
Program Implementation Schemes for Hardware-Software Systems

Rajesh K. Gupta Claudionor N. Coelho, Jr. Giovanni De Micheli

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, CA 94305-4055.

Abstract

We consider mixed system designs that are made of interacting hardware and software components.
The hardware component consists of a re-programmable component, like an off-the-shelf processor,
and application-specific chips. The software component consists of a set of concurrently executing
program fragments, calledthreads.

We have considered the problem of generating hardware and software components from a given
system model under input/output data rate constraints in [1]. In this paper we present schemes for im-
plementation of the software component of mixed system designs. The primary motivation for software
implementation schemes is to provide a low overhead scheme for concurrent software implementation
on a single processor which makes the overall hardware-software system design feasible.

1 Introduction

Prompted by the success in recent years in synthesis of large-scale integrated circuits either as a single
chip or as a collection of chips [2] [3], attention has now been focused on synthesis of systems where the
target architecture contains application-specific as well as general purposere-programmablecomponents.
The re-programmable components of a system architecture refers to a microprocessor like the Mips
R3000 which executes part of the system functionality implemented as programs assisted by dedicated
ASIC hardware. The motivation for such a target architecture comes from the realization that most
system designs used in dedicated applications, i.e., embedded systems consist of mixed components that
blend ASIC chips with processors, memory and other special purpose modules. The ASIC components are
chosen to complement performance or add functionality not achievable by pure program implementations.
Recent advances in hardware synthesis and the proliferation of advanced and inexpensive microprocessors
and processor cores have lead to the emergence of research interests in hardware-software co-design [4].

Synthesis of systems containing re-programmable components can be thought of as extension of high-
level synthesis techniques to systems containing ‘generalized resources’. However, due to differences
in the computation model of the operations implemented in re-programmable and application-specific
components, the overall problem of system synthesis is much more complex. The re-programmable
components implement system functionality in aninstruction-drivensoftware component as an ordered
set of machine instructions with a statically allocated memory space, whereas the application-specific
hardware components essentially operate asdata-drivenreactive computational elements. Because of
this difference in the hardware and software components, the problem of system synthesis is formulated
as a hardware-software co-synthesis problem[5].

1

Gupta, Coelho, De Micheli: Program Implementation Schemes 2

ASIC Netlist
Assembly
Program

compilation

Mixed System Implementation

Graph
Model

HDL
Specification

compilation

constraint
analysis

partitioning

code synthesis

Program
Graph

C
Program

ASIC
Graph
Model

interface gen

Interface

strctural synthesis

(Simulation)
POSEIDON

HDL

Multi−thread Program
Generation

System
Environment
Model

System IO

Figure 1: System Synthesis Procedure

2 An Overview of our Co-synthesis Approach

Figure 1 illustrates the overall approach to synthesis of systems containing both hardware and software
components. We model system behavior using a hardware description language,HardwareC[6] language
that has a C-like syntax and supports timing and resource constraints.HardwareCsupports specification
of unbounded and unknown delay operationsthat can arise from data dependent decisions and external
synchronization operations. The choice of a hardware description language to model system functionality
is not necessarily an ideal approach due to limitations that are inherent in such a model. However, it
does provide the benefits developing a co-synthesis approach that extends and builds upon techniques
for synthesis of hardware. Further, the particular choice of HardwareC is immaterial for the co-synthesis
formulation, and one could use other HDLs such as Verilog or VHDL. The input HDL description is
compiled into asystem graph modelbased on data-flow graphs [5, 7]. The system graph model consists
of vertices representing operations, and edges which represent serialization among operations. Overall
the system graph model is composed of concurrent data-flow sections which are ordered by the system
control flow.

