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Abstract—Software plagiarism, an act of illegally copying
others’ code, has become a serious concern for honest software
companies and the open source community. In this paper, we
propose LoPD, a program logic based approach to software
plagiarism detection. Instead of directly comparing the similarity
between two programs, LoPD searches for any dissimilarity
between two programs by finding an input that will cause
these two programs to behave differently, either with different
output states or with semantically different execution paths.
As long as we can find one dissimilarity, the programs are
semantically different; but if we cannot find any dissimilarity,
it is likely a plagiarism case. We leverage symbolic execution
and weakest precondition reasoning to capture the semantics of
execution paths and to find path dissimilarities. LoPD is more
resilient to current automatic obfuscation techniques, compared
to the existing detection mechanisms. In addition, since LoPD
is a formal program semantics-based method, it can provide a
guarantee of resilience against many known obfuscation attacks.
Our evaluation results indicate that LoPD is both effective and
efficient in detecting software plagiarism.

I. INTRODUCTION

Software plagiarism is an act of stealing others’ software

by illegally copying their code, applying code obfuscation

techniques to make the code look different and then claiming

that it is one’s own program in a way violating the terms

of original license. In recent years, software plagiarism has

become a serious concern for honest software companies and

open source communities. It violates the intellectual property

of software developers and has been a severe problem, ranging

from open source code reuse, software product stealing to

smartphone application repackaging. The stolen code can

be used by plagiarists to reduce the cost of their software

development. The popular smartphone applications may be

repackaged and injected with malicious payload to accelerate

the propagation of malware. According to a recent study [1],

it was found that 1083 (or 86.0%) of 1260 malicious app

samples were repackaged versions of legitimate apps with

malicious payloads. Moreover, the booming of software indus-

try gives plagiarists more opportunities to steal others’ code.

The burst of open source projects (e.g., SourceForge.net has

more than 430, 000 registered open source projects with 3.7
million developers and more than 4.8 million downloads a

day [2]) provides plenty of easy targets for software thieves,

since source code is easier to understand and modify than

TABLE I
THE CODE OBFUSCATION RESILIENCE COMPARISON OF DIFFERENT

DETECTION APPROACHES

C1 C2 C3 C4 C5 LoPD

Noise instruction � � � �

Statement reordering � � � �

Instruction splitting/aggregation � � � �

Value splitting/aggregation � � �

Opaque predicate � � �

Control flow flattening � � �

Loop unwinding � � �

API implementation embedding � � �

executable binaries. The existing automatic code obfuscation

tools (e.g., Loco [3], SandMark [4]) can change the syntax of a

program while preserving its semantics and therefore will help

plagiarists to evade detection. Therefore, automated software

plagiarism detection is greatly desired.

However, automated software plagiarism detection is very

challenging. For one reason, source code of suspicious pro-

grams is usually not available to plaintiff. The analysis of

executables is much harder than source code analysis. Be-

sides, code obfuscation is also a huge obstacle to automatic

software plagiarism detection. Code obfuscation is a technique

to transform a sequence of code into a different sequence

that preserves the semantics but is much more difficult to

understand or analyze. Based on the above two facts, there

are two necessary requirements for a good software plagiarism

detection scheme [5]: (R1) Capability to work on suspicious

executables without the source code; (R2) Resiliency to code

obfuscation techniques.

The existing approaches to software plagiarism detection

can be divided into the following categories: (C1) static source

code comparison methods [6], [7], [8]; (C2) static executable

code comparison methods [9]; (C3) dynamic control flow

based methods [10]; (C4) dynamic API based methods [11],

[12]; (C5) dynamic value based approach [5], [13]. First,

C1 does not meet R1 because it has to access source code.

Second, none of them satisfy requirement R2 because they are

vulnerable to some code obfuscation techniques as shown in

Table I.

In this paper, we propose a novel software plagiarism

detection approach, called LoPD, which does not need the

source code of tested programs. In addition, it is more resilient



to automatic obfuscation techniques, compared to existing ap-

proaches. Instead of directly measuring the similarity between

two programs, LoPD is based on an opposite philosophy:

search for any dissimilarity between two programs. As long as

we can find one dissimilarity, the programs are semantically

different; but if we cannot find any dissimilarity, it is likely a

plagiarism case.

Based on our design philosophy, LoPD tries to rule out

dissimilar programs by finding an input that will cause these

two programs to behave differently, either with different output

states or with different computation paths. The output states

can be directly compared, but the comparison of computation

paths is challenging. Our idea is to find path deviation, i.e.,

given two different inputs, one program will follow the same

execution path, whereas the other will execute two different

paths with these two inputs. In this case, at least one of these

two inputs makes the two programs have different computation

paths and behave differently. As long as we find path deviation,

we can claim the two programs in consideration are not

semantically the same. We leverage symbolic execution [14]

and weakest precondition [15], [16] to systemically find such

path deviations. Besides, we also develop a path equivalence

checker to make sure that a path deviation is really a semantics

deviation, not caused by code obfuscation.

Since the symbolic formula and weakest precondition can

capture complete semantics and constraint of an execution path

of the tested program, LoPD will detect the semantics equiva-

lence or difference of the execution paths. Therefore, LoPD is

resilient to most known automatic obfuscation techniques, as

shown in Table I. In addition, we can provide an assurance of

its resilience against above obfuscation attacks, as discussed

in Section V. Moreover, LoPD provides theoretical guarantees

of the high detection accuracy, subject to the limitations of the

current symbolic execution tools and constraint solvers.1

Scope of our paper: We focus on the detection of plagia-

rized PC programs that are generated by semantics preserving

obfuscation tools. That is, LoPD will provide a Yes/No answer

to the question: are two programs semantically equivalent? We

will discuss the solution to measure the similarity between

two semantically different programs in Section VII. The

detection of smartphone app repackaging is also discussed in

Section VII.

Contributions: (1) We present a novel logic-based software

plagiarism detection approach—LoPD. LoPD relies on sym-

bolic execution and weakest precondition to find dissimilarities

between two programs in order to rule out semantically

different programs. (2) LoPD is resilient to most current code

obfuscation techniques. In addition, LoPD can provide an

assurance of resilience against obfuscation attacks in Table I.

