
PROGRAM OPTIMIZATION USING INVARIANTS

by

Shmuel Katz

IBM Israel Scientific Center

Technion City, Haifa, Israel

ABSTRACT

Optimizing a computer program is defined as improving the execution time without

disturbing the correctness, We show how to use invariants generated from tb~ program

to change the statements in and around the program's loops, This approach is shown

to systematize existing optimization methods~ and to sometimes allow stronger optimi-

zations than are possible undor the standard transformation approach,

i. INTRODUCTION

For many years compilers have contained sections which are supposed to "optimize"

the code produced from computer programs. As has been often noted, this term is a

misnomer because a really "optimal" solution to the "optimization" problem would in-

volve throwing away the original program and producing in its place the best possible

program to perform the desired task.

In view of the present state of program synthesis, we adopt a more standard (and

considerably less ambitious) definition as the goal of optimization. Optimization is

intended to improve the execution time of a given program by changing or moving some

of the statements, without disturbing the correctness of the program. The control

structure of the original program usually will be left intact, and the same crucial

relationships will be maintained among the variables, but the computations and tests

will be altered in order to reduce the time required for computation.

A wide variety of techniques are presently grouped under the term optimization.

Among these are various machine-dependent operations (including register allocation)

which use special characteristics of a given computer and are best applied to machine

code. We concentrate on the other large class of techniques, namely, various program

transformations which are independent of the machine code, and are typically applied

to an intermediate-level program (similar in complexity to a flowchart language),

before actual machine code is generated.

In this paper, a method is presented for performing optimizations of the above type

with the aid of a proof of correctness of the program. That is, in addition to the

program, the user has provided (i) an input specification, defining the acceptable

input values which the program is intended to treat, and (ii) an output specificatio n

288

defining the desired relationship between the input and the output. Then, automatical-

ly or by hand, intermediate 'invariant assertions t have been attached to prechosen

points in the program. These assertions allow proving the correctness of the program

w.r.t, its specification. Note that by 'correctness' we mean that for every legal

input the program will terminate, and the output will satisfy the output specification

(this is often called total correctness).

An invariant assertion (or invariant* for short) at a point A is any claim about

the variables which is always true when the control of the program reaches point A.

The following section contains the definitions needed to give a precise criterion for

proving an assertion to be an invariant.

A situation in which we would like to perform optimization of a program and also

have available the program specification and a proof of correctness, including the

iavariants used in that proof, could arise from at least two sources:

(i) The program may have been developed in a top-down manner by stepwise refinements

using structured programming techniques (see, e.g., Wirth [1973~). We assume a stage

at which a complete but unoptimized program has been obtained, and that at each stage

the correctness has been proven by demonstrating the needed invariants. In this case

the invariants are available, even though they may not be organized in the manner

described in this paper. Moreover, the final optimization stage can be done at least

semi-automatically, even though earlier stages of the refinement do not seem to be as

amenable to automatization.

(ii) The program (either developed by stepwiserefinements,or±nanymorehaphazard

manner) may have undergone logical analysis, preferably automatically, so that the in-

variants have been extracted from the program independently ofthe output specification.

Elements of such a system exist, and several such systems are proposed or under con-

struction (e.g., Cheatham & Wegbreit [1972], Katz & Manna [1976]). If the program is

incorrect, a logical analysis system would be used to prove this, and to help diagnose

and correct the errors. If it is correct, partial correctness and termination would

be proven for the given specification, also using the invariants. Once the program

has been proven, a logical analysis system would pass to an optimizer, with the in-

variants already organized as indicated in the following section.

In either of the above cases, the time-consuming and difficult task of finding the

proper invariants and the proof would be done primarily for other reasons, and not

merely for optimization. Thus, it is worthwhile to take advantage of the added in-

formation which is available "free of charge", as an aid in optimization. In Section 2,

some definitions and facts about invariants are presented, and their organization for

the purpose of optimization is described. Section 3 examines somespecific optimizations

* Note that we use the word 'invariant' in the sense common to program verification
and not as sometimes used in articles on optimization, where an 'invariant expres-
sion means an expression containing only variables unchanged in the loop.

289

which are facilitated by using invariants. In the conclusion (Section 4), the

techniques described below are compared with the usual optimizations found in com-

pilers, and with related work on transformations which preserve correctness.

2. INVARIANTS AND THEIR ORGANIZATION FOR OPTIMIZATION

First some definitions and facts related to invariants are briefly summarized.

The presentation follows Katz [1976].

For convenience of explanation, blocked programs are assumed (although this is

not really necessary to the ideas). That is, the programs treated are divisible into

(possibly nested) "blocks" in such a way that every block has at most one top-level

loop (in addition to possible lower-level loops which are already contained in inner

blocks). The blocks considered have one entrance and may have many exits. Algorithms

for identifying such blocks can be found in Allen [1971]. Every "structured program"

e.g., program without goto statements (see Wirth [1973]) can be decomposed into such

blocks.

