
Program Optimization Space Pruning for a Multithreaded GPU

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee Ueng,
John A. Stratton, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign

{sryoo, cirodrig, ssstone2, bsadeghi, ueng, stratton, hwu}@crhc.uiuc.edu

Abstract

Program optimization for highly-parallel systems has histori-
cally been considered an art, with experts doing much of the per-
formance tuning by hand. With the introduction of inexpensive,
single-chip, massively parallel platforms, more developers will
be creating highly-parallel applications for these platforms, who
lack the substantial experience and knowledge needed to maxi-
mize their performance. This creates a need for more structured
optimization methods with means to estimate their performance
effects. Furthermore these methods need to be understandable
by most programmers. This paper shows the complexity involved
in optimizing applications for one such system and one relatively
simple methodology for reducing the workload involved in the op-
timization process.

This work is based on one such highly-parallel system, the
GeForce 8800 GTX using CUDA. Its flexible allocation of resources
to threads allows it to extract performance from a range of appli-
cations with varying resource requirements, but places new de-
mands on developers who seek to maximize an application’s per-
formance. We show how optimizations interact with the architec-
ture in complex ways, initially prompting an inspection of the en-
tire configuration space to find the optimal configuration. Even
for a seemingly simple application such as matrix multiplication,
the optimal configuration can be unexpected. We then present met-
rics derived from static code that capture the first-order factors of
performance. We demonstrate how these metrics can be used to
prune many optimization configurations, down to those that lie on
a Pareto-optimal curve. This reduces the optimization space by as
much as 98% and still finds the optimal configuration for each of
the studied applications.

Categories and Subject Descriptors: D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming

General Terms: Performance, Languages

Keywords: GPGPU, parallel computing, optimization

This is the author’s version of the work. It is posted by permission of ACM
for personal use only. Not for redistribution or posting at any place other
than the authors’ pages.
CGO’08, April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

1. Introduction

Programming for highly-parallel systems has historically been
the domain of relatively few experts, with performance tuning done
primarily by hand. Because of the relative scarcity of highly par-
allel applications and the expense of highly parallel systems, there
was limited opportunity for exhaustive performance experimenta-
tion. Today, however, single-chip, massively parallel systems such
as the NVIDIA GeForce 8 Series are available for about a dol-
lar per GFLOP, several orders of magnitude less expensive than
supercomputers a decade ago. Already developers are using these
desktop systems to perform work that would otherwise take a large
compute cluster to accomplish. Unfortunately, the level of effort
and expertise required to maximize application performance on
these kinds of systems is still quite high. The resource restrictions
of these systems also present unforeseen difficulties to optimiza-
tion. Finally, it is often the case that successive generations of
architectures require a complete reapplication of the optimization
process to achieve the maximum performance for the new system.

Optimizing an application for maximum performance on the
GeForce 8 Series is not a trivial task. At first glance, it appears
to be a multi-variable optimization problem of applying a set of
optimization techniques like tiling and loop unrolling to the code.
However, the underlying hardware and threading model contain
hard usage restrictions that affect performance and make the op-
timization space discontinuous. Consequently, the final perfor-
mance of an optimization configuration is not always readily ap-
parent. Furthermore, the difference in performance for differing
optimization configurations is significant. For an MRI reconstruc-
tion application with a space size of 175 configurations, the dif-
ference in performance between a hand-optimized implementa-
tion and the optimal configuration was 17% and the difference in
performance between the worst and optimal configurations was
235%. Since the intent is to run large, compute-intensive applica-
tions on these systems, a full exploration of the optimization space
based on wall-clock performance is generally not feasible.

In response to these challenges, we have developed metrics to
help prune the search space of optimization configurations. Our
intent is to form these metrics into the underpinnings for an au-
tomated optimizing compiler for this platform. We developed our
metrics after performing full explorations of the optimization spaces
for some of our applications. The metrics take into account the
observed first-order effects on performance, under the assumption
that memory bandwidth is not the primary limiting factor on per-
formance. Performance prediction is less critical for bandwidth-
limited kernels since they are less sensitive to other optimization
effects. The search space is pruned down to only those configu-

rations that lie on a Pareto-optimal curve generated from a plot of
the metrics. In contrast to a full exploration of the optimization
space, this methodology eliminates the need to test as much as
98% of the optimization search space. The optimal configuration
was found to be on the curve for each of the applications studied.
Consequently, much faster performance optimization is possible.

We begin by discussing the execution hardware, threading mod-
el, and available tools in Section 2. This sets up the various factors
that affect performance. Section 3 discusses the most effective op-
timizations for this architecture, and how one needs to consider
them to attain the optimal configuration. Section 4 discusses the
metrics we have developed given our experience while Section 5
shows how our metrics can be used to help find the optimal op-
timization configuration. We discuss related work in Section 6
before finishing with our conclusion.

2. Architecture

This work uses the GeForce 8800 GTX GPU 1 as the basis for
its study. The GeForce 8800 has a large set of processor cores that
can directly address a global memory. This allows for a more gen-
eral and flexible programming model than previous generations
of GPUs, and allows developers to easily implement data-parallel
kernels. In this section we discuss NVIDIA’s Compute Unified
Device Architecture (CUDA), with emphasis on the features that
significantly affect performance. A more complete description can
be found in [1, 20]. It should be noted that this architecture, al-
though more disclosed than previous GPU architectures, still has
details that have not been publicly revealed.

Before discussing the hardware, it is useful to describe the pro-
gramming and compilation process. The CUDA programming
model is ANSI C extended with several keywords and constructs.
The GPU is treated as a coprocessor that executes data-parallel
kernel functions. The user supplies a single source program en-
compassing both host (CPU) and kernel (GPU) code. These are
separated and compiled by NVIDIA’s compiler. The host code
transfers data to and from the GPU’s global memory via API calls.
It initiates the kernel code by performing a function call.

