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Abstract—There has been a growing interest in monitoring the ongoing
“health” of products and systems in order to predict failures and provide
warning to avoid catastrophic failure. Here, health is defined as the extent
of degradation or deviation from an expected normal condition. While the
application of health monitoring, also referred to as prognostics, is well es-
tablished for assessment of mechanical systems, this is not the case for elec-
tronic systems. However, electronic systems are integral to the function-
ality of most systems today, and their reliability is often critical for system
reliability.

This paper presents the state-of-practice and the current state-of-re-
search in the area of electronics prognostics and health management. Four
current approaches include built-in-test (BIT), use of fuses and canary
devices, monitoring and reasoning of failure precursors, and modeling
accumulated damage based on measured life-cycle loads. Examples are
provided for these different approaches, and the implementation chal-
lenges are discussed.

Index Terms—Built-in-test (BIT), prognostics and health management
(PHM).

I. INTRODUCTION

Most products and systems contain some electronics to provide func-
tionality and performance. These electronics are often the first item of
the product or system to fail [1]–[3]. Assessing the extent of devia-
tion or degradation from an expected normal operating condition (i.e.,
health) for electronics provides data that can be used to meet several
critical goals, which include: 1) advance warning of failures; 2) mini-
mizing unscheduled maintenance, extending maintenance cycles, and
maintaining effectiveness through timely repair actions; 3) reducing the
life-cycle cost of equipment by decreasing inspection costs, downtime,
and inventory; and 4) improving qualification and assisting in the de-
sign and logistical support of fielded and future systems.

The term “diagnostics” pertains to the detection and isolation of
faults or failures. “Prognostics” is the process of predicting a future
state (of reliability) based on current and historic conditions. Prognos-
tics and health management (PHM) is a method that permits the relia-
bility of a system to be evaluated in its actual life-cycle conditions, to
determine the advent of failure, and mitigate the system risks.

Safety-critical mechanical systems and structures—such as propul-
sion engines, aircraft structures, bridges, buildings, roads, pressure
vessels, rotary equipment, and gears—have benefited from advanced
sensor systems developed specifically for in-situ fault diagnosis
(condition monitoring), and health and usage monitoring [4]–[9]. As
a result, a considerable body of knowledge exists on prognostics and
health management of mechanical systems, with research conducted in
establishing failure precursors (such as changes in vibration signatures
of roller bearings and variations in acoustic levels due to wear) and
developing reasoning algorithms.

Degradation in electronics is more difficult to detect and inspect than
most mechanical systems and structures, due to the micro- to nano-
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scale and the complex architecture of most electronic products. And
since faults in electronic products may not necessarily lead to failure
or loss of designated electrical performance or functionality, it is dif-
ficult to quantify product degradation and the progression from faults
to final failure. In addition, there is a significant shortage of knowledge
about the failure precursors in electronics [10]. Consequently, it can
be more difficult to implement diagnostic and prognostic systems that
can directly monitor the faults or conditions in which fault occurs in
electronics.

In recent years, PHM has emerged as one of the key enablers for
achieving efficient system-level maintenance and lowering life-cycle
costs. In November 2002, the U.S. Deputy Under Secretary of Defense
for Logistics and Materiel Readiness released a policy called condi-
tion-based maintenance plus (CBM+), [11].CBM+ represents an ef-
fort to shift unscheduled corrective equipment maintenance of new and
legacy systems to preventive and predictive approaches that schedule
maintenance based upon the evidence of need.

The importance of PHM implementation was explicitly stated in the
DoD 5000.2 policy document on defense acquisition, which states that
“program managers shall optimize operational readiness through af-
fordable, integrated, embedded diagnostics and prognostics, and em-
bedded training and testing, serialized item management, automatic
identification technology (AIT), and iterative technology refreshment”
[12]. Thus, PHM has become a requirement for any system sold to
the DOD. A 2005 survey of eleven CBM programs highlighted “elec-
tronics prognostics” as one of the most needed maintenance-related
features or applications, without regard for cost [13], a view also shared
by the avionics industry [14].

