approaches have shown the potential to characterize system
operations and develop system models due to their
independence in modeling and sole reliance on system data
(Yang and Rizzoni, 2016).

With the development of sensor technologies—which enable
routine collection of online data for numerous system
variables—various anomaly detection approaches based on
multivariate statistics have gained attention. Principal
component analysis (PCA) and partial least squares (PLS) are
two basic multivariate statistical techniques (Severson et al.,
2016), and many applications based on those techniques have

been considered for detecting faults (Harrou et al., 2013; Liu et al.,
2013; Rato and Reis, 2013; Mnassri et al., 2015; Jia and Zhang,
2016; Li et al., 2016; Jiao et al., 2017; Jiang and Yan, 2018). Once
the detection method is selected, a metric for identifying faults is
needed. In PCA- and PLS-based methods, Hotelling’s t-squared
statistic (Hotelling, 1933)—a generalization of Student’s t-statistic
in multivariate hypothesis testing—is widely used to detect
anomalies with specific thresholds. The sum of squared
prediction error (Box, 1954), also known as the Q statistic, is
another metric that denotes the change of the events that are not
explained by the model of principal components (Mujica et al.,

2011). In the nuclear field, Li et al. (2019a) recently applied an
improved PCAmethod using data pre-processing and false alarm
reducing techniques for NPP sensor fault detection, which
reduced the false alarms of both t-squared and Q statistics.

Traditional multivariate statistical-based methods have
inherent limitations. Calculating monitoring statistics and
thresholds of the PCA- or PLS-based methods is made under
the assumptions that data from sensors are Gaussian-distributed
and linearly correlated and that the process is operated under a
single stationary condition (Ge et al., 2013). In practice, most of
these assumptions may be violated. Various research efforts using

data-driven methods have been developed to relax assumptions
in the traditional statistical-based methods. Independent
component analysis (ICA), finding both statistically
independent and non-Gaussian components, is a reliable
alternative for fault detection (Li and Wang, 2002). Stefatos
and Ben Hamza (2010) further introduced the dynamic ICA
technique, extending the advantages behind ICA to detect faults
in a time-correlated environment. Cai and Tian (2014) developed
a non-Gaussian process based on robust ICA to alleviate the effect
of outliers. Ajami and Daneshvar (2012) showed the validity and
effectiveness of ICA for fault detection of a typical turbine system,

which are found in an NPP.
The Gaussian mixture model (GMM) is another commonly

used technique for non-Gaussian data processing. Yu (2012)
proposed a nonlinear kernel GMM-based inferential
monitoring approach for fault detection, which projected data
from a raw measurement space into a high-dimensional kernel
space so that the GMM could be estimated in the feature space
satisfying multivariate Gaussianity. Karami and Wang (2018)
proposed an adaptive GMM for automatic fault detection in

nonlinear systems. Ma et al. (2019) presented a nuclear
application by using a GMM-based early fault detection
method on 30 sets of real data from reciprocating compressors
containing three fault types.

More recently, SVM variants—which do not require the data
to be Gaussian—have emerged. Liu and Zio (2018) developed a
k-nearest neighbors–based fuzzy SVM to reduce the
computational burden and tackle the issue of data imbalance
and outliers. Several applications exist for fault detection in NPP
assets using SVM-based models (Jamil et al., 2018; Lin and Wu,
2019; Meng et al., 2020).

Fault Diagnostics
Within the overarching area of PHM, fault diagnostics begins
after a fault has been detected during the CM process. Diagnostics

is further divided into fault isolation, which seeks to identify the
piece of equipment or component fromwhich the fault originates,
and fault identification, which determines the cause of the fault.
Logically, these two subtasks of fault diagnostics are often
performed as a single analysis. The analysis is based upon
fault symptoms, which primarily take the form of available
features or signatures of the fault, obtained in the form of
sensed data and measurements. A common classification
scheme for diagnostics problems is by modeling method, in
which the problem is approached using either a model-based
or a data-driven method. This is not a completely clear

distinction, though, as some overlap can exist between the two
approaches, and various hybrid approaches can be developed.
One specific area of overlap is in the use of rule-based expert
systems for fault diagnosis. These expert systems rely on “if-then”
rules to diagnose a system’s state given its fault symptoms. It will
be seen that the development of “if-then” rules can be done by
either model-based or data-driven methods.

This review places emphasis on developments in data-driven
methods for PHM. However, a brief review of advances in model-
basedmethods is still deemed beneficial to the reader interested in
fault diagnostics or PHM in general. As such, the following

subsections will survey model-based methods first; then rule-
based expert systems, namely those which rely on fuzzy rule
bases; and finally, data-driven methods. Additionally, the
interested reader can refer to Li et al. (2020) for a second
review of diagnostic methods.

Model-Based Methods
According to Yang (2004), who presented a review of both
model-based and data-driven methods, common model-based
methods include the use of observers or statistical filters, checks of
the parity between plant models and sensor outputs, generation of

residuals in the frequency domain, use of causal graphical models
(such as signed directed graphs and fault trees), and approaches
based on qualitative physics (such as qualitative simulation and
qualitative process theory). A common classification scheme for
these methods is that filtering, parity, and frequency approaches
are grouped as quantitative methods, and that graphical models
and qualitative physics are considered qualitative methods.

In the area of filtering-based methods, Gautam et al. (2019)
used an extended Kalman filter for fault identification and
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performed fault isolation for single and simultaneous multiple-
sensor faults in an NPP with a recursive least squares estimate. An
advancement to the parity space method was performed by Cho
and Jiang (2018) for nuclear applications, in which Fisher

discriminant analysis (FDA) was used to address the issue
where the number of fault classes exceeds the total
independent residual signatures. Lee and Shin (2018) proposed
a method using time-frequency domain reflectometry and
k-means clustering to determine the fault location and faulty
line in a multi-core I&C cable system to assure the safety and
reliability of NPP operation. Advances in qualitative causal
graphs for NPP asset fault diagnosis include those on signed
directed graphs (Liu et al., 2016) and dynamic uncertain causality
graphs (Zhao et al., 2017a).

Rule-Based Methods
Rule-based methods operate by firing specific “if-then” rules to
determine the consequence associated with a measured/detected
fault symptom. Rule bases have traditionally been developed
using expert judgment and prior knowledge about the system.
Although a system based on engineering knowledge may be
attractive, issues in classical rule-based systems can include
rule bases growing to unmanageable size to describe an
increasing number of scenarios and the potential for a rule-
based system to fail when it encounters a situation for which there
is currently no rule (Coble et al., 2012). Another large difficulty

encountered by the standard rule-based method is how to operate
when there is not complete certainty as to which rule should be
activated given the measured symptoms. This situation typically
arises when the symptom cannot be simply classified into a single
qualitative category, such as “low” or “high.” The most common
means of handling this uncertainty is by using a fuzzy rule–based
system. Similar methods have also received some attention, such
as the use of confidence degrees (Deng et al., 2017) or the
development of a belief rule-based expert system (Xu et al.,
2017). However, fuzzy rule–based fault diagnostic tools are
still the most prominently used method in the literature to

deal with uncertainty.
Fuzzy rule bases, and the fuzzy logic in general on which they

operate, act as a nonlinear mapping between inputs and outputs
by means of determining the degree of membership to which
“crisp” inputs belong to “fuzzy” qualitative states and using the
fuzzy states to determine the consequence of the given inputs.
Fuzzy rule bases have found application for fault diagnosis in
various disciplines and numerous components—many of which
are found in NPPs—including induction motors (Shetgaonkar,
2017), other standard rotating machinery (Da Silva et al., 2017),
spur gears (Krishnakumari et al., 2017), bearings (Berredjem and

Benidir, 2018), power transformers (Husain, 2018), diesel
generators (Nain and Varde, 2013), distributed sensor
networks (Bhajantri, 2018), and high-power lithium-ion
batteries (Wu et al., 2017).

Despite their advantages over traditional rule-based fault
diagnosis, fuzzy rule–based systems are the subject of ongoing
research to improve their performance. Work by Yan et al. (2019)
and Rodríguez Ramos et al. (2019) both addressed identifying
multiple faults using fuzzy rule–based systems. Du et al. (2020)

proposed a self-organizing fuzzy logic classifier based on the
harmonic mean difference for application in bearing fault
diagnosis. That approach in particular is an example of a rule-
based method also potentially being classed as a data-driven

method because measured fault features were used to train a fuzzy
classifier. As a means of further characterizing the uncertainty
present in signals and measurements, Wang et al. (2019a)
introduced an interval-valued fuzzy spiking neural P system,8

also demonstrated on an example case with the presence of
multiple faults.

Data-Driven Methods
Data-driven methods generally rely on a large amount of process
data, typically historical, to develop models and reasoning
methods (Yang, 2004). Methods traditionally classed as data-

driven methods comprise ANNs–discriminative methods (for
traditional neural networks), models based on Bayesian
statistics or utilizing Bayesian networks (BNs)—generative
methods, SVMs–discriminative, and PCA–generative (if
unsupervised) or discriminative (supervised). Often,
combinations of these methods are used. In addition, many
more methods considered as data-driven exist, which have
seen less applications in the nuclear field than those presented
in this section.

The ANNs constitute a large subject area in data-driven
methods for fault diagnostics, and research of ANNs is an

extensive field unto itself due to the vast number of techniques
and types of neural networks in use. Lin et al. (2021) developed a
nearly autonomous management and control (NAMAC) system
for advanced reactors and proposed to apply a feed-forward
neural network (FFNN) model for NAMAC’s diagnostic
digital twin (DT) layer; Gomes and Canedo Medeiros (2015)
used a network of Gaussian radial basis functions (RBFs) to
identify accidents in an NPP; Banerjee et al. (2020) demonstrated
use of an ANN to identify nuclear reactor sensor and actuator
faults in the presence of a proportional–integral–derivative
controller; Ayo-Imoru and Cilliers (2018) implemented an

ANN while using a plant simulator as a dynamic reference. A
common theme in the literature sees ANNs working in tandem
with some other technique to transform sensory data into a form
usable by the ANN. As examples, Messai et al. (2015) and Tagaris
et al. (2019) both used data from wavelet transformations; Lee
et al. (2021) transformed the number of plant state variables into a
2D image and used a convolutional neural network (CNN) to
process the image as a means of diagnosing abnormal states;
Saeed et al. (2020) implemented a long short-term memory
(LSTM) network and CNN after performing PCA; and
Ayodeji et al. (2018) tested the effectiveness of an RBF

network and an Elman neural network (ENN) after using
PCA to perform noise filtering for NPP fault diagnosis.

8Spiking neural P systems are one of the recently developed spiking neural network

(SNN) models inspired by the way neurons communicate (Wang et al., 2016).

Known as the third generation of neural networks, SNNs use time to encode

information and employ the concept of individual spikes. Those features make

SNNs biologically more realistic (Fan et al., 2020).
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Another common trend, both in the literature surrounding ANNs
for diagnostics and AI as a whole, is the increased interest in
utilizing DL methods. In application to NPP fault diagnostics, DL
architectures have been applied by Ahmed et al. (2017), Mandal

et al. (2017), Peng et al. (2018a), and Kim et al. (2019). Outside of
the nuclear industry, Yu et al. (2018) applied DL for fault
diagnosis in wind turbines, and Ren et al. (2019) developed a
DL diagnoser in autonomous vehicles.