The block structure allows treating the program first by considering inner blocks

(ignoring momentarily that they are included in outer blocks), and working outwards.

Thus for each block its top-level loop can be analyzed using information obtained

from the inner blocks.

The top-level loop of a block can contain several branches, but all paths around

the loop must have at least one common point. For each loop, one such point is chosen

as the Outpoint of the loop.

Counters attached to each block containing a loop are an essential tool in our

techniques. Since each loop has a unique cutpoint, a counter is associated with the

cutpoint of the loop. The counter is initialized before entering the block so that

its value is zero upon first reaching the cutpoint, and is incremented by one exactly

once somewhere along the loop before returning to the outpoint. In the continuation,

a local initialization of each counter is assumed, immediately before the entrance

to its block. Experience has shown that this is generally the most convenient choice.

The counters play a crucial role both for generating invariants and for proving

termination. They are used to denote relations among the number of times various

paths have been executed, and also to help express the values assumed by the program

variables. Thus Yi(n) denotes the value of Yi the (n+l)-th time the cutpoint

is reached since the most recent entrance to the block. It should be noted that it is

unnecessary to add the counters physically to the body of the program. Their location

can merely be indicated, since their behavior is already fixed.

It is also sometimes convenient to add auxiliary cutpoints at the entrance and exit

of a block. In addition, a special cutpoint is added on each arc immediately pre-

ceding a HALT statement. Such cutpoints will be called halt-points of the program.

290

In t h e f o l l o w i n g d e f i n i t i o n s , x d e n o t e s t h e i n p u t v a l u e s , and y t h e v a l u e s o f

t h e program v a r i a b l e s a t t h e o u t p o i n t b e i n g c o n s i d e r e d .

A predicate qi(x,y) is said to be an invariant assertion (or invariant for short)

at cutpoint i w.r.t.~(x) if for every input a such that ~(a) is true, whenever

we reach point i with y=b, then qi(a,b) is true. An invariant at i is thus

some assertion about the variables which is true for the current values of the vari-

ables each time i is reached during execution.

For a path X from cutpoint i to cutpoint j, we define Rx(x,y) as the con-

d i t i o n f o r t h e p a t h X to be t r a v e r s e d , and r X (x , y) as t he t r a n s f o r m a t i o n i n t he

values which occurs on path X. A set S of cutpoints of a program P is said

to be complete if for each cutpoint i in S all the cutpoints on any path from

START to i are also in S.

We now state a sufficient condition (proven in Manna [1969]) for showing that

assertions at a complete set of cutpoints are actually invariants.

Lemma A. Let S be a complete set of cutpoints of a program P. Assertions

{qi(x,y)] i 6 S} will be a set of invariants for P w.r.t. ~ if

(a) For every path l from th e START statement to a cutpoint j (which does not

contain any other cutpoint)

Vx[,(~) ^ Rx(~) = qj (~ ,rx(~))] ,

and [b) For eve ry p a t h X from a c u t p 0 i n t i t o a c u t p o i n t j (which does no t

c o n t a i n any_ o t h e r c u t p o i n t)

V l V y [q i (i , y) ^ RX(i ,y) = qj (i , r x (i , Y))] ,

As n o t e d i n t h e I n t r o d u c t i o n , i n v a r i a n t s can e i t h e r be p r o v i d e d by t h e u s e r , or be

g e n e r a t e d d i r e c t l y from t h e program. Among t h e main methods f o r t h i s g e n e r a t i o n a r e

t h e s o l u t i o n of d i f f e r e n c e e q u a t i o n s which e x p r e s s t he change i n t h e v a r i a b l e s f o r

one pa s s a round i n n e r l oops . These can be o b t a i n e d from t h e p a t h f u n c t i o n s r x [X , y) .

Ano the r t e c h n i q u e i s to examine what was e s t a b l i s h e d by t h e t e s t s made as t h e p a t h s

are followed, This is in the path condition Rx(x,~). By their construction, the

results of these techniques must be invariants~ and they are therefore termed

~algorithmic~ methods,

Another approach seeks to "guess" invariants by usingheuristics to identify likely

or desireable candidates. These could be based on the desired specification, on exist-

ing invariants, or on various indications in the program~ Any candidates so generated

must be checked u s i n g t h e above Lemma.

The f i n a l r e s u l t o f t h e above p r o c e s s e s s h o u l d be c o n j u n c t i o n s o f i n v a r i a n t s a t each

cutpoint (and including the output specifications at the HALT-points) which satisfy

the Lemma. The detailed justification of the use of these invariants to prove partial

291

correctness, termination, or incorrectness is beyond the scope of this paper. A

deeper look into the invariant-generating techniques, and proving properties of pro-

grams with invariants, can be found in, e.g., Elspas [1974], Katz & Manna [1973, 1976],

Wegbreit [1974].

