mzuriCh ETH Library

Program development by step-
wise refinement

Report

Author(s):
Wirth, Niklaus

Publication date:
1971

Permanent link:
https://doi.org/10.3929/ethz-a-000814155

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Berichte der Fachgruppe Computerwissenschaften 2

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://doi.org/10.3929/ethz-a-000814155
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgenossische

Berichte der

Technische Fachgruppe
Hochschule Computer-
Zurich Wissenschaften
Niklaus Wirth
Program
development
by step-wise
refinement
- Januar19771 2




Niklaus Wirth

Program
development
by step-wise
refinement

Abstract:
The creative activity of programming - to be distinguished
from coding - is usually taught by examples serving to exhibit

certain techniques. It is here considered as a sequence of design
decisions concerning the decompesition of tasks into subtasks and
of data into data structures. The process of successive refinement
of specifications is illustrated by a short but nontrivial example,
from which a number of conclusions are drawn regarding the art and
the instructiong of programming.
Fidg. Techn. Hochschule Ziirich
RZ-Biblicthek
Clausiusstrasss 55
CH-8008 Ziirich

i



(submitted to the Communications of the ACM)



Program development by step-wise refinement

1. Introduction

Programming is usually taught by examples. Experience
shows that the success of a programming course critically depends
on the choice of these examples. Unfortunately, they are too
often selected with the prime intent to demonstrate what a com-
puter can do. Instead, a main criterion for selection should be
their suitability to exhibit certain widely applicable technigues.
Furthermore, examples of programs are commonly presented as finished
"products" followed by explanations of their purpose and their
linguistic details. But active programming consists of the design
of new programs, rather than contemplation of old programs. As a
consequence of these teaching methods, the student obtains the
impression that programming consists mainly of mastering a language
(with all the pecularities and intricacies soc abundant in modern
PL's) and relying on one's intuition to somehow transfommideas into
fiaished programs. Clearly, programming courses should teach me-
thods of design and construction, and the selected examples should

be such that a gradual development can be nicely demonstrated.

This paper deals with a single example chosen with these two
purposes in mind. Some well-known technigques are briefly demon-
strated and motivated (strategy of preselgction, stepwise con-
struction of trial soclutions, introduction of auxiliary data,
recursion), and the program is' gradually developped in a sequence

of refinement steps.

In each step, one or several instructions of the given program
are decomposed into more detailed instructions. This successive
decomposition or refinement of specifications terminates, when
all instructions are expressed in terms of an underlying computer
or programming language, and must therefore be guided by the faci-

lities available on that computer or language. The result of the



execution of a program is expressed in terms of data, and it
may be necessary to introduce further data for communication
between the obtained subtasks or instructions. As tasks are
refined, so the data may have to be refined, decomposed, or struc-

tured, and it is natural to refine program and datsa specifications

in parallel.

Every refinement step implies some design decisions. It is
important that these decision be made explicit, and that the
programmer be aware of the underlying criteria and of the existence
of alternative solutions. The possible solutions to a given problem
emerge as the leaves of a tree, sach node representing a point of
deliberation and decision. Subtrees may be considered as families
of solutions with certain common characteristics and structures.

The notion of such a tree may be particularly helpful in the situa-
tion of changing purpose and environment to which a program may

sometime have to be adapted.

A guideline in the process of step~-wise refinement should
be the principle to decompose decisions as much as possible, to
untangle aspects which are only seemingly interdependent, and to
defer those decisions which concern details of representaficn as
long as possible. This will result in programs which are easier
to adapt to different environments (languages and computers), where

different representations may be required.

The chosen sample problem is formulated at the beginning of
paragraph 3. The reader is strongly urged to try to find a solu-
tion by himself before embarking on the paper which - of course -

presents only one of many passible solutions.



2. Notation

For the description of programs, a slightly augmented Algol 60
notation will be used. In order to express repetition of state-
ments in a more lucid way than by use of labels and jumps, a

statement of the form

repeat <statement sequence>

until <Boolean expression>

is introduced, meaning that the statement segquence is to be
repeated until the Boolean expression has obtained the value

true.

3. The B~-gueens problem and an approach to its sclution

Given are an B x 8 chess board and 8 queens which are
hostile to each other. Find a position for each queen
(a configuration) such that no queen may be taken by
any other queen (i.e. such that every row, column, and

diagonal contains at most one queen).