2.1 Microarchitecture

Figure 1 depicts the microarchitecture of the GeForce 8800.
The GPU consists of 16 streaming multiprocessors (SMs), each
containing eight streaming processors (SPs), or processor cores,
running at 1.35GHz. Each SP has one 32-bit, single-precision
floating-point, multiply-add arithmetic unit that can also perform
32-bit integer arithmetic. Additionally, each SM has two special
functional units (SFUs), which execute more complex FP oper-
ations such as reciprocal square root, sine, and cosine with low
latency. The arithmetic units and the SFUs are fully pipelined,
yielding 388.8 GFLOPS (16 SM ∗ 18 FLOP/SM ∗ 1.35GHz) of
peak theoretical performance for the GPU.

The GeForce 8800 has 86.4 GB/s of bandwidth to its off-chip,
global memory. Nevertheless, with computational resources sup-
porting nearly 400 GFLOPS of performance and each FP instruc-
tion operating on up to 12 bytes of source data, applications can
1There are several versions of the GeForce 8800 GPU. References of
GeForce 8800 are implied to be the GTX model.

������

���	

����

��������������������������������� ���!�����

���	

�������������

��������������

"���������	 "���������#

$�%������&���

�����'���!��()����������

*���

+++

++
+

�&*�	

�&*��

Figure 1. Organization of the GeForce 8800

easily saturate that bandwidth. Therefore, as described in Table 1
and depicted in Figure 1, the GeForce 8800 has several on-chip
memories that can exploit data locality and data sharing to reduce
an application’s demands for off-chip memory bandwidth. For ex-
ample, each SM has a 16KB shared memory that is useful for data
that is either written and reused or shared among threads. For
read-only data that is accessed simultaneously by many threads,
the constant and texture memories provide dramatic reduction in
memory latency via caching.

Threads executing on the GeForce 8800 are organized into a
three-level hierarchy. At the highest level, each kernel creates a
single grid, which consists of many thread blocks. The maxi-
mum number of threads per block is 512. Each thread block is
assigned to a single SM for the duration of its execution. Threads
in the same thread block can share data through the on-chip shared
memory and can perform barrier synchronization by invoking the
__syncthreads primitive. Threads are otherwise independent,
and synchronization across thread blocks can only be safely ac-
complished by terminating the kernel. Finally, threads within a
block are organized into warps of 32 threads. Each warp executes
in SIMD (single-instruction, multiple-data) fashion, issuing in four
cycles on the eight SPs of an SM.

SMs can perform zero-overhead scheduling to interleave warps
on an instruction-by-instruction basis to hide the latency of global
memory accesses and long-latency arithmetic operations. When
one warp stalls, the SM can quickly switch to a ready warp in
the same thread block or a ready warp in some other thread block
assigned to the SM. The SM stalls only if there are no warps with
ready operands available.

2.2 Architectural Interactions

Accurately predicting the effects of one or more compiler op-
timizations on the performance of a CUDA kernel is often quite
difficult, largely because of interactions among the architectural
constraints listed in Table 2. Many optimizations that improve the
performance of an individual thread tend to increase a thread’s re-
source usage. However, as each thread’s resource usage increases,
the total number of threads that can occupy the SM decreases.

Table 1. Properties of GeForce 8800 Memories
Memory Location Size Latency Read-

Only
Description

Global off-chip 768MB
total

200-300
cycles

no Large DRAM. All data reside here at the beginning of kernel execution. Directly addressable
from a kernel using pointers. Backing store for constant and texture memories. Used more effi-
ciently when multiple threads simultaneously access contiguous elements of memory, enabling
the hardware to coalesce memory accesses to the same DRAM page.

Shared on-chip 16KB
per
SM

'register
latency

no Local scratchpad that can be shared among threads in a thread block. Organized into 16 banks. It
is often possible to organize both threads and data such that bank conflicts seldom or never occur.

Constant on-chip
cache

64KB
total

'register
latency

yes 8KB cache per SM, with data originally residing in global memory. The 64KB limit is set by the
programming model. Often used for lookup tables. The cache is single-ported, so simultaneous
requests within an SM must be to the same address or delays will occur.

Texture on-chip
cache

up to
global

>100
cycles

yes 16KB cache per two SMs, with data originally residing in global memory. Capitalizes on 2D
locality. Can perform hardware interpolation and have configurable returned-value behavior at
the edges of textures, both of which are useful in certain applications such as video encoders.

Local off-chip up to
global

same as
global

no Space for register spilling, etc.

Table 2. Constraints of GeForce 8800 and CUDA
Resource or Configuration Parameter Limit
Threads per SM 768 threads
Thread Blocks per SM 8 blocks
32-bit Registers per SM 8,192 registers
Shared Memory per SM 16,384 bytes
Threads per Thread Block 512 threads

Occasionally this decrease in thread count occurs in a dramatic
fashion because threads are assigned to an SM at the granularity
of thread blocks. In short, there is often a tradeoff between the
performance of individual threads and the thread-level parallelism
(TLP) among all threads.

For example, consider an application that uses 256 threads per
block, 10 registers per thread, and 4KB of shared memory per
thread block. This application can schedule 3 thread blocks and
768 threads on each SM. However, an optimization that increases
each thread’s register usage from 10 to 11 (an increase of only
10%) will decrease the number of blocks per SM from three to two,
which decreases the number of threads on an SM by 33%. The
GeForce 8800 can only assign two threads blocks (512 threads) to
an SM because a third block would increase the number of threads
to 768 and register usage to 8,448, above the 8,192 registers per
SM limit. By contrast, an optimization that increases each thread
block’s shared memory usage by 1KB (an increase of 25%) does
not decrease the number of blocks per SM. Clearly, the optimiza-
tion space is inherently non-linear.