In order to effectively use the invariants and the proof of a program for optimiza-

tion, we need to record the source of each invariant, i.e., precisely how (and which)

program statements and/or other invariants were used in its derivation and/or proof.

This can be done in a table which notes for each invariant (on the one hand) the

other invariants and the statements on the path(s) from previous cutpoints which are

used in its derivation or proof, as well as recording the specific technique used.

On the other hand, the uses of that invariant for proving other invariants must also

be noted. The invariants can either be organized in separate tables for each cut-

point, or one large table where each invariant is also associated with the cutpoint

at which it is true. By convention, the order of the statements on the path is indi-

cated by their order from left to right in the table.

For simple programs with only one or two loops, the table may be represented picto-

rially as a directed acyclic graph having the immediate sources as the fathers of

each invariant. At the bottom of the graph is the specification, proven from the

invariants. Since we talk about the 'ancestors' and 'sons', using terminologyimilar

to trees, we call this graphic representation an invariant tree.

In the continuation, for clarity we refer to various operations on this tree, but

it should be clear that the tabular representation is the one which actually would be

used in an implementation. Once the program has been proven correct and the tree has

been generated, the invariants used in the correctness proof are marked. The basic

optimization procedure will then be to 'cut' the tree at invariants which we will

decide are essential, and try to compute these invariants - or other invariants with

an equivalent effect in a more efficient way. Then any ancestor statement not

used in either the new derivation, or in the derivation of another invariant, can be

removed from both the tree and the program. The precise methods used to obtain the

invariant in a new way are described in the following section.

This cutting of the tree will in effect define a level of optimization. The nearer

the cut is to the leaves of the tree (i.e., to the program statements) the more local

the optimization, while the nearer the cut is to the roots of the tree (i.e., the

vital invariants for proving the specification), the more global the optimization.

It is usually best to directly find the invariants closest to the roots for which we

can optimize.

Before describing the optimizations considered, a simple example is given to demons-

trate the table, the tree representation, and the levels. For the moment, the full

justification of the optimizations performed is not given.

292

Example i. From the Fortran statements (obviously a segment of a program)

K = 0

DO 3 I = i,i000

3 K = L+I+I+K

PRINT K

we might obtain the intermediate segment shown in Figure IA. In Figure IB, we show the

invariant tree at A for this segment (in solid lines), generated by using only algo-

rithmic techniques.

For this tree, no other cutpoints inside the loop except A are used. The dotted

lines indicate the invariant tree at C after the loop. In Figure IC, the table

representation is given if two cutpoints were chosen inside the loop, one after the

assignment to T~ and one at A, before the test. In this case the tree would be

harder to draw, but conceptually there is no change. The numbers to the left of the

statements and invariants are identifiers which clearly would be replaced by pointers.

In the remainder of this example, the tree of Figure IB is used. By 'cutting I

this tree at various levels we obtain differing strengths of optimizations. Considering

the line denoted in Figure IB as Level I, we would like to compute the invariant at A,

S=L+I+I, in a different way. This can be done trivially by inserting S + L+I+I,

just before A. All the statements above the invariant which are not used in other

invariants may now be removed (in this example T ÷ L+I and S ÷ T+I).

r - i-- -!
~ n÷n+ll

.F

I K+0 I
I÷i

!'- "-~- I
Ln÷0~

I T+. L+I]

S + T+I [
] K + S+K

~ure IA.

Simple intermediate
program.

293

I = i000) T + L+I

1 L~ L(0)

T = L+I

'

L ev

r
/

/

/

I I

t n = 999 I

h
\
\

h
K

K

I÷l K÷0

I n
S = T+I I = n+l K = [S(i)

Level 3

T=T(O) J i/ i=O

S = L+I+I //i / / /

S = L + 2 + n ~

n
K = [L+2+i

i=0

\
\

\
\

\

\
\

\ /
/ \ /

f \ /

K = (L+2).(IO00) + (999.1000)/2
I
I

I
I
I

K = I000"L+501500

n

K = (L+2).(n+l) + [i
i=0

n(n+l)
K = (L+2)- (n+l) + 2

Figure IB The invariant tree at A and at C.

+D PU~ ~'¥ S~uTod2no zo~ olq~ o~ "DI ozn~T5

,--.t

I

~ lg3

I :r --->I ++ + ~- I
I ?I+~+ +~ !

= + ;=+

o

+I I LJ L_J ILl L_J L,L_u

2.__ r

II II II

+

tD
tD
tD

g

N)

I+ II II II II II II

II

+

+

+

II

o

<

II

+

II |I I+ II

+

Q

H+

G

295

If level 2 is instead considered, we would like to compute S=L+n+2 differently.