This problem is characteristic for the rather frequent situation
where an analytical solution is not known, and where one has

to resort to the method of trial and error. Typically, there
exists a set A of candidates for soclutions, among which one is
to be selected which satisfies a certain condition p. Thus,

a solution is characterised as an x such that

(x € A)Ap(x)



-4 -

A straight-forward program to find a solution is

repeat Generate the next element of A
and call it x
until p(x)V (no more elements in A);

if p(x) then x = solution

The difficulty with this sort of problem wusually is the
sheer size of A, which forbids an exhaustive generation of
candidates on the grounds of efficiency considerations. In the

present example, A consists of

64x63x ... x58x57 = 248

elements (board configurations). Under the assumption that ge-
neration and test of each configuration consumes 100#5, it

would roughly take 100 years to find a solution. It is obviously
necessary to invent a "shortcut", a method which eliminates a
large number of "obviously" disgualified contenders. This

strateqy of preselection is characterised as follows:

Find a representation of p in the form
p=gATr
Then let

B = {x | (xe A)A I(X)}

T

Obviously BIQ A. Instead of generating elements of A, only
elements of B are produced and tested on condition g instead
of p. Suitable candidates for = condition r are those which

satisfy the following requirements:

1. EI is much smaller than A,
2. elements of Br are easily generated,

3. condition g is easier to test than condition p.



The corresponding program then is

repeat Generate the next element of B
and call it x
until g(x)V (no more elements in B);

if q(x) then x = solution

A suitable condition r in the B8-gueens problem is the rule that
in every column of the board there must be exactly aone queen.
Condition g then merely specifies that there be at most one queen
in every row and in every diagonal, which is evidently somewhat
easier to test than p. The set Br (configurations with one queen
in every column) contains "only" BB = 224 elements. They are

generated by restricting the movement of gqueens to columns. Thus,

all of the above conditions are satisfied.

Assuming again a time of 100 ms for the generation and test
of a potential solution, finding a solution would now consume
only 16 seconds. Having a powerful computer at one's disposal,
one might easily be content with this gain in performance. If
one is less fortunate and is forced to, say solve the problem
by hand, it would take 1.5 hours of generating and testing configura-
tions at the rate of one per secand. In this cese it might pay
to spend some time finding further shortcuts. Instead of applying
the same method as before, another one is advocated here which

is characterised as follows:

Find a representation of trial solutions x of the form
[x1, Xo o aee xn], such that every trial solution can be generated

in steps which produce [x1], [x1,x2] . u e [x1,x xn] respec-

5 v
tively. The decomposition must be such that

1. every step (generating xj) must be considerably simpler

to compute than the entire candidate x, and

2. qlx) > q(x1 ces xj) for all j < n,



-6 -

i.e. a full solution can never be obtained by extending a partial
trial solution which does not satisfy the predicate g. On the
other hand, however, a partial trial solution satisfying g may not
be extensible into a complete solution. This method of stepwise

construction of trial solutions therefore requires that trial

solutions failing at step j may have to be "shortened" again in
order to try different extensions. This technique is called

backtracking and may generally be characterised by the program:

jo=1;
repeat trystep j;
if successful then advance else regress

until (3 < 1) v (j > n)

In the B8-queens example, a solution can be constructed
by positioning gueens in successive columns starting with column 1
and adding a gueen in the next column in each step. Obviously,
a partial configuration not satisfying the mutual non-aggression
condition may never be extended by this method into a full solu-
tion. Also, since during the j-th step only j gqueens have to
be considered and tested for mutual non-aggression, finding a
partial solution at step j requires less effort of inspection
than finding a complete solution under the condition that all
8 queens are on the board 211 the time. Both stated criteria are
therefore satisfied by the decomposition in which step j con-
sists of finding a safe position for the queen in the j-th

column.

The program subsequently to be developed is based on this
method; it generates and tests B76 partial configurations before
finding a complete solution. Assuming again that each generation
and test (which is now more easily accomplished than before)
consumes one second, the solution is found in 14.5 minutes, and

with the computer taking 1DD}45 per step, in 0.09 seconds.