(3) LoPD theoretically guarantees high detection accuracy.

1According to the Rice’s Theorem, testing any non-trivial computer pro-
gram property is undecidable. We do not aim to solve this undecidable
problem, but rather to develop tools for practical use with some degree of
formal guarantee. All the conclusions, we draw from this research are subject
to the limitations of automated theorem proving or constraint solving and
other undecidable factors.

II. RELATED WORK

A. Software Plagiarism Detection

We roughly group the existing software plagiarism detection

methods into the following two categories.

Static birthmark based software plagiarism detection:

Liu et al. [6] proposed a program dependence graph (PDG)

based approach, which is vulnerable to obfuscation techniques

such as opaque predicates and loop unwinding. Myles et al. [9]

statically analyzed executables and used K-gram techniques

to measure the similarity. This approach is vulnerable to

instruction reordering and junk instruction insertion. There

are also several work focusing on detecting code plagiarism

of smartphone applications. DroidMOSS [1] adopted fuzzy

hashing to detect application plagiarism. It can only toler-

ate small local changes in code. Simple obfuscation, such

as noise injection, can evade the detection of DroidMOSS.

DNADroid [17] proposed a data dependence graph based

detection approach. The data dependence of a program is

easy to change by inserting intermediate variable assignment

instruction into the code. Juxtapp [18] proposed a code-reuse

evaluation framework which leverages k-grams of opcode

sequences and feature hashing. It is also vulnerable to noise

injection. ViewDroid [19] applied a user interface based birth-

mark, which is designed for user interaction intensive and

event dominated programs, to detect smartphone application

plagiarism.

Most above static analysis methods to detect traditional

software plagiarism require the source code of the analyzed

programs. This limits their practicability since the source code

of a suspicious program is not always available. The detection

methods of smartphone application plagiarism are either easy

to be bypassed by applying obfuscation techniques or not

suitable for normal PC programs.

Dynamic birthmark based software plagiarism detec-

tion: Jhi et al. [5], [13] proposed to use core values as

birthmark to detect software plagiarism. This approach has

no theoretical guarantee, since core value is hard to define.

Lu et al. [20] presented a dynamic opcode n-gram birthmark,

which is vulnerable to instruction reordering and irrelevant

instructions insertion. Myles et al. [10] developed a whole

program path (WPP) birthmark, which is robust to some

control flow obfuscations such as opaque prediction, but is

vulnerable to many semantics-preserving transformations such

as loop unwinding. Tamada et al. [11] used dynamic API

birthmark for windows applications. Their approach relied on

the sequence and the frequency of API invocations, both of

which can be easily changed by reordering APIs or embedding

API implementations into the program. Wang et al. [21], [22]

introduced system call based birthmarks. Their approaches are

not suitable for programs that invoke few system calls.

In contrast, LoPD is based on formal logic that captures

program semantics. This makes LoPD resilient to most obfus-

cation techniques currently known in literature. In addition,

LoPD leverages symbolic execution to obtain path constraints,

but relies on weakest precondition to capture path semantics,



and thus connects to both dynamic and static techniques.

This unique combination for path deviation detection and path

equivalence checking and results in high detection accuracy for

nontrivial programs.

B. Clone Detection

Clone detection is a technique to find duplicate code to de-

crease code size and facilitate maintenance. Existing clone de-

tection techniques include String-based [23], Tree-based [24],

[25], Token-based [26], [7], [27] and PDG-based [28], [29],

[30]. Sæbjørnsen et al. [31] proposed a tree-based clone de-

tection in binary code. Since most clone detection techniques

do not take code obfuscation into consideration, when being

applied to detect software plagiarism, they can be easily

evaded by attackers.

C. Semantic Differential Detection

There are some researches focusing on find semantic dif-

ferences between two programs. Jackson et al. [32] tried to

find the differences by comparing the input-output mapping.

Symdiff [33] converted source code to intermediate verifica-

tion language and then identified semantic differences. Person

et al. [34] used incomplete symbolic summaries to compare

two programs. All the above approaches use static analysis on

source code and do not consider code obfuscation. As a result,

they are not suitable for plagiarism detection.

D. Path Deviation Detection

Brumley et al. [35] first proposed the path deviation idea and

used it to find protocol errors in different implementations.

DARWIN [36] applied similar ideas to identify program bugs.

We adopted their path deviation idea and applied it to a

new context of software plagiarism detection. Brumley et

al. [35] only compares the output of executions. DARWIN [36]

compares two paths only after it has identified paths generating

different concrete output. This is not sufficient for software

plagiarism detection, because independent software products

may have the same functionality, i.e. the same input-output

pairs. As a result, in addition to output, we need to compare

the execution paths, which is more challenging. We propose

new techniques such as path equivalence detection to deal with

automatic code obfuscation attacks and eliminate false posi-

tives and false negatives. We have evaluated path deviation and

path equivalence detection in this new context with presence of

automatic obfuscation attacks and obtained promising results.

E. Software Testing and Symbolic Execution

Our approach relies on test input generation. There are vast

amount of researches on test input generation such as fuzz

testing [37]. We rely on random input generation for the initial

input seed. We then leverage symbolic execution [14] and

automatic test case generation using systematically white-box

exploration (also called, concolic testing, directed systematic

path exploration, etc.) [38], [39], [40], [41], [42], [43] for

the subsequent path deviation computation. Path constraints

are collected and manipulated to cover different paths, and a

constraint solver [44], [45] is usually used to generate the input

that satisfies the corresponding path constraints. By doing this,

each run is guaranteed to hit a different path.

III. OVERVIEW

A. Problem Statement

The goal of our work is to automatically detect software

plagiarism for nontrivial programs in the presence of automatic

code obfuscation. To be more specific, given a plaintiff pro-

gram P and a suspicious program S, our purpose is to detect

if S is generated by applying automatic semantics-preserving

transformation techniques on P . That is, we provide a Yes/No

answer to the question: are S and P semantically equivalent?

Automatic semantics-preserving transformation changes the

syntax of the source code or binary code of a program but

keeps the function and the semantics of the program by

automated tools (e.g., Loco [3], SandMark [4]) with little

human effort. The reason that we only focus on automatic

code transformation is as follows. Although an exceptionally

sedulous and creative plagiarist may manually obfuscate the

plaintiff code to fool any known detection technique, the cost

is probably higher than rewriting his own code, which conflicts

with the intention of software theft. After all, software theft

aims at code reuse with disguises, which requires much less

effort than writing one’s own code.