In the current state of the industry, the application of BNs to
diagnostics is sparser than those of ANNs. Unlike black-box data-
driven methods such as ANNs, the BN approach offers
transparent model interpretability, reasoning under
uncertainty, and graphical representation capability to emulate
the target SSC’s physical behavior (Zhao and Golay, 2020).
However, constructing the BN knowledge base is a

cumbersome and time-consuming process, and problems using
BNs can become intractable for complex scenarios. Wu et al.
(2018a) developed a BN framework for fault diagnosis in NPPs
with multi-source sensor nodes, and Zhao et al. (2020b) proposed
a method to diagnose operational and on-demand failures using
dynamic BNs (DBNs). A large body of work on using BNs as fault
diagnosers also exists outside the nuclear field. Cai et al. (2017)
provided a detailed review of BNs for application in fault
diagnosis. Wang et al. (2018) proposed an improved BN
method by determining the network structure with a hybrid
technique of process knowledge and data-driven correlation,

which was validated with the Tennessee Eastman Process
open-source benchmark (Downs and Vogel, 1993). Areas
where BNs have seen application, in addition to those
discussed in Cai et al. (2017), include the general case of
industrial processes (Yu and Zhao, 2019), hydroelectric
generation systems (Xu et al., 2019), and ground-source heat
pumps (Cai et al., 2014). Lastly, as a method used in combination
with ANNs, Bayesian statistics was used in Tolo et al. (2019) as a
means of connecting a set of neural network architectures for
early accident detection in NPPs.

Research efforts directed toward SVMs have been primarily

focused on improving the optimization of SVM parameters and
then applying the SVM to the problem of fault diagnostics. In the
nuclear field, Wang et al. (2019b) developed an improved particle
swarm optimization, and Zhang et al. (2015b) used a hybrid of the
bare bones particle swarm optimization and differential
evolution. Beyond simply developing a better means of
parameter optimization, Wang et al. (2021) introduced a
hybrid least squares SVM method for fault diagnosis in NPPs.
Another approach beyond optimization was to separately train an
ensemble of SVMs and combine them after training (Ayodeji and
Liu, 2018).

Developments involving PCA are mostly fault diagnosers that
utilize PCA combined with another tool, as was observed during
the discussion of ANNs. An example of using PCA for fault
diagnosis without combination with another major method is
that of Li et al. (2018a), which presented an optimized PCA
method for fault identification and reconstruction of NPP
sensors. An approach fundamental to PCA, however, was the
development of statistical methods to reduce the number of false
alarms raised by PCA (Li et al., 2018b). Approaches having seen

fusion with PCA for fault diagnosis in NPPs include FDA (Jamil
et al., 2016), conditional Gaussian networks (Atoui et al., 2015),
multilevel flow modeling (Peng et al., 2018b), ENNs (Liu et al.,
2017), and SVMs (Xin et al., 2019). Additionally, Wang et al.

(2017) used a semiparametric PCA in combination with a BN.

Prognostics
Prognostics is one of the major tasks in PHM as its results are
directly used to support proactive decision-making for
maintenance practices. The prognostics module is typically
defined as the process of predicting the remaining time before
the equipment can no longer perform a particular function
(i.e., RUL) (Atamuradov et al., 2017). Prognostic calculations
cannot be done in isolation and depend largely on the stages of
monitoring, detection, and diagnostics: the accuracy of these

stages will all affect RUL estimation. It is desirable to develop
generalizable prognostic methods that can accurately predict the
future equipment state given a set of measurements correlated to
the equipment’s current state (Ramuhalli et al., 2020). An
appropriate estimate of the equipment’s RUL can improve
overall plant performance and reduce costs by optimizing
O&M activities. Therefore, prognostics is seen as one of the
most beneficial aspects of PHM (Hess, 2002).

Paradoxically, prognostics is an underdeveloped element of
PHM systems (Vogl et al., 2019), especially in the nuclear
industry (Coble et al., 2015; Ayo-Imoru and Cilliers, 2018).

Unlike fault detection and diagnostics, the prognostic
technology is just emerging and often is deemed immature
due to lack of uncertainty calculations, method verification
and validation, and risk assessment for PHM system
development (Saxena et al., 2010). Although many approaches
to prognostics have been proposed in the literature, the state of
practice is mainly at the research level and much of the published
work has been exploratory. There is no universally accepted
methodology for all prognostic problems (Lee et al., 2011;
Coble et al., 2012). A variety of models have been developed
for application to specific situations or specific classes of

components. As such, prognostic algorithms can be
categorized according to different criteria. Based on the recent
publications (Atamuradov et al., 2017; Lei et al., 2018; Taheri
et al., 2019; Vogl et al., 2019; Baur et al., 2020; Bektas et al., 2020;
Ramuhalli et al., 2020) that contain a comprehensive review of
prognostics, these algorithms can be loosely divided into four
categories according to their basic techniques or methodologies:
physics-based methods, knowledge-based methods, data-driven
methods, and hybrid methods.

Physics-Based Methods
Physics-based prognostic methods attempt to describe the
evolving SSC degradation process based on a comprehensive
mathematical model—usually in the form of a series of
ordinary or partial differential equations—that represents the
underlying physics of failure and encodes the first-principles
input-output relationship. The derived mathematical model is
combined with CM data to identify model parameters, which are
then used to predict the future evolution of SSC health state. A
commonly illustrated physics-based method example in the
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literature is a crack growth model for which Paris’ law (also
known as the Paris–Erdogan equation) (Paris and Erdogan, 1963)
or the Forman equation (Forman, 1972) is used to relate the
growth rate of a fatigue crack to the stress intensity factor and the

number of fatigue cycles. Some other examples include prediction
of bearing deterioration, turbine creep evolution, pipeline tube
degradation, battery life, and gearbox failure (Qiu et al., 2002;
Liao and Kottig, 2014; Hu et al., 2016).

When the failure mechanism is well known and correctly
captured, a physics-based prognostic model should yield
highly robust and accurate RUL prediction for a specific
type of component and require less data for tuning (Baur
et al., 2020). Unfortunately, the underlying physical processes
leading to failure are often not completely understood or
cannot be explicitly modeled. In this case, simplifying

assumptions and estimations must be made to facilitate
model development, raising skepticism about the model’s
applicability to real-world engineering systems (An et al.,
2015; Coble et al., 2015). Due to their nature of being
component-specific, physics-based methods can hardly be
reconfigured to fit alternative domains, and most of them
are only applicable at the component or subsystem level
(Baur et al., 2020; Bektas et al., 2020). When applied to
system-level prognostic problems or when multiple failure
modes need to be represented (which is the case for a
typical SSC in a nuclear facility), the model complexity and

associated computational cost may become prohibitive for
online analysis and decision-making. For these reasons,
Coble et al. (2015) concluded that physics-based methods
would be preferable for high-cost, high-risk equipment,
such as electronic components in which failure data needed
to develop empirical methods might not exist.

Knowledge-Based Methods
Knowledge-based (also known as experience-based or rule-
based) prognostic methods are solely built upon expert
knowledge. Such methods do not rely on a physical model of

the system. Their implementation is relatively simple; however,
they are applicable only in cases where expert knowledge exists to
mimic human-like representation and reasoning with algorithm
families that employ expert systems or fuzzy logics.

Analogous to rule-based diagnostic methods (see “Rule-Based
Methods” Section), expert systems for prognostics aim to translate
explicit knowledge from experts into human-coded “if-then”
rules that closely resemble the way a domain specialist solves
the same problem (Liao and Kottig, 2014). They do not perform
well when a huge number of rules are needed and cannot handle
new situations that are not explicitly coded. Compared with

expert systems, fuzzy logic–based prognostic methods are more
robust and can handle the uncertainty intrinsic to expert
knowledge (Jardine et al., 2006). For complex systems and in
the presence of high-volume data, fuzzy logics are typically used
in conjunction with data-driven approaches—such as ANN to
create a hybrid neuro-fuzzy (NF) model (Lei et al., 2018)—for
systematized dimensionality reduction and membership function
optimization. The stand-alone knowledge-based methods have
been much less studied or recommended by recent publications

than the other method categories (Atamuradov et al., 2017) due
to their inherent limitations.

The similarity-based prognostics is an alternative knowledge-
based approach—such as the one proposed by Liu et al. (2019)

for the RUL prediction of a gas turbine—that removes the
requirements to model qualitative knowledge from domain
experts. Although this approach is sometimes classified under
data-driven methods, it actually follows the rule-based
modeling philosophy of similarity evaluation between a
monitored case and a library of previously known failures
(Taheri et al., 2019; Bektas et al., 2020), which does not give
enough insight into the current or future condition of the
specific SSC in question.

Data-Driven Methods
Data-driven prognostic methods directly use CM data for the
target SSC and do not incorporate first-principles information or
expert knowledge. They rely on trends within the observed data to
construct mathematical models to estimate future states of the
monitored equipment. As will be further elaborated in this
section, the mathematical approaches range from conventional
statistical methods to advanced ML and DL techniques. In data-
driven methods, no mechanism or input-output relationship
needs to be known a priori to produce acceptable results, and
the method development/implementation cost is relatively low
(Diez-Olivan et al., 2019). Therefore, these methods are highly

flexible and can be deployed at any level (component, subsystem,
or system level) of the physical asset, which is of particular
interest to large, complex systems (Ramuhalli et al., 2020; Sun
et al., 2010). As shown in Figure 4, statistical-based and ML/DL-
based data-driven methods have attracted most of the research
attention in machinery prognostics. However, prognostic models
that use a data-driven approach usually require large amounts of
data covering a broad range of conditions, including run-to-failure
data for degradation models. Availability of run-to-failure data
for a particular SSC can be a key challenge (Sutharssan et al.,

FIGURE 4 | Distribution of method categories in 274 recently published

papers on machinery health prognostics [modified from Lei et al. (2018)].
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2015), which is the case of safety-critical systems in NPPs (Coble
et al., 2015). The performance and confidence level of RUL
predictions are bound to the quantity and quality of available
data that are used to infer model parameters and to determine

failure thresholds. Furthermore, data-driven methods cannot
extrapolate beyond the domain spanned by the training data
(Ramuhalli et al., 2020).

Statistical-Based Prognostics
Statistical-based prognostic methods, also known as empirical
prognostic methods, are a grey-box approach that treats asset
degradation as a stochastic process subject to different sources of
variability and uncertainty (Baur et al., 2020). In statistical
methods, RUL is a random variable whose probability density
function is determined based on empirical data. Distinguished by

its data-driven nature and ability to incorporate the uncertainty
of the degradation process, this method category has been heavily
focused upon in the literature, as illustrated in Figure 4 for the
field of machinery prognostics. Multiple review papers (Si et al.,
2011; Ye and Xie, 2015; Lei et al., 2018; Taheri et al., 2019; Baur
et al., 2020; Bektas et al., 2020) have surveyed statistical-based
models systematically and have included their advancements in
recent years. To unify apparently confusing terminologies used by
different authors while minimizing repetition, a summary is
provided in this section.