4. Develgpment of the program

We now formulate the step-wise generation of partial so-
lutions to the B-queens problem by the following first version

of a program:

variable board, pointer, safe;
considerfirstcolumn;
repeat trycolumn;
if safe then
begin setgueen; caonsidernextcolumn
end else regress

until lastcoldone V regressoutoffirstcol

This program is composed of & set of more primitive instructions

(or procedures) whose actions may be described as follows:

considerfirstcolumn:
The problem essentially consists of inspecting the safety
of squares. A pointer variable designates the currently
inspected square. The column in which this square lies is
called the currently inspected column. This procedure

initialises the pointer to denote the first column.

trycolumn:
starting at the current square of inspection in the currently
considered column, move down the column until either a safe
square is found, in which case the Boolean variable safe
is set to true, or until the last sgquare is reached and is al-

so unsafe, in which case the variable safe is set to false.
setqueen: a queen is positioned onto the last inspected square.

considernextcolumn:
advance to the next column and initialise its pointer of

inspection.



regress:
regress to a column where it is possible to move the
positioned queen further down, and remove the gueens
positioned in the columns over which regression takes
place. (Note that we may have to regress over at most

two columns. Why?)

The next step of program development was chosen to refine the

descriptiors of the instructions trycolumn and regress as follows:

procedure trycolumn;
repeat advancepointer; testsquare

until safe V lastsquare

procedure regress;

begin reconsiderpriorcolumn
if = regressoutoffirstcol then
begin removequeen;
if lastsquare then
begin reconsiderpriorcolumn;
if — regressoutoffirstcol then

remaovequeen

The program is expressed in terms of the instructions

considerfirstcolumn
considernextcolumn
reconsiderpriorcolumn

advancepointer

testsquare (sets the variable safe)
setqueen

removequeen



and of the predicates

lastsquare
lastcoldone

regressoutoffirstcol

In order to refine these instructions and predicates further

in the direction of instructions and predicates available in
common programming languages, it becomes necessary to express
them in terms of data representable in those languages. A
decision on how toc represent the relevant facts in terms of

data can therefore no longer be postponed. First priority in
decision making is given to the problem of how to represent the
positions of the gqueens and of the square being currently inspec-
ted.

The most straight-forward solution (i.e. the one most close-
ly reflecting a wooden chess board occupied by marbel pieces)
is to introduce a Boolean square matrix with B[i,j] = true
denoting that square (i,j) is occupied. The success of an algo-
rithm, however, depends almost always on a suitable choice of its
data representation in the light of the ease in which this re-
presentation allows the necessary operations to be expressed.
Apart from this, consideration regarding storage requirements may
be of prime importance (although hardly in this case). A commen
difficulty in program design lies in the unfortunate fact that
at the stage where decisions about data representations have to
be made, it often is still difficult to foresee the details of
the necessary instructions operating on the data, and often quite
impossible to estimate the advantages of one possible represen-
tation over another. In general, it is therefore advisable to
delay decisions about data representation as long as possible
(but not until it becomes obvious that no realisable solution

will suit the chosen algorithm).



- 10 -

In the problem presented here, it is fairly evident even
at this stage that the following choice is more suitable than a
Boolean matrix in terms of simplicity of later instructions as

well as of storage economy:

j is the index of the currently inspected column, (xj,j)
is the coordinate of the last inspected square, and the position
of the queen in column k < j is given by the coordinate pair
(%)

and board are refined into:

k) of the board. Now the variable declarations for pointer

integer j (0 £ j £ 9)

integer array x[1:8] (0 £ X5 < 8)
and the further refinements of some of the above instructions

and predicates are expressed as
procedure considerfirstcolumn;

begin j := 1; x[1] := 0 end

procedure considernextcolumn;
begin j := j+1; x[j] := 0 end

procedure reconsiderpriorcolumn; j := j-1

procedure advancepointer;
x[3] = x[3] + 1

Boglean procedure lastsquare;

lastsquare := x[i] =8

Boolean procedure lastcoldone;

lastcoldone := j > B

Boolean procedure regressoutoffirstcol;

regressoutoffirstcol := j < 1



At this stage, the program is expressed in terms of the

instructions

testsquare
setqueen

removequeen

As a matter of fact, the instructions setqueen and removequeen
may be regarded as vacuous, if we decide that the procedure
testsquare is to determine the value of the variable safe solely

