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ABSTRACT

The thermo-acoustic instabilities arising in combustion pro-

cesses cause significant deterioration and safety issues in var-

ious human-engineered systems such as land and air based

gas turbine engines. The phenomenon is described as self-

sustaining and having large amplitude pressure oscillations

with varying spatial scales of periodic coherent vortex shed-

ding. Early detection and close monitoring of combustion

instability are the keys to extending the remaining useful life

(RUL) of any gas turbine engine. However, such impend-

ing instability to a stable combustion is extremely difficult to

detect only from pressure data due to its sudden (bifurcation-

type) nature. Toolchains that are able to detect early instabil-

ity occurrence have transformative impacts on the safety and

performance of modern engines. This paper proposes an end-

to-end deep convolutional selective autoencoder approach to

capture the rich information in hi-speed flame video for insta-

bility prognostics. In this context, an autoencoder is trained

to selectively mask stable flame and allow unstable flame im-

age frames. Performance comparison is done with a well-

known image processing tool, conditional random field that is

trained to be selective as well. In this context, an information-

theoretic threshold value is derived. The proposed framework

is validated on a set of real data collected from a laboratory

scale combustor over varied operating conditions where it

is shown to effectively detect subtle instability features as a

combustion process makes transition from stable to unstable

region.
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1. INTRODUCTION

Deep learning models have been shown to outperform all

other state-of-the-art machine learning techniques for han-

dling very large dimensional data spaces and learn hierar-

chical features in order to perform various machine learning

tasks. However, most of the studied applications primarily

have been in the domains of image, speech and texts process-

ing. For example, convolutional neural network-based ap-

plications include object recognition (Farabet, Couprie, Na-

jman, & LeCun, 2013; Akintayo, Lee, et al., 2016), image

enhancement (Lore, Akintayo, & Sarkar, 2016), Graph Trans-

former Networks (GTN) for rapid, online recognition of hand-

writing (LeCun, Bottou, Bengio, & Haffner, 1998), natural

language processing (Collobert & Weston, 2008), large vo-

cabulary continuous speech recognition (Sercu, Puhrsch, Kings-

bury, & LeCun, 2016). It is still not common to apply the cut-

ting edge improvements of deep learning towards developing

advanced Prognostics and Health Monitoring (PHM) algo-

rithm for typical engineering applications. In this paper, we

propose a novel selective autoencoder approach within a deep

convolutional architecture to analyze hi-speed flame videos

for early detection of combustion instability in a gas turbine

engine. Whereas traditional PHM algorithms mainly use time

series data (e.g., pressure and temperature etc.). For this pur-

pose, the proposed approach attempts to advance PHM via

capturing the rich information of hi-frequency video. The

approach performs implicit labeling in order to derive soft

labels from extreme classes that are explicitly labeled as ei-

ther positive or negative examples. This particular property

is significant for tracking continuous temporal phenomenon

such as the transition from combustion stability to instabil-

ity, where labels of extreme states (stable or unstable) are

available but intermediate state labels are not. Explicit la-

bels are utilized to selectively mask selective features while

allowing other features to remain. Fig. 1 shows grayscale im-
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ages describing typical gradual development of instability at

the stated parameters in the swirl-stabilized combustor used

for the experiment.

Figure 1. Grayscale images of gradual time-varying develop-
ment of instability structure at two different parameter values

Labeling (e.g., structured and implicit) can be considered a

multi-class classification problem (Erdogan, 2010). For ex-

ample, three-stage Hidden Markov Models (HMM) were used

for handling speech recognition (Rabiner, 1989) problems,

parts of speech tagging (Meyer, 2011-2012) and sequence la-

beling because they derive the relationships from observations-

to-state and state-to-state in dynamic systems. Maximum En-

tropy Markov Model (MEMM), a discriminative modification

of HMM, was introduced to overcome the latter’s recall and

precision problems especially in labeling texts. In those mod-

els, conditional probability of the desired labels are learnt di-

rectly based on the uncertainty maximization idea. Applica-

tions of MEMM for natural language processing can be found

in (Berger, Pietra, & Pietra, 1996).

Due to “label bias” defects of MEMM, a Conditional Random

Field (CRF), which is a joint Markov Random Field (MRF)

of the states conditioned on the whole observations is later

explored (Lafferty, McCallum, & Pereira, 2001). It enabled

considering the global labels of the observation as against lo-

calization of labels of MEMM (Erdogan, 2010). However,

labeling in this case is made computationally complex by the

relaxation of statistical independence assumption of the ob-

servations which most of the models assume.

Recurrent Neural Networks (RNNs) have been utilized for

sequence labeling problems due to its cyclic connections of

neurons (Graves, 2014) as well as its temporal modeling abil-

ity. Although earlier construction of RNNs is known to have

short ranged memory issues and a restrictive unidirectional

information context access, formulation of a bidirectional Long

Short Term Memory (LSTM) (Graves & Schmidhuber, 2005)

resolved such issues. However, this construction adds to the

complexity of the model significantly as typically two RNNs

get connected through the same output layer.