Statistical-based prognostics can be generally classified into

two subcategories. Models in the first subcategory are based
upon time-series CM data that directly describe the underlying
degradation process of the monitored SSC. Both regression-
and Markovian-based models fall into this subcategory. In
regression-based models, forecasting of time-series data is
achieved by using auto-regressive moving average processes,
which assume that the future state of the target SSC is linearly
dependent of both past observations and normally distributed
random noise. These models are easy to implement with low
computational cost, but their performance is heavily affected by
the trend information of historical observations, which may be

unreliable during incipient failure stage and for long-term
forecasts (Baur et al., 2020). Recent examples of using
regression-based prognostic models include Qian et al.
(2014) for bearing wear-out, Barraza-Barraza et al. (2017)
for crack growth in aluminum plates, Nguyen et al. (2018)
for NPP steam generator degradation, and Mei et al. (2020) for
shear building structural damage. In Markovian-based models,
the degradation process is assumed to transform within a finite
state space that satisfies the Markov (or memoryless) property.
With a well-established theoretical basis to support these
models, the Markovian approach was first introduced into

the field of prognostics by Kharoufeh (2003). It was later
refined by Kharoufeh and Cox (2005) and Kharoufeh et al.
(2010). This version of Markovian models was not widely
adopted by the PHM community because all the health
states would need to be observed directly. Moreover, the
memoryless assumption may not be valid for some real
degradation processes, and a large volume of data or
empirical knowledge is typically required for constructing
the state transition probability matrix.

Models in the second subcategory rely on partially
observed state processes and indirect CM data (i.e., data
that can only indirectly indicate the underlying health state
of the monitored SSC, such as vibration data). Stochastic

filtering-based methods, which are based on the Bayes’
theorem, fall into this subcategory. Built upon DBNs,
Kalman filter and particle filter are two of the most
common types of filtering algorithms. The basic Kalman
filter algorithm is designed for linear Gaussian problems,
and some of its enhanced versions have been proposed; the
particle filter algorithm is a sequential Monte Carlo method
and is a better choice in nonlinear, non-Gaussian systems.
Due to their ability to characterize the future uncertainty of
degradation processes by updating the probabilistic state
estimation from online measurements, both filtering

methods have seen many applications in machinery RUL
prediction (Lei et al., 2018) and were introduced by
Ramuhalli et al. (2010) for prognostics of NPP
components. Similar to, yet simpler than the filtering-based
models, hidden Markov models (Ghahramani, 2001) are
extensions of the standard Markovian approach to
incorporate unobservable health states. The hidden Markov
models and their variants [e.g., hidden semi-Markov models
(Yu, 2010)] have been applied to the PHM framework since
the beginning of this century (Baur et al., 2020). However,
their capabilities are still limited by the memoryless

assumption.

Machine Learning–Based Prognostics
ML-based prognostic methods attempt to learn degradation
patterns and predict RUL directly from available observations
(or extracted features) using ML or DL techniques. Numerous
opportunities have arisen from the continuously fast-growing
trends of AI and ML to effectively address the problems of
prognostics, especially those in complex multidimensional,
nonlinear systems with large amounts of training data
representative of true data range and variability. No prior

physical understanding of the analyzed SSC is required in ML-
based methods. However, as a black-box approach, the results are
hard to interpret due to their lack of transparency. The ML-based
methods generally provide point estimates of RUL instead of a
probabilistic treatment unless additional uncertainty
quantification—usually with Bayesian inference methods—is
performed. A more fundamental comparison of statistical- and
ML-based methods can be found in Bzdok et al. (2018). A variety
of ML algorithms have been used for prognostics, which can be
loosely grouped into variants of ANN, Gaussian process
regression (GPR), and SVM.

TheANNs are the most commonmodeling techniques in data-
driven methods for prognostics (Bektas et al., 2020), just like for
fault diagnostics (see “Data-Driven Methods” Section).
Comprehensive surveys of ANN architectures—in the context
of DL—and their recent applications in machinery prognostics
have been presented by Rezaeianjouybari and Shang (2020),
Khan and Yairi (2018), and Wang et al. (2020b). Among the
multiple types of ANNs in use, FFNNs and recurrent neural
networks (RNNs) are the most popular. The FFNNs are the
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simplest form of ANN and have been mainly used to learn the
relationship between the health index9 and RUL (Lei et al., 2018).
Lin et al. (2021) recently implemented FFNNs into the prognostic
DT of their NAMAC system for advanced reactors. The RNNs,

descendants of FFNN, are distinguished by their ability to handle
time-series data explicitly. Standard RNNs suffer from vanishing
and exploding gradients when learning long-term temporal
dependencies; the gated recurrent unit (GRU) and LSTM
networks are RNN variants to remedy that problem.
Generally, GRUs are computationally less expensive and better
suited for smaller data sets, whereas LSTMs work better with large
data sets (Rezaeianjouybari and Shang, 2020). A limited number
of studies in the literature have applied GRU for prognostic tasks,
such as Zhao et al. (2018) for milling machine cutter tool wear
prediction, Li et al. (2019b) for rolling bearing RUL, and Chen

et al. (2019) for a nonlinear degradation process using the US
National Aeronautics and Space Administration’s commercial
modular aero-propulsion system simulation (C-MAPSS)
turbofan engine data. LSTM-based networks have gained
greater attention in applications of RUL prediction. Some
recent studies include Ramuhalli et al. (2020) using NPP asset
data from the feedwater and condensate system (FWCS) of a
boiling water reactor (BWR); Zhao et al. (2017b) using a
convolutional bidirectional LSTM and raw sensory data from
high-speed milling machine cutters for a real-life tool wear test;
Zhang et al. (2018), Wu et al. (2018b), and Elsheikh et al. (2019)

using different variants of LSTM on the C-MAPSS data set; Shi
and Chehade (2021) using a novel dual-LSTM framework for
both change point detection and RUL prediction on the same
C-MAPSS data; and Bampoula et al. (2021) using LSTM
autoencoders to estimate RUL in a cyber-physical production
system. Besides the above two commonly used ANNs, several
other variants—such as wavelet neural network (Javed et al.,
2014), CNN variants (Wang et al., 2019c; Zhu et al., 2019),
generative adversarial network (Khan et al., 2018), and
reinforcement learning (Kozjek et al., 2020)—can be found in
the literature of prognostics.

The GPR models build upon Gaussian processes—cumulative
damage processes of random variables with joint multivariate
Gaussian distributions—to predict future health states. In
contrast to ANNs, this approach is adaptable to both small-
and large-size data sets, although it often suffers from high
complexity in terms of computation and storage (Rasmussen,
2004). As elaborated in the modules of fault detection
(“Condition Monitoring and Fault Detection” Section) and
diagnostics (“Data-Driven Methods” Section), SVMs are well-
established supervised learning tools based on the core concept
of support vectors. Different SVM variants have been applied to the

machinery RUL prediction (Lei et al., 2018). In the nuclear domain,
Liu et al. (2015) proposed a dynamic-weighted probabilistic SVM
model to evaluate fault scenarios in the reactor coolant pump of a
typical pressurized water reactor, and Ramuhalli et al. (2020)
applied SVM with both a linear kernel and an optimized

Gaussian kernel on a BWR FWCS data source. Compared with
ANNs, SVM-based models usually perform better on small data
sets and can guarantee a unique solution (i.e., global minimum) to
a given problem. However, their performance is strongly correlated

with the selected kernel functions.

Hybrid Methods
The physics-based, knowledge-based, and data-driven prognostic
methods each have their own strengths and limitations. While
appropriate method selection depends on knowledge of the
system behavior and available data, a hybrid or fusion
approach attempts to integrate the advantages of different
method types for improved RUL prediction results.
Additionally, in the real world, no single method is deemed
adequate to account for all the possible faults and failure

modes of an analyzed system (Baur et al., 2020;
Venkatasubramanian, 2005). As shown in Figure 4, this area
of research is still at its early development stage. The hybrid
methods can consist of any combination of the previously
described approaches. Of special interest is the ensemble of
physics- and ML/DL-based techniques where both physics-of-
failure knowledge and experimental data can be properly
leveraged (Dourado and Viana, 2020). In this way, the
combined approach fosters a physical interpretation of the
input-output relationship instead of a black-box treatment
while not requiring as accurate physical understanding or

large-size data as stand-alone counterparts would do (Zhao
et al., 2020a). Another popular direction is to develop hybrid
prognostic tools under the Bayesian framework (e.g., Kalman
filter and particle filter) because of their robustness and ability to
reason under uncertainty. This direction has been the subject of
several research studies and has been applied to various
applications like rotating machinery, batteries, and electrolytic
capacitors (Taheri et al., 2019).

Some hybrid models use one method to predict health state
and another one to estimate RUL, while other models attempt to
apply both method types to RUL forecasting (Ramuhalli et al.,

2020). The selection of the actual model and method is usually
driven by the problem and specific to the application. As an
example in nuclear systems, Gurgen et al. (2020) recently
proposed a physics-guided RNN (with LSTM blocks)
prognostic model within the NAMAC system to predict the
evolution of fuel centerline temperature in loss of flow
transient conditions and demonstrated its superior
performance over pure data-driven prognosis. In other fields,
research related to the hybrid approach has been much more
active (Liao and Kottig, 2014; Atamuradov et al., 2017). Goebel
et al. (2006) combined a physics-based model of fault initiation

and an empirical model of condition-based fault propagation rate
to estimate RUL of avionic roller bearings. Liu et al. (2012)
developed a hybrid method to improve the accuracy and
transparency of long-horizon lithium-ion battery health state
forecasting by leveraging particle filter and ANN predictors
(FFNN, NF and recurrent NF). Eker et al. (2019) presented a
unified approach integrating the short-term prediction of a
physics-based model with the longer-term projection of a
data-driven model and validated with run-to-failure

9The health index, computed from diagnostics, is an indicator of the ability of the

monitored SSC to meet its functional goals.
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observations for crack growth and filter clogging. Yucesan and
Viana (2020) proposed a physics-informed neural networkmodel
that merged physics- and data-driven layers within a deep neural
network to predict main bearing failure in wind turbines.

Decision-Making
Once the current and postulated future health states of a
monitored SSC are determined based on CM data and
diagnostic/prognostic modeling, it is of crucial importance to
be able to act in a timely and correct fashion on possible
(incipient) faults/failures before they progress to becoming
emergencies. Therefore, decision-making is deemed an
indispensable module in the full PHM suite. In this context,
the process of decision-making refers to using outputs from the
previous modules—failure analysis and probability of failure

(POF) estimate from diagnostics, RUL prediction from
prognostics—to inform O&M planning and the selection of
optimal maintenance action among several alternative options
to be executed for the most beneficial operational performance.
This process can be conducted by human labors with different
operator decision support levels, or ultimately through
autonomy-enabled technologies. If properly implemented, this
module will play an impactful and beneficial role in asset integrity
management as well as planning for O&M activities and staffing
levels.

While the study of decision theories has a rich history,

autonomy—i.e., operation without relying on human
intervention—is in large part an advancement that appeared
with the invention of computers and programmable devices that
could perform fairly complex computations. Significant
technological advances in controls and autonomy have been
demonstrated in robotics, aerospace, unmanned aerial vehicles,
and self-driving automobiles. However, autonomous control
has not been extensively studied for any operating NPP or
any new reactor concept (Wood et al., 2017). The nuclear
industry lags far behind some other industries (such as
avionics and electronics) in transferring the current human-

based roles and responsibilities to cutting-edge machines,
systems, and controls. To date, NPP equipment surveillance,
diagnostics, and prognostics have been mostly used for offline
asset management and modest decision support, but those
technologies are not being fully leveraged for intelligent,
optimal O&M planning and control. To achieve the desired
operational efficiency with a reduced staffing burden,
autonomous decision-making capabilities must be developed
and demonstrated in the nuclear power context.