on the grounds of the values x which completely

e X,
represent the positions of the }—1 quein; so far on the board.
But unfortunately the instruction testsguare is the one most
frequently executed, and it is therefore the one instruction
where considerations of efficiency are not only justified but
essential for a good solution of the problem. Evidently a ver-

sion of testsquare expressed only in terms of X e is

X,
inefficient at best. It should be obvious that testsqiale is
executed far more often than setqueen and removequeen. The

latter procedures are executed whenever the column (j) is changed
(say m times), the former whenever a move to the next square

is undertaken (i.e. X5 is changed, say n times). However, set-

gueen and removequeen are the only procedures which affect the chess-
board. Efficiency may therefore be gained by the method of intro-

ducing auxiliary variables V(x Xj) such that

g
1. whether a square is safe can be computed more easily
from V{(x) than from x directly (say in u units of

computation instead of ku units of computation)

2. the computation of V(x) from x (whenever x changes)

is not too complicated (say of v units of computation)



The introduction of V is advantageous (apart from considerations
of storage economy), if

N4

ER sl

nlk-1)u > mv or (k=1) >

i.e. if the gain is greater than the loss in computation units.

A most straight-forward solution to obtain a simple version
of testsquare, is to introduce a Boolean matrix B such that
B[i,j] = true signifies that square (i,j) is not taken by another
queen. But unfortunately, its recomputation whenever a new gueen
is removed (v) is prohibitive (why?) and will more than outweigh

the gain.

The realization that the relevant condition for safety of
a square is that the square must neither lie in a row nor in a
diagonal already occupied by another queen, leads to a much more
economic choice of V. We introduce Boolean arrays a, b, é with

the meanings

a, = true : no queen is positioned in row k
bk = true : no queen is positioned in the /-diagonal k
c, = true : no queen is positioned in the \-diagonal k

The choice of the index ranges of these arrays is made in view
of the fact that squares with equal sum of their coordinates lie
on the same /-diagonal, and those with equal difference lie on
the same \-diagonal. With row and column indices from 1 to 8,

we obtain
Boolean array al[1:8], b[2:16], c[-7:7]

Upon every introduction of auxiliary data, care has to

be taken of their correct initialization. Since our algorithm

starts with an empty chess-board, this fact must be represented
by initially assigning the value true to all components of the

arrays a, b, and c.



- 13 -

We can now write

procedure testsquare;
safe := a[x[j]] A b[3+x[3]] A e[j-x[3i]]

procedure setqueen;

alx[i1] := bli+x[i]]

EIDCBdUIB removequeen;

alx[3i]] == bli+x[i]] :

1]

x[j-x[3]] := false

cli-x[3]] := tzue

The correctness of the latter procedure is based on the fact that
each queen currently on the board had been positioned on a safe
square, and that all queens positioned after the one to be re-
moved now, had already been removed. Thus, the square to be

vacated becomes safe again.

A critical examination of the program obtained so far
reveals that the variable x[j] occurs very often, and in parti-
cular at those places of the program which are also executed most
often. Moreover, examination of x[j] occurs much more frequently
than reassignment of values to j. As a consequence, the principle
of introduction of auxiliary data can again be applied to increase

efficiency: a new variable

integer i
is used to represent the value so far denoted by x[j]. Conse-
quently
x[§] =1
must always be executed before j is increased, and
ie= x[y]
after j is decreased. This final step of program development

leads to the reformulation of some of the above procedures as

follows:




- 14 -

procedure testsquare;
safe := a[i] A bli+j] A c[i-j]

procedure setqueen;
a[i] := b[i+j] := c[i-j] := false

grocedure removequeen;

ali] := bli+j] := c[i-j] := true
procedure considerfirstcolumn;

begin j :=1; i := 0 end
procedure advancepointer; 1 := i+

procedure considernextcolumn;
begin x[j] :=41i; j := j+1; i := 0 end

Boolean procedure lastsquare;

lastsquare (= i = 8

The final program, using the procedures

testsquare
setqueen
regress

removequeen

and with the other procedures directly substituted, now has the

form

repeat
repeat i := i+1; testsquare
until safe V (i=8);

