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Abstract—Prognostics predicts the future performance
progression and remaining useful life (RUL) of in-service
systems based on historical/contemporary data. One of the
challenges for prognostics is the development of methods
which are capable of handling real-world uncertainties that
typically lead to inaccurate predictions. To alleviate the
impacts of uncertainties and to achieve accurate degrada-
tion trajectory and RUL predictions, a novel sequence-to-
sequence predictive model is proposed based on a vari-
ational auto-encoder (VAE) that is trained with Generative
Adversarial Networks (GAN). A Long Short-Term Memory
(LSTM) network and Gaussian mixture model are utilized
as building blocks so that the model is capable of pro-
viding probabilistic predictions. Correlative and monotonic
metrics are applied to identify sensitive features in the
degradation progress, in order to reduce the uncertainty
induced from raw data. Then, the extracted features are
concatenated with one-hot health state indicators as train-
ing data for the model to learn end-of-life (EoL) without the
need for prior knowledge of failure thresholds. Performance
of the proposed model is validated by health monitoring
data collected from real-world aero-engines, wind turbines,
and lithium-ion batteries. The results demonstrate that sig-
nificant performance improvement can be achieved in long-
term degradation progress and RUL prediction tasks.

Index Terms—Generative Adversarial Learning, Varia-
tional Auto-encoder, Long Short-Term Memory, Gaussian
Mixture Model, Prognostics and Health Management, Re-
maining Useful Life

ACRONYMS

EoL End of Life.

GAN Generative Adversarial Networks.

GMM Gaussian Mixture Model.

LSTM Long Short-Term Memory.

MCM Machine Condition Monitoring.

PHM Prognostics and Health Management.

RNN Recurrent Neural Networks.

RUL Remaining Useful Life.

VAE Variational Auto-encoder.
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PROCESS safety, system reliability, and product quality

are becoming increasingly essential in the modern indus-

try [1]. Machine condition monitoring (MCM), a maintenance

strategy that involves the repair and replacement of damaged

parts to reduce the total life cycle costs, is a vital part

of many industries such as aerospace, energy, automotive,

and heavy industry. Traditional strategies such as correc-

tive (breakdown) and preventive (scheduled) maintenance are

becoming less capable of meeting the increasing industrial

demand of efficiency and reliability [2]. Prognostics and health

management (PHM) is a novel paradigm that enables real-

time health assessment and future condition prediction. PHM

incorporates various disciplines (e.g., sensing technologies,

signal processing, machine learning, and reliability analysis)

and provides an intelligent MCM strategy to maintain system’s

originally intended functions [3] or even distinguish whether

a local malfunction will affect the key-performance-indicators

of the whole system [1].

Prognostics of in-service systems is a pillar of PHM that

can be sorted into two types: 1) remaining useful life (RUL)

evaluation (i.e., event prediction); and 2) future degradation

estimation (i.e., event progression prediction). Data-driven

approaches, which use information of the current and previous

usage conditions to identify the characteristics of the contem-

porary degradation state and to predict the future trajectory,

have been regarded as a powerful solution for prognostics

[4] and achieve success in cyber-physical systems [5], [6].

Machine learning, as the most common data-driven technique,

is able to act as a bridge connecting big machinery data and

intelligent prognostics [5]. For example, a deep convolutional

neural network has been proposed to map monitored feature

data to machine health status [7]. The combination of neural

networks and fuzzy systems has been employed successfully to

capture more information for PHM [8]. Further, Elforjani et al

[9] employed three supervised machine learning techniques: a

support vector machine, multi-layer neural network, and Gaus-

sian process regression to estimate the RUL for slow-speed

naturally degrading bearings using acoustic technology. Re-

cently, a so-called “vanilla” long short-term memory (LSTM)

network has been utilized in [10] to improve the accuracy of

RUL prediction for complicated industrial processes.

However, the above-stated data-driven based prognostic

systems might have potential concerns outlined as follows:

1) Feature representation: the data for prognostics are usu-

ally formulated sequentially, where hidden features behind

these sequences are vital for representing a system’s health

condition. However, handcrafted features may not perfectly
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represent the degradation throughout the lifetime.

2) Prior domain knowledge: RUL is calculated by subtracting

end-of-life (EoL) from a system’s current cycle. Generally,

EoL is predicted: a) by mapping features to a piece-wise

linear RUL curves [11] or using linear relation between

features and EoLs (e.g., Max.E-EoL [12] ); b) when the

degradation level reaches single or multiple pre-defined

thresholds [13] (e.g., E-trend [12] ). Both methods require

sufficient expert knowledge either to build linear relations

or define thresholds that differs between scenarios, conse-

quently hindering their flexibility.

3) Multimode degradation: in reality, a system can degrade

in different manners (i.e., variety of degradation process)

even though it undergoes the same operation. Most prior or

current prognostic models have been conducted on simple

naturally degenerated data with fixed initial parameters.

Therefore, it is critical to make the predictive model be

adaptive to different degradation modes.