In this work we have two assumptions: (1) we have pre-

knowledge about the plaintiff program, e.g., the input space;

(2) while we do not require access to the source code of the

suspicious program, we assume its binary code is available.

B. Basic Idea

Our basic idea is to search for any difference between the

plaintiff program and the suspicious program. If differences

are found, these two programs are not semantically equivalent

thus it is not a software plagiarism case; otherwise, it is likely

a software plagiarism case.

At high level, three things characterize program behavior—

input, output, and the computation used to achieve the input-

output mapping. Hence, we aim to find inputs that will

cause these two programs to behave differently, either with

different output states or with different computation paths.

Whenever we find such an input, we can assert that the plaintiff

program and the suspicious program are either functionally or

computationally different and is thus not software plagiarism

via automated code obfuscation.

Given an input, the comparison between output states is

relatively straightforward: since the plaintiff has the pre-

knowledge of his own software, he can specify which output

variables and states are semantics-relevant and how to measure

the similarity between output states (e.g., the mathematic

computation programs require the exactly same result, while

the error messages from Web servers can tolerate some literal

differences).

The challenge is how to compare the semantics of com-

putation paths. Computation path, also known as execution

path, is a sequence of all instructions executed during one



round execution. The semantics of an execution path can be

captured by symbolic execution. To be more specific, symbolic

expressions of output variables in terms of input variables

along with a path constraint represent the semantics of an

execution path. The following is an example. n is the input

variable and a is the output variable. There are two execution

paths. The semantics of path 1 is the path constraint “n > 0
is true” along with the output expression a = n − 1. In path

2, the semantics is the path constraint “n > 0 is false” and

the output expression a = 2n + 2.

The code

n = read()
if n > 0 then

a = n − 1
else

a = n + 1
a = a ∗ 2

end if
print a

Path 1

input: n > 0
True
a = n − 1

output: a = n − 1

Path 2

input: n <= 0
False

a = n + 1
a = (n + 1) ∗ 2

output: a = 2n + 2

Instead of directly comparing two execution paths, we

propose a novel approach based on the concept of path-

deviation [35]. It is motivated by the fact that if one program

is an automatic semantics equivalent transformation of another

program, these two programs would have one-to-one (1:1)

path correspondence, as defined in Definition 1. That is,

given the same input, the execution of each program follows

a certain path, respectively, and when given a different input,

the programs should either both follow their original path or

both execute new paths. Note that there is one exception:

when an execution path of one program is split into two

semantically equivalent paths for the obfuscation purpose,

there would be no one-to-one path correspondence, but it is

still a software plagiarism case. We will therefore also handle

this semantically equivalent path splitting problem in our

detection system.

Definition 1: Given two programs P , S, their input spaces

are IP and IS , respectively. ∀x1, x2 ∈ IP ∪ IS , the execution

paths of P with input x1, x2 are ep1, ep2, respectively and

the execution paths of S with input x1, x2 are es1, es2,

respectively. If ep1 = ep2 ↔ es1 = es2, P and S have one-

to-one (1:1) path correspondence.

If we can find two inputs which may cause one program

to execute the same path, while causing the other program to

execute two different paths with these two inputs, we can rule

out the 1:1 path correspondence case; that is, the suspicious

program will not be considered as a plagiarized one. We

call these two programs having path deviation, whose formal

definition is:

Definition 2: Given two programs P , S, their input spaces

are IP and IS , respectively. If ∃x1, x2 ∈ IP ∪IS , the execution

paths of P with input x1, x2 are ep1, ep2, respectively and

the execution paths of S with input x1, x2 are es1, es2,

respectively, such that (ep1 = ep2 ∧ es1 �= es2) ∨ (ep1 �=
ep2 ∧ es1 = es2), P and S have path deviation.

Input x1

Output Op

Input x1

Output Os

ep1 es1

Program P Program S

Input x2

Output Op'

Input x2

Output Os'

ep1 es1

Program P Program S

es2×

Fig. 1. Path deviation example

Figure 1 illustrates this path deviation idea. Given the same

input x1, programs P and S take the execution path ep1 and

es1, and output Op and Os, respectively. If Op �= Os, it means

ep1 is different from es1, so it is not a software plagiarism

case. If Op = Os, our next step is to try another input x2,

hoping that (1) P will take the same path ep1 but S will take

a different path es2 given x2 or (2) the output O′

p �= O′

s. In

either case, it is not a software plagiarism case. If neither of

the above two cases occurs, we will try another input. If after

many iterations we still cannot find such a deviation-revealing

input, it indicates the two programs are likely to be the same.

However, a path deviation may be caused by the path

splitting obfuscation, that is, es1 and es2 in Figure 1 are

semantically the same. Therefore, when we find a deviation,

we need to check the semantics equivalence of the deviated

paths (e.g. es1 and es2). Only when semantics differences exist

between the two paths, we claim that the two programs have

true path deviation and they are dissimilar.

We leverage the techniques of logic-based execution path

characterization including symbolic execution, weakest pre-

condition calculation and constraint solving (e.g., STP [44],

[45]) to find path deviation and to measure the semantics

equivalence of two execution paths.

To ensure the effectiveness of our approach, we analyze the

possible false detection cases based on the results of output

similarity measurement and path deviation detection. Note

that we ignore the limitations of current symbolic execution

tools and constraint solvers during the analysis. The relations

between the reality and the detection results are shown in

Table II.

• Case I: Given the same input, P and S generate the same

output.

Case I.1: Detection result: P and S have path devia-

tion.

Case I.1.a (False Negative): P and S are indeed

software plagiarism. We check the semantics equiva-

lence of es1 and es2 when we find a path deviation.

Only when a semantics deviation exists between the two

paths, we call the two programs dissimilar and conclude

non-plagiarism. Since path equivalence checker applies

weakest precondition (a symbolic formula) that captures

formal semantics of a path, and constraint solver that

checks the equivalence of symbolic formula, we ensure



TABLE II
THE TABULAR REPRESENTATION OF RELATIONS BETWEEN THE REALITY AND THE DETECTION RESULTS .