Given the current status and apparent gaps for NPPs, this
section first provides a summary of general approaches used in

decision-making, all of which are driven by data to a certain
extent. [See Cetiner et al. (2014) and Cetiner and Ramuhalli
(2019) for more detailed surveys]. A pioneering study in the
nuclear domain by Ramuhalli et al. (2017) is then briefly
presented to showcase the ability to integrate diagnostics and
prognostics results with supervisory control systems for making
risk-informed autonomous decisions that utilize real-time
information on component conditions.

Decision-Making Methods
Statistical Decision Theory
Statistical decision theory is concerned with making decisions

based on statistical knowledge, which sheds light on the
uncertainties involved in the decision problem. The field of
classical statistics is directed toward using sample information
arising from statistical investigation to make inferences about the
use of the data; in contrast, statistical decision theory attempts to
combine sample information with other aspects of the problem to
make the best decision. In addition to sample information, two
other types of information are typically relevant. The first is the
knowledge of possible consequences of decisions. Often this
knowledge can be quantified by determining the loss that
would be incurred for each possible decision and for various

possible values of uncertainties. The second type, prior
information, generally comes from past experience about
similar situations involving similar uncertainties. The approach
to statistics that seeks to utilize prior information is called
Bayesian analysis. The Bayesian approach is one of the most
commonly referred mathematical methods that are exclusively
used in decision-making processes in a wide range of
applications. Recent examples of applying Bayesian analysis
for decision support in nuclear systems are Cai and Golay
(2021), who proposed a DBN-based framework capable of
analyzing interactions between system status and human
activities for the 2011 Fukushima accident scenarios; and Kim

et al. (2021), who coupled functional modeling with DBN to study
a station blackout scenario leading to a seal loss of coolant
accident in an NPP.

Rule-Based Decision-Making
A rule-based model 1) identifies the system state, 2) associates the
state with a task, and 3) accesses stored rules to perform the task.
Plant operating procedures (OPs) are essentially rule-based
decision modules executed by human operators. OPs are
developed for normal operation to ensure that the plant is run
within the operational limits and conditions and to provide

instructions for the safe conduct of all modes of normal
operation. For abnormal conditions and design-basis accidents,
either event-based or symptom-based procedures are created. A
means of automating the plant procedural system is to implement
the rules through decision tables, which associate conditions with
actions to perform. In a recent paper by Hanna et al. (2020), an
answer set programming representation of an NPP was
presented, which included rules encoding the plant behavior
for fast procedure lookup.

Utility Theory
Economists developed utility theory to explain and predict
human decision-making under risk and uncertainty. The
fundamental assumption underlying utility theory is that of a
rational decision maker who always chooses the alternative for
which the expected value of the utility is maximized. Built into
this assumption is a further supposition that a code of rationality
is accepted and utilized by human decision makers, making it
possible to construct a mathematical representation that allows
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the prediction of human behavior. Utility theory can serve as a
foundational building block for a decision-making system
intended for real-time autonomous control. Given a collection
of seemingly viable alternative solutions, implementation risks

determined for each alternative can be compared to find a
minimum risk solution. Independent loss and gain functions
related to plant OPs or other decision strategies can be formulated
and represented as nonlinear relationships. An exemplary
implementation of the utility theory for NPPs can be found in
Yildiz (2003), where an influence diagram-based advisory model
was proposed to offer decision support to the plant personnel.

Markov Decision Process
For sequential decision problems in stochastic environments, the
same principle of maximum expected utility still applies, but

optimal decision-making will require reasoning about future
sequences of actions and observations. Markov decision
processes (MDPs) provide a mathematical framework for
modeling decision-making in situations where outcomes are
partly random and partly under the control of a decision
maker. MDPs have been used successfully in a wide range of
autonomous control problems—for autonomous driving (Thrun
et al., 2006; Brechtel et al., 2014) in particular—and typically solve
an optimization problem using dynamic programming (DP) for
selecting the right decision. A partially observable MDP
(POMDP) is a generalization of an MDP that models a

decision process in which it is assumed that an MDP
represents the system dynamics but not all states are
observable. Instead, the measurements received by the model
are incomplete and usually noisy predictions. Therefore, the
model must estimate a posterior distribution over a possible
state space. POMDPs compute a value function over a belief
space. A belief is a function of an entire probability distribution.
An exact solution to a POMDP yields the optimal action for each
possible belief over the state space, maximizing the value
function. However, this maximization procedure requires an
iterative algorithm that is far from practical. For any

reasonable number of states, sensors, and actuators, the
complexity of the value function is prohibitive. One
recommended solution to that challenge is the use of
differential DP—a DP-based optimal control algorithm of the
trajectory optimization class—as it optimizes only over the
unconstrained control space. A promising implementation of
POMDP can be found in Kochenderfer (2015) for an automated
airborne collision avoidance system, leading to significant
improvements to safety and operational performance of aircraft.

Discrete Event Models
Many artificial devices and systems and some natural systems
demonstrate only discrete values or outcomes. These types of
systems are best described as discrete event systems (DESs). The
opening and closing of valves or commencing a pump startup
process are examples of discrete event processes in an NPP. The
processes are typically tied to OPs, and plant operators handle
their controls. DESs satisfy the properties that 1) the state-space is
a discrete set and 2) the state-transition mechanism is event-
driven. Time in such systems is not an appropriate independent

variable, and conventional differential equation approaches such
as modern control theory do not apply to them. The DESs are
typically modeled by finite state automata or Petri nets. Those
models use a defined state-transition structure to describe the

possible events in each state of the system, and they differ in how
they represent state information. A detailed comparison between
a finite state automation and a Petri net approach can be found in
Aubry et al. (2016). Decision-making models for DESs have an
established industrial track record; applications range from
robotics to self-driving cars (Costelha and Lima, 2012; Badue
et al., 2021).

From Enhanced Risk Monitors to Supervisory Control:
A Pioneering Study
In the nuclear industry, successful implementations of

autonomous controls seek to address both the probabilistic
and deterministic aspects of decision-making. In other words,
a risk-informed decision-making framework is needed for the
plant control systems to maintain system variables within
prescribed operating ranges. As shown in Figure 5, the
probabilistic portion of the decision-making engine identifies
decision options and provides the likelihood of success for
each option given the status of the plant/systems and
component health. It captures the uncertainties associated with
sensors and those that arise from modeling assumptions used in
inferences. On the other hand, the deterministic portion further

evaluates the identified alternative success paths and generates a
single solution that represents the best operational strategy. The
evaluation metrics determine the cost function for finding the
optimal decision, and additional constraints—such as regulatory
rules and operating guidelines—can be enforced in the
deterministic assessment phase.

A study on risk-informed decision-making using real-time
equipment condition information was recently performed by
Ramuhalli et al. 2017 (Liu et al., 2012), in which the enhanced
risk monitor (ERM) methodology (Ramuhalli et al., 2014) was
integrated with a plant supervisory control system (SCS)

framework (Cetiner et al., 2016). The ERM methodology
interprets components of interest based on sensory data and
streamlines condition assessment, diagnostics, prognostics, and
risk monitors that expand on probabilistic risk assessment (PRA)
by incorporating the dynamically changing plant configuration.
The functionality of ERMs can be further augmented to include
uncertainty bounds and O&M-based risk metrics (in contrast to
the traditional safety-based metrics, such as core damage
frequency). As a proactive asset management philosophy, the
ERM methodology can offer greater situational awareness to
plant supervisory control and O&M planning routines.

The SCS framework is specifically designed to address the need
for plant coordination/control that accounts for component
degradation in its decision-making. Focused upon non-safety
systems, the SCS integrates information from multiple sources,
utilizes predefined success criteria, and evaluates plant control
actions to ensure that the plant operates within a defined
operational envelope. Using RUL and POF information from
ERMs as inputs, the decision-making module in the integrated
ERM-SCS is invoked only if any of the RUL values is estimated to
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be larger than the time to the next outage. Decision-making
involves two steps: the probabilistic assessment using data
acquired from individual ERM terminals to update the event
tree/fault tree models with real-time failure probability

estimations, and the deterministic assessment based on the
multi-attribute utility theory to rank action paths that will not
trip the plant’s safety system and generate an optimal solution for
the operational strategy of the plant. The solution is verified using
a lower-order model of the plant to ensure that the recomputed
RULs of all components fall within the prescribed criteria.

RESEARCH NEEDS FOR DEPLOYMENT OF
PROGNOSTICS AND HEALTH
MANAGEMENT IN NUCLEAR POWER
PLANTS

Implementation of PHM technologies is a key need for improving
the safety and economics of NPPs moving forward with both
LTO and new builds. “Prognostics and Health Management
Framework and Modeling Approaches” Section has provided a
method-centric survey of research in PHM since the 2015 review
(Coble et al., 2015), and it can be seen that most advances and
corresponding modeling approaches have originated in non-
nuclear applications. As such, those developments represent
the current state of the art in PHM technologies and methods.

Adapting those developments to the nuclear industry may face
additional challenges due to the unique operational framework
and licensing requirements of NPPs. Additionally, further
investigation is needed in several general areas to bring PHM
from the research arena to commercial deployment. This section
attempts to identify the overarching research needs and technical
gaps which still must be addressed to support the development
and deployment of PHM in nuclear power generation, including
challenges specific to NPPs, a unifying framework for connecting
PHM and PRA, verification and validation of PHM models, as
well as efforts to evaluate uncertainties and their propagation.

Prognostics and Health Management
Feasibility and Challenges Specific to
Nuclear Power Plants
Even though significant research has been undertaken to develop
PHM—notably, fault detection and diagnostics—for nuclear
applications, very limited pilot applications and

implementations have resulted in success outside a laboratory
setting (Hashemian, 2011; Ramuhalli et al., 2016). The vast
majority of modeling approaches described in “Prognostics and
Health Management Framework and Modeling Approaches”

Section should be widely applicable to nuclear assets in theory;
however, implementing PHM in NPPs is quite different from
implementing it in other industries because the nuclear industry
has been facing a series of specific challenges.

• Operational compatibility: As introduced in “US NPP
Monitoring and Maintenance: Historical Approach and
Motivations for Prognostics and Health Management”
Section, PHM technologies in the nuclear industry
typically differentiate between active and passive SSCs.
PHM for active SSCs is necessary to support the day-to-

day application of O&M planning and controls. The health
conditions of those assets need to be closely integrated into
real-time control decisions to manage in situ degradation of
critical equipment that could challenge the overall system’s
operation or safety. PHM for passive SSCs will inform
longer-term decision-making. The evolving degradation
of these assets under specified operational conditions
informs long-term risk assessment, maintenance
planning, and outage scheduling. For both SSC types, the
deployment of PHM systems should not pose an
unacceptable increase in risk to the existing components/

structures of the plant in terms of instrumentation
constraints (Pham et al., 2012). Typically, the number of
installed sensors available is small in NPPs—particularly for
passive SSCs (Coble et al., 2015)—because operational
compatibility is limited. Novel inspection methods and
advanced sensing techniques are needed to perform
measurements without compromising the plant’s
integrity. Optimizing sensor placement for both legacy
and new reactors is also an actively pursued research
area to provide adequate and minimally intrusive
coverage at a reasonable cost. In the case of new reactors,

such needs should be incorporated in the initial design
phase to avoid retrofitting.