From the application standpoint, early detection of instability

in the combustion chambers of dynamic systems aids antic-

ipative actions for reducing its consequent effects. Visual-

izing the features that characterizes the intermediate frames

of its spectrum is an important approach to unravel the pro-

cesses that precede instability. The authors in (Sarkar, Lore,

Sarkar, Ramaman, et al., 2015) introduced Deep Belief Net-

works (DBN) as a viable technique to achieve the aim with

a view to exploring other machine learning techniques for

confirmation. They improved on that by applying a modu-

lar neural-symbolic approach (Sarkar, Lore, & Sarkar, 2015)

in another publication.

In this paper, we propose a deep convolutional selective auto-

encoder-based anomaly (early) detection framework for the

crucial physical process of combustion for better understand-

ing of the underlying complex physics. Combustion instabil-

ity is a significant anomaly characterized by high-amplitude

flame oscillations at discrete frequencies that reduces the ef-

ficiency and longevity of aircraft gas-turbine engines. Full-

blown instability can be differentiated from stable combus-

tion via video analysis with high confidence because unstable

combustion flames show distinct coherent structures similar

to ‘mushroom’ shapes. But it is extremely difficult to de-

tect an onset of instability early due to fast spatio-temporal

transience in the video data. Therefore, the instability detec-

tion problem boils down to an implicit soft labeling problem

where we train a deep model using hi-speed flame videos with

explicit labels of stable and unstable flames such that it recog-

nizes the onset of instability early as the combustion process

makes transition from a stable to unstable region.

Conceptually, this is similar to cognitive psychologists’ de-

scription of human reasoning in object classification (Tenenbaum,

Kemp, Griffiths, & Goodman, 2011). An example is to con-

sider how a child is taught on intrinsic classes. A similar

problem is how to detect a cross breed of dog and wolf and

how close the animal is to either of the classes. From an ap-

plication standpoint, an early detection of engine’s combus-

tion instability may be useful for computing the instantaneous

values of the remaining useful life, but the computation is

partial since other engine physical use factors are also impor-

tant. Therefore, remaining useful life (RUL) computation is

beyond the scope of the present problem.

Contributions: The main contributions of this paper is de-

lineated below:

• A convolutional selective autoencoder framework based

on emerging deep learning techniques is proposed for a

significant PHM application - early detection of combus-

tion instability;

• The method avoids extensive expert-guided feature hand-

crafting (Farabet et al., 2013) while addressing a com-

plex physical phenomenon like combustion to discover

coherent structures in flames images;

• The proposed framework is able to learn from high di-

mensional data sets (e.g., high speed video) of most ap-

plications and provides a platform for determining the
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degree of relationship between the states of two tempo-

rally close observations;

• A metric to desired level of granularity is constructed to

track the onset of combustion instability and detect pre-

transition phenomena such as ‘intermittence’. Intermit-

tence is a temporary (of the order of millisecond, equiv-

alent in this case to few video frames) blast of instability

characterized by small and partially observable coherent

structure;

• Extensive validation and comparison using CRF tech-

nique are provided based on laboratory-scale combus-

tion data collected under various realistic operating con-

ditions.

Paper organization: The paper is organized in six sections

including the present one. Section 2 presents prior work on

the proposed approach and problem formulation. In section 3,

the main architecture for the problem is discussed followed

by a distance metric that is used to access the result quanti-

tatively. Section 4 provides an opportunity to introduce the

problem dataset collection and then the implementation of the

composite architecture as well as the competing method. The

results obtained for the hypothesis is discussed in section 5.

We conclude the paper in section 6 as well as give some in-

sights into the direction of future works.

2. BACKGROUND

This section provides a brief overview of convolutional net-

works, a description of the example problem of detecting

combustion instability, and the notion of implicit labeling.

2.1. Convolutional networks

Convolutional networks (Krizhevsky, Sutskever, & Hinton,

2012) are a type of deep networks that offer discriminative

advantages as in the MEMM as well as providing global re-

lationship between observations as in the CRF. The architec-

tures rely primarily on local neighborhood matching for data

dimension reduction using nonlinear mapping (i.e., sigmoid,

softmax, hyperbolic tangent and ReLU). Each unit of the fea-

ture maps has common shared weights or kernels for efficient

training with relatively–compared to fully connected layers–

lower trainable parameters. Feature extraction and classifier

learning are the two main functions of these networks (LeCun

et al., 1998). However, to learn the most expressive features,

we have to determine the invariance-rich codes embedded in

the raw data and then, a fully connected layer to reduce fur-

ther the dimensionality of the data and map the most impor-

tant codes to a low dimension of the examples. Many image

processing and complex simulations depend on the invariance

property of the convolution neural network stated in (LeCun

& Bengio, 1998) to prevent overfitting by learning expressive

codes.