Associated with input/output statements, the user can specify corresponding constraints on input/output
data rates. The input (output) rate constraints refer to bounds on the rates at which data is required to be
consumed (produced). For a discussion of the constraint analysis the reader is referred to [7]. The system
graph model is partitioned based on feasibility of the overall system implementation and satisfaction of
applicable data-rate constraints. One such scheme relies on identifying unbounded delay operations[1, 8].
As a result of system partitioning, we have a set of concurrently executing ‘hardware’ and ‘software’

Gupta, Coelho, De Micheli: Program Implementation Schemes 3

models. These models consist of hierarchical acyclic system graph models. We consider input/output
operations related to message-passing and data-dependent loops to be unbounded delay operations. Since
data-dependent operations may offer unbounded delays it becomes necessary to schedule these operations
dynamically. Therefore, we refer to data-dependent delay operations aspoints of synchronizationin the
system model. Our approach to synthesis of hardware under relative scheduling formulation has been
described in detail elsewhere [6]. Briefly, the relative scheduling formulation makes it possible to achieve
a data-driven dynamic schedule of operations with respect to synchronization points. Due to inherently
different model and rate of computation between hardware and software modules, it is necessary to
allow multiple executions of individual hardware and software models in order to achieve high system
throughput. Differences in rates of computation causes variation in the rates of communication across
different models. In order to facilitate this form of distributed computation, appropriate buffering and
handshake mechanisms between hardware and software components are needed [8]. The software graph
models are then serialized to minimize temporary register storage requirements.From the serialized graph
models, we generate a corresponding C-code description. The C-code is then compiled into assembly
code for the target processor using existing software compilers.

We verify the correctness of implementations by using an event-driven simulator namedPoseidon,
that performs concurrent execution of multiple functional models implemented either as a program or
as application-specific hardware [8].Poseidonsupports simulation of assembly code for the DLX mi-
croprocessor [9], a RISC oriented load/store processor that supports instruction-set architecture of the
commercially available Mips R3000 processor, and assembly code for the 8051 microcontroller. The
hardware component of system design can be simulated either before or after the structural synthe-
sis phase. The former simulation is performed at the system graph level and the latter simulation is
performed at the logic level. Input toPoseidonconsists of model declarations, interconnections and
corresponding interface. Each model has an associated clock signal and clock cycle-time used for its
simulation. The interface is specified by its components, such as wires, queues, registers, and memories,
and their protocols. For example, the protocol for a data-transfer to or from a queue is specified by
guarded commands. Section 5 presents an example of interface protocol specification inPoseidon.

In this paper, we focus on the problem of generation of the software components from the graph
model that is output of system partitioning as shown by the shaded area in Figure 1.

Target Architecture and Assumptions

We choose a target architecture that contains the essential elements of hardware-software systems. As
shown in Figure 2, the target architecture consists of a general-purpose processor assisted by application-
specific hardware components.

Some assumptions are made to simplify the task of cosynthesis. (1) We restrict ourselves to use of a
single re-programmable componentbecause presence of multiple re-programmable components requires
additional software synchronization and memory protection considerations to facilitate safe multiprocess-
ing. (2) We assume the memory subsystem to have single-level in order to avoid the complexities that
arise when analyzing and synthesizing hierarchical memory subsystems. (3) The re-programmable com-
ponent is always the bus master. Almost all processors come with facilities for bus control. On the other
hand, inclusion of such functionality on the application-specific component would greatly increase the
total hardware cost. (4) Finally, we assume that the re-programmable component contains a ‘sufficient’
number of maskable interrupt input signals. For purposes of simplicity, we assume that these interrupts
are unvectored and there exists a predefined unique destination address associated with each interrupt

Gupta, Coelho, De Micheli: Program Implementation Schemes 4

ASIC

MEMORY
ML Program

User Data
Interface Buffer

Application-Specific
Components

Re-programmable
Component

ASIC

PROCESSOR
MICRO-

Figure 2: Target System Architecture

signal.

3 Implementation of Software Components

As mentioned earlier, the system ‘software component’ is described as a set of hierarchical acyclic graph
models where the vertices represent operations and edges represent dependencies. Through the use of
hierarchy to describe calls and loops, the graph model pushes the uncertainty of conditional execution
paths into the uncertainty of delay. The uncertainty of loop executions manifests itself as the uncertainty
of the number of times the a called graph model is executed. Example 1 shows aHardwareCprocess
description containing message-passing receive, conditional and loop operations.