• Sensor reliability: In addition to the compatibility concern,
the sensors are often considered to be a weak link in NPPs
because they are sometimes less reliable than the assets they
monitor (Pham et al., 2012). Advanced sensor validation
and qualification will help overcome sensor reliability issues.
Additionally, sensors that can withstand the harsh operating
environments (such as radiation, high pressure, high

FIGURE 5 | Core elements within the generalized framework for autonomous decision-making.
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temperature) encountered in some parts of the NPP systems
are desired, and their reliability needs to be evaluated
carefully.

• Regulatory scrutiny: Nuclear power generation is justifiably

a heavily regulated industry owing to the risks associated
with plant accidents and radiation exposure to the public.
The introduction of any new technology or methodology
that may impact safety and protection systems in an NPP is
scrutinized to such an extent that many research advances
are never implemented and deployed (Ayo-Imoru and
Cilliers, 2018). This is a significant challenge that makes
adopting PHM in the nuclear industry a very daunting task.
The SSCs in NPPs are categorized as safety-related and non-
safety-related (Pham et al., 2012). The safety-related SSCs
are relied upon to remain functional during and following a

design-basis event. For those SSCs, in many countries,
including the United States, it is impossible to add any
additional I&C or even change the maintenance practice
without prior approval from the regulators. The
implementation of PHM for such assets will certainly
bear heavy burdens of justification for approval. Another
hurdle for PHM of safety-related SSCs is that most of those
assets are stand-by during the plant’s normal operation, and
their CM can be challenging itself regardless of the
regulatory burdens. The non-safety-related SSCs do not
require regulatory treatment. However, their

unavailability may still carry significant risk in terms of
preventing safety-related SSCs from fulfilling their function,
triggering transients, or causing actuation of a safety-related
system. This fact makes non-safety-related SSCs—usually
referred to as the balance of plant assets—ideal candidates
for coverage under the PHM framework.

• Nuclear-applicable standards: As briefly mentioned in
“Prognostics and Health Management Framework and
Modeling Approaches” Section, industrial standards for
CM, diagnostics, and prognostics exist; however, those
standards are largely not specific to the nuclear industry

and have not been reviewed by the NRC (in the
United States) for application to NPPs. Additionally, a
unifying PHM standard that is applicable to generic
assets is still missing. Some of the existing and pending
standards are potentially relevant to SSCs in NPPs though.
As an example, the IEEE P1856 standard covering PHM for
electronic systems has broad applicability in digital I&C
systems of NPPs. Besides, this IEEE standard provides a
framework for developing a general PHM standard for any
complex engineering system, as well as specific standards for
nuclear SSCs. Developing nuclear-applicable PHM

standards is a desired next step. Further efforts will be
needed to have those standards reviewed and endorsed
by the regulators, without which PHM cannot be
deployed for safety-related systems (as mentioned in the
bullet point above).

• Data availability and quality: There is a growing realization
that although the nuclear power enterprise is more than
50 years old, most of the recorded operational data are not
publicly available or useful from the perspective of plant

reliability and production improvement. The underlying
cause is threefold: justifiable protection of intellectual
property and security (for safety-related data), low
availability of run-to-failure data in most SSCs, and lack

of customer needs for relevant data (until very recently).
With most modeling tools reviewed in this paper, the
effectiveness of the proposed PHM system is
unfortunately constrained by the quality of data that can
be ultimately reflected in these models. The data-driven
methods—particularly those powered by ML/DL—require
access to large quantities of data from anomalies observed in
the field to train and validate PHM models. To support
PHM development and deployment in the nuclear industry,
a long-term campaign for coupled model building and data
collection is needed, and initiatives to set a road map for

coordinated data sharing are highly recommended. In the
interim, the artificial/synthetic data obtained from high-
fidelity simulations may be used before moving to actual
operating data as they become available.

• Physics-of-failure knowledge: The NPP consists of various
complex multidimensional, nonlinear engineered systems,
many being exposed to potentially severe thermal, chemical,
and radiological stressors. The underlying physics of certain
failure modes for some systems (and their subsystems/
components) remains too poorly understood to develop
physics-based diagnostic and prognostic models. Research

efforts to enhance physics-of-failure knowledge will also
help with accurate sensor placement, especially for passive
SSCs (Coble et al., 2012). Furthermore, developing high-
fidelity physical models can be expensive and time-
consuming. It is deemed more realistic and appropriate
to leverage both experimental data and physics-of-failure
knowledge within a hybrid framework to fully describe the
failure modes and degradation process of a monitored asset.

Intersection of Prognostics and Health
Management and Probabilistic Risk
Assessment
Opportunities emerge as the modern industry moves toward the
vision of a data-driven “Industry 4.0” paradigm (Farsi and Zio,
2019). Advances in digital I&C systems, low-cost sensors, and
high-performance computing architectures offer new promises
and insights for not only PHM but also PRA as means to enhance
the safety and reliability of complex engineering systems such as
NPPs. So far, PHM has been primarily focused on developing and
implementing algorithms for component-level (or simple
subsystem-level) health assessment. Significant challenges

remain to be solved to develop system-level PHM tools,
including component interactions, environmental effects,
system nonlinearity, uncertainty propagation, and scalability
concern (Atamuradov et al., 2017). On the other hand, PRA is
mainly involved with using risk and reliability engineering
methods to provide a system-level perspective with emphasis
on engineering knowledge and systems logic modeling. Although
PRA is well-established in high-consequence industries (such as
nuclear), it has largely been used as an offline, static methodology,
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and few studies have recently attempted to incorporate online
CM data within the implementation of dynamic PRA (Moradi
and Groth, 2020). Both PHM and PRA technologies bring unique
advantages and disadvantages, and they appear to have

complementary characteristics that can be synergized in the
context of complex engineering systems.

To date, only a handful of research publications have explored
the potential intersection of PHM and PRA for complex systems.
As introduced in “From Enhanced Risk Monitors to Supervisory
Control: A Pioneering Study” Section, Ramuhalli et al. (2014)
developed an ERM framework that integrated component-
specific time-dependent failure information from PHM models
into PRA to provide a dynamic risk measure. Similarly, Yadav
et al. (2018) proposed a dynamic PRA model incorporating plant
component health conditions using a PHM model based on

sensor-based degradation data. More recently, Zhou et al.
(2020) proposed a time-dependent common cause failure
model by integrating degradation states of components
inferred from multi-sensor data and demonstrated using an
experimental study of three identical centrifugal pumps.
Moradi and Groth (2020) reviewed the limited literature on
PHM–PRA intersection and introduced a modernized risk
assessment approach to systematically integrate those two
families of techniques, considering that complex systems can
be modeled as a multilevel hierarchical structure with interactive
components. The component/subsystem-level analysis is

reflective of the model development aspects of PHM, and the
system-level analysis is reflective of those of PRA. In that vein,
further research needs include developing of a physically
interpretable logic model for learning, inference, and
information updating as well as finding suitable risk metrics
for assessing the logic model performance.

Verification and Validation
As compared to the amount of research put toward methods and
frameworks for PHM, the state of research and effort toward
verification and validation (V&V) remains nearly unchanged

from the previous review by Coble et al. (Coble et al., 2015).
A common trend in the literature is the tendency to perform
V&V as one segment of research into a full PHM system, but that
task is typically focused on a specific application rather than being
an investigation of rigorous and robust V&V methods or
frameworks. One work that has addressed this matter (Sun
et al., 2016) introduced four performance metrics and two
quantitative evaluation methods to provide one unified
procedure for determining the trustworthiness of prognostic
systems. That work was focused upon prognostics in general;
however, there are challenges specific to V&V in the nuclear

realm, namely data availability and regulation. Statistically
significant data are lacking for V&V of prognostic algorithms
across all relevant NPP SSCs. A desired action item at the overall
DOE–industry level is to develop benchmark test beds for
common data generation and collaborative method V&V
efforts. Additionally, in the United States, any V&V
methodology proposed will need approval and endorsement
from the NRC, which would require a review of all data and
models proposed to be used from a regulatory standpoint.

Uncertainty Quantification and Propagation
As emphasized throughout “Prognostics and Health
Management Framework and Modeling Approaches” Section,
the need to quantify uncertainty in PHM model predictions is of

paramount importance, especially in data-driven models. A
systematic uncertainty analysis can help reveal both reducible
and irreducible sources of variability to aid in managing the
overall uncertainty in RUL estimates, which is the last step of
PHM before integrating it with O&M planning and control
(Coble et al., 2015). The field of research in quantifying model
uncertainty is not specific to the nuclear industry and is still
evolving. A variety of uncertainty sources are involved in PHM,
all of which can be categorized as a subset of one of the following:
model input uncertainty, model discretization uncertainty, and
model form uncertainty (Ewing et al., 2018; Dewey et al., 2019).

• Model input uncertainty comes from the uncertainty of any
input parameters, such as uncertainty of material properties
(e.g., electric conductivity, elastic modulus), operating
conditions, and sensor readings. The overall accuracy of
sensors in PHM systems can be compromised by several
sources of uncertainty. Firstly, a sensor experiences a natural
variation (e.g., a temperature sensor might have a natural
uncertainty of ±0.5°). The quantization error from the
analog-to-digital converter (ADC) is another source.
Most sensors capture analog data that is then converted

into digital data through an ADC, and loss of information is
unavoidable given an ADC’s inherently limited precision.
Furthermore, as sensors age, their accuracy decreases, and
their variability increases. The level of such degradation is
generally not specified by the manufacturers and is hard to
quantify, and so-called “uncertainty of uncertainties” will
emerge over long lifespans. As a result, to accurately
estimate the overall uncertainty of sensor measurements,
all the sources of uncertainty should be acknowledged and
taken into account.

• Model discretization uncertainty refers to the uncertainty of
treating continuous parameters as discretized variables,

such as modeling space as discretized meshes and time as
time steps. Quantification of this source of uncertainty
could be achieved by comparing analytical solutions or
another numerical analysis with a different level of
discretization.

• Model form uncertainty arises from the inconsistency
between the implemented mathematical model and the
real physical world, notably simplifications and
approximations made in theories and model
implementations. This type of uncertainty source can be
estimated by validating with real-world observations or

high-fidelity simulations.

Typically, Bayesian inference methods are adopted for
quantifying the model prediction uncertainties (Atamuradov
et al., 2017; Ramuhalli et al., 2020) because they naturally
incorporate information about the target SSC with prior
knowledge (e.g., past analysis results, expert opinion) (Coble
et al., 2012). Several Bayesian uncertainty quantification
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approaches have been used in the literature, including BNs (see
“Data-Driven Methods” Section), filtering algorithms (such as
Kalman filter and particle filter, see “Statistical-Based
Prognostics” Section), relevance vector machines (Saha and

Goebel, 2008), Bayesian neural networks (Benker et al., 2020),
and their variants. Some non-Bayesian approaches have also been
proposed for use in the problem of uncertainty estimation, each
of which is well suited to specific algorithms or applications.
Examples of such approaches include closed-form equations,
bootstrapping, and Monte Carlo methods (Coble et al., 2012;
Ramuhalli et al., 2012).

In addition to evaluating uncertainty in each module of a
PHM system, it is also important to understand how uncertainty
in one module can propagate to later modules as well as how
uncertainties for individual components will propagate through

subsystems, systems, and the whole plant. The latter task can be
addressed by prognostic-informed PRA analysis in the ERM
framework (Ramuhalli et al., 2014) to integrate sources of
uncertainty and their propagation through the ERM
calculations. The resulting uncertainty bounds in the ERM
output can then be used to perform a probabilistic assessment
of the changes in plant O&M and safety risk metrics due to
component degradation.