The Electronic Prognostics and Health Management Research
Center at the University of Maryland has categorized the main ap-
proaches for PHM implementation as: 1) built-in-test (BIT); 2) use of
expendable devices, such as “canaries” and fuses that fail earlier than
the host product to provide advance warning of failure; 3) monitoring
and reasoning of parameters that are precursors to impending failure,
such as shifts in performance parameters; and 4) modeling of stress
and damage in electronic parts and structures utilizing exposure
conditions (e.g., usage, temperature, vibration, radiation) to compute
accumulated damage. Challenges are posed for in-situ monitoring,
fault diagnosis, and remaining life prediction.

II. BUILT-IN-TEST

The first efforts in diagnostic health monitoring of electronics in-
volved the use of BIT. BIT is defined as an on-board hardware-software
diagnostic means to identify and locate faults, and includes error detec-
tion and correction circuits, totally self-checking circuits, and self-veri-
fication circuits [15]. The equipment manufacturer sometimes provides
BIT circuitry and software to allow the user to verify system function-
ality by providing access to internal nodes for comparison with known
voltages or data patterns. BIT can also be used to debug, troubleshoot,
and perform preventive maintenance.

Various levels of BIT include: 1) circuit-level BIT [also referred
as built-in self-test (BIST)] for fault logging and diagnostics of indi-
vidual circuits; 2) module- or assembly-level BIT that supports one
or more circuit card assemblies, such as line-replaceable units; and 3)
system-level BIT that performs diagnostics and operational testing of
entire electronic systems. Among the earliest equipment available with
BIT was the HP-3325A (1980) synthesizer function generator. BIT has
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since been used in diverse applications, including oceanographic sys-
tems, multichip modules, large-scale integrated circuits, power supply
systems, avionics, and even passenger entertainment systems for the
Boeing 767 and 777 [16].

Two types of BIT concepts are employed in electronic systems-in-
terruptive BIT (I-BIT) and continuous BIT (C-BIT). The concept be-
hind I-BIT is that normal equipment operation is suspended during BIT
operation. Such BITS are typically initiated by the operator or occur
during the power-up process. The concept behind C-BIT is that equip-
ment is monitored continuously and automatically without affecting
normal operation. Periodic BIT (P-BIT) is an I-BIT system that inter-
rupts normal operation periodically in order to carry out a pseudocon-
tinuous monitoring function. BIT concepts are still being developed to
reduce the occurrence of spurious failure indications.

The nature of BIT depends on the nature of the equipment that it
monitors. System-wide BIT may be centralized, controlling all BIT
functions, or may comprise a number of BIT centers (often at the level
of line-replaceable units) that communicate with each other and with
a master processing unit that processes the results. A centralized BIT
will often require dedicated hardware. BIT can also be incorporated and
processed at the level of line-replaceable units to test the functionality
of key circuits within a unit or on individual circuit cards. The advan-
tage of BIT at this level is to help identify problems closer to the root
cause, thus allowing cost-effective assembly and maintenance [16].

For example, a board-level BIT implemented by Motorola (MBIT),
consisted of a diagnostic hardware and software package designed to
verify the correct operation of board-mounted logical devices [17].
All tests could be executed at boot-up and selected tests ran contin-
uously in the background of user applications. An application pro-
gramming interface (API) was included to provide access to test re-
sults and to control the operation of device tests. The board-level MBIT
consisted of hardware diagnostics and an API to control operation of
the test driver suite. Examples of tested devices are the processor, L2
cache, VMEbus ASIC, ECC RAM, serial EPROM, Flash, NVRAM
and real-time clock. Internal operation tests included checking register
stuck-at conditions, register manipulations, and device setup instruc-
tions. The system-level MBIT, connects to all board-level versions to
enable system-wide testing [17].

One of the early efforts in using monitored BIT and operational loads
for maintenance analysis was the development of the time stress mea-
surement device (TSMD). Broadwater, et al., [18], [19] proposed the
use of a microprocessor-based TSMD that can serve as a single-chip
BIT and maintain logs between users and depot repair facilities. The
primary objective of the TSMD was to store sub-system fault testing
and environmental stress data. Thus, when a sub-system failure oc-
curred, the TSMD would record the time stamp, the BIT fault code and
the system mode. This data could be analyzed with the environmental
stress data measured before, during, and after the fault event, and then
used to constitute a fault signature for future diagnosis. However, this
study identified intermittent failures and fault isolation ambiguity in
electronic systems as a major obstacle in achieving the complete ben-
efits of TSMD. Fault isolation ambiguity occurs in systems where the
BIT is unable to discriminate failures between the BIT computer, var-
ious LRU’s, and system interconnections.