However, since this invariant implies that S is linear in the counter n, and L

is unchanged in the loop, this could be achieved by initializing S to L+2 before

entering the loop, and then increasing S by 1 at each iteration, just as n is

increased. Most of the old statements above the invariant S=L+n+2 can then be

removed. The resulting program is shown in Figure I.D, and the new invariant tree

in Figure IE.

Finally, if we optimize at level 3, we see that K = I000 " L + 501500 is obtained

by the simple assignment statement K + i000 • L + 501500, and that the entire loop

is then extraneous. This assignment could lead to overflow, and involves one multi-

plication. However, the overflow would occur anyway in the original loop if it would

occur here, and one multiplication seems better than a few thousand additions and

i000 tests.

Note that in this example the various levels of optimization could either have

been treated consecutively or independently, and that it is most worthwhile to start

at level 3, since then the other levels need not be considered at all.

! - - F

3
L n ÷ n + l

I I + I+l 1
S ÷ S+I

t,

K÷O
S ÷ L+2
I÷l

F -{ --I
I n÷O I
L I

(!:1oo 9

Figure ID. Program after Level 2 optimization

296

I = !000
S + L+2

S +S+I

,//
S = L + 2 + n

/

! n = 999

I+I K+0

I ÷ I+i

I = n+l
/

/ d
/

i n
// K= X sci)

i±O

nj
/ K = ~ L,2+i

/ i=0

/
/

n

K = (L + 2) (n+ii +

i=o

\
-N K = (L~2)(n+l) + - -

" x

K = (L + 2) (1 0 0 0) + 9 9 9 . 1 0 0 0 / 2

n(n+i)
2

K = IO00'L+ 501500

Figure IE. Invariant tree after level 2 optimization

297

3. TYPICAL OPTIMIZATIONS USING INVARINNTS

Most of this section demonstrates that several well-known optimizations used in

compilers can be easily applied using the information already in the invariants,

rather then the various information-gathering algorithms generally employed, At

the end of the section optimizations stronger than those possible in standard com-

pilers are described. Note that the optimizations described are not language-

dependent.

The basic tool for improving programs using the invariant tree will Be eliminating

redundant or ,dead I (unused) statements. Simply~ any statement not an ancestor of

any marked invariant in the invariant tree can immediately be removed from both the

tree and the program, since it has no~ effect on the correctness of the program.

Of course, in a program written with any care at all~ there should not be any such

extraneous statements in the original tree, However, after a cut has been mad% and

new statements inserted as the ancestors of an invariant (using the following optimi-

zations), the old immediate ancestors are no longer needed for that invariant, and the

relevant links are removed from the tree. If the statements which were ancestors are

thereby no longer needed for any invariant involved in the correctness proof, (i.e,,

are "dead"), they can be removed. Since statements will only be removed when they

become "dead"~ we have a double-check on the legality of other optimizations (which

may seem to preserve correctness, but in unusual situations might not), In the con~

tinuation this tool will be called the elimination criterion,

Note that a regular optimizer will often eliminate statements which have become

syntactically dead (e.g.~ they cannot be roached in any way), Here statements can

be removed which are logically redundant or because of logical relations will not be

reached, even if syntactically they appear to be necessary,

The optimizations described below will all use an identical replacement procedure,

~ey all discover potential optimizations to compute~ say~ a yariable y in a new

way based on an invariant p ~involving v) which is true at the cutpoint of the

loop in question,

Then the new generated statements are inserted in the tree as p~s ancestors, and

the old fathers are disconnnected from p. If the elimination criterion can then be

used to remove the old ancestor statements, the particular optimization is complete.

If not, some of the ancestor statements are still needed for another invariant, say q,

involved in the correctness proof, In this cas% we try to derive q in a new way,

based on p and/or other invariants~ perhaps adding new statements, so that the old

ancestors of p are not used, If this cannot be done~ we must insert a new variable

name, say t, in place of v in the original ancestor statements of p, and also

replace v by t in q (and the other remaining derived invariants). Generally, the

old statements can be in themselves optimized.

Intuitively, the relatively rare cases where a new variable is added occur when a

298

variable fulfills two or more roles in the loop (e.g., is similar to a counter at

one point in the loop, but is a constant at another point in the loop). In fact,

it is generally good programming practice to delegate the roles of a variable to

different variables, which can then be optimized separately.

Now some optimizations which lend themselves to the procedure described are examin-

ed in more detail. The common compiler optimizations described below loosely follow

Allen [1969].

(a) Constant propagation involves replacing a variable by its constant value, and per-

forming at compile time operations with constants. This optimization arises naturally

from the invariant tree, since such substitutions occur during the search for simpler

invariants, Consider an expression in an invariant with a constant c which was de-

rived by using an invaria~t v=c. The expression can usually be derived directly by

substituting the constant c for the variable v in the other invariants or state-

ments used to derive the expression. Then the modified invariants can be "pushed"

back up the tree, until the relevant ancestor statements have been modified. The link

from v=c is then removed, and the elimination criterion may be relevant. Similarly,

algebraic simplification is employed to replace by its value an expression involving

constants, and this too can be pushed back up to the relevant statement.