The feature maps are able to preserve local neighborhood pat-

terns for each receptive field as with over-completeness dic-

tionary in (Aharon, Elad, & Bruckstein, 2006). A full and

detailed review may be found in (LeCun et al., 1998) where

the authors note the advantage of local correlation enforcing

convolution before spatio-temporal recognition. For efficient

learning purposes, convolutional networks are able to explore

the benefits of distributed map-reduce frameworks (Fung &

Mann, 2004) to leverage large training data as well as multi-

GPU computing. With these benefits, the winners of the IL-

SVRC 2012 (Krizhevsky et al., 2012) utilized a large net-

work of 8 layers and 2 GPUs training on the same architec-

ture provided in (LeCun et al., 1998) to achieve the then best

position. Subsequently, GoogLeNet (Szegedy et al., 2015)

and other authors (Simonyan & Zisserman, 2015) have also

reported better performance with larger models found to be

more related to the depth of the network.

2.2. The problem of combustion instability

Combustion instability reduces the efficiency and longevity

of aircraft gas-turbine engines. It is considered a significant

anomaly characterized by high-amplitude flame oscillations

at discrete frequencies. These frequencies typically represent

the natural acoustic modes of the combustor. Combustion

instability arises from a positive coupling between the heat

release rate oscillations and the pressure oscillations. Coher-

ent structures are fluid mechanical structures associated with

coherent phase of vorticity (Hussain, 1983). The generation

mechanisms of the structures vary system wise, causing large

scale velocity oscillations and overall flame shape oscillations

by curling and stretching. These structures can be caused to

shed–or be generated–at the duct acoustic modes when the

forcing (pressure) amplitudes are high. There is a lot of re-

cent research interest on detection and correlation of these

coherent structures to heat release rate and unsteady pressure.

The popular methods resorted for detection of coherent struc-

tures are proper orthogonal decomposition (POD) (Berkooz,

Holmes, & Lumley, 1993) (similar to principal component

analysis (Bishop, 2006)) and dynamic mode decomposition

(DMD) (Schmid, 2010), which use tools from spectral theory

to derive spatial coherent structure modes.

2.3. Implicit labeling

Semi-supervised training for classification takes advantage of

the labels at the final layers. A variant of structured label-

ing by (Kulesza, Amershi, Caruana, Fisher, & Charles, 2014)

called implicit labeling is used to derive soft labels from ex-

treme classes that are explicitly labeled as either positive or

negative examples. Explicit labels usually can be utilized to

selectively mask one feature, especially that one is not in-

terested in while parsing the class of interest. However, ex-

plicit labels on its own can only serve as a classifier for in-

trinsic classes in the test sets learnt from the training set.

Implicit labeling here also bears similarity to the sequence
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Explicit	Label	
Class:	“Stable”	

Explicit	Label	
Class:	“Unstable”	

Implicit	Labels	

Figure 2. Illustration of implicit method of generating soft
labels

labeling (Erdogan, 2010) with an extra constraint of utilizing

prior knowledge provided only by explicit label. It is then

fused with convolutional auto-encoder architecture algorithm

described in section 3.1 to determine the intermediate or tran-

sition phases–a mixed breed of a dog and a wolf for instance–

and more importantly to what degree is the animal a dog or

a wolf. Thus, it attempts to derive soft labels from expert-

informed, hard-mined labels as illustrated in fig. 2 with a

composite architecture.

3. ALGORITHMS

In this section, the algorithms for sequence labeling are de-

scribed. We provide a little more details of the convolutional

autoencoder and its interface with the selectivity criterion.

Subsequently, a brief background on the conditional random

field (CRF) algorithm is provided. Then, we discuss the infor-

mation theoretic metrics that facilitate image dimensionality

reduction, and the basis for our threshold computation.

3.1. Convolutional Selective

Autoencoder

Based on the convolutional network’s (convnet for short) per-

formances on several similar tasks reviewed, it is found a suit-

able candidate for the composite architecture to examine our

hypothesis of soft label generation. A convnet architecture for

low-level feature extraction with a symbolic graphical model

such as STSA at the top level (Sarkar, Lore, & Sarkar, 2015)

has been previously used for this problem. In contrast, we use

an end-to-end convolutional selective auto-encoder (as shown

in fig. 3), designed and tested (Akintayo, Lee, et al., 2016)

to explore another perspective to the current problem. The

constituent steps for the model to learning from the data are

outlined below.

Explicit labels and pre-processing: Given an M×N dimen-

sional image frames and corresponding ground truth labels

(one of the two classes), explicit labels are generated by se-

lectively masking frames with the undesired class with black

pixels. Hence, N pairs of input-output pairs {(Xi, Yi)} for

i = 1, 2, ..., N are generated where X represents the original

images, Y are the masked frames that are considered explic-

itly as ground truth. The images are then normalized where

pixel intensities have zero mean and a standard deviation of 1

as preprocessing.

Convolutional layers: Convolutional autoencoders (CAE),

also called deconvolution nets (Zeiler & Fergus, 2014) or

fully convolutional networks (Long, Shelhamer, & Darrell,

2015) start with propagation from the input layer to the con-

volution layer. Also, the step before the output layer is the

deconvolution layer. At each convolution or deconvolution

layer, a chosen (c×c) filter size is convolved with the patches

to learn a zo−dimensional feature map from which joint weight

over the zi−dimensional feature maps that are useful for en-

forcing local correlation is learnt to characterize all maps as,

Ŷzo(m−c+1)(n−c+1) = C[Xzimn ⋆ Wzicc + bc] (1)

where C is the squashing function, ⋆ is the convolution op-

erator of the joint weights, Wzicc, bc the biases and input

from previous layer Xzimn. To enhance the invariance fur-

ther, pooling is done to propagate representative features in

local neighborhoods. It ensures that all the neurons activation

in a locality do not have high entropy enough such that infor-

mation is diffused. In this case, maxpooling (Scherer, Muller,

& Behnke, 2010) is selected as a representative for a p × p

neighborhood.