Despite the apparent sophistication of BIT, there has been some con-
cern that the requirement for BIT and the actual capabilities of BIT
are not easy to match. For example, airline experience with modern
avionics systems has indicated that spurious fault detection is unaccept-
ably high. In 1996, Johnson [20] reported that the Lufthansa Airbus A
320 had a daily average of two thousand error logs on its BIT. About
seventy of these corresponded with faults reported by pilots, while an-
other seventy or so pilot reports of faults had no corresponding BIT
log. Of the seventeen line-replaceable units replaced daily, typically

only two were found to have faults that correlated with the fault indi-
cated by the reports. Several studies [16], [20]–[23] conducted on the
use of BIT for fault identification and diagnostics showed that BIT can
be prone to false alarms and can result in unnecessary costly replace-
ment, re-qualification, delayed shipping, and loss of system availability.
However, there is also reason to believe that many of the failures were
“real,” but intermittent in nature [24].

The persistence of such issues over the years is perhaps due to the
fact that the use of BIT has been restricted to low-volume systems.
Thus, BIT has generally not been designed to provide prognostics or re-
maining useful life due to accumulated damage or progression of faults.
It has served primarily as a diagnostic tool.

III. FUSES AND CANARIES

Expendable devices such as fuses and canaries have been a tradi-
tional method of protection for structures and electrical power systems.
Fuses and circuit breakers are examples of elements used in electronic
products to sense excessive current drain and to disconnect power from
the concerned part. Fuses within circuits safeguard parts against voltage
transients or excessive power dissipation, and protect power supplies
from shorted parts. For example, thermostats can be used to sense crit-
ical temperature limiting conditions, and to shut down the product, or
a part of the system, until the temperature returns to normal. In some
products, self-checking circuitry can also be incorporated to sense ab-
normal conditions and to make adjustments to restore normal condi-
tions, or to activate switching means to compensate for the malfunc-
tion [25].

The word “canary” is derived from one of coal mining’s earliest sys-
tems for warning of the presence of hazardous gas using the canary
bird. Because the canary is more sensitive to hazardous gases than hu-
mans, the death or sickening of the canary was an indication to the
miners to get out of the shaft. The canary thus provided an effective
early warning of catastrophic failure by providing advance warning that
was easy to interpret. The same approach, using canaries, has been em-
ployed in prognostic health monitoring (PHM).

Canary devices mounted on the actual product can also be used to
provide advance warning of failure due to specific wearout failure
mechanisms. Mishra, et al., [26] studied the applicability of semicon-
ductor-level health monitors by using pre-calibrated cells (circuits)
located on the same chip with the actual circuitry. The prognostics
cell approach has been commercialized by Ridgetop Group (known
as Sentinel Semiconductor technology) to provide an early-warning
sentinel for upcoming device failures [27]. The prognostic cells are
available for 0.35-, 0.25-, and 0.18-�n complementery metal oxide
semiconductor (CMOS) processes; the power consumption is approx-
imately 600 mW. The cell size is typically 800 �m2 at the 0.25-�m
process size. Currently, prognostic cells are available for semicon-
ductor failure mechanisms such as electrostatic discharge (ESD), hot
carrier, metal migration, dielectric breakdown, and radiation effects.

The time to failure of these prognostic cells can be precalibrated with
respect to the time to failure of the actual product. Because of their
location, these cells contain and experience substantially similar de-
pendencies as does the actual product. These stresses that contribute
to degradation of the circuit include voltage, current, temperature, hu-
midity, and radiation. Since the operational stresses are the same, the
damage rate is expected to be the same for both the circuits. However,
the prognostic cell is designed to fail faster through increased stress on
the cell structure by means of scaling.

Scaling can be achieved by controlled increase of the current density
inside the cells. With the same amount of current passing through both
circuits, if the cross-sectional area of the current-carrying paths in the
cells is decreased, a higher current density is achieved. Further control
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Fig. 1. Advance warning of failure using canary structures.

in current density can be achieved by increasing the voltage level ap-
plied to the cells. A combination of both of these techniques can also
be used. Higher current density leads to higher internal (joule) heating,
causing greater stress on the cells. When a current of higher density
passes through the cells, they are expected to fail faster than the actual
circuit [26].