SUMMARY

The contributions of this review paper are threefold: 1) it provides
the nuclear industry community with a systematic overview of the
full PHM spectrum and an updated in-depth survey of its
modeling approaches; 2) it places a strong emphasis on the
state of the art of data-driven methods for PHM, primarily
driven by recent advances in AI and ML; and 3) it identifies
the overarching gaps that still must be addressed by the nuclear

industry and PHM communities to support the development and
deployment of PHM in NPPs.

To achieve safe and economical operation of NPPs in a
competitive energy market, attention is turning to enhanced
methods for plant asset management and greater situational
awareness of the health condition of key SSCs throughout
their life cycles. Interest is growing in applying condition-
based (rather than time-based) maintenance for active SSCs
and automated online monitoring (instead of periodic
inspection) for passive SSCs through the use of PHM
principles. Through appropriate detection, diagnosis &
prognosis, and mitigation actions, a robust PHM system will

allow early warning of degradation in NPPs and will potentially
preclude serious consequences due to faults and failures while
helping alleviate the burden of unnecessary maintenance
activities. Proper application of the full PHM suite will
provide improvements to plant reliability and availability and
effectively reduce O&M costs and labor reliance.

The full PHM suite utilizes sensor technologies to monitor health
conditions, detect anomalies, diagnose faults, predict RUL, and
proactively manage failures in complex engineering systems such
as NPPs. A complete PHM system proceeds in five modules/steps.

1) Data acquisition: The process of data acquisition from the SSC
of interest is necessary to make an accurate, reliable prediction
of its health. Collected data can be either sensory or event data.
Sensory data are measurements tracked via installed sensors

from the target equipment and the focus of “Data Acquisition:
Emerging Sensor Technologies” Section, which introduces
some of the emerging sensing techniques that have been
used for nuclear applications or which are deemed useful
soon for CM inside NPPs.

2) Monitoring and detection: Data collected from a target SSC are
continuously monitored for deviations from normal behavior,
which are indicators of anomalies. As explained in “Condition
Monitoring and Fault Detection” Section, the process of fault
detection attempts to recognize incipient faults and failures.
Multidimensional, high-volume raw data collected by sensors

are not ready to be used directly, and appropriate feature
selection is required. “Feature Selection Methods” Section
describes the three categories of feature selection methods:
filters, wrappers, and embedded methods. In “Anomaly
Detection Methods” Section, research efforts using data-
driven methods for detecting anomalies are highlighted. In
particular, various fault detection approaches based on
multivariate statistics have gained attention.

3) Fault diagnostics: Once an anomaly is detected, it is vital to
diagnose the fault, or in other words, to locate the fault to a
specific component or area of a structure (i.e., fault isolation)

and to determine the root cause of the fault (i.e., fault
identification). As detailed in “Fault Diagnostics” Section,
diagnostics can be approached using either a model-based
method (“Model-Based Methods” Section), a rule-based
method (“Rule-Based Methods” Section), or a data-driven
method (“Data-Driven Methods” Section). The distinctions
are not completely clear, however, and various hybrid
approaches can be developed.

4) Prognostics: Depending on how the SSC will degrade, an
appropriate prognostic model is then applied to estimate its
RUL. Viewed as one of PHM’s most beneficial aspects,

prognostics is paradoxically an underdeveloped module,
especially in the nuclear industry. There is no universally
accepted methodology for all prognostic problems, and a
variety of algorithms have been developed for application
to specific situations or classes of components. Based on a
collection of recent review papers, “Prognostics” Section
divides these algorithms into four model categories:
physics-based (“Physics-Based Methods” Section),
knowledge-based (“Knowledge-Based Methods” Section),
data-driven (“Data-Driven Methods” Section), and hybrid
(“Hybrid Methods” Section) models. The data-driven

prognostic models—from conventional statistical methods
(“Statistical-Based Prognostics” Section) to advanced ML/
DL techniques (“Machine Learning-Based Prognostics”
Section)—are of particular interest to large complex
systems, and they have been the topic of most research in
the field of machinery prognostics. A hybrid approach further
integrates the strengths of different model types for improved
RUL prediction results.
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5) Decision-making: O&M planning is informed by the
integration of prognostic calculations and risk assessment
of proposed mitigation actions based on the current and
postulated future health states of the target SSC to achieve

optimal (and ultimately autonomous) control and decision-
making. As an indispensable step of the broader PHM
philosophy, the module of autonomous decision-making
has not been extensively studied in the nuclear realm.
Given the current status and apparent gaps for NPPs,
“Decision-Making” Section first summaries general
methods used in decision-making (“Decision-Making
Methods” Section). The study presented in “From
Enhanced Risk Monitors to Supervisory Control: A
Pioneering Study” Section showcases the ability to integrate
diagnostics and prognostics results with supervisory control

systems for making risk-informed autonomous decisions that
utilize real-time information on component conditions.

Even though significant research has been undertaken and
more extensive efforts are underway—such as current DOE
projects around development of DTs and autonomous control
capabilities—to develop PHM systems for nuclear applications,
the nuclear industry still lags behind some other industries in
bringing PHM from the research arena to commercial
deployment. “Research Needs for Deployment of Prognostics
and Health Management in Nuclear Power Plants” Section has

identified the overarching research needs and technical gaps
which still must be addressed to support the development and
deployment of PHM in nuclear power generation, including
PHM feasibility and challenges specific to NPPs due to the
industry’s unique operational framework and licensing
requirements; a unifying framework for connecting PHM and

PRA to synergize their complementary characteristics in the
context of complex systems; benchmark test beds for common
data generation and collaborative method V&V efforts; and
systematic uncertainty quantification and propagation,

especially in the case of data-driven methods.
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Methods in Feature Selection. Pattern Recognition Lett. 20, 1157–1163. doi:10.

1016/S0167-8655(99)00083-5

Spasojevic, D., Bukvic, S., Milosevic, S., and Stanley, H. E. (1996). Barkhausen Noise:

Elementary Signals, Power Laws, and Scaling Relations. Phys. Rev. E Stat. Phys.

Plasmas Fluids Relat. Interdiscip. Top. 54, 2531–2546. doi:10.1103/physreve.54.2531

Stefanita, C.-G. (2008). From Bulk to Nano: The Many Sides of Magnetism, 117.

Springer Berlin Heidelberg. doi:10.1007/978-3-540-70548-2

Stefatos, G., and Ben Hamza, A. (2010). Dynamic Independent Component

Analysis Approach for Fault Detection and Diagnosis. Expert Syst. Appl. 37,

8606–8617. doi:10.1016/j.eswa.2010.06.101

Sun, B., Shengkui Zeng, S., Kang, R., and Pecht, M. (2010). “Benefits Analysis of

Prognostics in Systems,” in 2010 Prognostics and System Health Management

Conference. Macao, China. doi:10.1109/PHM.2010.5413503

Sun, B., Jiang, X., Ye, T., and Feng, Q. (2016). A Novel Concept and Assessment

Method for Trustworthiness of Prognostics. Adv. Mech. Eng. 8,

168781401663880–10. doi:10.1177/1687814016638807

Sutharssan, T., Stoyanov, S., Bailey, C., and Yin, C. (2015). Prognostic and Health

Management for Engineering Systems: a Review of the Data-driven Approach

and Algorithms. J. Eng. 2015, 215–222. doi:10.1049/joe.2014.0303

Tagaris, T., Ioannou, G., Sdraka, M., Alexandridis, G., and Stafylopatis, A. (2019).

“Putting Together Wavelet-Based Scaleograms and Convolutional Neural

Networks for Anomaly Detection in Nuclear Reactors,” in ICAAI 2019:

Proceedings of the 2019 3rd International Conference on Advances in

Artificial Intelligence, New York, NY, USA, 237–43. doi:10.1145/3369114.

3369121

Taheri, E., Kolmanovsky, I., and Gusikhin, O. (2019). Survey of Prognostics

Methods for Condition-Based Maintenance in Engineering Systems. arXiv:

1912.02708.

Takahashi, T., and Matsumoto, E. (2009). Measurement and Simulation of

Detection of Defects on Inner wall of Cylindrical Pipe by Piezoelectric

High-Polymer Film. Proc. 6th Annu. Meet. Japan Soc. Maintenology,

Sapporo. Hokkaido, Japan, 409–12.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., et al.

(2006). Stanley: The Robot that Won the DARPA Grand Challenge. J. Field

Robotics 23, 661–692. doi:10.1002/rob.20147

Tolo, S., Tian, X., Bausch, N., Becerra, V., Santhosh, T. V., Vinod, G., et al. (2019).

Robust On-Line Diagnosis Tool for the Early Accident Detection in Nuclear

Power Plants. Reliability Eng. Syst. Saf. 186, 110–119. doi:10.1016/j.ress.2019.

02.015

US DOE (2019). Infographic - Capacity Factor by Energy Source. Washington, DC:

US Department of Energy, Office of Nuclear Energy. Available at: https://www.

energy.gov/ne/downloads/infographic-capacity-factor-energy-source-2019.

US DOE (2020a). What’s the Lifespan for a Nuclear Reactor? Much Longer Than

You Might Think. Washington, DC: US Department of Energy, Office of

Nuclear Energy. Available at: https://www.energy.gov/ne/articles/whats-

lifespan-nuclear-reactor-much-longer-you-might-think.

US DOE (2020b). NRC Approves First US Small Modular Reactor Design.

Washington, DC: US Department of Energy, Office of Nuclear Energy.

Available at: https://www.energy.gov/ne/articles/nrc-approves-first-us-small-

modular-reactor-design

US DOE (2020c). First US Small Modular Boiling Water Reactor Under

Development. Washington, DC: US Department of Energy, Office of

Nuclear Energy. Available at: https://www.energy.gov/ne/articles/first-us-

small-modular-boiling-water-reactor-under-development.

US DOE (2020d). US Department of Energy Announces $160 Million in First

Awards under Advanced Reactor Demonstration Program. Washington, DC:

US Department of Energy, Office of Nuclear Energy. Available at: https://www.

energy.gov/ne/articles/us-department-energy-announces-160-million-first-

awards-under-advanced-reactor.

US EIA (2021a). Nuclear and Coal Will Account for Majority of US Generating

Capacity Retirements in 2021. Washington, DC: US Energy Information

Administration. Available at: https://www.eia.gov/todayinenergy/detail.php?

id�46436.

US EIA (2021b). How Old Are US Nuclear Power Plants, and whenWas the Newest

One Built? US Energy Information Administration. Available at: https://www.eia.

gov/tools/faqs/faq.php?id�228&t�21. Retrieved in January 2021.

US EIA (2021c). Nuclear Explained: US Nuclear Industry. Washington, DC: US

Energy Information Administration. Available at: https://www.eia.gov/

energyexplained/nuclear/us-nuclear-industry.php . Retrieved in January 2021.

US NRC (1995). Requirements for Renewal of Operating Licenses for Nuclear

Power Plants. 10 CFR 54. Final Rule. Available at: https://www.nrc.gov/reading-

rm/doc-collections/cfr/part054/full-text.html Accessed January 29, 2021

US NRC (2021a). Status of Initial License Renewal Applications and Industry

Initiatives. Washington, DC: US Nuclear Regulatory Commission. Available at:

https://www.nrc.gov/reactors/operating/licensing/renewal/applications.html.