Despite various machine-learning algorithms applied, it

has been demonstrated in [14] that feature representation

determines the upper-bound performance of models. In many

cases, degradation data cannot be collect directly, with sys-

tem feedback used as an alternative. For instance, bearing

vibration signals [15], [16] are commonly used for gearbox

RUL prediction. It is difficult to extract effective features

enriched with degradation characteristics from measurements

directly, and conventional signal processing and feature ex-

traction techniques often limit the ability to reveal intricate

correlations [17]. Therefore, the instrumentation and feature

extraction scheme should be carefully developed. A complete

data-driven method has been proposed in [18] to produce

system health indicators automatically, without a priori on

system monitoring or signals processing. A local feature-

based gated recurrent unit network has been proposed in [19]

to generate feature sequences without requiring a high-level

expert knowledge.

RUL prediction is achieved by subtracting the current cycle

from the predicted EoL. The most commonly used method for

predicting EoL includes labeling the training data auxiliary,

where each sample is required to associate with its RUL

label as a target. In this case, the piece-wise linear method

[11] is usually adopted. This requires extra work and is

generally very time-consuming. Moreover, if the available

label information is limited, the advantage of machine learning

could be minimal. To overcome this, generative adversarial

networks (GAN) based models are proposed in [20], [21] to

cope with the insufficiency of health data for asset reliability

prediction. Another method to predict EoL requires defining a

failure threshold in advance. EoL is therefore assumed to occur

when a health indicator exceeds that threshold. For example,

an appropriate threshold is required to separate the hyper-plane

of the high dimensional features in support-vector machines.

However, sufficient expert knowledge of critical components’

failure threshold is not always readily available and human

factors introduce much uncertainty, which is difficult to model

and brings complexity to the analysis and synthesis procedures

[5]. Furthermore, it is not appropriate to use a single threshold

to summarise all failure modes.

The degradation progresses for the same mechanical system

are variate. It may undergo multi-mode degradation triggered

by many inducements including: enclosure problems, exces-

sive operation, lack of maintenance, and corrosive environ-

ments. Olof Mogren [22] suggests that generative adversarial

networks (GAN) [23] are a viable way of modeling a distri-

bution over different types of sequential data. Ha et al [24]

demonstrate that GMM-RNNs can learn to forecast from an

immense amount of observations from multi-scenarios.

Inspired by previous work, this paper proposes a novel

data-driven approach based on GAN, focusing on enhancing

the predictions of long-term degradation and remaining useful

life without pre-defining specific component failure thresholds.

The Generator in GAN is a novel adaptation of sequence-

to-sequence variational auto-encoder (VAE) derived from the

combination of LSTM and Gaussian mixture model (GMM)

and the Discriminator is a bidirectional LSTM. The contribu-

tion and intellectual merit of this research is two-fold:

1) An LSTM-GMM-based VAE as a generative model is

proposed, that is fed with time-series data and combined

with a one-hot health indicator to bypass low accuracy

prediction generated from an imprecise pre-defined fail-

ure threshold. In this model, the concatenation of GMM

with LSTM networks allows modeling and predicting of

different modes of degradation scenarios in a single neural

network conditioned on previous records.

2) The proposed VAE model is trained through an adversarial

learning approach, i.e., GAN, to enhance the accuracy and

robustness of long-term degradation and RUL prediction.

The model’s effectiveness is quantified by health data col-

lected from various real-world engineering systems, includ-

ing aero-engines, wind turbines, and lithium-ion batteries.

The remainder of this paper is arranged as follows: Section

II formulates the problem. Section III presents the method-

ology in detail. Section IV presents the experimental results.

Finally, Section V contains concluding remarks.

II. PROBLEM STATEMENT

Let x(i) denotes a vector of multivariate sensor mea-

surements such that x(i) = [x(i;1), · · · , x(i;m)], where m
is the number of sensors. Formally, a sensor measurement

sequence is described by X = {x(0), · · · ,x(n−1)}, where

x(i) ⊆ Rm and n is the total time steps of observations. The

ground-truth of prediction at the next time step is denoted

by Y = {y(1), · · · ,y(n)}, where y(i) = x(i), i = 1, · · · , n.

The dataset D is defined by D = {(x(i−1),y(i))}i=1,··· ,n. In

general, the data-driven prognostics approach is to learn the

best predictor of run-to-failure degradation from the previously

observed data, i.e., a training dataset DT . Then, based on the

prediction from the trained model, the RUL can be estimated

at each time step. This problem can be formulated by finding

a non-linear mapping function F : x′ → z, with a latent

variable z ⊆ RNz and Nz < m. Subsequently, the optimal

predictor can be formulated as a function of z shown below:

fγ (z) = argmax
γ

p (y |z,γ ) (1)
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Fig. 1. Schematic diagram of the VAE-GAN. The Generator is a Sequence-to-Sequence Variational Auto-encoder, consisting of a ‘bidirectional’
LSTM based Encoder and an auto-regressive LSTM based Decoder. The Discriminator is a bidirectional LSTM.

where γ is the parameter of the nonlinear mapping function

that needs to be optimized through training fγ (z). The

primary goal of this paper is to develop a data-driven approach

to learn the non-linear mapping function fγ for degradation

progress modeling and stable RUL prediction.

III. METHODOLOGY

A. Feature Extraction & Selection

As shown in Fig. 1, feature extraction and selection is

an essential first-phase preparation of prognostics. In this

process, critical features that contain sufficient degradation

signatures will be identified in order to increase the efficiency

and reliability of prognostics by: 1) reducing the cost of

feature measurement; and 2) minimizing the dimensions of

data required to describe the degradation progress [17], [25].