Fig. 1 shows the failure distribution of the actual product and the ca-
nary health monitors. Under the same environmental and operational
loading conditions, the canary health monitors wearout faster to indi-
cate the impending failure of the actual product. Canaries can be cali-
brated to provide sufficient advance warning of failure (prognostic dis-
tance) to enable appropriate maintenance and replacement activities.
This point can be adjusted to some other early indication level. Mul-
tiple trigger points can also be provided, using multiple cells evenly
spaced over the bathtub curve.

The extension of this approach to board-level failures was proposed
by Anderson, et al., [28], who created canary components (located on
the same printed circuit board) that include the same mechanisms that
lead to failure in actual components. Anderson et al., identified two
prospective failure mechanisms: 1) low cycle fatigue of solder joints,
assessed by monitoring solder joints on and within the canary package
and 2) corrosion monitoring using circuits that will be susceptible to
corrosion. The environmental degradation of these canaries was as-
sessed using accelerated testing, and degradation levels are calibrated
and correlated to actual failure levels of the main system. The corrosion
test device included an electrical circuitry susceptible to various cor-
rosion-induced mechanisms. Impedance Spectroscopy was proposed
for identifying changes in the circuits by measuring the magnitude
and phase angle of impedance as a function of frequency. The change
in impedance characteristics would be correlated to indicate specific
degradation mechanisms.

There remain unanswered questions with the use of fuses and ca-
naries. For example, if a canary monitoring a circuit is replaced, what
is the impact when the product is reenergized? What protective archi-
tectures are appropriate for post-repair operations? What maintenance
guidance must be documented and followed when fail-safe protective
architectures have or have not been included? This approach is diffi-
cult to implement in legacy systems, because it may require requalifi-
cation of the entire system with the canary module. Also, the integra-
tion of fuses and canaries with the host electronic systems could be an
issue with respect to real estate on semiconductors and boards. Finally,
the company has to ensure that the additional cost of implementing
PHM can be recovered through increased operational and maintenance
efficiencies.

IV. MONITORING PRECURSORS TO FAILURE

A failure precursor is an event that signifies impending failure. A
precursor indication is usually a change in a measurable variable that
can be associated with subsequent failure. For example, a shift in the

TABLE I
POTENTIAL FAILURE PRECURSORS FOR ELECTRONICS

output voltage of a power supply would suggest impending failure due
to damaged feedback regulator and opto-isolator circuitry. Failures can
then be predicted by using a causal relationship between a measured
variable that can be correlated with subsequent failure.

A first step in PHM is to select the life-cycle parameters to be moni-
tored. Parameters can be identified based on factors that are crucial for
safety, that are likely to cause catastrophic failures, that are essential for
mission completeness, or that can result in long downtimes. Selection
can also be based on knowledge of the critical parameters established
by past experience and field failure data on similar products and on
qualification testing. More systematic methods, such as failure mode
mechanisms and effects analysis (FMMEA) [29], can be used to deter-
mine parameters that need to be monitored.

Born and Boenning, [30] and Pecht et al., [31] proposed several
measurable parameters that can be used as failure precursors for
electronic switching power supplies, cables and connectors, CMOS
integrated circuits, and voltage-controlled high-frequency oscillators
(see Table I). Testing was conducted to demonstrate the potential of
select parameters to be viable for detection of incipient failures in
electronic systems.

Supply current monitoring is routinely performed for testing of
CMOS integrated circuits (ICs). This method is based upon the notion
that defective circuits produce an abnormal or at least significantly
different amount of current than the current produced by fault-free
circuits. This excess current can be sensed to detect faults. The
power supply current (Idd) can be defined by two elements: the
Iddq-quiescent current and the Iddt-transient or dynamic current.
Iddq is the leakage current drawn by the CMOS circuit when it is
in a stable (quiescent) state. Iddt is the supply current produced by
circuits under test (CUT) during a transition period after the input
has been applied. Iddq has been reported to have the potential for
detecting defects such as bridging, opens, and parasitic transistor
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defects. Operational and environmental stresses such as temperature,
voltage, and radiation can quickly degrade previously undetected
faults and increase the leakage current (Iddq). There is extensive
literature on Iddq testing, but only little has been done on using
Iddq for in-situ PHM. Monitoring Iddq has been more popular than
monitoring Iddt [32]–[34].