Fully connected layers: The feature maps from the previous

convolution and subsampling layers are flattened. In order

to reduce the number of parameters for the fully connected

layers, combat the problem of overfitting and to avoid get-

ting trapped in local optima, some features are randomly left

out with a dropout layers (Hinton, Srivastava, Krizhevsky,

Sutskever, & Salakhutdinov, 2012). Dropout in the hidden

layer produces better results as it eliminates the necessity for

regularization parameters used previously (Akintayo, Lore,

Sarkar, & Sarkar, 2016). A layer encodes the most impor-

tant feature from the input of the previous layer with Ŷe =
E[WeŶ +be] and another layer reconstruct the useful features

with Ŷd = D[WdŶe + bd], where E and D stands for the rec-

tified linear unit (ReLU)-type encoder and decoder functions

respectively. b denotes the biases and W denotes the weights

of the layer. The subscripts e and d indicates the encoder and

decoder. Note that the ReLU nonlinearity on a parameter is

represented by ReLU(f) = max(0, f). Intuitively, it has the

advantage of easier training compared to other nonlinearity

types because the activations of each neuron is a piece-wise

linear function of argument f and do not saturate.

Unpooling: In this layer, a reversal of the pooled dimension

is done by stretching and widening (Jones, 2015) the identi-

fied features from the filters of the previous layer. It is also an

upscaling of the feature maps around the axes of symmetry

where the reconstructed feature maps are optimized through

the back-propagation algorithm.

Error minimization: This phase is akin to a feedback stage
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Figure 3. Structure of the convolutional autoencoder with selectivity masks. The encoder portion extracts meaningful features
from convolution and sub-sampling operations, while the decoder portion reconstructs the output into the original dimensions
through deconvolution and upsampling. Best viewed on screen, in color.

in a control paradigm or a scenario where a teacher–labeled

data–provides feedback in performance measure on how well

a student–the machine–has learned features related to a par-

ticular application–the task. The process included a regu-

larization function as in (LeCun et al., 1998) to avoid over-

fitting the data. The Nesterov momentum-based (Sutskever,

Martens, Dahl, & Hinton, 2013) stochastic gradient descent

is used for improved results when compared to other loss

functions such as adaptive subgradient (ADAGRAD) (Duchi,

Hazan, & Singer, 2011) and adaptive learning rate method

(ADADELTA) (Zeiler, 2012) for the reconstruction error up-

dates given the reconstructed output Ŷmn and the labels, Ymn.

Let θ = {W, b} be the set of weights and biases for all lay-

ers that are to be optimized by minimizing the loss function

L(θ). The loss function is a mean square error cost function

given by,

Ltrain(θ) =
1

mn

m∑

i=1

n∑

j=1

(Yij − Ŷij)
2 (2)

Subsequently, the weights are updated at each time step, k,

via stochastic gradient descent (LeCun et al., 1998),

W (k) = W (k−1) − α
∂L(W (k−1))

∂W (k−1)
(3)

where α is the learning rate equivalent of step size in op-

timization problems. More details can be found in (Masci,

Meier, Ciresan, & Schmidhuber, 2011) while the background

materials presented thus far and those in subsection 3.3 are

the more important aspects to describe our embedded im-

provements.

3.2. Conditional Random Field (CRF)

CRF is another class of well-studied (Domke, 2013) and for-

mulated models for labeling problems. It is an improvement

of the Markov Random Field, MRF where one is interested

in determining the conditional probabilities of newer obser-

vation such as our test data given the knowledge of previous

ones such as the explicit labels. The benefits of CRFs are

their improvements in the learning stage on previous likeli-

hood estimation by including inference approximation. The

algorithms have been shown (Barbu, 2009) to perform well

on complex image problems such as image denoising task as

well as being robust to model misspecification. Therefore,

we also incorporated selectivity condition into the CRF in a

similar way to that of CAE.

3.3. Instability Metric

Similar to that presented in (Liu, Ghosal, Jiang, & Sarkar,

2016), a metric based on the Kullback-Liebler (KL) diver-

gence (Kullback & Liebler, 1951) is chosen to measure the

distance of the results from the image frames in each transi-

tion protocol from the expected result of a stable flame frame.

This yields a KL distance, z for each image frame, I ∈ I,

where I represents the set of input images frames. It can be

expressed mathematically as,

z(I) =
∑

i∈I

lim
T(i)→0+

I(i)log
I(i)

T(i)
(4)

where i represents each pixel in the image frame and T rep-

resents the training label/target image. The implication of the

limit is that we intend to drive the flame image pixel values

5
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to zero in the stable combustion region. This physically cor-

responds to taking the distance of each image from the refer-

ence of the stable flame. The present metric has the advantage

of using a common reference for all the test transition pro-

tocols rather than being specific to a particular image frame

within one test protocol (Akintayo, Lore, et al., 2016).