The majority of mechanical systems normally undergo grad-

ual degradation rather than breaking down unexpectedly. In

consideration of the reality that the ideal features for prognosis

should practically indicate the system degradation trajectory

throughout the lifetime, i.e., should be monotonous, Pearson’s

correlation [26] and monotonic metrics [27] are implemented

to evaluate the degradation-sensitivity of features ft from

the initially sampled raw data X . Specifically, the monotonic

metric in Equ. (2) evaluates the ascending/descending trend

of features, and the Pearson’s correlation metric in Equ. (3)

assesses the correspondence between features and time, shown

in the following:

mono =

∣

∣

∣

∣
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− dxt < 0

T − 1

∣

∣

∣

∣
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(
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)2

(3)

where T is the sequence length, x(t;m) is the m-th feature at

time step t, x could be sensor measurements (e.g., vibration)

or statistics (e.g., amplitude in frequency spectrum), (·) de-

notes mean operation, and d(·) denotes differential operation.

Feature selection is accomplished based on a linear com-

bination of correlative and monotonic performance, i.e., α ·

mono+ (1−α) · cor, where α is a trade-off hyper-parameter

set to 0.5 here. A feature with the highest criteria value will

be selected to discard those irrelevant or redundant features.

B. Feature Transformation

Predominantly, to solve the nonlinear equation ythold =
F(tEoL; θ̂) for RUL prediction, it is necessary to find the

time cycle (tEoL) when the degradation reaches a certain

level ythold. Therefore, the RUL can be determined from

RUL = tEoL − tcurrent. Defining ythold requires sufficient

expert knowledge of the system. When the system is intricate

and the failure modes are various, it is unmanageable to define

a certain threshold to represent all failures.

With the intention of enabling model learning tEoL, the

selected feature is concatenated with an additional Health

Indicator (HI) to represent the machinery degradation process

instead of using it directly as follows:

St = (ft,HI) (4)

where ft ⊆ Rk, k is the dimension of selected features.

Unlike the prognostic method in [28] attempts to map HIs

with RULs, here HI = (h1, h2) is generated by one-hot

encoding with only two values. Specifically, (1, 0) suggests

that the equipment is healthy and currently in operation while

(0, 1) suggests that the equipment has undergone failure and

requires maintenance. The initial value is set as S0 = (0, 1, 0).

To develop a simple, robust approach that works well for a

broad class of degradation series, the method first re-formats

each series to a fixed length of Tmax, where Tmax is the

longest sequence in the training dataset indicating the slowest

degradation mode. In principle, Tmax can be considered as

a variable reading from the training data directly. For those

sequence S whose length Ts is shorter than Tmax, St is set

as (0, 0, 1) for Ts ≤ t < Tmax to make all series of the same

length Tmax. In addition, the min-max normalization and mean

filtering are implemented in advance to eliminate the influence

of noise to some degree. The model training will be discussed

in detail in next section.
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C. LSTM-GMM based VAE with Adversarial Training

The long short-term memory (LSTM) neural network is a

significant branch of recurrent neural networks (RNNs) that

are often used to model sequences of data [29]. However,

a standard LSTM generates sequences one data point at a

time, which does not work for an explicit global sequence

representation. Considering our problem scenario is similar to

that of [20], [30], variational autoencoder (VAE) is a good

option since it has been verified to be an efficient stochastic

variational inference and learning algorithm that scales to

large datasets. Moreover, VAE even works in the intractable

case under some mild differentiability conditions [30]. Here,

an LSTM and GMM based sequence-to-sequence VAE with

adversarial training is proposed, referred to as VAE-GAN,

seeking to incorporate distributed latent representations of the

entire sequences (life-long degradation) with various degrada-

tion modes. The adversaries, a generator G and a discriminator

D, are two different deep recurrent neural networks.

Generator: As shown in Fig. 1, the encoder in G consists of

two LSTMs, taking the input in both directions to obtain two

hidden states. Specifically, at each time step t, the encoder in

the generator takes all available observations SF
Ts

as well as

the same observations in opposite order SB
Ts

as inputs, and

outputs two hidden states hF
Ts

and hB
Ts

as:

hF
Ts

= LST M
(

SF
Ts

)

, hB
Ts

= LST M
(

SB
Ts

)

(5)

Then, a fully-connected layer is employed to map the

concatenated hidden state [hF
Ts
;hB

Ts
] into µ and σ. In addition,

the exp operation is applied to σ due to the non-negativity of

standard deviation as:

µ = Wµ[h
F
Ts
;hB

Ts
] + bµ (6)

σ = Wσ[h
F
Ts
;hB

Ts
] + bσ, σ̂ = exp(

σ

2
) (7)

and then, the latent vector z is set up as follow [30]:

z = µ+ σ̂ ⊙ ǫ (8)

where ǫ ∼ N (0, I) and ⊙ signifies the element-wise product.

Therefore, the latent vector z is a learned vector of dimension

Nz constrained on the input sequence instead of a determin-

istic yield given certain input. Such encoding scheme enables

modeling the case under mild different conditions [30].