Smith and Campbell [31] developed a quiescent current monitor
(QCM) that can detect elevated Iddq current in real time during op-
eration. The QCM performed leakage current measurements on every
transition of the system clock to get maximum coverage of the IC in real
time. Pecuh et al. [33] and Xue and Walker [34] proposed a low-power
built-in current monitor for CMOS devices. In the Pecuh et al. study,
the current monitor was developed and tested on a series of inverters
for simulating open and short faults. Both fault types were successfully
detected and operational speeds of up to 100 MHz were achieved with
negligible effect on the performance of the circuit under test. The cur-
rent sensor developed by Xue and Walker enabled Iddq monitoring at
a resolution level of 10 pA. The system translated the current level into
a digital signal with scan chain readout. This concept was verified by
fabrication on a test chip.

It has been proposed by GMA Industries [35]–[37] to embed molec-
ular test equipment (MTE) within ICs to enable them to continuously
test themselves during normal operation and to provide a visual indica-
tion that they have failed. The molecular test equipment could be fabri-
cated and embedded within the individual integrated circuit in the chip
substrate. The molecular-sized sensor “sea of needles” could be used
to measure voltage, current, and other electrical parameters, as well as
sense changes in the chemical structure of integrated circuits that are
indicative of pending or actual circuit failure. This research focuses on
the development of specialized doping techniques for carbon nanotubes
to form the basic structure comprising the sensors. The integration of
these sensors within conventional IC circuit devices, as well as the use
of molecular wires for the interconnection of sensor networks, is an
important factor in this research. However, no product or prototype has
been developed to date.

Kanniche and Mamat-Ibrahim [38] developed an algorithm for
health monitoring of pulse-width modulation (PWM) voltage source
inverters (VSIs). The algorithm was designed to detect and identify
transistor open circuit faults and intermittent misfiring faults occurring
in electronic drives. The mathematical foundations of the algorithm
were based on discrete wavelet transform (DWT) and fuzzy logic (FL).
Current waveforms were monitored and continuously analyzed using
DWT to identify faults that may occur due to constant stress, voltage
swings, rapid speed variations, frequent stop/start-ups, and constant
overloads. After fault detection, “if–then” fuzzy rules were used for
very large scale integration (VLSI) fault diagnosis to pinpoint the fault
device. The algorithm was demonstrated to detect certain intermittent
faults under laboratory experimental conditions.

Lall et al. [39], [40] have developed a damage precursor based
residual life computation approach for various package elements
to prognosticate electronic systems prior to the appearance of any
macro-indicators of damage. In order to implement the system-health
monitoring, precursor variables have been identified for various
package elements and failure mechanisms. Model-algorithms have
been developed to correlate precursors with impending failure for
computation of residual life. Package elements investigated include,
first-level interconnects, dielectrics, chip interconnects, underfills,
and semiconductors. Examples of damage proxies include phase
growth rate of solder interconnects, intermetallics, normal stress at
chip interface, and interfacial shear stress. Lall et al. suggest that the
precursor based damage computation approach eliminates the need for
knowledge of prior or posterior operational stresses and enables the
management of system reliability of deployed nonpristine materials

TABLE II
MONITORING PARAMETERS BASED ON RELIABILITY

CONCERNS IN HARD DRIVES

under unknown loading conditions. The approach can be used on
redeployed parts, subsystems, and systems, since it does not depend
on availability of prior stress histories.

Self-monitoring analysis and reporting technology (SMART) cur-
rently employed in select computing equipment for hard disk drives
(HDDs) is another example of precursor monitoring [41], [42]. HDD
operating parameters, including the flying height of the head, error
counts, variations in spin time, temperature, and data transfer rates, are
monitored to provide advance warning of failures (see Table II). This
is achieved through an interface between the computer’s start-up pro-
gram (BIOS) and the hard disk drive.

Systems for early fault detection and failure prediction are being
developed using variables such as current, voltage, and temperature,
continuously monitored at various locations inside the system. Sun
Microsystems refers to this approach as continuous system telemetry
harnesses [43]. Along with sensor information, soft performance
parameters such as loads, throughputs, queue lengths, and bit error
rates are tracked. Prior to PHM implementation, characterization
is conducted by monitoring the signals (of different variables) to
learn a multivariate state estimation technique (MSET) model. Once
the model is established using this data, it is used to predict the
signal of a particular variable based on learned correlations among
all variables [44]. Based on the expected variability in the value
of a particular variable during application, a sequential probability
ratio test (SPRT) is constructed. During actual monitoring the SPRT
will be used to detect the deviations of the actual signal from the
expected signal based on distributions (and not on single threshold
value) [45], [46].