4. DATASET AND IMPLEMENTATION

In this section, we motivate the attempts at solving the prob-

lem by describing the dataset, the experimental setup for gath-

ering the data and how it is collected. We also describe the

implementation of the two competing algorithms by explain-

ing the choices that were made and stating the important se-

lected parameters for such choices. Finally, the threshold val-

ues for analyzing the results are determined.

4.1. Dataset collection and experimental setup

To collect training data for learning coherent structures, thermo-

acoustic instability was induced in a laboratory-scale com-

bustor with a 30 mm swirler (60 degree vane angles with ge-

ometric swirl number of 1.28). Fig. 4 (a) shows the setup

and a detail description can be found in (Sarkar, Lore, Sarkar,

Ramaman, et al., 2015). In the combustor, 4 different instabil-

ity conditions are induced: 3 seconds of hi-speed videos (i.e.,

9000 frames) were captured at 45 lpm (liters per minute) FFR

(fuel flow rate) and 900 lpm AFR (air flow rate), and at 28 lpm

FFR and 600 lpm AFR for both levels of premixing. Fig. 4 (b)

presents sequences of images of dimension 100× 237 pixels

for unstable (AFR = 900lpm, FFR = 45lpm and full pre-

mixing) state. The flame inlet is on the right side of each im-

age and the flame flows downstream to the left. As the com-

bustion is unstable, fig. 4 (b) shows formation of mushroom-

shaped vortex (coherent structure) at t = 0, 0.001s and the

shedding of that towards downstream from t = 0.002s to

t = 0.004s. For testing the proposed architecture, 5 tran-

sition videos of 7 seconds length were collected where sta-

ble combustion progressively becomes unstable via ‘intermit-

tence’ phenomenon (fast switching between stability and in-

stability as a precursor to persistent instability) by reducing

FFR or increasing AFR. The transition conditions are as fol-

lows (all units are lpm): (i) AFR = 500 and FFR = 40 to 28,

(ii) AFR = 500 and FFR = 40 to 30, (iii) FFR = 40 and AFR =

500 to 600, (iv) AFR = 600 and FFR = 50 to 35, (v) FFR = 50

and AFR = 700 to 800. For clarity, these data sets are named

as 50040to38, 50040to30, 40500to600, 60050to35, and 50700to800
respectively for analysis in the subsequent sections of this pa-

per.

4.2. Training process

In training the networks, 63, 000 grayscale frames having di-

mensions 100 × 237 are resized to 16 × 16 for computa-

tional simplicity. A total of 35, 000 frames is labeled stable

while the remaining 28, 000 were labeled unstable. These im-

ages were a combination of datasets with different premixing

lengths of either 90mm or 120mm and a wide range of air and

fuel LPMs for which the combustor is either in a stable or an

unstable state. The whole training dataset is divided into two

parts: 75% of it is used to train the algorithm, while 25% is

held out for validating their results and setting our thresholds.

CAE: The convolutional autoencoder parameters include learn-

ing rate of 0.0001 with momentum = 0.975 is found to train

the model best in the Nesterov based stochastic gradient de-

scent formulation. The network is trained to 100 epochs in

order to conveniently strike a good minima of the validation

error. Training is done on GPU Titan Black with 2880 CUDA

cores, equipped with 16MB video RAM, using the python-

based machine learning frameworks such as Theano, Lasagne

and NoLearn (Bergstra et al., 2010; Thoma, 2016). Lasagne

offers a wide variety of control over the layer types, nonlin-

earity types, objective functions, interfacing with The- ano,

and many other features built into it. NoLearn, on the other

hand, is a coordinating library for the implementation of the

layers in Lasagne which offers model visualization features.

While training, a filter of c×c pixels (c = 3 in the implemen-

tation) and a non-overlapping p×p (p = 2) maxpooling were

found to be experimentally less costly to produce the results.

Algorithm training is done in batches of 128 training exam-

ples which is found to be suitable via cross validation. The

 Results 

Unstable 

Stable 

Test Input 

Trained Model 
Temporal  

Progression 

Figure 5. Schematics of implementation of trained network
on transition test data

architecture in fig. 3 shows how the layers are interlinked in

the training stage which leads to an overall of 416, 779 learn-

able parameters. From this point onwards, CAE model that is

trained to be selective is referred to as convolutional selective

autoencoder (CSAE).

CRF: In training the linear to linear type conditional ran-

dom field, the main hyperparameters are again the loss func-

tion which usually is approximated and how the gradient of

such objective function are computed. For the present prob-

lem, based on multiple trials for hyperparameter, we found

the loopy variant of the truncated tree re-weighted (TRW)

belief propagation a good inference type for the problem.
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t = 0 s t = 0.001 s t = 0.002 s

t = 0.003 s t = 0.004 s

(a) (b)

Figure 4. a) Schematics of the experimental apparatus. 1 - settling chamber, 2 - inlet duct, 3 - inlet optical access module
(IOAM), 4 - test section, 5 & 6 - big and small extension ducts, 7 - pressure transducers, Xs - swirler location, Xp - transducer
port location, Xi - fuel injection location, (b) Visible coherent structure in grayscale images at 900 lpm AFR and full premixing
for 45 lpm FFR

Furthermore, for better performance, we chose a clique type

loss because of the benefits over simple univariate type loss.