Reality
a.Software
Plagiarism

b.Not Software
Plagiarism

Detection
Result

Case I. Same Output
I.1. Path Deviation FN TN

I.2. No Path Deviation TP FP
Case II. Diff Output N/A - TN

that there is no false negative caused by the approach.

However, this is subject to the limitations of the constraint

solving or theorem proving, which we will discuss in the

limitation section.

Case I.1.b (True Negative): P and S are indeed

not software plagiarism.

Case I.2: Detection result: P and S do not have path

deviation.

Case I.2.a (True Positive): P and S are indeed

software plagiarism.

Case I.2.b (False Positive): P and S are indeed not

software plagiarism. In practice, it is hard to image that

two independent nontrivial software will have one-to-one

semantically equivalent path correspondence. Therefore,

in practice we do not have false positive. The case due to

the limitations of the constraint solving will be discussed

in the limitation section.

• Case II (True Negative): Given the same input, P and S

generate different output. P and S are indeed not software

plagiarism.

As a result, LoPD tries to find a path deviation first and then

checks the path equivalence to make sure that such a deviation

is a real semantics deviation, not caused by obfuscation. This

path deviation based approach is more efficient than directly

comparing two programs’ execution paths, because the former

can find semantically different paths within fewer iterations. In

each iteration, the latter compares only one pair of execution

paths, whereas LoPD not only compares such pair of paths

but also can detect differences in other execution paths that

share some parts with the current tested paths.

IV. DESIGN

A. Architecture

The overview of the system design is shown in Figure 2. We

tackle the problem by three phases: Input Generation, Path

Deviation Detection and Path Equivalence Checking. In the

first phase, the input generator generates a test input. Then the

path deviation detector checks whether there exists any path

deviation between the plaintiff and suspicious programs. If

there is a path deviation, the path equivalence checker decides

whether the deviated path is a semantically equivalent path

split from the original one, if yes, this is likely generated

by obfuscation and it is a fake path deviation. If no, it

is a true path deviation and thus we conclude it is not a

software plagiarism case. If we cannot find a path deviation

or the path deviation is caused by path-splitting, we repeat

the iteration with a new input. This process is repeated until

a true path deviation is found or the number of iterations

reaches a threshold. If no true path deviation is found, LoPD

concludes that this is a plagiarism case, because we believe it

is impossible that two nontrivial independent programs have

1:1 path correspondence.

Algorithm 1 Path Deviation based Software Plagiarism De-

tection

Input: Plaintiff Program P , Suspicious Program S

Output: Plagiarism / Not Plagiarism.

1: for i = 1 to max iteration do

2: Generate input x by Input generator.

3: P , S and x are given to the Path deviation detector. The

output states are Op and Os, respectively. The execution

paths are ep and es

4: if Op = Os then

5: if The Path deviation detector can find another input

x′ cause P and S path deviated. then

6: The execution paths of P and S with input x′ are

e′p and e′s.

7: d ← P or S, the one executes different paths with

x, x′.

8: The Path equivalence checker checks the sematic

equivalence of ed and e′d
9: if ed and e′d are semantically equivalent then

10: continue

11: else

12: return ”Not Plagiarism”

13: end if

14: else

15: continue

16: end if

17: else

18: return “Not Plagiarism”

19: end if

20: end for

21: return “Plagiarism”

The detection procedure is described in Algorithm 1. The

details of each component are described below.

B. Input Generator

There are several ways to generate an input x for each

iteration. The first option is to generate a random input, ideally

independent, for each iteration using methods such as fuzz

testing [37]. However, random input generation might not be

desired. We adopt symbolic execution [14] and automatic test

case generation using systematically white-box exploration
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Fig. 2. LoPD system design

(also called, concolic testing and directed systematic path

exploration) [38], [39], [40], [41], [42]. In this way, each

iteration is guaranteed to hit a different path.

We first randomly generate an initial input from the input

space. Path constraints are collected during the program ex-

ecution with the initial input and are manipulated to cover

different paths. Then a constraint solver is used to generate

the input that satisfies the corresponding path constraints.

C. Path Deviation Detector

The path deviation detector is used to detect if two tested

programs have path deviation. Generally speaking, given an

input x, we are trying to find another input x′ that causes

one of the program to execute the same path as taking x as

input, while the other program to follow a different path from

the one taking x as input. We leverage symbolic execution

and weakest precondition to find such x′. The design of path

deviation detector is shown in Figure 3.

The symbolic executor performs a mixed concrete and

symbolic execution [41], [46] for each tested program with x

as input. In other words, the tested program is first concretely

executed with the input x in the executor, which is a monitored

environment with taint analysis. The input is the taint seed.

The whole execution path is logged, including the executed

instructions, the taint information and the output states.

The output states can be specified by the domain experts

or the owner of the plaintiff program. They may include the

terminal output, the network interface and the modification

in file system, etc. Their output states are represented as Op

and Os, respectively. If Op �= Os, programs P and S are

semantically different. As a result, we can get the correct

conclusion that they are not software plagiarism.

The symbolic execution is operated on the logged concrete

execution path. We build a symbolic formula in terms of input

variables to express each path constraint. This formula reflects

both the semantics of the execution path and the conditions

which make the program execute this particular path. We

denote the execution paths of plaintiff program and suspicious

program with input x as ep and es, respectively. The two

formulas that we build based on these two paths are FO
p (I)

and FO
s (I) parameterized with the input variables I , based on

the output state O (O = Op = Os). These two formulas are

built using the technique of weakest precondition and have

the property that they are true with some truth assignment

i (i ∈ input space) if and only if the program executes the

corresponding path on the input i and ends with output state

O; i.e., the path is feasible on input i and leads to output O:

F
O
p (i) is true iff ep is feasible on input i and ends with output O.

Given any input that satisfies the formula, the execution of

the program will follow the original path, while given any

input that does not satisfy the formula, the execution will

follow a different path. As a result, to find a path deviation

of plaintiff program and suspicious program, we need to find

an input x′, which makes the execution path of one program

remain the same as its execution path with input x, and the

execution path of the other program be different from its

path with input x. As a result, we check the satisfiability of

Formula (1), as used by Brumley et. al. [35], via a constraint

solver STP [44], [45].