2.3 Software Tool Support

For CUDA compilation, NVIDIA provides a compiler wrapper
called nvcc that handles all parts of the compilation flow, includ-
ing linking host and kernel binaries. The compiler also supports
several options that programmers can use to debug kernels and
to gain intuition on their performance. Two flags are especially
useful: -ptx and -cubin . Much of the information needed to
compute the optimization metrics described in Section 4 is based
upon the outputs of these flags. The amount of time it takes to

run nvcc with these flags is much shorter than actual compilation
because only the kernel code is processed.

nvcc compiles kernel code to an assembly-like representation
termed PTX. This is normally placed in an object file for consump-
tion by the CUDA runtime, which processes this code, performs
further optimization such as scheduling, and generates hardware-
specific code for execution. The -ptx flag outputs the PTX in a
developer-readable format. Although PTX is not the exact code
that is executed on the hardware, it often gives insights into why
performance degrades or improves after an optimization is ap-
plied. In particular, information such as instruction count, instruc-
tion mix, and a rough idea of scheduling can be utilized reliably.
Detailed instruction-level scheduling, however, is the domain of
the runtime. For example, unrolling a loop with strided memory
accesses creates successive operations that operate at different off-
sets from a base address. PTX shows that the group of memory
operations only need the single base address calculation and use
their constant offsets to avoid additional address calculations.

The CUDA runtime that generates executable machine code
appears to reschedule code and allocate registers. This introduces
an uncontrollable element during program optimization and makes
the effects of optimizations on local resource usage less predicta-
ble. The -cubin flag outputs the resource usage of GPU kernel
code, including the shared memory used per thread block and reg-
isters used per thread. This is critical to understanding the per-
formance of the code because an SM runs the number of thread
blocks that fit given their local resource usage. A small change
in code can result in resource usage that changes the number of
thread blocks executing on an SM, which can significantly impact
performance. We use the information provided by -cubin to cal-
culate the number of thread blocks that can simultaneously reside
on each SM.

3. Optimization Space

The basic strategy for achieving good kernel code performance
on the GeForce 8800 is to maintain high SP occupancy and re-
duce dynamic instruction count. High occupancy, where warps
are always available for execution, is accomplished in three ways.
First, one can have sequences of independent instructions within

a warp so that the same warp can make forward progress. Sec-
ond, a developer can place many threads in a thread block so that
at least one warp can execute while others are stalled on long-
latency operations, such as memory loads. Third, the hardware
can assign up to eight independent thread blocks to an SM. Under
high-occupancy conditions, a reduction of executed instructions
improves performance by reducing the time to process each thread
and thus increasing system throughput. This gives us five cate-
gories of machine-level behavior to optimize: independent thread
count, thread-level work redistribution, instruction count reduc-
tion, intra-thread parallelism, and resource balancing.

Unfortunately, optimizations rarely improve an aspect of ma-
chine-level behavior in an isolated manner. Many optimizations
affect several aspects, producing a give-and-take situation between
different categories. Moreover, many optimizations increase re-
source usage and thus compete for a limited budget of registers,
threads, and shared memory. The most common way in which
optimizations interact and interfere is by their effects on register
usage. For example, an optimization that increases the number of
independent instructions after a long-latency instruction generally
uses additional registers. This causes register usage of each thread
and thread block to increase, which in turn can cause the number
of thread blocks assigned to each SM to decrease.

In this section we first discuss the major optimizations for per-
formance. Using matrix multiplication as an example, we show
how these optimizations can be applied to an application to find
the optimal configuration.

3.1 Optimizations

The optimizations we consider can be grouped into five cat-
egories based on the primary mechanism by which they affect
machine-level performance. The mechanisms are bolded for em-
phasis. We show examples of the optimizations using a matrix
multiplication kernel, with baseline code shown in Figure 2(a). In-
formation on CUDA syntax can be found in [21]. The code shown
is executed by each thread. Variables tx and ty are initialized to
each thread’s coordinates in the thread block. Variables indexA ,
indexB , and indexC are initialized, according to thread coor-
dinates, to positions in the two flattened input matrices and single
output matrix prior to the code shown.

The goal of the first category of optimization is to provide
enough warps to hide the stalling effects of long latency and
blocking operations. Loads from A[indexA] and B[indexB]
are examples of long latency operations in matrix multiplication.
Blocking operations include barrier synchronization, which stops
a warp until all warps in the same block have reached the barrier.
A common optimization in this category is to decrease the thread
block size and increase the number of thread blocks. This can in-
crease the number of thread blocks assigned to each SM and pro-
vide more independent warps from other blocks when one block
reaches a barrier. This is discussed in more detail in Section 3.2.

The second category involves redistribution of work across
threads and thread blocks. For matrix multiplication, each el-
ement of the output matrix can be computed independently and
the work is grouped into threads and thread blocks for the sake of
data efficiency. The kernel of Figure 2(a) is tiled [19] so that each
thread block computes a square 16x16 tile of the output matrix.
Threads in a block cooperatively load parts of the input matrices
into shared memory, amortizing the cost of global load latency and

reducing the pressure on global memory bandwidth. Using larger
tiles enhances the benefit of data sharing, but reduces scheduling
flexibility since a greater fraction of the threads on an SM must
wait at barrier synchronizations. Redistribution can also be applied
at the thread level: in Figure 2(b), the kernel has been further tiled
at the thread level so that each thread now computes two matrix
elements instead of one. In other words, for every tile in the first
input matrix, two tiles in the second input matrix are consumed
at a time for a 1x2 rectangular tiling dimension. This presents
opportunities for eliminating redundant instructions that were pre-
viously distributed across threads, such as the loads of values from
As in the loop body. A third, occasionally useful technique is to
distribute work across multiple invocations of a kernel, but we did
not find this useful in applications with good cache behavior.