During implementation, the performance variables are continuously
monitored using sensors already existing in Sun’s servers and recorded
in a circular file structure. The file retains data collected at high sam-
pling rates for 72 h and data collected at a lower sampling rate for 30
days. For each signal being monitored, an expected signal is generated
using the MSET model. This signal is generated in real time based on
learned correlations during characterization (see Fig. 2). A new signal
of residuals is generated, which is the arithmetic difference of the ac-
tual and expected time-series signal values. These differences are used
as input to the SPRT model, which continuously analyzes the devia-
tions and provides an alarm if the deviations are of concern [44]. The
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Fig. 2. SUN’s approach to PHM.

monitored data is analyzed to 1) provide alarms based on leading in-
dicators of failure and 2) enable use of monitored signals for fault di-
agnosis, root cause analysis of no-fault-founds (NFF), and analysis of
faults due to software aging [43], [47].

Brown et al. [48] demonstrated that the remaining useful life of a
commercial global positioning system (GPS) system can be predicted
by using precursor to failure approach. The failure modes for GPS
included precision failure due to an increase in position error and
solution failure due to increased outage probability. These failure pro-
gressions were monitored in-situ by recording system-level features
reported using the national marine electronics association (NMEA)
protocol 0183. The GPS was characterized to collect the principal
feature value for a range of operating conditions. The approach was
validated by conducting accelerated thermal cycling of the GPS with
the offset of the principal feature value measured in-situ. Based on
experimental results, parametric models were developed to correlate
the offset in the principal feature value with solution failure. During the
experiment the BIT provided no indication of an impending solution
failure [48].

In general to implement a precursor reasoning-based PHM system, it
is necessary to identify the precursor variables for monitoring, and then
develop a reasoning algorithm to correlate the change in the precursor
variable with the impending failure. This characterization is typically
performed by measuring the precursor variable under an expected or
accelerated usage profile. Based on the characterization, a model is
developed—typically a parametric curve-fit, neural-network, Bayesian
network, or a time-series trending of a precursor signal. This approach
assumes that there is one or more expected usage profiles that are pre-
dictable and can be simulated in a laboratory setup. In some products
the usage profiles are predictable, but this is not always true.

For a fielded product with highly varying usage profiles, an unex-
pected change in the usage profile could result in a different (nonchar-
acterized) change in the precursor signal. If the precursor reasoning
model is not characterized to factor in the uncertainty in life-cycle
usage and environmental profiles, it may provide false alarms. Addi-
tionally, it may not always be possible to characterize the precursor sig-
nals under all possible usage scenarios (assuming they are known and
can be simulated). Thus, the characterization and model development
process can often be time-consuming and costly and may not work.

V. MONITORING ENVIRONMENTAL AND USAGE LOADS

The life-cycle environment of a product consists of manufac-
turing, storage, handling, operating and nonoperating conditions. The
life-cycle loads (Table III), either individually or in various combina-
tions, may lead to performance or physical degradation of the product
and reduce its service life [10]. The extent and rate of product degra-
dation depends upon the magnitude and duration of exposure (usage
rate, frequency, and severity) to such loads. If one can measure these
loads in-situ, the load profiles can be used in conjunction with damage
models to assess the degradation due to cumulative load exposures.

The assessment of the impact of life-cycle usage and environmental
loads on electronic structures and components was studied by Ramakr-
ishnan and Pecht [49]. This study introduced the life consumption mon-

TABLE III
EXAMPLES OF LIFE-CYCLE LOADS

Fig. 3. CALCE life consumption monitoring methodology.

itoring (LCM) methodology (Fig. 3), which combined in-situ measured
loads with physics-based stress and damage models for assessing the
life consumed.

The application of the LCM methodology to electronics PHM was
illustrated with two case studies [49], [50]. The test vehicle consisted
of an electronic component-board assembly placed under the hood of
an automobile and subjected to normal driving conditions in the Wash-
ington, DC, area. The test board incorporated eight surface-mount lead-
less inductors soldered onto an FR-4 substrate using eutectic tin-lead
solder. Solder joint fatigue was identified as the dominant failure mech-
anism. Temperature and vibrations were measured in-situ on the board
in the application environment. Using the monitored environmental
data, stress and damage models were developed and used to estimate
consumed life. The LCM methodology accurately predicted remaining
life.