Retrieved in January 2021.

US NRC (2021b). Status of Subsequent License Renewal Applications. Washington,

DC: US Nuclear Regulatory Commission. Available at: https://www.nrc.gov/

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 69678526

Zhao et al. Review of PHM in NPPs

https://doi.org/10.1109/TNS.2017.2775163
https://doi.org/10.1109/ICCSE.2019.8845483
https://doi.org/10.1016/j.measurement.2020.107929
https://doi.org/10.1007/s10845-016-1256-4
https://doi.org/10.1109/TNN.2007.909535
https://doi.org/10.1109/TNN.2007.909535
https://doi.org/10.1016/j.pnucene.2019.103066
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1109/AERO.2008.4526631
https://doi.org/10.36001/ijphm.2010.v1i1.1336
https://doi.org/10.1109/72.572104
https://doi.org/10.1016/j.arcontrol.2016.09.001
https://doi.org/10.1016/j.arcontrol.2016.09.001
https://doi.org/10.1016/j.sna.2011.08.019
https://doi.org/10.1109/ICCMC.2017.8282693
https://doi.org/10.1109/ICCMC.2017.8282693
https://doi.org/10.1016/j.ress.2020.107257
https://doi.org/10.1109/TIE.2016.2541089
https://doi.org/10.3390/s150716536
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.1016/S0167-8655(99)00083-5
https://doi.org/10.1016/S0167-8655(99)00083-5
https://doi.org/10.1103/physreve.54.2531
https://doi.org/10.1007/978-3-540-70548-2
https://doi.org/10.1016/j.eswa.2010.06.101
https://doi.org/10.1109/PHM.2010.5413503
https://doi.org/10.1177/1687814016638807
https://doi.org/10.1049/joe.2014.0303
https://doi.org/10.1145/3369114.3369121
https://doi.org/10.1145/3369114.3369121
https://doi.org/10.1002/rob.20147
https://doi.org/10.1016/j.ress.2019.02.015
https://doi.org/10.1016/j.ress.2019.02.015
https://www.energy.gov/ne/downloads/infographic-capacity-factor-energy-source-2019
https://www.energy.gov/ne/downloads/infographic-capacity-factor-energy-source-2019
https://www.energy.gov/ne/articles/whats-lifespan-nuclear-reactor-much-longer-you-might-think
https://www.energy.gov/ne/articles/whats-lifespan-nuclear-reactor-much-longer-you-might-think
https://www.energy.gov/ne/articles/nrc-approves-first-us-small-modular-reactor-design
https://www.energy.gov/ne/articles/nrc-approves-first-us-small-modular-reactor-design
https://www.energy.gov/ne/articles/first-us-small-modular-boiling-water-reactor-under-development
https://www.energy.gov/ne/articles/first-us-small-modular-boiling-water-reactor-under-development
https://www.energy.gov/ne/articles/us-department-energy-announces-160-million-first-awards-under-advanced-reactor
https://www.energy.gov/ne/articles/us-department-energy-announces-160-million-first-awards-under-advanced-reactor
https://www.energy.gov/ne/articles/us-department-energy-announces-160-million-first-awards-under-advanced-reactor
https://www.eia.gov/todayinenergy/detail.php?id=46436
https://www.eia.gov/todayinenergy/detail.php?id=46436
https://www.eia.gov/todayinenergy/detail.php?id=46436
https://www.eia.gov/tools/faqs/faq.php?id=228&t=21
https://www.eia.gov/tools/faqs/faq.php?id=228&t=21
https://www.eia.gov/tools/faqs/faq.php?id=228&t=21
https://www.eia.gov/tools/faqs/faq.php?id=228&t=21
https://www.eia.gov/energyexplained/nuclear/us-nuclear-industry.php
https://www.eia.gov/energyexplained/nuclear/us-nuclear-industry.php
https://www.nrc.gov/reading-rm/doc-collections/cfr/part054/full-text.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part054/full-text.html
https://www.nrc.gov/reactors/operating/licensing/renewal/applications.html
https://www.nrc.gov/reactors/operating/licensing/renewal/subsequent-license-renewal.html
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


reactors/operating/licensing/renewal/subsequent-license-renewal.html. Retrieved

in January 2021.

US NRC (2021c). § 50.65 Requirements for Monitoring the Effectiveness of

Maintenance at Nuclear Power Plants. US Nuclear Regulatory Commission.

Available at: https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/

part050-0065.html. Retrieved in January 2021.

US NRC (2021d). § 50.55a Codes and Standards. US Nuclear Regulatory

Commission. Available at: https://www.nrc.gov/reading-rm/doc-collections/

cfr/part050/part050-0055a.html. Retrieved in January 2021.

Venkatasubramanian, V. (2005). Prognostic and Diagnostic Monitoring of Complex

Systems for Product Lifecycle Management: Challenges and Opportunities.

Comput. Chem. Eng. 29, 1253–1263. doi:10.1016/j.compchemeng.2005.02.026

Verikas, A., and Bacauskiene, M. (2002). Feature Selection with Neural Networks.

Pattern Recognition Lett. 23, 1323–1335. doi:10.1016/S0167-8655(02)00081-8

Vogl, G. W., Weiss, B. A., and Donmez, M. A. (2014). Standards for Prognostics

and Health Management (PHM) Techniques within Manufacturing

Operations. Proc. Annu. Conf. Progn. Heal. Manag. Soc. Fort Worth,

TX, USA.

Vogl, G. W., Weiss, B. A., and Helu, M. (2019). A Review of Diagnostic and

Prognostic Capabilities and Best Practices for Manufacturing. J. Intell. Manuf

30, 79–95. doi:10.1007/s10845-016-1228-8

Wadhwa, N., Peng, B., Yang, B., Zhu, S., Zhang, J., et al. (2021). A Multi-Stage

Hybrid Fault Diagnosis Approach for Operating Conditions of Nuclear Power

Plant. Ann. Nucl. Energ. 153, 108015. doi:10.1016/j.anucene.2020.108015

Wang, X., Song, T., Gong, F., and Zheng, P. (2016). On the Computational Power

of Spiking Neural P Systems with Self-Organization. Sci. Rep. 6, 27624. doi:10.

1038/srep27624

Wang, Y., Liu, Y., Khan, F., and Imtiaz, S. (2017). Semiparametric PCA and

Bayesian Network Based Process Fault Diagnosis Technique. Can. J. Chem. Eng.

95, 1800–1816. doi:10.1002/cjce.22829

Wang, Y., Yang, H., Yuan, X., and Cao, Y. (2018). An Improved Bayesian Network

Method for Fault Diagnosis. IFAC-PapersOnLine 51, 341–346. doi:10.1016/j.

ifacol.2018.09.443

Wang, J., Peng, H., Yu, W., Ming, J., Pérez-Jiménez, M. J., Tao, C., et al. (2019).

Interval-valued Fuzzy Spiking Neural P Systems for Fault Diagnosis of Power

Transmission Networks. Eng. Appl. Artif. Intelligence 82, 102–109. doi:10.1016/

j.engappai.2019.03.014

Wang, H., Peng, M.-j., Wesley Hines, J., Zheng, G.-y., Liu, Y.-k., and Upadhyaya, B.

R. (2019). A Hybrid Fault Diagnosis Methodology with Support Vector

Machine and Improved Particle Swarm Optimization for Nuclear Power

Plants. ISA Trans. 95, 358–371. doi:10.1016/j.isatra.2019.05.016

Wang, B., Lei, Y., Li, N., and Yan, T. (2019). Deep Separable Convolutional

Network for Remaining Useful Life Prediction of Machinery.Mech. Syst. Signal

Process. 134, 106330. doi:10.1016/j.ymssp.2019.106330

Wang, Y., He, M., Sun, L., Wu, D., Wang, Y., and Zou, L. (2020). Improved Kalman

Filtering-Based Information Fusion for Crack Monitoring Using Piezoelectric-

Fiber Hybrid SensorNetwork. Front.Mater. 7, 300. doi:10.3389/fmats.2020.00300

Wang, Y., Zhao, Y., and Addepalli, S. (2020). Remaining Useful Life Prediction

Using Deep Learning Approaches: A Review. Proced. Manufacturing 49, 81–88.

doi:10.1016/j.promfg.2020.06.015

Wang, Z., Xia, H., Peng, B., Yang, B., Zhu, S., Zhang, J., et al. (2021). A Multi-Stage

Hybrid Fault Diagnosis Approach for Operating Conditions of Nuclear Power

Plant. Ann. Nucl. Energ. 153, 108015. doi:10.1016/j.anucene.2020.108015

Wood, R. T., Upadhyaya, B. R., and Floyd, D. C. (2017). An Autonomous Control

Framework for Advanced Reactors. Nucl. Eng. Technol. 49, 896–904. doi:10.

1016/j.net.2017.07.001

Wu, Z., Qing, X. P., and Chang, F-K. (2009). Damage Detection for Composite

Laminate Plates with A Distributed Hybrid PZT/FBG Sensor Network. J. Intell.

Mater. Syst. Struct. 20, 1069–77. doi:10.1177/1045389X08101632

Wu, C., Zhu, C., and Ge, Y. (2017). A New Fault Diagnosis and Prognosis

Technology for High-Power Lithium-Ion Battery. IEEE Trans. Plasma Sci.

45, 1533–1538. doi:10.1109/TPS.2017.2706088

Wu,G., Tong, J., Zhang, L., Zhao, Y., andDuan, Z. (2018). Framework for Fault Diagnosis

with Multi-Source Sensor Nodes in Nuclear Power Plants Based on a Bayesian

Network. Ann. Nucl. Energ. 122, 297–308. doi:10.1016/j.anucene.2018.08.050

Wu, Y., Yuan, M., Dong, S., Lin, L., and Liu, Y. (2018). Remaining Useful Life

Estimation of Engineered Systems Using Vanilla LSTM Neural Networks.

Neurocomputing 275, 167–179. doi:10.1016/j.neucom.2017.05.063

Xin, M., Jiao, W., and Da-zi, L. (2019). Fault Diagnosis of Nuclear Power Plant

Based on Simplified Signed Directed Graph with Principal Component Analysis

and Support Vector Machine. Proc. 2019 Chin. Autom. Congr., Hangzhou,

China, 3082–3087. doi:10.1109/CAC48633.2019.8997001

Xu, Z., King, I., Lyu, M. R., and Jin, R. (2010). Discriminative Semi-supervised

Feature Selection via Manifold Regularization. IEEE Trans. Neural Netw. 21,

1033–47. doi:10.1109/TNN.2010.2047114

Xu, X., Yan, X., Sheng, C., Yuan, C., Xu, D., and Yang, J. (2017). A Belief Rule-Based

Expert System for Fault Diagnosis of Marine Diesel Engines. IEEE Trans. Syst.

Man. Cybern, Syst. 50, 1–17. doi:10.1109/TSMC.2017.2759026

Xu, B., Li, H., Pang, W., Chen, D., Tian, Y., Lei, X., et al. (2019). Bayesian Network

Approach to Fault Diagnosis of a Hydroelectric Generation System. Energy Sci

Eng 7, 1669–1677. doi:10.1002/ese3.383

Yadav, V., Agarwal, V., Gribok, A. V., and Smith, C. L. (2018). Modelling

Component Failure Rates Utilizing Sensor-Based Degradation Data. Proc.