The third category is to reduce the dynamic instruction count
per thread. Optimizations for this include traditional compiler
optimizations such as common subexpression elimination, loop-
invariant code removal, and loop unrolling. However, these op-
timizations frequently need to be balanced against increased re-
source usage. The unrolled matrix multiplication kernel in Fig-
ure 2(c) eliminates address calculation instructions by replacing
variable array indices with constants after unrolling. Register us-
age is actually reduced in this example, though it can increase in
other situations.

The fourth category of optimization, intra-thread parallel-
ism, ensures the availability of independent instructions within a
thread. A developer can unroll loops to facilitate code schedul-
ing in the compiler or explicitly insert prefetching code. Prefetch-
ing for matrix multiplication (Figure 2(d)) is achieved by initiating
long-latency global loads into an additional local variable (regis-
ter) long before the variable is used. This optimization category is
primarily the jurisdiction of the instruction schedulers of the com-
piler and runtime. The CUDA runtime appears to reschedule oper-
ations to hide intra-thread stalls. However, it sometimes does this
to the detriment of inter-thread parallelism. As with optimizations
to reduce instruction count, scheduling to reduce intra-thread stalls
may increase register usage and potentially reduce the number of
thread blocks on each SM.

The last category is best termed resource-balancing. The pur-
pose of these optimizations is to shift the use of resources, some
of which may be counterintuitive, to produce better overall perfor-
mance. One example is proactive, explicit register spilling by the
programmer. By reducing register usage, often a critical resource,
more thread blocks may be assigned to each SM. The resulting
application may have much better performance, despite the added
latency from memory access and additional instructions, because
the additional thread blocks improve overall resource utilization.

One optimization that was useful for all studied applications
is the use of shared memory and caches to improve data locality
for reused values; without this, performance was generally limited
by global memory bandwidth and insensitive to other optimiza-
tions. For the experiments in this work, we apply this optimiza-
tion unconditionally. We also do not constrain the optimizations
or scheduling performed by NVIDIA’s compiler and runtime.

3.2 Applying Optimizations

In this section we use matrix multiplication to show how to ap-
ply optimizations when searching for optimal performance. Our

���������	

���������
�������������
���������������	
�������������
���������������	

������������������ �����	
������������������ �����	
��� �����!����	
��� �����!�����"�#�����	
������ $��������	

��
��������	���%���	��!!�
�����
������������!�����������
��������"����������	
����&

������ $��������	
&
��� �������������	

���������	

���������
�������������
���������������	
�������������
���������������	

������������������ �����	
������������������ �����	
��� �����!����	
��� �����!�����"�#�����	
������ $��������	

��������
�����	
���������
������
�����
����������
�����	
����������
�������

������ $��������	
&
��� �������������	

�����������	�
�� �����������������	��
�
��

������������������

���������
�������������
���������������	
�������������
��������������	

������������������ �����	
������������������ �����	
���
������������������������
��� �����!����	
��� �����!�����"�#�����	
������ $��������	

��
��������	���%���	��!!�
�����
������������!�����������
��������"����������	
���������������	
�����
�����������
�����������
����&

������ $��������	
&
��� �������������	
��������������������

���������������	���

����	������	�
�������������
���������	

���������
�������������
���������������	
�������������
���������������	

��	
�����������
���
�����������
��� �����!����	
��� �����!�����"�#�����	
������ $��������	

������	������	�
���������������
��
��������	���%���	��!!�
�����
������������!�����������
��������"����������	
����&

������ $��������	
&
��� �������������	

�����	������
��

Figure 2. Matrix Multiplication Optimization Examples
Code differences from base version are shown in bold.

�
��
�
��
�
�
�
	

0

1

2

3

4

5

6

7

8

normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch

1x1 1x2 1x4 1x1 1x2 1x4

8x8 tiles 16x16 tiles

unroll 1

unroll 2

unroll 4

complete
unroll

Figure 3. Matrix Multiplication Optimization Space Performance

intent is to convey the complexity of the interaction between op-
timizations and resource limits. Figure 3 shows the run time of
matrix multiplication across an abbreviated optimization space.

One of the first questions facing the developer is the granular-
ity at which to spawn threads, since each SM can host up to 768
threads. Eight thread blocks at a tiling factor of 8x8 (64 threads per
thread block) can be assigned to an SM, whereas only three thread
blocks at a tiling factor of 16x16 (256 threads per thread block)
can be assigned. Since matrix multiplication contains intra-thread
block synchronization, it may be tempting to keep the number of
thread blocks high. However, 16x16 consistently outperforms 8x8
because configurations with the latter tile size run into a memory
bandwidth bottleneck.

When we consider the second category of optimizations, work
redistribution, we see that allocating more work per thread by ad-
justing the tiling dimensions is generally good for matrix multi-
plication. This is true for both 8x8 and 16x16 tiles. It is interest-
ing to note that for 1x4 tiling of 16x16 tiles, each SM only runs
one thread block of 256 threads at a time due to heavy register
usage, yet this configuration has the highest performance. De-
spite having only eight warps that must synchronize at a regular
interval, the elimination of redundant instructions and enhanced
instruction-level parallelism offset that downside.

Next, the performance effects of loop unrolling become more
muddled. As shown in Figure 2(c), loop unrolling removes redun-
dant instructions, reducing the instruction count while increasing
register usage. When the loop is completely unrolled, the reg-
ister usage sometimes drops back down to the same level as no

 2

 3

 4

 5

 6

 7

 8

 9

 32 64 96 128 160 192 224 256 288 320 352 384

T
im

e
(m

s)

Threads per Thread Block

Each line varies threads per block with other parameters constant.

Figure 4. SAD Optimization Space

unrolling. Since the mechanism by which the CUDA runtime per-
forms scheduling and register allocation is not visible to the ap-
plication developer, we do not have a clear explanation for this
non-uniform behavior.