Example:

~ v + 5

i v ÷ v+2

d + v*k

v÷5

v+2 d ÷ [v*k

v = 7 d = v*k

1
Program segment and i n v a r i a n t t r e e a t A

A

i I \
v+7 v÷7

d ÷ 7*k d + 7*k

~ I - - - - - ' ~ d = 7*k
!

d = v*k |
1

Program segment and invariant tree at A after constant propagation.

If only d=7*k is used in the proof of correctness, d = v*k and v=7 are extraneous

invariants, and they and their ancestor v+7 may be removed.

299

This type of optimization can also be used for an invariant of the form v= if...

then c I else c 2 arising from branching tests around the loop. No matter which

statements are ori~inally used to compute ci, it can be obtained alternatively by

inserting v ÷ c. on the segment of the loop which is reached if the condition for
l

v to be equal to c i is true, and by using the replacement procedure with the old

ancestors.

(b) Moving statements outside of loops is probably one of the most benef ic ia l opt i -

mizations. We ca l l a variable v constant w . r . t , the. loop i f an invar iant v=v(O)

is true at the cutpoint of the loop, Recall that v(O) denotes the value of v the

f i r s t time the cutpoint is reached (and not necessarily the value at the entrance to

the loop). Thus v = v(O) is an invariant i f at the cutpoint, v is always equal

to i t s value the f i r s t time the cutpoint is reached. The change in v along the paths

from an entrance of the loop to the outpoint can be computed as the path functions of

that path. If this change is denoted as entr(v), we can add v ÷ entr(v) before

that entrance to the loop (or add nothing if the value is not changed between the en-

trance and the cutpoint). The replacement procedure will then be followed. Note

that if the old assignments to v cannot be removed, v must be renamed in them to

avoid interference with the new way of computing the invariant v=v(0).

Once such an invariant v=v(0) has been found, other appearances of v in invar-

iants can be inspected to discover expressions which are constant with respect to

the loop. For such an expression a new variable t can be defined, equal to the

expression, and since t=t(0), its calculation can be removed from the loop.

Example: If we have the segment

where v and w appear only as indicated and are used only at A, then v=v(0)

at A and, entr(v) is v+l. Moreover, w=S*v at A, i.e., w=S*v(0)=w(O). Thus

we may add v~v+l and w~5*v before the loop and remove the original statements

(again using the replacement procedure), obtaining

300

V÷V+ i

W+5*V

(c) Reduction in strength involves computing variables by using weaker operators

in place of stronger one, e.g., addition in place of multiplication~

The conditions for applying this optimization are particularly easy to identify

by using invariants. Any invariant which connects a variable linearly to the loop

counter, e.g., V=Cl-n+c2, can be computed by initializing to c 2 and then incrementing

v by Cl, i.e., inserting v÷v+c I to the loop (of course, the previous statements used

to compute v must be removed or changed using the replacement procedure). In Example I~

such an optimization was performed. More generally, if we have a difference equation

v = c o + __if then cl,n else c2.n then, as in constant propagation, we can

initialize to c and increment v by c on the segment reached if the i-th condition
o 1

(ial) is true.

Example :

I+l K ÷ 5-I J ÷ c+2-K L ÷ 8"J+2

I = n K = 5-I J = c+2.K L = 8-J+2

T - J=cl0"
~A
J

I = "n

P r o g r a m s e g m e n t and i n v a r i a n t t r e e a t A

L ÷ 8. I+i K+5 +i0

I=n K=5.n J=c+10.n L=8.c+2+80,n F+ L+80
I J÷J+l° I
i K+~+s | A

Program segment and invariant tree at A after reduction
in strength.

301

Clearly, if, for example,only the invariant involving L were needed in'~he proof,

the invariants and statements with I,K,and J would be removed.

Other reductions in strength, such as multiplication in place of raising to a power,

are also easy to identify, and thus it does not cost much to check for even these more

unusual cases (which are sometimes ignored in compilers). For example, an invariant
n

V=Cl-C 2 , for Cl, c 2 constants w.r.t, the loop, can be computed by initializing to

v÷c I and inserting v÷c2.v in the loop, in place of any other computations of v.

(d) Replacing test statements by equivalenttests which use different variables is a

common optimization. In this way, we can sometimes remove computations used only to

allow making the original tests. In order to do this, we can inspect whether the in-

variants from the test, and the invariant which becomes true upon exit from the block,

could be obtained by testing other variables. In particular, if an invariant involving

a variable linear in the counter is used only to allow a test of the counter, there may

be other variables also linear in the counter, which could be used instead.