if safe then

il
[w)

begin setqueen; x[3] = i j o= j+1s; i
end else regress

until (j > B)v (j < 1);

if j > B then PRINT(x) glse FAILURE



- 15 -

It is noteworthy that this program still displays the structure
of the version designed in the first step. Naturally other,
equally valid solutions can be suggested and be developed by the
same method of step-wise program refinement. It is particularly
gessential to demonstrate this fact to students. One alternative
solution was suggested to the author by E.W. Dijkstra. It is
based on the view that the problem consists of a step-wise exten-
sion of the board by one column containing a safely positioned
queen, starting with a null-board and terminating with 8 columns.
The process of extending the board is formulated as a procedure,
and the natural method to obtain a complete board is by recur-
sion of this procedure. It can easily be composed of the same
set of more primitive instructions which were used in the first

solutian.

procedure Trycolumn(j);

begin integer i; 1 := 0;

repeat i := i+1; testsqguare
if safe then
begin setqueen; x[i] := i;
if j < 8 then Trycolumn (j+1);
if —4 safe then removequeen
nd
until safe V (i=8)

O]

end

The program using this procedure then is

Trycolumn(1);
if safe then PRINT(x) else FAILURE

(Note that due to the introduction of the variable i local to
the recursive procedure, every column has its own pointer of

inspection 1i.




As a consequence, the procedures

testsquare
setqueen

removequeen

must be declared locally within Trycolumn too, because they
refer to the i designating the scanned sguare in the gurrent

column.)

5. The generalised B8-gueens problem

In the practical world of computing, it is rather uncommon
that a program, once it performs correctly and satisfactorily,
remains unchanged forever. Usually its users discover sooner
or later that their program does not deliver all the desired
results, or worse, that the results requested were not the ones
really needed. Then either an extension or a change of the pro-
gram is called for, and it is in this case where the method of
step-wise program design and systematic structuring is most
valuable and advantageous. If the structure and the program
components were well chosen, then often many of the constituent
instructions can be adopted unchanged. Thereby the effort of re-
design and reverification may be drastically reduced. As a matter
of fact, the adaptability of a program to changes in its objec-
tives (often called maintainability) and to changes in its
environment (nowadays called portability) can be measured pri-

marily in terms of the degree to which it is neatly structured.

It is the purpose of the subsequent chapter to demonstrate
this advantage in view of a generalization of the original
8~queens problem and its solution through an extension of the

programs compaonents introduced before.



- 17 -

The generalised problem is formulated as follows:

Find all possible configurations of 8 hostile queens
on an B8xB chess board, such that no queen may be taken

by any other gueen.
The new problem essentially consists of two parts, namely of

1. finding a method to generate further solutions, and

2. determining whether all solutions were generated or not.

It is evidently necessary to generate and test candidates for
solutions in some systematic manner. A common technique is to

find an grdering of candidates and a condition to identify the

last candidate. If an ordering is found, the solutions can be
mapped onto the integers. A condition limiting the numeric values
associated with the solutions then yields a criterion for termi-
nation of the algorithm, if the chosen method generates solutions

strictly in increasing order.

It is easy to find orderings of solutions for the present

problem. We choose for convenience the mapping
8

Mix) = 2 3 103"

j=1

An upper bound for possible solutions is then

M{x ) = BB8BBBES
max

and the "convenience" lies in the circumstance that our earlier
program generating one solution generates the minimum solution
which can be regarded as the starting point from which to pro-
ceed to the mext solution. This is due to the chosen method of

testing squares strictly proceeding in increasing order of M(x)



starting with 00000000. The method for generating further solu-
tions must now be chosen such that starting with the configu-

ration of a given solution, scanning proceeds in the same order
of increasing M, until either the next higher solution is found,

or the limit is reached.