A quasi-netwon method, Broyden-Fletcher-Goldfarb-Shanno

(BFGS) was chosen to optimize its error backpropagation.

The algorithm is also implemented in batches of 512 to re-

duce computation time, and in a gradual fashion while the

regularization parameter used was 0.0001. The model re-

sulted in 8064 cliques. Subsequently, like the CAE, we re-

fer to a CRF model that is trained to be selective as selective

conditional random field (SCRF).

4.3. Threshold Determination

Given the models learnt from each of the algorithms, CSAE

and SCRF individually, with the training sets as illustrated in

fig. 6, the algorithms are separately validated on the validation

set. The validation result for each algorithm is used to deter-

mine the value of the instability metric, z at which transition

takes place, called transition threshold. This is taken as the

upper limit of the 95% confidence interval (CI) for the distri-

bution of z (see eqn. 4) for stable flame frames. The schemat-

ics in fig. 6 summarizes how it is implemented for each algo-

rithm. We note that this helps to utilize expert knowledge re-

garding the stable and unstable regions to determine the start

of transition from the stable region. Note that these are de-

Training 

Trained

Model 

(CSAE, 

SCRF)

Stable 

part 

Training 

Set

Validation 

Set

Training 

dataset

25% 

75% 

Transition 

threshold 

Metric 95% CI

Figure 6. Schematics of selection of transition threshold

rived by replacing I in subsection 3.3 with the known stable

part in the validation results.

5. RESULTS AND DISCUSSIONS

In this section, results obtained from the algorithms are dis-

cussed and analyzed. The subsections are arranged to build

up the argument for early detection of unstable region’s prop-

erties in frames. Such unstable flame properties can be de-

tected even in the transition region enabling early instabil-

ity detection. Then we discuss how the network explores the

space between the stable and unstable regions to get softer la-

bels. Let the stable region be denoted by ‘SR’ on one end of

the spectrum and the unstable region be ‘UR’ on the other end

of the spectrum. Note, training of the algorithm is performed

with explicitly available ground truth labels. The ground truth

labels are categorized into frames of stable flame types and

frames of unstable flame types. As discussed before, units of

frames in the stable region are masked with ‘0’, while those

in the unstable region are retained during training. Figure 7

shows the algorithm’s ability to satisfy the training criteria in

one stable and one unstable validation frames. Figure 7 shows

how CSAE learns to be selective in masking the stable region

as trained. Feature maps from the model are shown in fig. 8

to highlight the detected features and the reconstructed out-

puts. For frames closer to UR in the transition stage, the cor-

responding feature maps showed more pixels activated mush-

room structures that characterize UR. For frames in SR how-

ever, information is seen to be rapidly diffusing from the in-

put into the hidden layers. At each layer, joint parameters

capture the trade-off between discarded and retained informa-

tion from the stable and unstable training sets. The fully con-

nected layers serve at least two important purposes, namely:

(1) to reduce further the image dimensions towards only rich

explanatory features, and (2) ensuring structural consistency

for optimal layer-wise features by reshaping the output im-

ages into dimensions similar to the input. Due to the impor-

tance of the layer, an optimal number of units search is re-

7
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“Unstable”
Labeled Output

Unstable Region

Unlabeled Input

“Stable”
Labeled Output

Stable Region

Unlabeled Input

Figure 7. Illustration of CSAE’s ability to reproduce explicit
labels.

Stable 

Region 

Unstable 
Region 

(a) (b) (c) (d) (e) 

Figure 8. Feature maps for (a) the third convolution layer, (b)
the second pooling layer, (c) the fourth convolution layer, (d)
the unpooling layer and (e) the deconvolution layer.

ported in the next subsection.

5.1. Optimal Code layer size

Among the many models parameters, the main influencing

parameters that motivated this search is the size of the encode

layer of the CAE. This is also related to the number of output

values of the CRF model. Having the speed-up provided by

the GPUs for training CSAE, a search for an optimal size of

the code layer is conducted. It is done to reduce arbitrariness

in the choice of the number of coding units, and to ensure ob-

taining the most effective results. Therefore, 100 epochs of

CSAE algorithm is run for each of code layer sizes: 8, 10,

20 and 40 units. We started off with 8 units because of its

closeness to the presence of two classes in the training data.

Then, we allowed more degrees of freedom to see which re-

sult demonstrated mostly, the known physical properties of

short time bursts while achieving the goals for our training,

i.e., selectivity. The results in fig. 9 and every other results in

the following subsections are also uniformly smoothed with

a simple locally weighted moving average filter Matlab func-

tion loess having a span of 0.1 to arrive at the smoothed

lines. Transition threshold described in subsection 4.3 are

shown on each plot of fig. 9. The transition thresholds with

respect to 8, 10, 20 and 40 units at the coding layer are found

to be 0.003455, 0.003901, 0.003438 and 0.005738 respec-

tively.