The decoder in G is an unidirectional LSTM network. At

each time step t, the decoder takes in the previous data St−1

and the latent vector z as a concatenated input xt−1. This

format of input implies that the generated consequent hidden

state is conditioned on the latent z sampled from the encoder

that is trained end-to-end along the decoder. The computation

of the decoder can be described as follows:

ht = LST M (xt−1,ht−1) (9)

where the input of the model is xt−1 and ht−1, and the initial

hidden states h0 of the decoder are the yield of a connected

layer, that is h0 = tanh(Wzz + bz). The output at each time

step is the hidden state ht, which are the parameters for a

probability distribution of the consequent data St.

A fully-connected layer is used to project the hidden state

ht into the output yt, yt ⊆ R3M+2, which can be split into M
mixed Gaussian distributions to describe ft and one categorical

(p1, p2) distribution to describe health indicator HI:

yt = Wyht + by

= [(π̂1, µ1, σ̂1), · · · , (π̂M , µM , σ̂M ), (p̂1, p̂2)]
(10)

The feature ft in St described by Gaussian mixture model

with M normal distributions at each time step is given as:

p(ft) =

M
∑

i=1

πiN (ft|µi, σi) (11)

where µi and σi are the mean and standard deviation of the ith
univariate normal distribution respectively; π is a categorical

distribution of length M with
∑M

i=1 πi = 1, representing the

mixture weights of the Gaussian mixture model.

Due to the probability constraint and the non-negativity

of standard deviations, exp and softmax operations are

employed. The probabilities for the categorical distributions

are calculated using the outputs as logit values as:

σi = exp(σ̂i) (12)

πk =
exp(π̂k)

∑M
i=1 exp(π̂i)

, k = 1, 2, · · · ,M (13)

pk =
exp(p̂k)

∑2
i=1 exp(p̂i)

, k = 1, 2 (14)

Discriminator: The discriminator D is a bidirectional LSTM

network that allows us to take into account the input time

series in both directions [22]. The outputs of each LSTM cell

in D are fed into a fully connected layer with weights shared

across time steps. One sigmoid output per cell is then averaged

to the final decision for the sequence.

Loss & Training: The model is trained by simultaneously

updating the discriminative distribution so that it discrimi-

nates between samples from the data generating distribution

pdata(S) and from those of the generative distribution pg(Ŝ)
[23]. First, the optimization of the discriminator D given

generator G is described as follows. Similar to the training

of Sigmoid function-based classifiers, it involves minimizing

the cross entropy. The discriminator loss function LD is

formulated as follows:

LD(θd,θg) = LD
GAN (θd,θg) + αLD

2 (θd) (15)

where LD
GAN (θd,θg) is the standard GAN loss and LD

2 (θd)
is the standard L2 regularization defined as follows:

LD
GAN =

1

Tmax

Tmax
∑

t=1

[

log D(St) + log (1−D(Ŝt))
]

(16)

LD
2 = ‖θd‖2 (17)

where St is sampled from the ground truth degradation data

and G(xt) = Ŝt is the corresponding generated samples.

Then, fix D and optimize G to minimize the discrimination

accuracy of D. The reconstructed loss function Equ. (18) is

the sum of four terms: the standard GAN loss in Equ. (19) of
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Algorithm 1: Present-to-EoL Degradation Prediction.

Input: feature series S = St, t = 1, 2, · · · , tp
1 initialize h0 = 0, S0 = (f0,HI) = (0, 1, 0), t = 0;
2 Obtain z by encoding S;
3 while HI ! = (0, 1) do
4 Generate ht+1 and yt+1 by ht, St and z;

5 Sample Ŝt+1 using yt+1;
6 t = t+ 1;
7 if t > tp then

8 St = Ŝt;
9 end

10 end
11 tEoL = t;

Output: return S = Ŝt, t = tp, · · · , tEoL

generator LG
GAN , the log loss in Equ. (20) of feature variation

LG
f , the log loss in Equ. (21) of health state terms HI, and the

Kullback-Leibler divergence loss LG
k in Equ. (22) representing

the difference between the distribution of latent vector z with

a Gaussian distribution with zero mean and unit variance:

LG = LG
GAN + LG

f + LG
h + LG

k (18)

LG
GAN (θd,θg) =

1

Tmax

Tmax
∑

t=1

[log (1−D(G(xt)))] (19)

LG
f = − 1

Tmax

Ts
∑

t=1

log

(

M
∑

k=1

πi,kN (ft|µt,k, σt,k)

)

(20)

LG
h = − 1

Tmax

Tmax
∑

t=1

[

ht
1 log (p

t
1) + ht

2 log (p
t
2)
]

(21)

LG
k =

1

Nz

(

1 + σ − µ2 − exp(σ)
)

(22)

Note that the Gaussian mixture model parameters modelling

the ft beyond Ts are discarded when calculating LG
f , while LG

h

is calculated using all of the categorical distribution parameters

modelling the health indicator HI until Tmax. Both terms are

normalized by the total sequence length Tmax. The practice

of loss definition of LG
h + LG

f was found to be more robust

and empowers the VAE to learn the EoL straightforward.

We empirically update the parameters of D for k times and

then update G once. The optimization process between G and

D alternates and improves their performance gradually. The

global optimal solution is achieved if pdata = pg , meaning

when the discrimination ability of D has been improved to

a high limit but cannot correctly discriminate further, it is

thought that G has captured the distribution of the real data.