(F O
p (I) ∧ ¬F

O
s (I)) ∨ (¬F

O
p (I) ∧ F

O
s (I)) (1)

If Formula (1) is satisfiable, STP will return an assignment

that satisfies the formula.2 Without loss of generality, assume

the assignment x′ satisfies the first part of the disjunction,

FO
p (I) ∧ ¬FO

s (I). This means that the input x′ will cause

the first program to follow path ep1, while the path es1 is

infeasible in the second program, as shown in Figure 1. That

is, two programs behave differently on input x and x′, unless

paths es1 and e′s2 are semantically equivalent. If Formula (1)

is not satisfiable, it means that there exists no input that can

deviate the programs from these two paths.

Example. Consider the following two programs: one checks

for condition n > 0 and the other checks for condition n > 1:

f(n) = if (n > 0) then 2 else 1

g(n) = if (n > 1) then 2 else 1

Given an input 0 or any negative number, the path constraint

formula of f is ¬(n > 0) and the formula of g is ¬(n > 1).
The check formula is:

(¬(n > 0) ∧ (n > 1)) ∨ ((n > 0) ∧ ¬(n > 1))

A constraint solver can solve it with a satisfiable assignment

n = 1, which causes f to execute a different path but not g. If

given an initial input 1, the two programs have different output

and we can directly conclude they are different programs If

we select a positive number as the initial input, the constraint

solver could not find a path deviation and we continue with

white-box symbolic exploration to generate a new input for

2When STP cannot solve the formula to give a definite yes or no answer,
we simply ignore the case and try next one. We apply the same strategy for
the path equivalence checker presented in the next subsection.



Test Input x

Symbolic 

Executor

Symbolic 

Executor

Constraint 

Solver 

Output Op

Formula Fp

Output Os

Formula Fs

Op=Os?

(Fp ¬Fs) (¬Fp Fs)

Not Plagiarism

Path Deviation Detector

Plaintiff Program

Executable

Executable

Suspicious Program N

Y

Find x’ Satisfy 

the formula?

N

Path 

Deviaiton

Not Path 

Deviation

Y

Fig. 3. Path deviation detector

next round. This process repeats until it hits 0 or a negative

number. With symbolic exploration we can reach this desired

input in one step, since one of the path constraints is flipped

to hit a different path.

D. Path Equivalence Checker

As discussed above, when we find a path deviation, we need

to check whether these two deviated paths are semantically

equivalent path splitting to avoid false negative. The following

is a simple example of semantically equivalent path splitting.

The left is the original code. The right is the code after path

splitting, where the value of n decides the path to go but both

paths are semantically equivalent.

a = n if n > 0 then
a = n

else
a = n + 1

a = a − 1

end if

The detection of path equivalent is done by path equivalence

checker, which is shown in Figure 4. The new test input x′ is

a satisfiable assignment of Formula (1) returned by constraint

solver in the path deviation detection step, and d represents the

program that has different execution paths with input x and x′.

That is, d is either P or S. Taking Figure 1 as an example, d =
S. In other words, in the path deviation detection step, if the

first part of the disjunction of Formula (1), FO
p (I)∧¬FO

s (I), is

satisfiable, d = S, while if the second part, ¬FO
p (I)∧FO

s (I),
is satisfiable, d = P . We compare the semantics equivalence

of d’s two execution paths, which take x and x′ as input,

respectively. If these two paths are semantically equivalent, the

path deviation is caused by path splitting. We take the next

iteration, as shown in Figure 2. Otherwise, we can conclude

that P and S are not software plagiarism and call such path

deviation as a true path deviation.

We still apply symbolic execution and weakest precondition

to detect path equivalence. Program d is executed with input

x′ in the symbolic executor, which is the same one as in the

path deviation detector. A path constraint formula F ′

d and a

symbolic formula of output states f ′

O are generated. Both of

them are in terms of input variables. F ′

d captures the conditions

that make d follow the same execution path as input x′. f ′

O

captures the semantics of such execution path. The formulas

(Fd, fO) for the execution path of input x have already been

generated in the path deviation detection step.

In an execution path, the truthness and the target of a

conditional branch are fixed. By ignoring such conditional

branches, we can force a program to follow a particular

execution path with any input, although some inputs may cause

the program to crash or to get a wrong output. In such way,

we can pick any input that satisfies either of the above path

constraints (Fd or F ′

d), and give it to both execution paths.

If these two paths are equivalent, they should get the same

results with such input. In other words, if an input assignment

satisfies at least one of the path constraint formulas: Fd or F ′

d,

fO and f ′

O should be equal with this input assignment:

Path Equivalent ⇔ (Fd ∨ F
′

d) → (fO = f
′

O)

⇔ (fO = f
′

O) ∨ ¬(Fd ∨ F
′

d)

Not Path Equivalent ⇔ ¬((fO = f
′

O) ∨ ¬(Fd ∨ F
′

d))

⇔ (fO �= f
′

O) ∧ (Fd ∨ F
′

d) (2)

We check the satisfiability of Formula (2) via a constraint

solver STP [44], [45]. If it is satisfiable, these two execution

paths are not equivalent.

Example. Consider the same path splitting example in this

section. Assume n is the input variable, initial input x is n =
10 and x′ is n = −1:

fO(n) = n Fd = (n > 0)

f
′

O(n) = n + 1 − 1 = n F
′

d = ¬(n > 0)

Formula (2) is (n �= n)∧ (n > 0∨¬(n > 0)), which is not

satisfiable. As a result, the two paths are equivalent.

V. COUNTERATTACK ANALYSIS

Since our logic based method captures path semantics by

symbolic execution and weakest precondition, in theory it is

resilient to most known obfuscation attacks, including but not

limited to the following ones. In practical implementation, we

need to take into consideration the limitations of symbolic exe-

cution, theorem proving and weakest precondition calculation.

Noise instruction/data injection: Suppose an irrelevant

statement S1 is inserted right after statement S0. Given a

postcondition R, the weakest precondition for the original

program is wp(S0, R), while the weakest precondition for the
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new program is wp(S0; S1, R). Because S1 is an irrelevant

statement we have wp(S0; S1, R) = wp(S0;wp(S1, R)) =
wp(S0, R). Similarly the equation also holds in the cases of

inserting multiple instructions. As a result, LoPD is resilient

to noise injection.