Mathew et al. [51] applied the LCM methodology in conducting a
prognostic remaining-life assessment of circuit cards inside a space
shuttle solid rocket booster (SRB). Vibration time history recorded on
the SRB from the prelaunch stage to splashdown were used in con-
junction with physics-based models to assess the damage caused due
to vibration and shock loads. Using the entire life-cycle loading profile
of the SRBs, the remaining life of the components and structures on the
circuit cards were predicted. It was determined that an electrical failure
was not expected within another 40 missions. However, vibration and
shock analysis exposed an unexpected failure of the circuit card due
to a broken aluminum bracket mounted on the circuit card. Damage
accumulation analysis determined that the aluminum brackets had lost
significant life due to shock loading.

Shetty et al. [52] applied the LCM methodology for conducting a
prognostic remaining-life assessment of the end effector electronics
unit (EEEU) inside the robotic arm of the space shuttle remote ma-
nipulator system (SMRS). A life-cycle loading profile for thermal and
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Fig. 4. CALCE PHM using monitored load histories.

vibrational loads was developed for the EEEU boards. Damage assess-
ment was conducted using physics-based mechanical and thermome-
chanical damage models. A prognostic estimate using a combination of
damage models, inspection, and accelerated testing showed that there
was little degradation in the electronics and they could be expected to
last another 20 years.

Vichare et al. [10] outlined generic strategies for in-situ load
monitoring, including selecting appropriate parameters to monitor
and designing an effective monitoring plan. Methods for processing
the raw sensor data during in-situ monitoring to reduce the memory
requirements and power consumption of the monitoring device were
presented. Approaches were also presented for embedding intelligent
front-end data processing capabilities in monitoring systems to enable
data reduction and simplification (without sacrificing relevant load
information) prior to input in damage models for health assessment
and prognostics.

Embedding the data reduction and load parameter extraction algo-
rithms in to the sensor modules as suggested by Vichare et al. [10]
can lead to reduction in on-board storage space, low power consump-
tion, and uninterrupted data collection over longer durations. As shown
in Fig. 4, a time-load signal can be monitored in-situ using sensors,
and further processed to extract (in this case) cyclic range (�s), cyclic
mean load (Smean), and rate of change of load (ds/dt) using embedded
load extraction algorithms. The extracted load parameters can be stored
in appropriately binned histograms to achieve further data reduction.
After the binned data is downloaded, it can be used to estimate the dis-
tributions of the load parameters. The usage history is used for damage
accumulation and remaining life prediction.

Efforts to monitor life-cycle load data on avionics modules can be
found in time-stress measurement device (TSMD) studies. Over the
years the TSMD designs have been upgraded using advanced sensors
[53], and miniaturized TSMD’s are being developed due to advances
in microprocessor and nonvolatile memory technologies [54].

Searls et al. [55] undertook in-situ temperature measurements in
both notebook and desktop computers used in different parts of the
world. In terms of the commercial applications of this approach, IBM
has installed temperature sensors on hard drives (Drive-TIP) [56] to
mitigate risks due to severe temperature conditions, such as thermal
tilt of the disk stack and actuator arm, off-track writing, data corrup-
tions on adjacent cylinders, and outgassing of lubricants on the spindle
motor. The sensor is controlled using a dedicated algorithm to generate
errors and control fan speeds.

Strategies for efficient in-situ health monitoring of notebook com-
puters were provided by Vichare et al. [57]. In this study, the authors

monitored and statistically analyzed the temperatures inside a note-
book computer, including those experienced during usage, storage, and
transportation, and discussed the need to collect such data both to im-
prove the thermal design of the product and to monitor prognostic
health. The temperature data was processed using two algorithms: 1)
ordered overall range (OOR) to convert an irregular time-temperature
history into peaks and valleys and also to remove noise due to small
cycles and sensor variations and 2) a three-parameter Rainflow algo-
rithm to process the OOR results to extract full and half cycles with
cyclic range, mean, and ramp rates. The effects of power cycles, usage
history, CPU computing resources usage, and external thermal envi-
ronment on peak transient thermal loads were characterized.