D. Prognostics

Degradation Prediction: After sufficient off-line training, Al-

gorithm 1 shows the pesudo code used to make a present-

to-EoL prediction at time step tp, when given previous data

collected in 0 < t < tp. At time t, the generator takes

the transformed feature data St as input and outputs yt as

the parameters of a probability distribution of the data point

Fig. 2. Correlative and Monotonic metrics performance of MAPSS,
HSSB and Lithium-ion. The dot-line is the average value.

St+1. During the prediction process, Ŝt is sampled based

on the Gaussian mixture model parameters and categorical

distributions at time step t. Unlike during the training process,

the predicted Ŝt is fed into the next time step t + 1. The

prediction process will continue until HI = (0, 1) is achieved.

RUL Prediction: The procedure of RUL prediction is based

on the present-to-EoL prediction. Starting from the prediction

time tp, the algorithm calculates the prediction until the health

state indicator HI = (0, 1) is obtained at time step tEoL. Then

the predicted remaining useful life is defined as:

RUL = tEoL − tp (23)

where tp = 1, 2, · · · , tEoL represents the RUL prediction and

can be carried out at each time step.

IV. EXPERIMENTS

A. Experimental Setup

Dataset Description: In this paper, three types of data (aero-

engine, wind turbine and lithium-ion battery) have been

employed to verify the effectiveness and flexibility of the

proposed method in different industrial applications.

1) MAPSS: The aero-engine data, provided by Modular Aero-

Propulsion System Simulation (MAPSS), consists of multi-

ple multivariate run-to-failure recordings (24 sensors and 3
operational settings, details see [31]) from a fleet of aero-

engines with dissimilar levels of initial wear and unspecified

manufacturing disparity. Sensors with constant records are

eliminated for contributing nonsensical information. To select

the optimal representative degradation feature (i.e., sensor), all

features are assessed by correlative and monotonic metrics. As

shown in Fig. 2, the 11th (static pressure at HPC outlet), the

12th (ratio of fuel flow to Ps30), and the 13th (corrected

fan speed) features produce similar high criteria values. To

simplify, the 11th feature is selected.

2) HSSB: The wind turbine generator (WTG) vibration data,

provided by Green Power Monitoring System, was collected
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Fig. 3. The present-to-EoL prediction of degradation progress by Decoder LSTM, VAE and VAE-GAN.

through 50-days operation of real-world 32222-J2-SKF ta-

pered high speed shaft bearings (HSSB) installed in a 2.2MW
WTG with typical shaft speed of 30Hz, ending with an

inner race fault. By assessing the typical time-series statistical

features (mean, std, skewness, kurtosis, and energy), kurtosis

was found to be the most representative degradation feature,

shown in Fig. 2. Visually, it undergoes a growing tendency of

decay at an early stage and an accelerated growth at the end.

3) Lithium-ion: The dataset [32] consists of 124 com-

mercial lithium-ion batteries cycled to failure under var-

ious fast-charging conditions. These lithium-ion phosphate

(LFP)/graphite cells (1.1Ah, 3.3V ), manufactured by A123

Systems, were cycled in horizontal cylindrical fixtures on a 48-

channel Arbin LBT potentiostat in a 30◦C forced convection

temperature chamber. To capture the electrochemical evolution

of individual cells during cycling, the cycle-to-cycle evolution

of the discharge voltage curve is considered as the most

representative degradation feature according to Fig. 2.

In each case, every selected feature is sampled to a fixed

sequence length Ts at intervals of n = ceil (T/Tmax) (where

ceil(·) returns a ceiling value), to form a training dataset. At

each time step t < Ts, the health indicator HI = (1, 0) was

concatenated to ft while HI = (0, 1) at Ts ≤ t ≤ Tmax.

To facilitate computational efficiency, Tmax is regarded as a

hyper-parameter here and manually set to 100.

Model Layout Details: The LSTM network in generator

G consists of 256 internal (hidden) units. The number of

components for the Gaussian mixture model is set to M = 10.

Discriminator D has a bidirectional layout, while G is unidi-

rectional.

Baseline Model: Two distinct baseline models have been em-

ployed to make a comparative study. By removing the encoder,

a pure decoder LSTM as a baseline is an auto-regressive model

without latent variables, self-trained entirely with loss function

L = LG
f +LG

h to predict the next status at each time step in the

recurrence. The second one is VAE (G) (without adversarial

training) with loss function L = LG
f + LG

h + LG
k .

Implementation: Back propagation through time (BPTT) and

mini-batch stochastic gradient descent (SGD) were used [23],

with the batch size set to 10. The model was pre-trained for

10 epochs with loss function LG = LG
f + LG

h + LG
k . Layer

normalization and recurrent dropout with a keep probability

of 90% was applied. The learning rate was set to 0.001 and

gradient clipping of 1.0 was used. The 5-fold cross validation

is employed for parameter tuning. The implementation was

built based on the Tensorflow platform equipped with NVIDIA

Geforce GTX 1080 Ti and Titan Xp GPU with 32 GB memory.