Example 1: Example of aHardwareCprocess with unbounded delay operations

process example (a, b, c)
in port a[8] ;
in channel b[8] ;
out port c ;

{
boolean x[8], y[8], z[8] ;

x = read(a);
y = receive(b);
if (x > y)

z = x - y ;
else

z = x * y ;
while (z >= 0) {

writ e c = y ;
z = z - 1 ; }

}

Notes on execution semantics:(1). A process inHardwareC executes concurrently with other
processes in the system specification. A process restarts itself upon completion of the last operation in
the process body. Thus there exists an implied outer-most loop that contains the body of the process

Gupta, Coelho, De Micheli: Program Implementation Schemes 5

Source

Sink

nop

nop

rcv

cond

submpy

join

loop

c

c’

c’

c

c

nop

nop

Sink

Source

sub

(G0)

(Gloop)

read

write

Figure 3: Example of a graph model containing unbounded and unknown delay operations

model. (2). Operations within a process body need not be executed sequentially. A process body can
be specified with varying degrees of parallelism such as parallel, data-parallel or sequential.2

Figure 3 shows the corresponding hierarchical graph model for the processexample that consists
of two graphs, labeledG0 andGloop. The bold-circles indicate operations with unbounded or unknown
execution delays. Depending upon the points of synchronization in a model, the graph can be implemented
as a single or multiple routines. In absence of multiple points of synchronization, a simple graph model
can be implemented as a single routine. A hierarchical system model is implemented as a set of routines
where each routine corresponds to a graph in the model hierarchy. A program implementation of a graph
is referred to as aprogram threaddue to the fact that the operations of the graph model are serialized in
software. Thus, the software component consists of a set of program threads. The program threads may
be hierarchically related. In addition, some program threads may need to be executed concurrently based
on the concurrency among the corresponding graph models. Concurrency between program threads can
be achieved by using an inter-leaved execution model as explained later in this section.

A program thread may be initiated by a synchronization operation, such as a blocking receive operation
(rcv synch). However, within each thread all operations have fixed delay. The (unknown) delay in
executing the synchronization operation appears as a delay in scheduling the program thread and it is
not considered a part of the thread latency. Therefore, for a given re-programmable device the bound on
latency of each thread is known statically. Referring to the example in Figure 3, there are two program
threadsT0 andTl oop. Thread,T0 consists of the receive operation followed by the port read operation
etc. while the other thread consist of serialized operations in the corresponding graph body.

T0 Tloop

rcv synch loop synch
read write
cond eval op sub

Gupta, Coelho, De Micheli: Program Implementation Schemes 6

cond jump detach
op add
op mpy
detach

Though only a feature of representation, this use of hierarchy is well suited to eventual implementation
of the software component as a set of program routines. Upon synchronization, all the operations in a given
graph model are eventually executed. Thus, the corresponding routines can be constructed with known
and bounded latencies as explained earlier. As with the graph model, the uncertainty due to data-dependent
delay operations is related to invocations of the individual routines. A software implementation consisting
of dynamic invocations of fixed latency program threads simplifies the task of software characterization
for satisfaction of data rate constraints. Satisfaction of imposed data rate constraints depends upon
the performance of the software component. Even in presence of unbounded delay operations bounds
on software performance can be determined based on its implementation of program threads. In the
following sections, we describe a code-level transformation of the data-dependent loop operations that
makes it possible to observe imposed input/output rate constraints. In cases where such transformations
are not possible, we use processor interrupts along with bounds on number of interrupts and interrupt
latencies to ensure satisfaction of rate constraints.