Statement reordering: Two instructions S1 and S2 can be

reordered only when there is no data or control flow between

them: wp(S1;S2, R) = wp(S2;S1, R). Similarly, the weakest

precondition also remains the same when reordering multiple

instructions. So LoPD is resilient to instruction reordering.

Instruction splitting and aggregation: Two instructions S1

and S2 could be merged into one instruction S0; in the other

direction, instruction S0 could be split into two instructions

S1 and S2. Since they are semantically equivalent, there is

wp(S0, R) = wp(S1; S2, R). Hence, LoPD is resilient to

instruction splitting and aggregation obfuscation.

Value splitting and aggregation: In a program, a value v

is either initialized from some constant values or other vari-

ables. Without loss of generality, assume v = f(u1, ..., uk),
where ui is a variable on which v depends. When v is

split into two values v1 and v2, where v1 = f1(u1, ..., uk)
and v2 = f2(u1, ..., uk). Assume v = g(v1, v2), we have

f = g(f1, f2). For simple value splitting obfuscation, usually

constraint solvers are able to prove this relationship and thus

the resulted formulas will be considered equivalently.

Opaque predicate: One opaque predicate E is inserted

right before statement S0. If E is an always true predicate,

wp(if E then S0 end,R) = E ⇒ wp(S0;R) = wp(S0, R).
Similarly, the weakest precondition also remains the same

when S0 represents multiple instructions or E is an always

false predicate.

Control flow flattening: It has little effect on LoPD due

to two reasons: (1) LoPD identifies paths dynamically by

emulating program execution with concrete inputs, so the paths

inspected are valid feasible paths. (2) Since we obtained output

formulas by symbolic execution, the semantics from flattened

paths are captured faithfully.

Loop unwinding: Paths being considered by LoPD are

dynamic execution traces, so loop unwinding has little effect

since execution paths with loops are unwound anyway.

API implementation embedding: Assume extracting state-

ments S1, ..., SN as API function F , during dynamic execu-

tion, these instructions will be executed exactly as the original

order. Therefore, wp(S1, ...SN , R) = wp(F,R).

Path splitting and merging: By applying symbolic execu-

tion and constraint solving, we can effectively detect seman-

tically equivalent path splitting/merging.

In summary, LoPD provides guarantee of resilience against

above obfuscation attacks.

VI. IMPLEMENTATION AND EVALUATION

We implement a prototype system. The symbolic executor

is built atop Bitblaze infrastructure [46], [47]: we leverage

their whole-system emulator, TEMU, to concretely execute the

tested programs and record the whole execution path; we use

vine, the static analysis component, to analyze the execution

paths and extract their symbolic formulas. We apply STP [44],

[45] as the constraint solver to solve path deviation Formula 1

and path equivalence Formula 2. STP is a decision procedure

whose output indicates whether the formula is satisfiable

or not. If so, it also provides an assignment to variables

that satisfies the input formula. We integrate all the above

components and implement an automatic software plagiarism

detection system in C and Python.

Our evaluations are in two categories: software plagiarism

case and different program case. The evaluation is performed

on a Linux machine with Intel Centrino duo 1.83GHz CPU

and 2 GB RAM.

A. Case Study I: Same Programs

In this section, we evaluate the effectiveness of LoPD in the

software plagiarism case, where one program is a semantics-

preserving transformation of the other program. We have 6
tested programs as shown in Table III: thttpd, mini httpd,

7-Zip, gzip, Ford-Fulkerson maximum flow implementation

and tcc. The input variables of thttpd and mini httpd are the

HTTP requests and the output states are the HTTP response

according to a particular request. The input variables of the

Ford-Fulkerson maximum flow implementation are a flow

network and the output state is the calculated maximum flow.

For the other three programs, the input variables are the input

files and the output states are the generated new files.

For each program, we generate different semantics-

preserving executable files by compiling the source code using

gcc/g++ (with different optimization options: -O0, -O1, -O2,

-O3 and -Os) and tcc. Besides, we apply Diablo, a link-

time optimizer [48] and Loco [3], an obfuscation tool based

on Diablo to generate two additional executables. Different



TABLE III
THE TESTED PROGRAMS AND THEIR RUNNING TIME PER ITERATION FOR THE SAME PROGRAM CASE .

Name Type

Execution Time (seconds)

IG
1 PDD 2 PEC 3

Total
DR 4 FE 5 SS 6 DR 4 FE 7 SS 6

thttpd HTTP server 1.08 6.21 10.32 1.17 6.34 12.32 2.13 22.78

mini httpd HTTP server 0.92 6.98 8.04 1.08 6.59 11.52 3.42 21.55

7za File archiver 12.68 48.53 28.39 12.96 43.73 30.46 18.72 107.47

gzip File archiver 4.89 13.87 2.53 5.07 14.83 3.69 7.02 30.36

Ford-Fulkerson Maximum flow 1.62 6.11 7.18 1.52 5.78 9.27 3.71 18.43

tcc C compiler 2.89 58.91 27.25 3.30 62.91 32.83 5.36 112.57
1 Input Generator 2 Path deviation detector 3 Path equivalence checker 4 Dynamic Running on TEMU
5 Formula (1) extraction 6 STP slover 7 Formula (2) extraction

compilers and different levels of optimization can change

the syntax of executables, e.g., “-freorder-blocks” reorders

basic blocks, “-funroll-loops” unwinds loops and “-finline-

small-functions” inserts small functions’ definitions in their

caller [49]. Diablo rewrites the binaries during link-time. Loco

can obfuscate binaries by control flow flattening and opaque

predicate. Hence, we have 8 different executables for each

program.

We use LoPD to do pairwise comparison of the generated 8

executables for each program in Table III. We set the threshold

of the maximum number of iterations to be 100. For all 168

tested pairs (28 executable pairs for each of the 6 tested

programs), LoPD do not find any true path deviation. That

is, LoPD draws the right conclusion that they are software

plagiarism cases. There is no false negative.