Example l (continued)

From the invariant tree of Figure IE it is clear that the test I=1000 and the in-

variant I=n+l mean that we are testing whether n=999, Since after doing Level 2

optimization, I=n+l is used enl~ in this test, we check whether another variable could

be used instead, and see that S=L÷2+n. Thus n=999 is equivalent to S-(L+2)=999,

i.e. to S=L+I001. We may test S=L+I001, and remove the iteration of I, which is now

u n n e c e s s a r y (see F igu re IF) .

S ince L=L(O), L+IO01 can be i d e n t i f i e d as a c o n s t a n t e x p r e s s i o n , u s i n g o p t i m i z a t i o n

(b), and be replaced by t, with an invariant t=L+1001 at A and at C, having as its

ancestor the assignment t÷L+1001 before the loop.

(e) Common subexpression elimination involves introducing new temporary variables which

are equal in value to subexpressions which appear in several statements (or several

times in one statement). In our framework, common subexpressions in invariants are

eliminated oven if the statements used to derive the invariants including the common

subexpression do not look similar. Using the invariants at the cutpoints also avoids

the problem of a special algorithm to guarantee that statements which appear to have

identical subexpressions, actually do not (because some of the variables involved were

changed between the statements containing the subexpressions). The information from

pattern matching which identifies common subexpressions would be available from the

invariant-generating process, since during that process an attempt is made to combine

algebraically invariants into new invariants by eliminating such expressions.

The temporary variable is computed before the point where the subexpression is first

used, and replaces all uses of the subexpression. The computation of the temporary

variable can then sometimes be further optimized using (a) - (d).

302

~=L+IO01 ~ S ÷ L+2 K 0

I S+I S+K
i

| ii
l S =~+2+n K = ~ S(i)

I / / ~ / i=O

I / /

r--~-~ K = ~ L+2+i
' n=999 ~ i=O

J
K = (L+2)-(n+l) + n,(n+l)

2

K= (h+2) . (lO00) + 999 .1000/2

N = 1000.L+501500

i

I K+O i
i S+L+2

J

F ,~ L+IO01

T

II

3

Figure IF, The invariant tree and program after test replacement

303

Example:

I i
I I
i I

C÷B

~ A~-J

A=B.J+I

D+K" B'J+M

I
D=K'B'J+M

t I + B'J

A÷tl+I

D~K-tI+M

i A

Program segment and invariant tree at A before
subexpression elimination

t I ÷ B.J

I
t 1 = Boj

A ÷ t l @ ~ K°tl+M

A=B'J+I D=K'B'J+M

Program segment and invariant tree at A after
eliminating B.J

So far we have discussed how some well-known compiler optimization techniques can be

applied by using invariants. However, it is sometimes possible to perform optimizations

which are impossible unless the program specification and its proof are available. This

occurs in three situations :

(i) The output specification is "loose" i.e. could be satisfied by many values.

The original (correct) program will compute one of these values. However, it may be

possible to compute another of these acceptable values more efficiently. The danger of

such optimizations is, of course, that the programmer really wanted the value computed

by the original program, but gave too vague a specification. Thus this class of optimi-

zations should only be done under some sort of 'approval' from the user. Such situa-

tions can arise in numerical algorithms where the result need only be within some spe-

cified range (say, within g of an actual root), or in a sorting algorithm, where the

final order of equally valued elements is unimportant.

(2) An essential invariant q at some level is recognized as being too strong for

the output specification. That is, a weaker (more general) invariant q' of the same

form as the original q suffices to establish the needed invariants at a lower level.

The weaker q' can then be substituted for q, and the ancestors modified accordingly.

304

As an extreme example if y = (r+z)/2 A r<z are invariants, but only r ~ y < z

is really needed to prove correctness, then any more convenient relation which ful-

fills the needed inequalities could be used in place of the invariants. One possible

such invariant, r = y A r<z, would probably significantly simplify the ancestor

statements. Although these optimizations could theoretically involve radically

changing the algorithm, only relatively obvious cases could probably be recognized

automatically.

(3) The input specification is 'tight', i.e., a general algorithm is used with

inputs guaranteed to fulfill additional properties to those really required by the

algorithm. This is a common situation, and often allows optimizations. For example,

a program for matrix manipulation might have special tests and treatment for empty

matrices, or matrices of one element, while if the input specification guarantees that

m~2 and ha2 for an mxn matrix, the special sections and the tests can be removed.

In general, such optimizations will be done automatically using the elimination cri-

terion, since the statements will be seen to be unnecessary to prove the essential

invariants, and will be removed.

Example 2. In this example a simple nested-loop program is considered. More than

one cutpoint is usually required in order to prove correctness of programs with

nested loops. In effect, at each cutpoint an entire table of invariants is built up,

with interconnections among the entries in each table.

In this situation optimization should be done first on innermost blocks considered

as separate entities. Only then should the resultant outer loops be treated. It is

often convenient to add cutpoints at the entrances and exits of inner blocks, in order

to 'isolate' the block from the remainder of the outer loop.