Finally, prefetching generally increases register usage but does
not always reduce the number of thread blocks running on an SM.
When it does, the reduction in exposed global latency often makes
up for the loss of a thread block. Thus, there are only a handful of
cases where there is a significant difference in performance. The
exception is the configuration at the far right, where prefetching
increased register usage beyond what is available, producing an
invalid executable.

In summary, there is a significant number of optimization con-
figurations to be considered for an application as simple as matrix
multiplication. An expert with in-depth understanding of both the
algorithm, including its behavior and usage patterns, and the hard-
ware, including its memory bandwidth and resource availability,
may have been able to bypass some of the pitfalls we present here.
However, a developer that is not intimately familiar with the appli-
cation, hardware, and the CUDA runtime generally cannot deter-
mine if the upside of an optimization will more than compensate

for potential downsides without experimentation. As stated ear-
lier, the optimal configuration for matrix multiplication runs only
one thread block of 256 threads per SM, contrary to the intuition
of more concurrent threads equaling better performance.

In addition, the problem becomes much more difficult for larger
and more complex applications. We present in Figure 4 a full
exploration of the optimization space for a sum of absolute dif-
ferences (SADs) kernel, which computes a metric used in MPEG
video encoders. The number of possible configurations is much
larger than matrix multiplication and the response of performance
to optimizations even more complex.

4. Performance Metrics

Given our observations of the effects of optimizations, we have
developed metrics that estimate the performance of kernel code
to the first order. Instead of being required to fully compile and
run configurations of an application to determine its performance,
a developer can use these metrics, which leverage data such as
PTX instructions and resource usage extracted by the -cubin and
-ptx flags, to quickly estimate the configurations’ relative per-
formances. This opens up the possibility of finding a near-optimal
configuration without performing an exhaustive search of the op-
timization space.

In order for these metrics to correlate to performance, global
memory bandwidth must not be the bottleneck on performance.
This is easily calculated by examining the percentage of mem-
ory accesses in the instruction stream and determining the aver-
age number of bytes being transferred per cycle. Dealing with the
memory bandwidth issue using software-managed local memories
has been discussed in prior work [5, 22] and is outside the scope
of this work.

Efficiency =
1

Instr ∗ Threads
(1)

Equation 1 estimates the efficiency of the kernel to be run on
the GPU. Instr is an estimate of the number of dynamic instruc-
tions that will be executed per thread on the GPU, derived from
the PTX code generated. We manually annotate the average iter-
ation counts of the major loops in the kernel to obtain this data.
Threads is the number of threads that will run on the GPU for a
given problem size, known to the developer when writing the code.
This is made explicit in the invocation of the kernel function. This
efficiency metric indicates the overall efficiency of the configura-
tion in terms of how many total instructions must execute before
the kernel finishes. Assuming high SP occupancy and no bottle-
necks, such as memory bandwidth, high efficiency is a very good
indicator of better performance.

Utilization =
Instr

Regions

»

WTB − 1

2
+ (BSM − 1)(WTB)

–

(2)
Equation 2 estimates the utilization of the compute resources

on the GPU. Regions is the number of dynamic instruction inter-
vals delimited by blocking instructions or the start or end of the
kernel. We consider long latency instructions, such as global and
texture memory operations and synchronization instructions, to
be blocking instructions. Sequences of independent, long-latency

loads are considered a unit. We consider SFU instructions to have
long latency when longer latency operations are not present. WTB

is the number of warps in a thread block, which is determined by
dividing the number of threads in a thread block by 32. BSM is the
number of thread blocks assigned to each SM. The runtime assigns
the maximum number of thread blocks possible to each SM, up to
eight, without violating local resource usage. Consequently, this
number can be calculated from the local resource usage obtained
via -cubin .

The fraction Instr

Regions
indicates the average number of non-block-

ing instructions a single warp is expected to execute before running
into its own blocking instruction. The quantity within the brackets
indicates the number of independent warps in the SM, other than
the one currently executing, that can be executed while the block-
ing instruction is being resolved. The first term in the bracket is
the number of other warps in the same thread block as the cur-
rently executing warp. We divide by two because if the blocking
instruction is a synchronization instruction, on average half of the
warps in the same block still need to execute until they also reach
the synchronization point. The second term in the bracket is the
number of warps in other thread blocks on the SM that can exe-
cute. Altogether this is a metric of the utilization of the compute
resources on the GPU by taking into account how often a warp
is expected to wait and the amount of work available (from other
warps) when it does.

We chose to group synchronization instructions together with
long latency memory operations in order to simplify the calcula-
tion of the Regions term, even though they display different be-
haviors. For example, execution at a synchronization point pro-
ceeds only when all of the threads in a thread block have reached
that point, while global load operations execute immediately and
do not block execution until a use of the destination operand is
encountered. We believe that the division by two in the first term
in the bracket captures the first order effects. We are developing a
more detailed cost model to achieve more precise results.

As discussed previously, running nvcc with -cubin and -ptx
flags is faster than full compilation of an application. Computing
the efficiency and utilization metrics is relatively fast after this in-
formation and a few numerical inputs from the developer are ob-
tained, allowing for fast exploration of the search space.

We use the matrix multiplication kernel of Figure 2(c) as an ex-
ample. The kernel is first compiled with -cubin to obtain the re-
source usage, which shows that each thread uses 13 registers, and
each block uses 2088 bytes of shared memory for its 256 threads.
To determine the number of blocks per SM, we check the per-SM
resource limits in Table 2. In this case, register usage is the limit-
ing factor: BSM = b8192/(13 ∗ 256)c = 2. Also, the number of
warps per thread block is WTB = d256/32e = 8.