Evaluation: The models are compared by performance feed-

back from prognostics metrics: Prognostic Horizon (PH), α−λ
Accuracy, Relative Accuracy (RA), and Convergence. PH is

defined as the difference between the EoL and the first time

when the prediction result continuously resides in the accuracy
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zone, which has a constant bound with a magnitude of α error

with respect to true EoL. The α − λ accuracy determines

whether a prediction falls within specified limits (α of the

actual RUL) at specific circle tλ, which is expressed with

a fraction of λ between starting cycle of RUL prediction

tp(λ = 0) and EoL (λ = 1) as:

tλ = tp + λ(EoLtrue − tp) (24)

RA is the relative error rate between the true and predicted

RUL over α error zone at tλ, shown in Equ. (25).

RA =
|RULtrue −RUL|

αEoLtrue

, at tλ (25)

Convergence (CoM, Equ. (26)) is defined as the Euclidean

distance between (tp, 0) and the centroid (tC , EC) of the area

under the relative error curve E(k) between tp and EoL.

CoM =
√

(tC − tp)2 + E2
C (26)

with

tC =
1

2

∑EoL
k=p (t

2
k+1 − t2k)E(k)

∑EoL
k=p (tk+1 − tk)E(k)

(27)

EC =
1

2

∑EoL
k=p (tk+1 − tk)E(k)2

∑EoL
k=p (tk+1 − tk)E(k)

(28)

The performance of degradation prediction is evaluated

using the mean absolute error (MAE) on generated output as:

MAEdecay =
1

N

N
∑

i=1

(
1

Ts

Ts
∑

t=tp

∣

∣

∣
Ŝt − St

∣

∣

∣
) (29)

where Ts is the length of series, Ŝt is the predicted value, St

is the ground truth, and N is the number of series.

B. Results and Discussion

The present-to-EoL prediction results for MAPSS, HSSB

and Lithium-ion generated by the baselines (decoder LSTM,

VAE) and the proposed VAE-GAN model are shown in Fig.

3 by columns, respectively. In each row, one typical test

series for each case is visualized at every 10 time steps as

an example. The MAEdecay for all test series are listed in

TABLE I. The starting circle of prediction tp is 20 since

the indicator remains stable at the beginning. By utilizing

decoder LSTM as a standalone predictive model, the degra-

dation prediction can be conditioned on the previous points.

Specifically, the decoder LSTM is employed at first to ‘encode’

the observations into a hidden state h. Afterwards, h is used

as the initial hidden state to yield the remaining degrada-

tion prediction. The degradation curves predicted by decoder

LSTM roughly represent the real trend and the degradation

distribution becomes closer to the ground truth in the second

half of the lifetime. As more observations become available,

the result can be more accurate. According to TABLE I, VAE

is able to produce predictions more accurate than decoder

LSTM as the MAEdecay converges faster to a certain level

(e.g. MAEdecay < 0.02 in MAPSS) after time step 50.

Furthermore, the smaller MAEdecay by VAE in the first half

of the lifetime indicates that VAE is able to generate better

degradation predictions than decoder LSTM even at early time.

The main reason lies in that the prediction is conditioned not

only on the previous observations, but also on the latent vector

z encoded by bidirectional LSTM. As TABLE I shows, VAE-

GAN outperforms the baseline models at the early stage as

MAEdecay within 0.05 (e.g. MAPSS), which indicates that

adversarial training helps VAE capture the distribution of real

data better.

Fig. 4 depicts the RUL predictions of three typical series

with the related RUL ground truth as reference, i.e., series

#1 (Lithium-ion), series #2 (MAPSS) and series #3 (HSSB).

The RUL prediction is visualized at every 5 time steps. As

the prognostics horizon performance is illustrated in Fig. 4, a

longer PH implies more time to take corrective action based on

a prediction with some credibility. The allowable error bound

α with respect to EoL ground truth is set to 0.05. Evidently,

the PH of VAE is wider than that of decoder LSTM, and the

VAE-GAN further extends the PH. Both VAE and VAE-GAN

provide sufficient PH allowing for corrective maintenance.

The RUL prediction quality evaluated by the α− λ metric

is illustrated in Fig. 4, which label either “True” or “False”

by verifying whether the prediction falls within α (α = 0.1)

accuracy when prognosticated at early (i.e. λ = 0.25) or

halfway (i.e. λ = 0.5) to EoL from the first prediction is

made. This is a more stringent requirement than staying within

a converging cone of the error margins as a system nears EoL.

Since the tλ may not be consistent with the frequency of the

prediction step, t′λ which is closest to tλ is chosen. It can be

observed that VAE and VAE-GAN predict more precise RUL

than Decoder LSTM in the early and medium term.

As highlighted by the RULs provided in Fig. 4 and TA-

BLE I, the predictions by all three models converge to the

true RULs, which validates the assumption that prognostic

performance improves as more information becomes available

with time. Then, the RA metric in Equ. (25) is employed to

quantify the accuracy levels. The RA by decoder LSTM is

relatively higher and fluctuates more heavily than that of VAE.

The VAE-GAN further lowers the relative error and flattens the

fluctuation, proving to be a more accurate and stable predictive

model. Since RA outputs error information at a specific time

step, to assess the general error of models, Cumulative Relative

Accuracy (CRA) is used to produce an aggregate accuracy

level. The average RA at tλ and CRA of all test series are

presented in TABLE II.

Fig. 4 row 3 presents a convergence metric performance

indicating the rate at which the relative accuracy improves

with time. As stated earlier, convergence is the Euclidean

distance between (tp, 0) and the centroid of the area under the

RA curve from tp to the End-of-Useful-Predictions (EoUP).