The program in Figure 2A is an intermediate version with the invariant table of the

Pascal program

begin for i:=l to n do

begi n sum:=0;

for j :=i to

b [i] : =sum

end

i do sum:=sum+a[j] ;

end

The input specification is hal ̂ n6{integers} and a

integers. The program is intended to compute in b the

i
Vi(l s i ~ n D b[i] = [a[j])

j=l

The optimization demonstrated on this program illustrates the importance of which

proof is used to show correctness. Moving from one proof to another is one of the

more difficult tasks which we would like an optimizer based oninvariants to attempt.

and b are vectors of

'partial sums' of a, i.e.,

305

St .nO.

EJl]

I
9

Sources

~ g i0 n_>l

• Ii sum=O 2

• 12 i~l i; 22,9

• 13 i~n 10,1;8,9

• 14 j=l Z 3

• 15 v g (i s Z s i - i = b [Z] = ~, a [k]) 1;26,9

k=l

• 16 jsi 12,14;5,6

• 17 iZl 12

• 18 i~n 13

• 19 sum = i a[k] 11,14,4;6,4
k=l

• 20 VZ(l~Z~i- lmb[Z]= ~ a [k]) 15
k=l

21 j= i 16,5

22 ~ 1 17

• 23 i-<n 18

i
24 " - - =~la[k] 19,21,7 b [i] -sum- k

25 (i = l A b [1] = a [1]) v (b [i] = b [i - 1] + a [i]) 22,24;20,24

26 Vl(l<g_<imb[g]= X a[k]) 20,24
k=l

Ii 27 i=n .% 23

28 V£(l<£<n'~b[£] = X a[k]) 26,27
k=l

Uses

13

19

16,17

18

16,19

20

21

22

23

24

26

24

12,25

27

25,26

28

28

Figure 2A. P a r t i a l sums program and i n v a r i a n t t a b l e .

306

The invariants listed in Figure 2A are not particularly difficult to generate.

The ones used in the original proof are marked with a black dot next to the number

identifying the invariant, and can be obtained either by 'pulling backwards' the

desired output specification, or by analyzing the difference equations of the inner,

and then, the outer loops.

Note that the invariant b[i] = b[i-l] + a[i], which~re or less 'falls out'

of an analysis of the difference equations of the outer loop, is not used. If,

however, we substituted the sources 20 and 25 in the proof of invariant 26,

(instead of 20 and 24 directly) we would have

VZ(I -< ~ -< i-i = b[Z] = [~[k])^ ((i=l^b[l]=a[l]) v (b[i] =b[i-l] + a[i])) m
k=l

i %
b[i] = I a[k] ^V~(I <- ~ <- i=b[%] = I a[k]].

k=l k=l

This alternative proof still works for the program as it is, and it allows optimi-

zation. Simply enough, (i = iAb[l] =a[l]) v (b[i] =b[i-l] + a[i]) can be achieved

(much as in reduction in strength) by initializing b[l] to a[l], and then iterating

by

b[i] + b[i-l] + a[i]

All the previous ancestors could then be removed.

need the inner loop at all, and is shown, with its proof, in Figure 2B.

[b!i1+bCi:l +aEi{]

• 6 nel

The resulting program does not

Sources

7 Isi 1;4

6,1;3,4

1;11,4

1,2;5

9~i0

2B.

8 i_<n

9 VZ(l~_<i-l=b[Z]-- ~ a[~])
k=l

i0 (i=iAb [i] =@ [i]) V (b [i] :b [i-i]+a [i]

ii V~(l-<%-<i=b[%] = [a[k])
k=l

12 i=n 8,3

13 ~%(i~n~b[~]= ~ a[k]) 11,12
k~l

Optimized partial sums program with invariant table.

Uses

8

12

ii

9,13

13

307

4. CONCLUSION

The present paper attempts to IL~k two worlds: on the one hand, program verification

and proofs of equivalence between programs, and on the other hand, practical conside-

rations of optimizing compilers.

In the context of program verification, Gerhart [1975] has expounded the idea of

proving systematically that various transformations preserve correctness. Other work

in this area has been largely devoted to converting recursive programs to more efficient

iterative ones (see Darlington and Burstall [1973], Burstall and Darlington [1975],

Knuth [1974]). Thses works do not primarily use the existing proof and invariants to

determine the form the transformation will take. That is, the analysis of the program

in order to decide whether a cerZain optimization is applicable is done elsewhere,

and the invariants (or some other proof construct) are used only to check that the

transformation preserves correctness. The statements which are to be replaced, for

example, are not determined by the existing proof, as is done here.

It should be noted that, as is shown in Example 2, an alternative correctness proof

of a given program might have a different set of essential invariants, and therefore

lead to an different optimization. In some sense, the proof which leads to the greatest

gains in execution time will be the most elegant, because the minimum needed information

is used at each stage, and extraneous computation is thereby clearly identified. Even

a less than optimal proof should at least allow the optimizations done in standard

compilers.