This kernel is then compiled with -ptx to determine its execu-
tion profile. The outer loop is annotated with a trip count of 256,
found by dividing the matrix size (4096) by the tile length (16).
With this annotation, the number of dynamically executed instruc-
tions can be counted statically. A single thread runs 15150 instruc-
tions, including 512 barriers and 256 pairs of loads, so Instr =
15150 and Regions = 769. The last bit of information needed is
the number of threads in the kernel. Based on knowledge of the
program, we know there is one thread for each element of the 4k-
by-4k output matrix: Threads = 224 . From these numbers, we
compute Efficiency = 3.93∗10−12 and Utilization = 227. The
relative values of these metrics among different configurations is
more meaningful than their absolute values.

5. Experiments

This section presents the values and use of the metrics for the
applications in Table 3. The speedup over highly optimized, single-
thread CPU performance shows why porting these applications to
the GeForce 8800 is desirable. Table 4 lists the optimization pa-
rameters we chose to vary and the number of configurations in the
search space. We show how the metrics can be used to find optimal
or near-optimal configurations. We also discuss certain shortcom-
ings of the metrics.

We used CUDA version 1.0 for our experiments. Experiments
were performed on an Intel Core2 Extreme Quad running at 2.66
GHz with 4GB of main memory. Our presented data represent
runs with smaller inputs than those considered typical, which al-
lowed us to explore the entire optimization space in a reasonable
amount of time and determine the proximity of our selected con-
figurations to the optimal ones. Separate experiments have shown
that execution time will scale accordingly with an increase in input
data size for these applications on this architecture.

5.1 Individual Metrics

The efficiency and utilization metrics both carry part of the in-
formation needed to predict the performance of a kernel config-
uration, though neither is sufficient in isolation for useful perfor-
mance comparisons. We use CP as an example to show what as-
pect of performance is captured by each metric. Figure 5 shows
how CP’s execution time and performance metrics vary with the
results-per-thread tiling factor. We plot the normalized reciprocals
of the performance metrics, so lower is better in both plots. The
efficiency data points overlap and appear as a single curve. Effi-
ciency closely follows the acutal execution time at tiling factors of
1, 2, 4, and 8. Although utilization varies over this range, it re-
mains good enough that changes in utilization do not greatly slow
down the machine’s execution throughput. At a tiling factor of
16, utilization falls enough to bring down the machine’s through-
put, countering further increases in efficiency. Overall, efficiency
improves monotonically while utilization worsens monotonically
with increasing tiling factor, and the optimum configuration bal-
ances both metrics.

While this observational approach can be used to explain per-
formance, an automated method of choosing good configurations
needs to combine both metrics, taking into account their relative
importance. We have found that the metrics are not detailed enough
to combine into a single robust cost function that selects good
configurations over a wide range of benchmarks. Instead, we use
the metrics to narrow the space of possible configurations, as ex-
plained in the next section.

5.2 Searching by Pareto-Optimality

Figure 6 shows plots of the metric values for each optimization
configuration for all of the applications. The maximum metric
value along each axis has been normalized to one for compari-
son purposes. In general the best performance should come from
configurations with both high efficiency and utilization. Thus, we
desire configurations located towards the upper right corner of the
graph.

 1

 0

P
er

fo
rm

an
ce

 M
et

ric

1/Utilization
1/Efficiency

 2

 3

 4

 5

 6

 7

 16 8 4 2 1

E
xe

cu
tio

n
T

im
e

(s
ec

)

Tiling Factor

Execution Time

Figure 5. Performance Metrics Versus Execution Time for CP

In order to reduce the amount of time spent on performance
evaluation, we choose the small set of configurations that have no
superior in both the efficiency and utilization metric. This is the
Pareto-optimal subset, which is connected by a line for each ap-
plication. Visually, each point in this set has no other point both
above and to the right of it. For all benchmarks, the Pareto-optimal
subset contains the best configuration found by exhaustive search.
In other words, instead of exhaustively evaluating the performance
for every configuration, the search can be pruned down to just
the configurations in the Pareto-optimal subset according to the
metrics. This significantly reduces the search space and thus the
search time, as shown in Table 4. The optimum configuration for
each application in Figure 6 is circled for higher visibility. The
relative values of efficiency and utilization are different for each
benchmark, reflecting the difficulty of establishing a simple cost
function to find the optimal configuration.

Figure 6(b) shows the metric plot for the MRI-FHD applica-
tion. In this graph, configurations tend to be clustered in groups
of seven because changing the tiling factor affects neither the effi-
ciency nor the utilization of this benchmark, appearing as a single
point at this resolution. Differences in actual performance within
each cluster are small, the maximum within a cluster being 7.1%.
In the cluster that contains the optimal configuration, the variation
between the slowest configuration and the optimal configuration is
5.4%, and the variation between the median configuration and op-
timal configuration is only 0.2%. Hence, when several configura-
tions have identical or nearly identical metrics, it may be sufficient
to randomly select a single configuration from that cluster, rather
than evaluating all the configurations.

5.3 Shortcomings of the Metrics

Although the Pareto-optimal subset of the metrics always con-
tained the optimal optimization configuration for our test programs,

Table 3. Application Suite
Application Description Speedup over Single-

Thread CPU
Matrix Multi-
plication

Multiplication of two dense 4k x 4k matrices. The CPU version uses version 9.0 of the Intel C++
Compiler and version 8.0 of the Intel Math Kernel Library.

6.98X

CP Calculation of the electric potential at every point in a 3D grid. This kernel is derived from the
“Unroll8y” kernel in [23].

647X

SAD Computation of sums of absolute differences. SADs are computed between 4x4 pixel blocks in two
QCIF-size images over a 32 pixel square search area.

5.51X

MRI-FHD Computation of an image-specific matrix F Hd, used in a 3D magnetic resonance image reconstruction
algorithm that operates on scan data acquired in a non-Cartesian space [24].