Rate constraints and software performance

The data rate constraints on the inputs and outputs of the software component are derived based on
the corresponding constraints on system inputs and outputs. A data rate constraint on an input (output)
specifies a lower bound — in terms of samples/sec — on the rate at which the particular I/O data should
be consumed (produced). In case of a deterministic software component, that is, software component
with known and bounded execution delays, precise data rates can be computed and checked against
corresponding data rate constraints. However, the presence of an unbounded-delay operation between
consecutive read (write) operations requires computation of statistical measures — such as distribution
of input data value and inter-arrival time — in order to determine the rate of data production and
consumption. A major contribution to the variability of data rates is due to the data-dependent loop
operations since the delay due to these operations consists of active execution times rather than ‘busy-
wait’-type delays encountered by other synchronization operations. In some cases, the need for statistical
measures can be avoided by transforming thedynamicloop execution model into a correspondingpseudo-
static loop execution model as follows. Consider, for example, a software component that consists of
reading a value followed by a data-dependent delay operation shown in Example 2.

Example 2: Consider a mixed implementation shown by the figure below.

Processor

ASICport x

ρ samples/sec

The ASIC component sends to the processor some data on portx at an input rate constraint of�
samples/sec. The function to be implemented by the processor is modeled by the followingHardwareC
process fragment.

Gupta, Coelho, De Micheli: Program Implementation Schemes 7

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE]; |

{ | read loop_synch
... | detach <loop_body>
read x ; | x = x - 1
while (x >= 0) | detach
{ |

<loop-body> |
x = x - 1 ; |

} |
}

x is a boolean array that represents an integer. In its software implementation, this behavior is translated
into a set of two program threads shown on the right, where one thread performs the reading operations,
and the other thread consists of operations in the body of the loop. For each execution of thread T1
there arex execution of thread T2.2

For theHardwareCprocess in Example 2, the interval between successive executions of the read
operation is determined by the overall execution time of thewhile statement. Due to this variable-delay
loop operation, the input data rate at portx is variable and is dependent upon value ofx as a function of
time. For each invocation of thread T1 there arex invocations of thread T2. In other words, thread T1
can be resumed afterx invocations of thread T2. In absence of any other data-dependency to operations in
the loop body, thread T1 can be restarted before completing all invocations of thread T2 by buffering the
data transfer from thread T1 to T2. Further, if variablex is used only for indexing the loop iterations, the
need for inter-thread buffering can be obviated by accumulating value ofx into a separate loop counter as
shown in example below. We call such an implementation of a loop construct in software apseudo-static
loop based on the fact that an upper bound on the number of iterations of the loop body is statically
determined by the data rate constraints on inputs and outputs that are affected by the data-dependent loop
operation.

A pseudo-static loop implementation assumes that there exists arepeat-countcounter associated with
every loop and a loop body is required to be executed as long as its repeat-count is a non-zero number.
Additionally, the repeat-count is not used by the corresponding loop body for any purposes other than
keeping a count of number of iterations remaining. Under such conditions, the above component can be
transformed into two program threads where one thread reads portx and increments therepeat-countfor
the loop body contained in the other thread.

Example 3: Transformation of data-dependent loop in Example 2 into a pseudo-static loop

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE] |

{ | read loop_synch
integer repeat-coun t = 0 ; | add op <loop-body>

| detach repeat-count--
read x ; | detach
repeat-count = repeat-coun t + x ; |
while (repeat-count >= 0) |
{ |

<loop-body> |
repeat-count = repeat-count-1 |

}
}

(1). For each execution of thread T1 there is an upper bound on the maximum number of executions
of thread T2. This bound is determined by an input data rate constraint.

Gupta, Coelho, De Micheli: Program Implementation Schemes 8

(2). Initialization of variables is performed during system RESET state.2

In this case, we can provide a bound on the rate at which port is read by ensuring that the read thread,
T1, is scheduled, say after utmostm iterations of the loop body. Due to accumulation of repeat-count
additional care must be taken to avoid any potential overflow of this counter. [Generally, overflow can
be avoided ifm is greater than or equal to the average value ofx. In the extreme, it can be guaranteed
not to overflow if m is at least maximum ofx which is equivalent to assigning worst-case delay to the
loop operation].