Path splitting resilience check. In order to test the re-

silience of LoPD to semantically-equivalent-path splitting/

merging attacks, we manually add 2 to 3 such split paths

in the source code of each program in Table III. Briefly, we

find a code segment s1, s2, ... sn, (si could be any type of

statement, e.g., assignment, declaration, conditional branch,

etc). We obfuscate this segment by independent statement

reordering, variable splitting/merging, opaque predicate, etc.

Then we add the if...else statement, where if c is true, the

original segment will be executed; otherwise, the obfuscated

segment will be executed. As demonstrated in the following

example, the left part is the original code and the right part

is the code after path splitting. We compile the new code into

executable and compare it with one of the original executables

by LoPD. LoPD finds no dissimilarity between the obfuscated

and original executables within 100 iterations. It indicates the

two programs are software plagiarism, as expected.

...
s1;
s2;
...
sn;
...

...
if c then

s1; s2; ... sn;
else

obf(s1; s2; ... sn; )
end if
...

The execution time per iteration is also shown in Table III.

The listed time is the average running time of 28 executable

pairs for each program and the path splitting experiment. The

execution time per iteration is within two minutes for test

cases. Note that, the average total time for each iteration is

not the sum of the other running times in this line, because
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path equivalence checker is only needed when there is a path

deviation. The total execution time of 100 iterations is within

three hours, which is reasonable for offline detectors.

B. Case Study II: Different Programs

In this section, we evaluate the effectiveness of LoPD in

determining non-plagiarism cases. In the first part of this

evaluation, we evaluate different programs that have the same

purpose and are supposed to generate the same output when

given the same input, but there may exist some inputs that

cause two programs to generate different outputs, due to either

implementation errors or functional extension. The first three

lines in Table IV are such program pairs.

Instead of terminating the detection process as long as we

find a true path deviation, we repeat 30 iterations and count the

number of path deviations we discover for each program pair.

The results are shown in Figure 5. The x-axis are different

program pairs, whose IDs are the same as in Table IV. The

bars indicate the count of true path deviations LoPD finds

within N (N = 5, 10, 20, 30) iterations. The red line shows

the number of iterations when LoPD find the first true path

deviation.

Thttpd and mini httpd are two HTTP servers. If their

settings are the same, both of them should give the same

response when receiving the same request. The first path

deviation happens in the 3rd iteration. We find total 21 true

path deviations within 30 iterations. The deviations are caused

because one of the programs does not follow the HTTP

protocol specifications and has bugs in its implementation. A

path deviation example is shown in Figure 6. When given

request x, both of them normally response “200 Ok”. Based



TABLE IV
THE TESTED PROGRAMS AND THEIR RUNNING TIME PER ITERATION FOR THE DIFFERENT PROGRAMS CASE .

ID Program P Program S

Execution Time (seconds)

IG
1 PDD 2 PEC 3

Total
DR P 4 DR S 5 FE 6 SS 7 DR d 8 FE 9 SS 7

1 thttpd mini httpd 1.08 6.21 6.98 10.23 1.38 6.83 12.71 2.35 32.87

2 7za gzip 12.68 48.53 13.78 18.65 10.19 22.80 20.81 12.39 124.83

3 Ford-Fulkerson Push-relabel 1.62 6.11 6.95 10.41 1.45 6.94 11.83 3.21 48.52

4 Ford-Fulkerson Dijkstra shortest path 1.62 6.11 5.26 7.86 2.12 - - - 22.97

5 thttpd gzip 1.08 6.21 13.87 7.27 1.32 - - - 29.75

6 tcc gzip 2.89 58.91 13.87 17.49 5.12 - - - 98.28

7 Ford-Fulkerson 7za 1.62 6.11 48.53 20.90 13.21 - - - 90.37
1 Input Generator 2 Path deviation detector 3 Path equivalence checker 4 Dynamic Running of P on TEMU 5 Dynamic Running of

S on TEMU 6 Formula (1) extraction 7 STP slover 8 Dynamic Running of d (d = S OR P ) on TEMU 9 Formula (2) extraction

on x, LoPD finds another input x′ that causes path deviation,

where mini httpd still returns “200 Ok”, but thttpd returns

“400 Bad Request”.

The second program pair, 7za and gzip, are two file com-

pression tools. If given the particular parameters (e.g., no

parameter for gzip and a -tgzip for the 7za), they can

generate the same output file when operating on the same

input file. The first path deviation is found in the second

generation. There are 13 path deviations out of 30 iterations.

More specifically, when using them for file compression, there

is no path deviation for these two programs, but when using

them for file decompression, we can find a path deviation

in most iterations. One example of the path deviation is: the

original input x is a normal .gz file, which both programs

compress correctly; LoPD generates a new input file x′ based

on x; both 7za and gzip report a CRC-Failed upon x′. After

that, gzip terminates without decompression, whereas 7za

continues and generates a decompressed file anyway.

Ford-Fulkerson and Push-relabel are two maximum flow

implementations, using different algorithms. Given the same

flow network, they should always calculate the same maximum

flow. This is an example of the case that even if two programs

always have the same input-output pairs, they can still be non-

plagiarized different programs. Their computation steps are

different, using different algorithms in this case. On one hand,

Formula (1) guarantees that if two programs’ execution paths

have different path constraints, LoPD can detect the difference.

On the other hand, it is very rare that different algorithms have

the same path constraints for all execution paths. Therefore,

LoPD can correctly detect them as non-plagiarism case. LoPD

can find true path deviations in all 30 iterations, although they

can always get the same output.

For all examples in this part, within 3 iterations, LoPD

draws the right conclusion that they are two different pro-

grams.

The second part of the evaluation is on different programs

that may or may not have the same purpose, but generate

different outputs by given the same input. Because LoPD

relies on two programs taking the same input, but for some

program pairs, the intersection of two programs’ input spaces

is empty, e.g., thttpd vs. tcc, we can easily rule out software

plagiarism case when one program crashes or returns an error

message and the other program executes normally. Hence we

only choose certain pairs that have common inputs. The last 4

lines in Table IV are such program pairs. Since in most cases,

two programs of such pairs cannot generate the same output

regarding the same input, we can simply draw the conclusion

that they are different programs by comparing the outputs.