228X

Table 4. Parameter Search Properties
Kernel Parameters Varied Configurations Evaluation

Time
Selected
Configu-
rations

Space
Reduc-
tion

Selected
Evaluation
Time

Matrix Mul-
tiplication

tile/block size, rectangular tile dimension, unroll factor,
prefetching, register spilling

93 363.3 s 11 88% 48.6 s

CP block size, per-thread tiling, coalescing of output 38 159.5 s 10 74% 42.95 s
SAD per-thread tiling, unroll factor (3 loops), work per block 908 7.677 s 16 98% 0.127 s
MRI-FHD block size, unroll factor, work per kernel invocation 175 771.9 s 30 77% 208.0 s

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency
(a) Matrix Multiplication

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency
(b) MRI-FHD

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency
(c) Coulombic Potential (CP)

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency
(d) Sum of Absolute Differences (SAD)

The optimal performance configuration is circled in each graph. In (b), each point actually represents as many as seven configurations that have
indistinguishable efficiency and utilization.

Figure 6. Searching by Pareto-Optimal Performance Metric

the metrics do have certain shortcomings. Not all of the configu-
rations in that subset are necessarily close to optimal performance.
In the cases we could identify, the reason was performance im-
pact from factors assumed to be perfect and not considered in the
metrics. We discuss a few of these issues here.

One interesting aspect of the Pareto-optimal curve for matrix
multiplication, in Figure 6(a), is that all of the configurations on
it except the optimum are 8x8 tile size configurations. As seen
in Figure 3, none of the 8x8 configurations perform better than
any of the 16x16 configurations due to memory bandwidth issues.
This follows our statement in Section 4, which stated that memory
bandwidth issues must be neutralized before efficiency and utiliza-
tion become the dominant performance determinants. In general,
the Pareto-optimal curve is more likely to miss a near-optimal con-
figuration when a factor other than instruction count and latency
overlap is a significant performance bottleneck. One should screen
away such points prior to defining the curve.

Cache conflicts represent another potential performance bottle-
neck that falls outside the scope of the proposed performance met-
rics. However, discrepancies between the observed performance
of a set of configurations and the performance trends predicted
by the metrics can still help the programmer diagnose such bot-
tlenecks. For example, a preliminary version of the MRI-FHD
kernel had steadily decreasing performance as the tiling factor in-
creased, although efficiency and utilization metrics remained con-
stant. This informed the developer that other factors affecting per-
formance, namely the layout of the data in the caches, was causing
frequent misses. Changing the data layout yielded a kernel that is
insensitive to changes in the tiling factor and 17% faster than the
previous best configuration.

6. Related Work

Code transformation and optimization for parallel programs
have a long history, with much of the foundational work performed
under the auspices of projects such as Polaris [6] and SUIF [11].
Many optimization techniques are detailed in [16, 29]. Our work
builds on past work by determining when transformations are likely
to provide higher performance on this new class of parallel archi-
tecture.

Our transformation guidance technique is based on a full ex-
ploration of the optimization space, an approach that has been
explored by others in various fashions. Wolf et al. [28] intro-
duced a compiler that explores the entire optimization space to
find the optimal optimization configuration, but they do not use
metrics to prune the space. Han et al. [12] also use static models
to search for the optimal tiling and padding size for a conventional
multiprocessor. Work has also been done to study the interaction
among different optimizations and between optimizations and the
hardware without a full search. These range from those based on
analytical models [9, 17] to those that use statistical models [13]
and those that utilize adaptive learning and intelligent search tech-
niques [3, 4, 26, 27] to find an optimal configuration. Finally, work
by the SPIRAL project [2] generally uses an iterative approach to
find desirable code, whereas we do not. Our work is most sim-
ilar to that of Wolf et al. [28], but our performance metrics are
customized for a massively data parallel architecture with a high
bandwidth and latency-hiding memory system. To our knowledge,
the only similar study of this emerging family of data-parallel ar-
chitectures being used for general purpose computing domains is

work by Jimenez-Gonzalez et al. [15]. They present an evaluation
of communication bandwidth between different storage and com-
puting components of the Cell processor and general guidelines in
terms of optimizations, communication, data access patterns, and
programming models for full utilization.

Our work is related to previous work in phase ordering [18].
The effects of optimizations on the GPU are unlike those on many-
core CPU, due to the high thread count and fine-grained sharing of
resources. Transformations tightly interact on the GeForce 8 Se-
ries GPUs and must be evaluated based on their joint effects.

Previous attempts at general purpose programming on GPU
systems have been limited in size and complexity. In particu-
lar inflexibility of memory accesses [7, 25] and memory perfor-
mance [8, 10] were major hurdles. A previous study on perfor-
mance tuning for GPU [14] was also constrained by the program-
ming environment and the necessity of mapping algorithms to ex-
isting GPU features. The CUDA programming model, along with
the hardware support of the GeForce 8800, allows larger, more
complex kernel code to access the low-latency, high-bandwidth
on-chip memory in a more general manner. Choice of memory
usage and optimization for this new generation of GPUs is critical
to achieving good performance.

7. Conclusion and Future Work

In this work we have proposed an approach for attacking the
complexity of optimizing code for the NVIDIA GeForce 8 Series.
Because predicting the performance effects of program optimiza-
tions is difficult, developers or compilers may need to experiment
to find the configuration with the best performance. To aid in this,
we developed metrics to judge the performance of an optimization
configuration. By plotting the configurations and examining only
those configurations on a Pareto-optimal curve, we were able to
reduce the search space by up to 98% without missing the config-
uration with the highest performance. The cases where the Pareto-
optimal curve may not contain a near-optimal configuration are
attributable to factors that are not usually first-order performance
determinants and thus not considered in the metrics.