14th Probabilistic Saf. Assess. Manag. Conf. Los Angeles, CA, USA.

Yan, H., Xu, Y., Cai, F., Zhang, H., Zhao, W., and Gerada, C. (2019). PWM-VSI

Fault Diagnosis for a PMSM Drive Based on the Fuzzy Logic Approach. IEEE

Trans. Power Electron. 34, 759–768. doi:10.1109/TPEL.2018.2814615

Yang, J., and Ong, C.-J. (2011). Feature Selection Using Probabilistic Prediction of

Support Vector Regression. IEEE Trans. Neural Networks 22, 954–62. doi:10.

1109/TNN.2011.2128342

Yang, R., and Rizzoni, G. (2016). Comparison of Model Based vs. Data-Driven

Methods for Fault Detection and Isolation in Engine Idle Speed Control System.

Proc. Annu. Conf. Progn. Heal. Manag. Soc. 7, 25–33. doi:10.36001/phmconf.

2016.v8i1.2502

Yang, Q. (2004). Model-based and Data Driven Fault Diagnosis Methods with

Applications to Process Monitoring. Ph.D. Thesis. Cleveland, OH: Case

Western Reserve University.

Ye, Z.-S., and Xie, M. (2015). Stochastic Modelling and Analysis of Degradation for

Highly Reliable Products. Appl. Stochastic Models Bus. Ind. 31, 16–32. doi:10.

1002/asmb.2063

Yildiz, B. (2003). Development of a Hybrid Intelligent System for On-Line Real-

Time Monitoring of Nuclear Power Plant Operations. Ph.D. Thesis. MIT.

Yu, W., and Zhao, C. (2019). Online Fault Diagnosis for Industrial Processes

With Bayesian Network-Based Probabilistic Ensemble Learning Strategy.

IEEE Trans. Automat. Sci. Eng. 16, 1922–1932. doi:10.1109/TASE.2019.

2915286

Yu, D., Chen, Z.M., Xiahou, K. S., Li, M. S., Ji, T. Y., andWu, Q. H. (2018). A Radically

Data-Driven Method for Fault Detection and Diagnosis in Wind Turbines. Int.

J. Electr. Power Energ. Syst. 99, 577–584. doi:10.1016/j.ijepes.2018.01.009

Yu, S.-Z. (2010). Hidden Semi-Markov Models. Artif. Intelligence 174, 215–243.

doi:10.1016/j.artint.2009.11.011

Yu, J. (2012). A Nonlinear Kernel Gaussian Mixture Model Based Inferential

Monitoring Approach for Fault Detection and Diagnosis of Chemical

Processes. Chem. Eng. Sci. 68, 506–519. doi:10.1016/j.ces.2011.10.011

Yucesan, Y. A., and Viana, F. A. C. (2020). A Physics-Informed Neural Network for

Wind TurbineMain Bearing Fatigue. Int. J. Progn Heal Manag. 11, 1–17. doi:10.

36001/ijphm.2020.v11i1.2594

Zhang, X., Wu, G., Dong, Z., and Crawford, C. (2015). Embedded Feature-

Selection Support Vector Machine for Driving Pattern Recognition.

J. Franklin Inst. 352, 669–685. doi:10.1016/j.jfranklin.2014.04.021

Zhang, X., Qiu, D., and Chen, F. (2015). Support Vector Machine with Parameter

Optimization by a Novel HybridMethod and its Application to Fault Diagnosis.

Neurocomputing 149, 641–651. doi:10.1016/j.neucom.2014.08.010

Zhang, J., Wang, P., Yan, R., and Gao, R. X. (2018). Long Short-Term Memory for

Machine Remaining Life Prediction. J. Manufacturing Syst. 48, 78–86. doi:10.

1016/j.jmsy.2018.05.011

Zhao, X., and Golay, M. (2020). Symptom-Based Conditional Failure Probability

Estimation for Selected Structures, Systems, and Components. Technical

Report, MIT-ANP-TR-188. doi:10.13140/RG.2.2.26898.58569

Zhao, Y., Di Maio, F., Zio, E., Zhang, Q., Dong, C.-L., and Zhang, J.-Y. (2017).

Optimization of a Dynamic Uncertain Causality Graph for Fault Diagnosis

in Nuclear Power Plant. Nucl. Sci. Tech. 28, 34. doi:10.1007/s41365-017-

0184-0

Zhao, R., Yan, R., Wang, J., and Mao, K. (2017). Learning to Monitor Machine

Health with Convolutional Bi-Directional LSTM Networks. Sensors 17, 273.

doi:10.3390/s17020273

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 69678527

Zhao et al. Review of PHM in NPPs

https://www.nrc.gov/reactors/operating/licensing/renewal/subsequent-license-renewal.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055a.html
https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0055a.html
https://doi.org/10.1016/j.compchemeng.2005.02.026
https://doi.org/10.1016/S0167-8655(02)00081-8
https://doi.org/10.1007/s10845-016-1228-8
https://doi.org/10.1016/j.anucene.2020.108015
https://doi.org/10.1038/srep27624
https://doi.org/10.1038/srep27624
https://doi.org/10.1002/cjce.22829
https://doi.org/10.1016/j.ifacol.2018.09.443
https://doi.org/10.1016/j.ifacol.2018.09.443
https://doi.org/10.1016/j.engappai.2019.03.014
https://doi.org/10.1016/j.engappai.2019.03.014
https://doi.org/10.1016/j.isatra.2019.05.016
https://doi.org/10.1016/j.ymssp.2019.106330
https://doi.org/10.3389/fmats.2020.00300
https://doi.org/10.1016/j.promfg.2020.06.015
https://doi.org/10.1016/j.anucene.2020.108015
https://doi.org/10.1016/j.net.2017.07.001
https://doi.org/10.1016/j.net.2017.07.001
https://doi.org/10.1177/1045389X08101632
https://doi.org/10.1109/TPS.2017.2706088
https://doi.org/10.1016/j.anucene.2018.08.050
https://doi.org/10.1016/j.neucom.2017.05.063
https://doi.org/10.1109/CAC48633.2019.8997001
https://doi.org/10.1109/TNN.2010.2047114
https://doi.org/10.1109/TSMC.2017.2759026
https://doi.org/10.1002/ese3.383
https://doi.org/10.1109/TPEL.2018.2814615
https://doi.org/10.1109/TNN.2011.2128342
https://doi.org/10.1109/TNN.2011.2128342
https://doi.org/10.36001/phmconf.2016.v8i1.2502
https://doi.org/10.36001/phmconf.2016.v8i1.2502
https://doi.org/10.1002/asmb.2063
https://doi.org/10.1002/asmb.2063
https://doi.org/10.1109/TASE.2019.2915286
https://doi.org/10.1109/TASE.2019.2915286
https://doi.org/10.1016/j.ijepes.2018.01.009
https://doi.org/10.1016/j.artint.2009.11.011
https://doi.org/10.1016/j.ces.2011.10.011
https://doi.org/10.36001/ijphm.2020.v11i1.2594
https://doi.org/10.36001/ijphm.2020.v11i1.2594
https://doi.org/10.1016/j.jfranklin.2014.04.021
https://doi.org/10.1016/j.neucom.2014.08.010
https://doi.org/10.1016/j.jmsy.2018.05.011
https://doi.org/10.1016/j.jmsy.2018.05.011
https://doi.org/10.13140/RG.2.2.26898.58569
https://doi.org/10.1007/s41365-017-0184-0
https://doi.org/10.1007/s41365-017-0184-0
https://doi.org/10.3390/s17020273
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., and Wang, J. (2018). Machine

HealthMonitoring Using Local Feature-Based Gated Recurrent Unit Networks.

IEEE Trans. Ind. Electron. 65, 1539–1548. doi:10.1109/TIE.2017.2733438

Zhao, X., Shirvan, K., Salko, R. K., and Guo, F. (2020). On the Prediction of Critical

Heat Flux Using a Physics-Informed Machine Learning-Aided Framework.

Appl. Therm. Eng. 164, 114540. doi:10.1016/j.applthermaleng.2019.114540

Zhao, Y., Tong, J., Zhang, L., and Wu, G. (2020). Diagnosis of Operational Failures and

On-Demand Failures in Nuclear Power Plants: An Approach Based on Dynamic

BayesianNetworks.Ann.Nucl. Energ. 138, 107181. doi:10.1016/j.anucene.2019.107181

Zhou, T., Droguett, E. L., and Modarres, M. (2020). A Common Cause Failure

Model for Components under Age-Related Degradation. Reliability Eng. Syst.

Saf. 195, 106699. doi:10.1016/j.ress.2019.106699

Zhu, J., Chen, N., and Peng, W. (2019). Estimation of Bearing Remaining Useful

Life Based on Multiscale Convolutional Neural Network. IEEE Trans. Ind.

Electron. 66, 3208–3216. doi:10.1109/TIE.2018.2844856

Zio, E., Baraldi, P., and Pedroni, N. (2006). Selecting Features for Nuclear

Transients Classification by Means of Genetic Algorithms. IEEE Trans.

Nucl. Sci. 53, 1479–1493. doi:10.1109/TNS.2006.873868

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Zhao, Kim, Warns, Wang, Ramuhalli, Cetiner, Kang and Golay.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums is

permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 69678528

Zhao et al. Review of PHM in NPPs

https://doi.org/10.1109/TIE.2017.2733438
https://doi.org/10.1016/j.applthermaleng.2019.114540
https://doi.org/10.1016/j.anucene.2019.107181
https://doi.org/10.1016/j.ress.2019.106699
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1109/TNS.2006.873868
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


GLOSSARY

ADC analog-to-digital converter

AI artificial intelligence

ANN artificial neural network

BN Bayesian network

BWR boiling water reactor

CBM condition-based maintenance

CFR Code of Federal Regulations

CM condition monitoring

C-MAPSS commercial modular aero-propulsion system simulation

CNN convolutional neural network

DBN dynamic Bayesian network

DES discrete event system

DL deep learning

DOE Department of Energy (US)

DP dynamic programming

DT digital twin

ENN Elman neural network

ERM enhanced risk monitor

FBG fiber Bragg grating

FDA Fisher discriminant analysis

FFNN feed-forward neural network

FWCS feedwater and condensate system

GHG greenhouse gas

GMM Gaussian mixture model

GPR Gaussian process regression

GRU gated recurrent unit

I&C instrumentation and control

ICA independent component analysis

IEA International Energy Agency

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

LMI laser-based mechanical impedance

LSTM long short-term memory

LTO long-term operation

LWR light water reactor

MAE magneto acoustic emission

MBN magnetic Barkhausen noise

MDP Markov decision process

ML machine learning

NAMAC nearly autonomous management and control

NEA Nuclear Energy Agency

NF neuro-fuzzy

NPP nuclear power plant

NRC Nuclear Regulatory Commission (US)

O&M operations & maintenance

OP operating procedure

PCA principal component analysis

PHM prognostics and health management

PLS partial least squares

POF probability of failure

POMDP partially observable Markov decision process

PRA probabilistic risk assessment

PWAS piezoelectric wafer active sensor

PZT piezoelectric

RBF radial basis function

RNN recurrent neural network

RPV reactor pressure vessel

RUL remaining useful life

SCS supervisory control system

SMR small modular reactor

SNN spiking neural network

SSC structure, system, and component

SVM support vector machine

US United States

V&V verification and validation
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