The technique presented here can also be modified to provide formal justification

of general transformations by proving that any invariants at cutpoints of a given

schema will be preserved in another given schema, if the invariants and statements

satisfy the conditions for applying the transformation.

In the context of the 'real' world, the natural question which arises is:

"what is gained by basing optimization on invariants,when compilers h ave been optimizing

for years without generating any invariants? ')

A few answers to this question are:

i. Invariants systematize the established techniques because the correctness

criterion is clear. "Overzealous" optimizations, which can introduce errors, for

example, by moving code out of its context~ are easier to avoid since we know exactly

what must be maintained, and are able to always check whether we are really maintaining

it.

As noted by Allen and Cocke [1972],the assurances that a giventransformationdoes not

disturb the correctness of the original program are presently built into the algorithm

implementing the transformation, and are an ad hoc collection of considerations.

Implementors of optimizations have occasionally overlooked problematic situations, and

'illegal' optimizations have resulted.

308

2. Even when it is clear which transformations are legal, information must be

gathered from the program in order to ascertain whether the conditions exist which

allow applying a transformation. For example, certain transformations require

identifying the "induction variables'i, i.e., those variables incremented by a cons-

tant value at each iteration. It is also valuable to discover variables which are

constant (unchanged) in a loop. There are separate algorithms to find each of these

and many other characteristics, and the algorithms are often guaranteed to find

only relatively obvious cases of whichever characteristic is being considered.

Using invariants can make the information-gathering process easier and more uniform.

3. Finally, as noted in the previous section, the availability of a correctness

proof and the organization based on invariants sometimes allows more radical optimi-

zations than are possible using 'blind' transformations. In particular, the opti-

mization can be tailor-made for the information revealed by the proof.

Of course, it should be recalled that in a logical analysis system the invariants

would be available anyway because of their other applications, and so the considerable

price of their generation would not be 'charged' to any possible optimizations.

To date, the optimization technique suggested here has not been implemented. It

is hoped (and planned) that this will be rectified as part of logical analysis systems

being developed. Until then, the technique is still applicable for hand changes to

programs, and as a justification of the transformations method.

309

REFERENCES:

Allen [1969]

Allen [1971]

Allen & Cocke
[1972]

Burstall &
Darlington

[1975]

Cheatham &
Wegbreit

[1972]

Darlington &
Burstall

[1973]

Elspas [1974]

Gerhart [1975]

Katz [1976]

Katz & Manna
[1973]

Katz & Manna
[1976]

Knuth [1974]

Manna [1969]

Wegbreit [1974]

Wirth [1973]

Allen F.E.: Progrmm Optimization, Annual Review in Automatic
Programming, Vol. 5, Permagon, Elmsford, N.Y., 1969.

Allen F.E.: A basis for program optimization. Prec. IFIP 1971,
Vol. I, Ljublijana, Yugoslavia (August 1971).

AIIen~F.E. and Cocke J.: A Catalogue of optimizing transfor-
mations in Design and Optimization of Compilers (R. Rustin, ed.),
Prentice Hall, 1972, pp.l-30.

Burstall R., and Darlington J.: Some transformations for
developing recursive programs. Prec. International Conference
on Reliable Software, Los Angeles, April 1975.

Cheatham, T.E. and Wegbreit B.: A laboratory for the study of
automating programming. Spring Joint Computer Conference, 1972,
pp. 11-20.

Burstall, R. and Darlington, J.: A system for the automatically
improves programs. Prec. 3rd Intl. Conf. on Artificial Intelligence.
Stanford, 1973, pp. 479-48S.

Elspas, B.: The semiautomatic generation of inductive assertions
for proving program correctness. Research report, SRI, M~mlo Park,
Calif. (July 1974).

Gerhart, S.: Correctness-Preserving program transformations,
Prec. 2nd ACM Symposium.on Principles of Programming Languages,
Pale Alto, January 1975, pp. 54-65.

Katz, S.: Logical analysis and invariants of programs, Ph.D. thesis
Weizms_nn Institute of Science, Rechovot, Israel, to appear, 1976

Katz, S. and Manna Z.: A Heuristic approach to program verifica-
tion. Prec. 3rd Intl. Conf. on Artificial Intelligence, Stanford,
1973, pp. S00-512.

Katz, S. and Manna Z.: Logical analysis of programs, CACM, to
appear, 1976

Knuth, D.: Structured Programming with G~T~ statements, ACM
Confuting Surveys, Vol. 6, No.4, December 1974.

Manna, Z.: The correctness of programs, J. Computer and System
Science, 3, 2, May 1969, pp. 119-127.

Wegbreit, B.: The synthesis of loop predicates. CACM 17, 2
(February 1974), pp. 102-112.

Wirth, N.: Systematic Programming, Prentice-Hall, 1973.