Next we consider the problem of software synchronization and scheduling mechanisms to make a
hardware-software system design feasible.

4 Control Flow in the Software Component

Our model of software component relies on the sequential execution of each thread of execution. Concur-
rency between threads is achieved through interleaved execution of the threads. Multiple program threads
may be created out of a graph model each starting with an unbounded-delay operation. Therefore, soft-
ware synchronization is needed to ensure correct ordering of operations within the program threads and
between different threads.

In presence of multiple threads of executions due branching and loop operations, the control flow
between threads is represented by a directedflow graph, the nodes of which are individual program threads
and edges indicate control dependencies. Since the total number program threads and their dependencies
are known statically, the programs threads are constructed to observe these dependencies. The threads
are identified by unique tags. A run-time FIFO, calledcontrol FIFO , maintains the identifier tags of the
threads that are ready to run based on control flow (while they may still be waiting for data). Before
detaching, each thread performs one or moreenqueueoperations to the FIFO for its successor threads as
shown in Example 4 below.

Example 4: Inter-thread control dependencies.

T1

T2 T3

Flow Graph Thread

Thread T1

<body>
enqueue (T2) on cFIFO
enqueue (T3) on cFIFO
detach

T1

T2 T3

before T1

after T1

ControlFIFO (cFIFO)

<body> refers to the (linearized) set of operations from the corresponding graph models. Control
dependency from thread T1 to T2 is built into the code of T1 by the enqueue operation on the control
FIFO. 2

A thread dependency on more than one predecessor thread (that is a multiple indegree (fanin) node
in the flow graph) is satisfied by ensuring multiple enqueue operations for the thread by means of a
counter. For example, a thread node with a indegree of 2 would contain a synchronization preamble code
as indicated by the while statement shown in Example 5 below.

Gupta, Coelho, De Micheli: Program Implementation Schemes 9

Example 5: Thread with multiple input control dependencies.

T1

T2 T3
Thread T1

while (count != 2)
{
 count = count + 1;
 detach
}
<body>
count = 0
enqueue <successor threads> on cFIFO
detach

T1 is enqueued by T2 and T3, since there are dependencies from T2 and T3 into T1. Therefore,
T1 must wait for the control to be transferred from T2 and T3. This control transfer is achieved by
counting the number of times T1 is enqueued in the control FIFO.2

Control transfer for multiple fanin nodes entails program overheads that add to the latency of the cor-
responding threads. For this reason, an attempt should be made to reduce multiple dependencies for a
program thread through a careful dependency analysis. In case of multiple outdegree nodes in the flow
graph, a necessary serialization among enabling of successor threads occurs.

The problem of achieving concurrency through interleaved execution in the software component was
considered in [8]. The different program threads can be implemented as program subroutines that operate
under a global task scheduler (or themainprogram). It was shown that the overheads in terms of number
of cycles for each inter-thread control transfer operation can be reduced significantly by placing program
subroutines in a co-operative, rather than hierarchical, relationship to each other by implementing them as
Coroutines[10]. For the DLX microprocessor a coroutine implementation of program threads constitutes
an overhead of 19 cycles. This low overhead comes from the fact that coroutine transfers are determined
at compilation time in our model, and thus efficient use of registers prevents the high overhead costs
of more general transfer schemes. Another scheme for implementation of the software component is to
construct a program routine using the method ofdescription by cases[11]. In this method, we attempt to
construct a single program with a unique case assignment for each thread (in a rather large conditional
in the final program). A set of global state registers is used to store the state of execution of each thread.
The overheads due to this scheme depends strongly upon the instruction set architecture of processor.
For the DLX microprocessor, the overhead amounts to 35 cycles for each inter-thread transfer operation.
In case of so-called ‘CISC’ processors this scheme reduces the overhead by reducing amount of ALU
operations in favor of a slight increase in memory input-output operations.