The European Union funded a project from September 2001 through
February 2005 named environmental life-cycle information manage-
ment and acquisition for consumer products (ELIMA), which aimed
to develop ways of better managing the life cycles of products using
technology to collect vital information during a product’s life to lead
to better and more sustainable products [58], [59]. Though the focus of
this work was not on prognostics, the project demonstrated the moni-
toring of the life-cycle conditions of electronic products by field trials.
ELIMA partners built and tested two special prototype consumer prod-
ucts with data collection features, and investigated the implications for
producers, users, and recyclers. The ELIMA technology included sen-
sors and memory built into the product to record dynamic data such as
operation time, temperature, and power consumption. This was added
to static data about materials and manufacture. Both a direct commu-
nication (via GSM module) as well as a two-step communication with
the database (RFID data retrieval followed by an Internet data transfer)
was applied. As a case study, the member companies monitored the ap-
plication conditions of a game console and a household fridge-freezer.

Skormin et al. [60] developed a data mining model based for failure
prognostics of avionics units. The model provides a means of effi-
ciently clustering data on parameters measured during operation, such
as vibration, temperature, power supply, functional overload, and air
pressure. These parameters are monitored in-situ on the flight using
time-stress measurement devices. The objectives of the model are: 1)
to investigate the role of measured environmental factors in the devel-
opment of particular failure; 2) to investigate the role of combined ef-
fects of several factors; and 3) to reevaluate the probability of failure
on the basis of known exposure to particular adverse conditions. Un-
like the physics-based assessments made by Ramakrishnan and Pecht
[49], the data mining model relies on the statistical data available from
the records of a time-stress measurement device (TSMD) on cumu-
lative exposure to environmental factors and operational conditions.
The TSMD records, along with calculations of probability of failure
of avionics units, are used for developing the prognostic model. The
data mining enables an understanding of the usage history and allows
tracing the cause of failure to individual operational and environmental
conditions.

VI. PHM INTEGRATION

Implementing an effective PHM strategy for an entire system will in-
volve integrating different health monitoring approaches. An extensive
analysis may be required to determine the weak link(s) in the system to
enable a more focused monitoring process. Once the potential failure
modes, mechanisms, and effects have been identified, a combination
of BIT, canaries, precursor reasoning, and life-cycle damage modeling
may be necessary, depending on the failure attributes. In fact, different
approaches can be implemented based on the same sensor data. For ex-
ample, operational loads, such as temperature, voltage, supply current,
and acceleration, can be collected by BIT. The current and temperature
data can be used with damage models to calculate the susceptibility to
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electromigration between metallizations. Also, the supply-current data
can be used with precursor reasoning algorithms for identifying signs
of transistor degradation.

Case studies of the integration of different approaches of PHM
can be found in work by CALCE [61], [52] and R. Orsagh et al.
[62], which used physics-based models for damage accumulation and
precursor reasoning for system assessment. A detailed FMMEA1 [29]
was conducted and time to failure was assessed for the failure mech-
anisms identified by the FMMEA using appropriate failure models.
The time-to-failures were ranked and a risk assessment was made
based on severity and occurrence before PHM implementation [61].
In another PHM study [63], an off-the-shelf 50-W, dc-to-dc converter
from a commercial power supply manufacturer was used. As in the
CALCE studies [61], [52], a detailed a-priori analysis of power supply
reliability issues was conducted in this case using the Pareto analysis
of failures reported by the manufacturer. PHM techniques were then
aimed at monitoring and predicting the most common failures.

Future electronic system designs will integrate sensing and pro-
cessing modules that will enable in-situ PHM. Advances in sensors,
microprocessors, compact nonvolatile memory, battery technologies,
and wireless telemetry have already enabled the implementation of
sensor modules and autonomous data loggers. For in-situ health mon-
itoring, integrated, miniaturized, low-power, reliable sensor systems
operated using portable power supplies (such as batteries) are being
developed. These sensor systems have self-contained architecture
requiring minimum or no intrusion into the host product in addition
to specialized sensors for monitoring localized parameters. Sensors
with embedded algorithms will enable fault detection, diagnostics,
and remaining life prognostics that would ultimately drive the supply
chain. The prognostic information will be linked via wireless com-
munications to relay needs to maintenance officers and automatic
identification techniques (RFID being the most common current ex-
ample) will be used to locate parts in the supply chain—all integrated
through a secure web portal to acquire and deliver replacement parts
quickly on an as-needed basis.
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