The results in fig. 9 corroborate our previous results (Akintayo,

Lore, et al., 2016; Sarkar, Lore, & Sarkar, 2015; Sarkar, Lore,

Sarkar, Ramaman, et al., 2015) of transition stage being be-

tween the two regions. It is observed that with 40 units, al-

gorithm does not satisfy the selectivity condition of masking

the stable part unlike the other units. This may happen due to

the decrease in noise rejection capability with increase in de-

grees of freedom at the coding layer. Also, the discriminatory

ability of the results are assessed. It is a metric that quantifies

the maximization of the inter-region separation, while min-

imizing the intra-region separation similar to a Fisher Lin-

ear Discriminant analysis. However, for result assessment in

this problem, a conservative way is to examine ratio of the

variance to the mean provided. The larger the spread around

the average, the more the discrimination capability between

stable and unstable regions. Therefore, the distribution of z

found in eqn 4 are also examined on this basis for each of the

test protocols.

From the trends of the statistics on table 1, including early

signal of the transition shown by the frame #, coding layer

with 10 units produced the best results, both visually and sta-

tistically. It however fails to be the most discriminatory due

to its large mean despite also having the largest variance. We

note that performance improves with increase in coding layer

length from 8 to 10, while it reduces when the coding layer

length is increased further. While an optimal length of the

coding layer can be found between 10 and 20, we selected

10 units for performance comparison with SCRF presented

in this paper. Transition frame # for 40 units of the layer is

not easily found because the validation results are less sup-

pressed compared to the test frame. Hence, in this case early

detection may not be feasible.

Table 1. CSAE optimum encode layer size metric and transi-
tion start frame # for protocol 50040to30

# of units µ(z) Σ(z)
Σ(z)
µ(z)

frame #

8 0.0222 0.0238 1.071 11710
10 0.0289 0.0302 1.045 11650
20 0.0241 0.0258 1.072 11710
40 0.0175 0.0246 1.041 ≈ 12620

5.2. CSAE and SCRF comparison

A visual comparison of the distributions of z (eqn 4) on test

transition protocol, 50040to30 via their instability metrics are

plotted against frame number for both algorithms. These are

shown in fig. 10. Clearly, the results of CSAE is more dis-

criminatory in nature, i.e., it has more scatter around its local

mean than that of SCRF. CSAE also shows a greater capa-

bility than SCRF, to satisfy the training criteria on a new test

8
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Figure 9. Code layer selection for 50040to30 with, (a). 8 units, (b). 10 units, (c). 30 units and (d). 40 units

data set. Therefore, CSAE will be more effective for early de-

tection of instability. Note, the transition threshold for SCRF

as defined in subsection 4.3 is found to be 0.03636. On the

other hand, threshold for CSAE with 10 code layer units is

0.003901.
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(a)
Frame Number

(b)
Frame Number

Figure 10. Results of: (a). CSAE and (b). SCRF for test
transition protocol, 50040to30

Other differences in computation and memory complexity are

shown in table 2. Note that with the demonstrated advantage

Table 2. CSAE and SCRF comparison

Factor CSAE SCRF

platform Python Matlab
model size O(Mbytes) O(Kbytes)

CPU inference rate ≈ 4.7ms/frame ≈ 0.24secs/frame
GPU inference rate ≈ 1µs/frame –

of GPUs, dedicated field programmable gate arrays (FPGAs)

built for the proposed CSAE scheme can enable an on-line

real-time instability detection tool for real engines.

5.3. Early detection

The speed of detection is in terms of the number of frames

seen in the stable region before bursts of instability are de-

tected. However, due to the consistency of the CSAE algo-

rithm with our selective training and domain knowledge (i.e.,

most of the stable frames are suppressed) on the problems

analyzed, its results for 4 test transition protocols are shown

and discussed in this subsection. CSAE results on different

test transition conditions are presented in fig. 11. It shows

the capability of the model to suppress stability features of

frames in the SR, while revealing some anomalous instability

features in the same frames. It also shows the anomalies to

be more prominent in the transition regions. Instability met-

ric introduced in section 3.3 has been used to evaluate the

strength of each algorithm’s ability to mask examples closer

to the SR compared to those nearer to the UR. The results

are comparable with those found in (Sarkar, Lore, & Sarkar,

2015) where the framework used a neural-symbolic approach

with a combination of convolutional neural networks and sym-

bolic time series analysis to obtain instability metrics. Note,

no background knowledge is provided other than domain knowl-

edge regarding the possibility of short-time instability bursts

in the stable regions. Figure 11(a) and (b) have similar transi-

tion conditions. The latter has a leaner mixture and it shows

more short term fluctuations in the post-transition phase com-

pared to (a) (as marked by a dotted box in (b)). Furthermore,

it signals earlier (at frame 42) regarding the presence of insta-

bility compared to (a) where first indication is approximately

around frame 2870. Moreover, possibly in accordance with

what is known from physics (Li, Zhou, Jeffries, & Hanson,

2007) about lean mixtures, the protocol in (c) has the most

unstable intermittency in both the SR and the transition phase.