5 Hardware-Software Synchronization

Due to the serial execution of the software component a data transfer from hardware to software must
be explicitly synchronized. Using apolling strategy, the software component can be designed to perform
pre-meditated transfersfrom the hardware components based on its data requirements. This requires
static scheduling of the hardware component. In cases where the software functionality is communication
limited, that is, the processor is busy-waiting for an input-output operation most of the time, such a scheme
would be sufficient. Further, in absence of any unbounded-delay operations, the software component in
this scheme can be simplified to a single program thread and a single data channel since all data transfers

Gupta, Coelho, De Micheli: Program Implementation Schemes 10

are serialized. However, this would not support any branching, no reordering of data arrivals since
dynamic scheduling of operations in hardware would not be supported.

In order to accommodate different rates of execution of the hardware and software components, and
due to unbounded delay operations, we look for adynamicscheduling of different threads of execution.
Such a scheduling is done based on availability of data. One mechanism perform such scheduling is by
means of a control FIFO mentioned in the previous section which attempts to enforce the policy that data
items are consumed in the order in which they are produced. The hardware-software interface consists
of data queues on each channel and a (control) FIFO that holds the identifiers for the enabled program
threads in the order in which their input data arrives. The control FIFO depth is sized with the number
of threads of execution, since a thread execution is stalled pending availability of the requested data.

The control FIFO has an associated control logic that can be implemented either in hardware as
a part of the ASIC component or in software. In case the control FIFO is implemented in software
the FIFO control logic is no longer needed since the control flow is already in software. In this case,
data available lines from data queues are connected to processor unvectored interrupt lines, where the
respective interrupt service routines are used to enqueue the thread identifier tags into the control FIFO.
During the enqueue operations the interrupts are disabled in order to preserve integrity of the software
control flow.

6 Results

In order to illustrate the effect of software and hardware-software interface implementation, we present
design of a portion of a graphics controller that outputs pixel coordinates for lines and circles given the
end coordinates (and radius in case of circle). The final implementation of the system design consists
of line and circle drawing routines in the software component while the ASIC hardware performs initial
coordinate generation and coordinate transfer to the video ram. The software component consists of two
threads of execution corresponding to the line and circle drawing routines. Both program threads generate
coordinates that are used by the dedicated hardware. The data-driven dynamic scheduling of program
threads is achieved through the use of a 3-deep control FIFO. The circle and line drawing program
threads are identified by id numbers 1 and 2 respectively. The program threads are implemented using
the coroutine scheme described in Section 4. Example 6 shows the main program in case of a hardware
control FIFO implementation. Like the line and circle drawing routines, this program is compiled using
existing C-compiler.

Example 6: Main program of the graphics controller software component

#include "transfer_to.h"

int lastPC[MAXCOROUTINES] = {scheduler, circle, line, main};
int current = MAIN;

int *controlFIFO_out = (int *) 0xaa0000;
int *controlFIFO = (int *) 0xab0000;
int *controlFIFO_outak = (int *) 0xac0000;

#include "line.c"
#include "circle.c"

void main() {
resume(SCHEDULER);

};

Gupta, Coelho, De Micheli: Program Implementation Schemes 11

Scheme Program Synchronization Input data rate�1 Output data rate�1

size overhead (cycles/coordinate) (cycles/coordinate)
delay line circle

(bytes) (% cycles) ave. peak ave. peak

Hardware CFIFO 5972 0 81 535.2 502 76.4 30
Software CFIFO 6588 50 95 749.5 407 106.8 31
Opt. Software CFIFO 6360 29.4 95 651 330 94 31

Table 1:A comparison of control FIFO implementation schemes

int nextCoroutine;

void scheduler() {
resume(LINE);
resume(CIRCLE);
while(!RESET) {

do {
nextCoroutine = *controlFIFO;