6. The extended program

The technique of extending the two given programs finding
a solution to the simple B-gueens problem is based on the idea
of modification of the global structure only, and of using the
same building blocks. The global structure must be changed such
that upon finding a solution the algorithm will produce an appro-
priate indication - e.g. by printing the solution - and then
proceed to find the next solution until it is found or the limit
is reached. A simple condition for reaching the limit is the
event when the first queen is moved beyond row 8, in which case
regression out of the first column will take place. These deli-
berations lead to the following modified version of the nonrecur-

sive program:

considerfirstcolumn;
repeat trycolumn;
if safe then
begin setqueen; considernextcolumn;
if lastcoldone then
begin PRINT(x); regress
end

end else regress

until regressoutoffirstcol




Indication of a solution being found by printing it now occurs
directly at the level of detection, i.e. before leaving the
repetition clause. Then the algorithm proceeds to find a next
solution whereby a short-cut is used by directly regressing
to the prior column; since a solution places one queen in each
row, there is no point in further moving the last queen within

the eighth column.

The recursive program is extended with even greater ease

following the same considerations:

procedure Trycolumn(j);

begin integer i;

{declarations of procedures testsquare, advancequeen,
setqueen, remavequeen, lastsquare>
i = 03
repeat advancegqueen; testsquare;
if safe then
begin setqueen; x[i] := i3
if = lastcoldone then Trycolumn(j+1) eglse PRINT(x);
removequeen
en

until lastsquare

end

The main program starting the algorithm then consists (apart

from initialization of a, b, and c) of the single statement
Trycolumn(1)

In concluding, it should be noted that both programs represent
the same algorithm. Both determine 92 soclutions in the same
order by testing squares 15720 times. This yields an average
of 171 tests per solution; the maximum is 876 tests for finding

a next solution (the first one), and the minimum is 8.



- 20 -

(Both programs coded in the language Pascal were executed by

a CDC 6400 computer in less than one second).

7. Conclusions

The lessons which the described example was supposed to illustrate

can be summarised by the following points:

1. Program construction consists of a sequence of refinement
steps. In each step a given task is broken up into a number
of subtasks. Each refinement in the description of a task
may be accompanied by a refinement of the description of the
data which constitute the means of communication between the
subtasks. Refinement of the description of program and

data structures should proceed in parallel.

2. The degree of modularity obtained in this way will determine
the ease or difficulty with which a program can be adapted
to changes or extensions of the purpose or changes in the

environment (language, computer) in which it is executed.

3. During the process of stepwise refinement, a notation which
is natural to the problem in hand should be used as long as
possible. The direction in which the notation develops during
the process of refinement is determined by the language in

which the program must ultimately be specified, i.e. with

which the notation ultimately becomes identical. This language

should therefore allow us to express as naturally and clearly
as possible the structures of program and data which emerge
during the design process. At the same time, it must give
guidance in the refinement process by exhibiting those basic
features and structuring principles which are natural to the

machine by which programs are supposed to be executed.



- 21 -

It is remarkable that it would be difficult to find a language
that would meet these important requirements to a lesser de-
gree than the one language still used most widely in teaching

programming: Fortran.

Each refinement implies a number of design decisions based

upon a set of design criteria. Among these criteria are
efficiency, storage economy, clarity and regularity of struc-
ture. Students must be taught to be conscious of the involved
decisions and to critically examine and to reject solutions,
sometimes even if they are correct as far as the endeffect

is concerned; they must learn to weigh the various aspects of
design alternatives in the light of these criteria. In parti-
cular, they must be taught to revoke earlier decisions, and

to back up, if necessary even to the top. Relatively short

sample problems will often suffice to illustrate this impor-

tant point; it is not necessary to construct an Operating System

for this purpose.

The detailed elaborations on the development of sven a short
program feorm a long story, indicating that careful programming
is not a trivial subject. If this paper has helped to dispell
the wide-spread belief that programming is easy as long as the
programming language is powerful enough and the available
camputer is fast enough, then it has achieved one of its pur-

poses.



_ 22 -

Acknowledgments

The author gratefully acknowledges the helpful and stimulating

influence of many discussions with C.A.R. Hoare and E.W. Dijkstra.

References

The following articles are listed for further references on the
subject of programming:

E.W. Dijkstra, "A constructive approach to the problem of pro-

gram:correctness", BIT 8, pp. 174-186, (1968)

E.W. Dijkstra, "Notes on structured programming", EWD 249
Technical University Eindhoven (1969)

P. Naur, "Programming by action clusters", BIT 9,

pp. 250-258, (1969)

N. Wirth, "Programming and Programming Languages",
Proc. International Computing Symposium, Bonn,

May 1970.