It may be considered to be the closest to instability of all the

protocols as highlighted in the example frames. In contrast

to (c), transition protocol in (d) generally shows results that

are closer to stability. This is probably due to the balance

provided by its originally richer mixture. It also has the most

‘late detection’ of the early burst of instability as well as de-

parture from stability among all the protocols.

Finally, table 3 shows a summary of the results obtained from

the algorithms for all the test transition protocols.

9
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Figure 11. Results of transition protocols for: (a). 50040to30, (b). 50040to28, (c). 50700to800 and (d). 40500to600 where dashed
arrows indicate the results for frames near the unstable flame in the transition region, and thick arrows show results for frames
in the supposedly stable regions

Table 3. Performance metrics and transition start frame # for Transition Protocols

CSAE SCRF

Protocol µ(z) Σ(z)
Σ(z)
µ(z)

frame # µ(z) Σ(z)
Σ(z)
µ(z)

frame #

50040to30 0.0289 0.0302 1.045 11650 0.1449 0.0310 0.2139 –
60050to35 0.0266 0.0378 1.4211 14470 0.1264 0.0380 0.3006 –
50040to28 0.0175 0.0194 1.1086 12260 0.1417 0.0330 0.2329 –
50700to800 0.0142 0.0125 0.8803 11640 0.1303 0.0150 0.1151 –
40500to600 0.0045 0.0033 0.7333 13210 0.1262 0.0177 0.1403 –

5.4. Frame labeling

An extension of the algorithm’s objectives could be made to

implicit labeling. This is achieved by searching through all

the frames to detect frames that are adjacent neighbors to a

given frame. In clear terms, this means finding the label of a

frame given the knowledge of the label of an adjacent flame.

This kind of search is usually difficult with most primitive

10
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Figure 12. Adjacency labeling result of transition protocols for 60050to35 at the different regions of the profile. The image
frames without any boundaries represent the inputs to the protocols at the points indicated by the arrows

low dimensional local labeling algorithms (e.g. HMM and

MEMM) due to dependency depth and ’labeling bias’ limita-

tions respectively. For this purpose also, we were motivated

to compare the results of CSAE to those of SCRF. We show

that such high dimensional problem can be simplified with

scalars that are calibrated in scales such as our instability met-

ric. The highlighted examples in fig. 12 show how labeling

may be achieved with the algorithms. Based on qualitative

frame-to-frame visualization, labels provided by CSAE are

shown in fig. 12 to outperform that of SCRF. CSAE is able to

differentiate labels from frame to frame better than the CSAE

in the separate flame regions. Frames in the region closest

to UR have their the mushroom structures better labeled by

CSAE while SCRF does not activate all the units for such

labels. Importantly also, we find a gradual transition in the

labels of frames in the almost linear transitioning stage of

CSAE in much similar way as that of SCRF. Note that all

input examples used for comparison in the figure are chosen

at the similar frame numbers for both algorithms. The re-

sults provides briefly the potentials of the algorithm to deriv-

ing soft labels from intrinsically labeled classes, two classes

in this case.

6. CONCLUSIONS AND FUTURE WORKS

An end-to-end convolutional selective autoencoder is devel-

oped to perform early detection of combustion instabilities

using hi-speed flame video. Validation results are performed

on data from a laboratory scale swirl-stabilized combustor.

In addition to that, the framework was also used to generate

fuzzy labels from prior knowledge of hard labeled examples

as solution to implicit labeling problem. Conditional random

field model results are used to compare the effectiveness of

our deep learning based solution approach in both applica-

tions. Moreover, CSAE results shown confirm the expert’s

physical observation in the presence of coherent structures in

stable flame regions. Some observed differences in the re-

sults are that: (i) CSAE is able to learn and generalize selec-

tivity better than SCRF via more efficient masking the stable

region; (ii) Unlike CSAE, SCRF introduces a bias in the in-

stability metric computation for test data, such that its ability

to act as an effective filter is hindered;(iii) SCRF succumbs to

high false alarm rate during stable combustion. The fact that

CSAE can detect instability early for various new (unseen in

training phase) protocols while being trained on different pro-

11
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tocols shows the generalizability of the proposed algorithm.

The results have been presented in the light of KL-distance

based instability metric to determine the closeness to domain

knowledge of stable flame frames reproduced by the mod-

els. Using the same metric, the architecture was extended

to addressing the neighborhood implicit graph labeling prob-

lem. The framework can be generalized to soft-labeling of

high-dimensional data. While the framework is shown to be

an efficient diagnostics technique for combustion process in

laboratory experiments, large scale validation is underway to

demonstrate its wide-range applicability. Some of the future

works are: (i) to extend the framework to labeling in multi-

class scenarios; (ii) validation of possible coherent structures

identified by CSAE in the transition region by using expert

knowledge and fluid mechanics and (iii) to compute, in con-

junction with other use-factors, the instantaneous estimate of

the remaining useful life (RUL).
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