EoUP is introduced to express the minimum acceptable PH in

demand to take maintenance. From the industrial perspective,

any prediction made beyond EoUP is of little or no use since

it does not leave enough time to carry out corrective measures.

Considering the concept that lower distance implies a faster

convergence, it can be seen in Fig. 4 and TABLE II that,

compared to decoder LSTM, VAE and VAE-GAN are able

to produce reliable predictions at earlier stages. Moreover, the
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Fig. 4. Row 1: Prognostic Horizon with α = 0.05. It illustrates whether the algorithm predicts within desired accuracy around EoL and sufficiently in
advance. Row 2: α− λ accuracy performance with α = 0.1, λ = 0.25, 0.5. This further illustrates if the algorithm stays within desired performance
levels relative to RUL at a given time. Row 3: Relative Accuracy and Convergence performance with α = 0.1. The relative error quantifies how well
an algorithm performs at a given time relative to RUL. CoM quantifies how fast the performance converges.

convergence of VAE after adversarial training has been slightly

improved.

C. Extended Discussion

1) Multivariate Time Series: Theoretically and practically,

the proposed model can be easily extended to handle multi-

feature input. Since the outputs at each time step are the

parameters for a probability distribution of the next data St, a

multi-variate normal distribution should be employed in such

case. For example, in order to satisfy two feature series input,

a modified probability distribution (compared to Equ. (11))

that considering the correlation between two features (instead

of i.i.d.) is adopted:

p(f1
t , f

2
t ) =

M
∑

i=1

πiN (f1
t , f

2
t |µ1

i , σ
1
i , µ

2
i , σ

2
i , ρ

12
i ) (30)

where N is the probability distribution function for a bi-variate

normal distribution, and ρ12i is the correlation parameter of

each bi-variate normal distribution.

Accordingly, the output yt (Equ. (10)) is modified as:

yt = Wyht + by =[(π̂1, µ
1
1, σ̂

1
1 , µ

2
1, σ̂

2
1 , ρ̂

12
1 ), · · · ,

(π̂M , µ1
M , σ̂1

M , µ2
M , σ̂2

M , ρ̂12M ),

(p̂1, p̂2)]

(31)

where yt ⊆ R6M+2, can be split into M mixed Gaussian

distributions to describe ft = (f1
t , f

2
t ) and one categorical

(p1, p2) distribution to describe health indicator HI. In addi-

tion to exp and softmax operations (Equ. (12) to Equ. (14)),

tanh operation is applied to ρ to ensure ρ ⊆ [−1, 1].
Identically, a tri-variate normal distribution (with yt ⊆

R10M+2) should be considered for three feature series in-

put (ft ⊆ R3), and a n-variate normal distribution (with

yt ⊆ R(1+2n+C2

n
)M+2) for n dimensional feature (ft ⊆ Rn).

The general formula for the n-dimensional normal density is:

Ff (f
1, f2, · · · , fn) =

exp{− 1
2 (f − µ)

′

K−1(f − µ)}
(
√
2π)n

√

det(K)
(32)

where f = (f1, · · · , fn), µ = E(f) and K is the covariance

matrix.

To further explore the relation between prognostic accuracy

and feature dimension, the proposed model is extended to

match feature series with 2 or 3 dimensions, where the top

n most representative features are selected based on Section

III-A. The features 1, 2, and 3 represent the 11th (static

pressure at HPC outlet), 12th (ratio of fuel flow to Ps30),

and 13th (corrected fan speed) features, respectively. The

comparative result is presented in Fig. 5 and TABLE III. It
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Fig. 5. The present-to-EoL prediction of degradation progress by VAE-GAN of multi-features input.

TABLE I
MEAN ABSOLUTE ERROR PERFORMANCE.

MAPSS

Time

Steps

Decoder LSTM VAE VAE-GAN

Decay RUL Decay RUL Decay RUL

20 0.084 7.13 0.058 5.82 0.048 4.23
25 0.123 5.96 0.061 6.03 0.046 4.14
30 0.086 7.07 0.040 5.87 0.031 3.45
35 0.087 4.57 0.043 4.46 0.023 3.32
40 0.056 4.56 0.051 4.02 0.032 2.63
45 0.080 3.94 0.046 3.54 0.028 2.56
50 0.043 4.20 0.039 3.78 0.026 2.56
55 0.038 3.86 0.032 3.46 0.016 1.82
60 0.040 3.72 0.021 2.38 0.018 1.54
65 0.035 3.82 0.019 1.90 0.019 1.78
70 0.024 2.91 0.016 1.96 0.017 1.49

HSSB

Time

Steps

Decoder LSTM VAE VAE-GAN

Decay RUL Decay RUL Decay RUL

20 0.128 3.21 0.062 2.51 0.033 2.02
25 0.086 3.02 0.054 1.18 0.040 1.12
30 0.070 2.12 0.033 1.36 0.037 1.30
35 0.068 1.34 0.035 1.16 0.036 1.30
40 0.071 1.87 0.049 1.12 0.036 1.05
45 0.052 1.20 0.043 1.04 0.035 1.00