} while ((nextCoroutine & 0x4) != 0x4);
resume(nextCoroutine & 0x3); } }

2

Table 1 compares the performance of different program implementations using control FIFO either
in hardware or in software component. The hardware implementation of a control FIFO with a fanin of 3,
when synthesized by programHebe[6] and mapped to LSI 10K library of gates using programCeres[6],
costs 228 gates. An equivalent software implementation adds 388 bytes to the overall program size of
the software component. Note that the cost of hardware control FIFO increases as the number of data
queues increases. On the other hand, software implementation of control FIFO using interrupt routines
to perform the control FIFO enqueue operations offers lower implementation cost for a 50% increase
in the thread latencies. In case of software implementation of control FIFO, the enqueue and dequeue
operations are described in C which are then compiled for DLX assembly. The overhead due to enqueue
and dequeue operations is reduced further by manually optimizing the assembly code for enqueue and
dequeue operations as indicated by the entry ‘Opt. Software CFIFO’. This one-time optimization of
enqueue and dequeue routines, which does not affect the C-code description of the program threads,
leads to a reduction in the program size and program thread overhead to 29.4% thereby improving the
rate at which the data is output. Note that data input and output rates have been expressed in terms of
number of cycles it takes to input or output a coordinate. Due to the data-dependent behavior of program
threads, the actual data input and output rates would vary with respect to value of the input data. In
this example simulation, the input rate has been expressed for a simultaneous drawing of a line and 5
pixel radius with width of 1 pixel each and the results are accurate to one pixel. An input rate of 81
cycles/coordinate corresponds to approximately 0.25 million samples/sec for a processor running at 20
MHz. Similarly, a peak circle output rate of 30 cycles/coordinate corresponds to a rate of 0.67 million
samples/sec. An implementation of line and circle drawing program threads for the graphics controller

Gupta, Coelho, De Micheli: Program Implementation Schemes 12

Example Program implementation Program size Max delay
bytes cycles

Graphics controller Coroutines, Hardware CFIFO 5972 806, 859
Network coprocessor Desc. by cases, Hardware CFIFO 8572 56

Table 2: Software component for system examples

example using inter-thread buffering comes to a total program size of 5788 bytes for a 62% overhead
delay per program thread.

Though instructive, the line and circle drawing algorithms are simple enough that their software
implementation do not fully exploit the potential of a mixed implementation. However, a more computa-
tionally intensive operation like spline generation or operations involving floating point arithmetic would
greatly benefit by their program implementations. As an example of complex system design, we present
design of an ethernet-based network co-processor. This processor is modeled as a set of 13 concurrently
executing processes which interact with each other by means of 24 send and 40 receive operations. The
total HardwareCdescription consists of 1036 lines of code. A mixed implementation using a single pro-
gram containing 17 cases using the method of description by cases for the software component takes 8572
bytes of program and data storage but it reduces the overall cost of the application-specific component
by 23% from 10882 gates to 8394 gates using LSI logic 10K library of gates. The mixed implemen-
tation delegates much of execution unit and operations relating to frame assembly and dis-assembly to
a software component. The mixed implementation meets the imposed performance requirements like
maximum propagation delay of 46.4�s, maximum jam time of 4.8�s, minimum interframe spacing of
67.2�s and input bit-rate for a 10 Mb/sec operation using ethernet protocol. Table 2 lists characteristics
of the software component for the graphics controller and the network co-processor.

7 Summary and Conclusions

Presence of re-programmable processors in target architectures promises a practical approach towards
realizing complex system designs for embedded applications without associated increase in the cost
of application-specific components required to implement the system functionality. Where possible,
portions of system functionality can be delegated to the software component without incurring the cost
of implementing these functions in the application-specific hardware components.

Synthesis of systems containing both general-purpose re-programmable as well as application-specific
components can be formulated as a hardware-software co-synthesis problem due to two predominantly
different computation models used by the system components. Software component design for such
systems poses interesting problems due to inherently serial nature of program execution that must interact
with concurrently operating hardware components. In our approach to system synthesis, the software
component is implemented as a set of program routines, called threads. Concurrency between program
threads, achieved by inter-leaved execution of threads, preserves concurrency inherent in the system
model. Further, dynamic scheduling of fixed latency threads avoids unnecessary serialization of operations
in a graph model for generation of the software component.