However, in order to evaluate how different the paths are in this

case, we use LoPD to find path deviation regardless of their

outputs. Similar to previous evaluation, we do not terminate

the detection when we find a path deviation, although we

have already gotten the right conclusion that they are different

programs. LoPD continues until finishing 30 iterations.

The results are shown in Figure 5 with pair ID 4 − 7. For

each pair, LoPD can find true path deviation in all 30 iterations.

The results are as expected, since two programs in each pair

have different functionalities and it is not hard to image that

both their path constraints and output states are different.

The execution time is shown in Table IV. The total running

time per iteration is longer than the software plagiarism case,

because in most iterations path equivalent checker is invoked.

In real case, we do not need to run all 30 iterations as in this

experiment. As long as we find a true path deviation, LoPD

will terminate. For all 7 tested pairs, the first path deviation

is discovered within 5 minutes.

Summary. We evaluated the effectiveness and efficiency of

LoPD in both the same program and different program cases

in this section. The evaluation result demonstrates that LoPD

can effectively and efficiently detect the software plagiarism.

LoPD can quickly find the dissimilarity between two different

programs. It sheds some light on the selection of the maximum

iteration threshold. Since in the evaluation of different program

cases LoPD can find the first true path deviation within 3
iterations and more than 10 true path deviations within 30
iterations, we believe normally 100 iterations is a reasonable

tradeoff between the accuracy and efficiency.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations and future work of

LoPD.

First, LoPD is not suitable for small programs, because

when the program logic and semantics are too simple, it is

possible that two programs, such as bubble sort and quick

sort, have the one-to-one path correspondence. However, for

nontrivial software products, it is unlikely that two indepen-

dent programs have such path correspondence. Therefore, in



input x :

00000000: 4845 4144 202F 696E 6465 782E 6874 6D6C 2048 5454 502F 312E 300A 0A0A HEAD /index.html HTTP/1.0...

input x
′

:

00000000: 4845 4144 202F 696E 6465 782E 6874 6D6C 2048 0101 10FF FF02 010A 0A0A HEAD /index.html H........

Fig. 6. Path deviation example of THTTPD vs. mini httpd.

practice, we do not need to concern about these potential false

positive cases.

Second, LoPD is limited by the capability of the constraint

solving and the limitation of current symbolic execution tools.

In the path deviation detector, when the constraint solver finds

a satisfying assignment to the formula, it is surely correct.

However, when it says no, it could really mean the formula is

not satisfiable, or the solver cannot find a satisfying assignment

due to its limited capability. In this case, it can potentially lead

to false positives. Our solution is to iterate many rounds on

path deviation detection. It would be practically not possible

that for a large number of rounds, with a large number of

different paths, the constraint solver will consistently report

no on satisfying assignments. In the path equivalence checker,

the similar can happen and our tool can theoretically report

false negative. In our experiments, we have not seen such false

positives or false negatives. Besides, LoPD suffers from the

common limitations of current symbolic execution tools, e.g.

they cannot perform non-linear arithmetic functions.

Third, LoPD needs to repeat the iteration until a true path

deviation is found or the maximum number of iterations is

reached. Therefore, the threshold of such number is a tradeoff

between the accuracy and the efficiency. A low threshold takes

less time but may cause false positive, while a high threshold

decreases the possibility of false positive but takes more

time. The evaluation results in Section VI give us some hints

about threshold selection: LoPD can quickly find the true path

deviation for two different programs (within 3 iterations in all

evaluated cases). Therefore, we believe setting the threshold at

100 is reasonable. We can also leverage the preknowledge of

the plaintiff program to make the decision, e.g., for programs

with less input dependent conditional branches, we choose a

lower threshold and otherwise we set a higher threshold.

Fourth, LoPD may find path deviations for two versions

of the same software, if one fixed some bugs in the other

one or added new functions. LoPD reports that they are

not semantically equivalent. This is true. A similar situation

happens when an attacker steals a program and improves it.

In fact, LoPD comes to the right conclusion that the two

programs are not semantically equivalent, even if the they

may be quite similar. Note that in this case the transformation

is not achieved automatically but involves human efforts. In

the future, in order to be resilient to manual modification

on plaintiff programs, LoPD will provide a user interface

that presents the dissimilarity it finds (e.g., differences in the

outputs, the input that causes path deviation) to users and let

users make a decision about whether to continue the detection

to find another difference or to terminate the process and

draw the conclusion. A possible alterative solution is to find

all different outputs and path deviations within the maximum

count of iterations and calculate a dissimilarity score, which

can help users to make a final judgment.

In addition, LoPD focuses on the detection of whole-

program plagiarism, where a plagiarist copies the whole plain-

tiff program and uses it as a finished software product. Whole-

program plagiarism detection is very useful in real world.

For example, recent research [1], [50] found that on Android

application market, many software plagiarism cases are just

repackaging, which are the whole-program plagiarism cases.

We view our proposed whole program plagiarism detection

approach, based on formal program semantics foundation, as

a major milestone towards solving the partial software pla-

giarism problem. Without a deep understanding of the whole

program plagiarism problem, the partial software plagiarism

problem probably won’t be solved with rigorous soundness

and completeness. In the future, we will study the detection

of partial plagiarism. One possible solution is to leverage some

characteristics of the plaintiff program to provide a hint about

the location of suspicious modules, such as invoking special

system calls or APIs and then use LoPD to detect if two

program segments have differences.

Lastly, we will extend our approach to detect smartphone

app repackaging. Most current app repackaging detection

methods focus on the detection scalability and cannot tolerate

code obfuscation. Our approach will be a complementary

solution that provides obfuscation-resilient detection. All the

user interactions will be considered as input. The interactive

information provided by the app, such as the display view and

the message sent out through text message or the Internet,

will be regarded as output. We are going to further investigate

how to effectively generate test input and how to compare the

output. We will also implement a new framework to perform

symbolic execution of smartphone applications with dalvik

virtual machine.

VIII. CONCLUSION

In this paper, we propose LoPD, a novel logic-based software

plagiarism detection approach. LoPD leverages symbolic exe-

cution and weakest preconditions to capture the semantics of

execution paths. In addition to assurance of resilience against

most types of known obfuscation attacks, LoPD provides

theoretical guarantee of the high detection accuracy. Our

evaluation results indicate that LoPD is both effective and

efficient in detecting software plagiarism.
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