Lithium-ion

Time

Steps

Decoder LSTM VAE VAE-GAN

Decay RUL Decay RUL Decay RUL

20 0.249 13.73 0.121 11.28 0.114 8.25
25 0.269 12.10 0.118 10.65 0.102 7.60
30 0.301 12.34 0.144 10.30 0.044 6.54
35 0.292 12.02 0.127 9.44 0.046 6.21
40 0.122 10.22 0.109 8.86 0.046 4.31
45 0.151 8.11 0.098 8.35 0.043 4.56
50 0.173 7.05 0.104 7.16 0.028 4.30
55 0.164 6.33 0.091 6.23 0.027 4.26
60 0.179 6.40 0.083 4.68 0.037 3.50
65 0.097 5.13 0.082 3.84 0.026 3.05
70 0.070 5.10 0.051 3.33 0.028 2.86

can be observed that there is a slight increase in performance

when ft ⊆ R2. However, when the feature dimension reaches

3, it dramatically deteriorates the prognostic performance. This

is because the added feature 2 is highly correlated with feature

1 and offers little useful information (also known as feature

redundancy) in terms of training. Additionally, using multiple

input significantly increase the computational burden and thus

is hard to achieve Nash equilibrium during the training pro-

cess. When feature dimension exceeds 3, the training process

become unstable and can not guarantee a convergence. One

of the reasons is that each feature dimension has a different

distribution even under the same degradation mode, it is hard

TABLE II
(CUMULATIVE) RELATIVE ACCURACY AND CONVERGENCE.

MAPSS

t
Decoder LSTM VAE VAE-GAN

RA CRA CoM RA CRA CoM RA CRA CoM

t0.25 0.52
0.54 24.81

0.47
0.4 21.72

0.38
0.38 19.18

t0.5 0.43 0.35 0.26

HSSB

t
Decoder LSTM VAE VAE-GAN

RA CRA CoM RA CRA CoM RA CRA CoM

t0.25 0.62
0.41 12.94

0.26
0.27 12.62

0.22
0.23 12.28

t0.5 0.34 0.22 0.20

Lithium-ion

t
Decoder LSTM VAE VAE-GAN

RA CRA CoM RA CRA CoM RA CRA CoM

t0.25 1.08
0.78 26.54

0.83
0.62 25.19

0.45
0.43 24.33

t0.5 0.67 0.66 0.36

Note: α = 0.1;λ = 0.25, 0.5.

TABLE III
MULTIVARIATE FEATURE SERIES INPUT PERFORMANCE COMPARISON.

MAPSS by VAE-GAN

tλ
ft ⊆ R1 ft ⊆ R2 ft ⊆ R3

RA CRA CoM RA CRA CoM RA CRA CoM

t0.25 0.38
0.38 19.18

0.32
0.36 18.02

0.87
1.05 22.78

t0.5 0.26 0.23 1.02

Note: α = 0.1;λ = 0.25, 0.5.

to precisely model all the different distributions at the same

time. In future work, a multivariate adaptive prognostic models

by generative adversarial learning will be further studied.

2) Threshold: In most prognostic methods, EoL is obtained

when an indicator (e.g., selected feature) exceeds a predefined

threshold. However, this will introduce additional concerns.

Take CMAPSS data as an example, if the averaged feature

value (11-th feature) at failure time is chosen as a threshold

among 100 degradation cases, there is a 50% probability that

the system will break down before reaching that threshold. If

the minimum feature value at failure time is chosen, this will

introduce a systematic error (±13.61) on RUL prediction even

if the degradation prediction is 100% accurate. In this paper,

the feature transformation method, that incorporates one-hot

health indicator, enables the model to learn different EoLs

and thus bypass low accuracy prediction produced from an

imprecise pre-defined failure threshold.

3) Generalization: Similar as most of the classical machine

learning based prognostic models, the proposed method in this
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paper needs enough run-to-failure historical data to achieve

a significant performance level. Although the implementation

of Gaussian components in our proposed model enables sep-

arately modeling different stochastic events and separately

modeling scenarios governed by different rules [33], it is

unable to produce an accurate prediction for new coming data

that have large variations from the learning datasets (i.e., data

follow a new degradation mode that has not been observed

before). To tackle this problem, concepts such as physics-

informed [34] or domain adaption [35] machine learning

models are encouraged.

V. CONCLUSIONS

This paper proposed a novel sequence-to-sequence varia-

tional auto-encoder with an adversarial learning approach for

the prediction of long-term degradation progress and remain-

ing useful life without defining a specific failure threshold.

This approach used correlative and monotonic metrics to

identify the critical features related to degradation, which are

then concatenated with health indicator vectors to train the

model. The VAE consists of a bidirectional LSTM based

encoder and an auto-regressive LSTM-GMM based decoder,

fully utilizing the capability of LSTM in learning long-term

dependencies in time series data. The output of LSTM in

decoder was connected to a fully-connected layer to map the

output into the parameters of a Gaussian mixture model and

a categorical distribution for sampling consequent predictions.

Experiments on real-world health monitoring data of aircraft

turbofan engines, wind turbines, and lithium-ion batteries

verified the effectiveness and robustness of the proposed

approach. Prediction is conditioned on the encoded previous

observations, which enables multi-mode degradation predic-

tion. The adversarial training helps the VAE better capture

the distribution of real degradation progress, thus leading to a

more accurate RUL prediction.
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