Future work for this approach is directed towards better con-
trol of optimizations and improved pruning of the search space.
First, we would like to achieve better control of scheduling and
thus register usage, so that the performance of applications after
small code changes does not radically change. This would make
the effects of optimizations more predictable and potentially fur-
ther reduce the search space. Second, we wish to account for
factors such as memory access coalescing that are currently not
factored into the performance metrics, so that they may be more
effective predictors of performance. Finally, we will compare the
effectiveness of our method to random sampling of the optimiza-
tion space.

Acknowledgments

We would like to thank David Kirk and NVIDIA for generous
hardware loans and support. We also thank Michael O’Boyle and
the anonymous reviewers for their feedback and suggestions. Sam
Stone is supported under a National Science Foundation Gradu-
ate Research Fellowship. Any opinions, findings, conclusions, or

recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the NSF. The
authors acknowledge the support of the Gigascale Systems Re-
search Center, funded under the Focus Center Research Program, a
Semiconductor Research Corporation program. Experiments were
made possible by NSF CNS grant 05-51665. This work was per-
formed with equipment and software donations from Intel.

References

[1] NVIDIA CUDA. http://www.nvidia.com/cuda.
[2] SPIRAL project. http://spiral.net.
[3] F. Agakov et al. Using machine learning to focus iterative

optimization. In Proceedings of the 4th Annual International
Symposium on Code Generation and Optimization, pages
295–305, March 2006.

[4] L. Almagor et al. Finding effective compilation sequences.
Proceedings of the 2004 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded Sys-
tems, pages 231–239, March 2004.

[5] O. Avissar, R. Barua, and D. Stewart. An optimal mem-
ory allocation scheme for scratch-pad based embedded sys-
tems. ACM Transactions on Embedded Computing Systems,
1(1):6–26, November 2002.

[6] W. Blume et al. Polaris: The next generation in parallelizing
compilers. Technical Report 1375, University of Illinois at
Urbana-Champaign, 1994.

[7] I. Buck. Brook Specification v0.2, October 2003.
[8] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understand-

ing the efficiency of GPU algorithms for matrix-matrix
multiplication. In Proceedings of the 2004 ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware, pages 133–137, 2004.

[9] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis
for program transformations with caches of arbitrary asso-
ciativity. In Proceedings of the 8th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 228–239, 1998.

[10] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A
memory model for scientific algorithms on graphics proces-
sors. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, number 89, pages 89–99, August 2006.

[11] M. W. Hall et al. Maximizing multiprocessor performance
with the SUIF compiler. IEEE Computer, 29(12):84–89,
1996.

[12] H. Han, G. Rivera, and C.-W. Tseng. Software support for
improving locality in scientific codes. In Workshop on Com-
pilers for Parallel Computers, January 2000.

[13] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wi-
jshoff. Automatic selection of compiler options using non-
parametric inferential statistics. In Proceedings of the 14th
International Conference on Parallel Architectures and
Compilation Techniques, pages 123–132, September 2005.

[14] C. Jiang and M. Snir. Automatic tuning matrix multiplication
performance on graphics hardware. In Proceedings of the
14th International Conference on Parallel Architecture and
Compilation Techniques, pages 185–196, September 2005.

[15] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez. Perfor-
mance analysis of Cell Broadband Engine for high memory

bandwidth applications. In Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software, pages 210–219, April 2007.

[16] K. Kennedy and R. Allen. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, San Francisco, CA, 2002.

[17] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Com-
bined selection of tile sizes and unroll factors using itera-
tive compilation. In Proceedings of the 2000 International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 237–248, October 2000.

[18] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. David-
son. Evaluation heuristic optimization phase order search al-
gorithms. In Proceedings of the 2007 International Sympo-
sium on Code Generation and Optimization, pages 157–169,
March 2007.

[19] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache per-
formance and optimizations of blocked algorithms. In Pro-
ceedings of the 4th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 63–74, April 1991.

[20] J. Nickolls and I. Buck. NVIDIA CUDA software and
GPU parallel computing architecture. Microprocessor Fo-
rum, May 2007.

[21] NVIDIA Corporation. CUDA Programming Guide, February
2007.

[22] S. Ryoo et al. Optimization principles and application per-
formance evaluation of a multithreaded GPU using CUDA.
In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, February
2008.

[23] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.
Trabuco, and K. Schulten. Accelerating molecular modeling
applications with graphics processors. Journal of Computa-
tional Chemistry, 28(16):2618–2640, December 2007.

[24] S. Stone, H. Yi, J. Haldar, W. Hwu, B. Sutton, and Z. Liang.
How GPUs can improve the quality of magnetic resonance
imaging. The First Workshop on General Purpose Processing
on Graphics Processing Units, October 2007.

[25] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using data
parallelism to program GPUs for general-purpose uses. In
Proceedings of the 12th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 325–335, October 2006.

[26] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August. Compiler optimization-space exploration. In Pro-
ceedings of the 2003 International Symposium on Code Gen-
eration and Optimization, pages 204–215, March 2003.

[27] K. Vaswani, M. J. Thazhuthaveetil, Y. N. Srikant, and P. J.
Joseph. Microarchitecture sensitive empirical models for
compiler optimizations. In Proceedings of the 2007 Inter-
national Symposium on Code Generation and Optimization,
pages 131–143, March 2007.

[28] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining
loop transformations considering caches and scheduling. In
Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 274–286, December
1996.

[29] H. Zima and B. Chapman. Supercompilers for Parallel and
Vector Computers. Addison-Wesley Publishing Company,
Reading, MA, 1991.

	Introduction
	Architecture
	Microarchitecture
	Architectural Interactions
	Software Tool Support

	Optimization Space
	Optimizations
	Applying Optimizations

	Performance Metrics
	Experiments
	Individual Metrics
	Searching by Pareto-Optimality
	Shortcomings of the Metrics

	Related Work
	Conclusion and Future Work