The program routines corresponding to threads can be implemented as subroutines or coroutines. A

Gupta, Coelho, De Micheli: Program Implementation Schemes 13

coroutine implementation reduces overheads by treating all routines symmetrically, therefore, the context
information needed to be saved/restored is reduced. However, the necessity to embed control flow into
the individual coroutines reduces this gain somewhat. At the same time, the ability to do intelligent
dependency analysis on the system graph model can reduce this overhead. There is a tradeoff between
when graph serialization is done and when program threads are generated. We construct program flow
graphs that consist of potential threads as basic blocks based on points of synchronization in the system
graph model. A completely serialized graph model would loose the advantage of coroutine implementation
and may benefit by the subroutine implementation instead. However, the loss of all concurrency may
make eventual software component in feasible with respect to the imposed data-rate constraints.

We have proposed a scheme to achieve hardware-software synchronization. We have demonstrated
feasibility of control FIFO-based hardware-software synchronization schemes where the FIFO control can
be implemented either as a dedicated hardware or as a program. The software implementation of control
FIFO reduces the size of hardware component of system design, but it increases program size and adds to
the latencies of program threads. This makes the input data rate about 15% slower in case of the graphics
controller example. Depending upon the objective of system synthesis either of the hardware and software
alternatives can be selected and simulated using programPoseidon. Generally, an implementation that
aims to rapidly prototype the system design would favor software component of the system design for a
small loss of performance.

Using the synchronization scheme proposed, we are able to synthesize and simulate mixed system
designs. As example, we have presented designs of a graphics controller and a network coprocessor that
employ software components to achieve part of the system functionality.

Even with the simplifying assumptions relating to the target architecture, the problems of accurately
characterizing software component and its synthesis are challenging problems. This work takes a first
step in solving the problem of system software synthesis. Work is in progress to extend the model to
include the effects of hierarchical memory schemes and reduction of communication overheads by using
channel sharing and data encoding schemes.

8 Acknowledgments

This work has benefitted enormously from discussions with Martin Freeman of Philips Research. This
research was sponsored by NSF-ARPA, under grant No. MIP 9115432 and by a fellowship provided
by the Center for Integrated Systems and Philips. The second author was supported by the fellowship
200212/90.7 from CNPq-Brazil.

References

[1] R. K. Gupta and G. D. Micheli, “System-level Synthesis Using Re-programmable Components,” in
Proceedings of the European Design Automation Conference, pp. 2–7, Mar. 1992.

[2] D. Gajski,Silicon Compilation. Addison Wesley, 1988.

[3] R. Camposano and W. Wolf,High-level VLSI Synthesis. Kluwer Academic Publishers, 1991.

[4] Presentations atInternational Workshop on Hardware-Software Co-design. 1992, 1993.

Gupta, Coelho, De Micheli: Program Implementation Schemes 14

[5] R. K. Gupta and G. D. Micheli, “Hardware-Software Cosynthesis for Digital Systems,”IEEE Design
& Test of Computers, pp. 29–41, Sept. 1993.

[6] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for Digital
Design,” IEEE Design and Test Magazine, pp. 37–53, Oct. 1990.

[7] R. K. Gupta,Co-synthesis of Hardware and Software for Digital Embedded Systems. PhD thesis,
Stanford University, 1993.

[8] R. K. Gupta, C. Coelho, and G. D. Micheli, “Synthesis and Simulation of Digital Systems Containing
Interacting Hardware and Software Components,” inProceedings of the29thDesign Automation
Conference, pp. 225–230, June 1992.

[9] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative Approach, ch. 3.
Morgan-Kaufmann, 1990.

[10] M. E. Conway, “Design of a Separate Transition-Diagram Compiler,”Comm. of the ACM, vol. 6,
pp. 396–408, 1963.

[11] P. J. H. King, “Decision Tables,”The Computer Journal, vol. 10, no. 2, Aug. 1967.

