
Program Optimizations and Transformations
in Calculation Form

Zhenjiang HU, Tetsuo YOKOYAMA, and Masato TAKEICHI

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo 113-8656, Tokyo, JAPAN
{hu,yokoyama }@ipl.t.u-tokyo.ac.jp

Abstract. The world of program optimization and transformation takes on a new
fascination when viewed through the lens of program calculation. Unlike the tra-
ditional fold/unfold approach to program transformation on arbitrary programs,
the calculational approach imposes restrictions on program structures, resulting in
some suitable calculational forms such as homomorphisms and mutumorphisms
that enjoy a collection of generic algebraic laws for program manipulation. In
this tutorial, we will explain the basic idea of program calculation, demonstrate
that many program optimizations and transformations, such as the optimization
technique known as loop fusion and the parallelization transformation, can be
concisely reformalized in calculational form, and show that program transforma-
tion in calculational forms is of higher modularity and more suitable for efficient
implementation.

Keywords: Program Transformation, Program Calculation, Program Optimiza-
tion, Meta Programming, Functional Programming

1 Introduction

There is a well-known Chinese proverb:魚和熊掌不可同時兼得 (one cannot have both
fishes and bear palms at the same time), implying that one can hardly obtain two trea-
sures simultaneously. The same thing happens in our programming: clarity is and is not
next to goodness. Clearly written programs have the desirable properties of being easier
to understand, show correct, and modify, but they can also be extremely inefficient. In
software engineering, one major design technique for achieving clarity ismodularity:
breaking a problem into independent components. But modularity can lead to ineffi-
ciency, because of the overhead of communication between components, and because
it may preclude potential optimizations across component boundaries.

However, it is possible to have both fishes and bear palmsat different times: we
start by writing clean and correct (but probably inefficient) programs, and then use
program calculationtechniques to transform them to more efficient equivalents. To see
this, consider the problem of summing up all bigger elements in an array. An element is
bigger if it is greater than the sum of the elements that follow it till the end of the array.
We may start with the following C program, which clearly solves the problem.

2 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

/* copy all bigger elements from A[1..n] into B[] */
count = 0;
for (i=0; i<n; i++) {

sumAfter = 0;
for (j=i+1; j<n; j++) {

sumAfter += A[j];
}
if (A[i] > sumAfter)

B[count++] = A[i];
}

/* compute the sum of all elements in B[] */
sumBiggers = 0;
for (i=0; i<count; i++) {

sumBiggers += B[i];
}
return sumBiggers;

This program, though being concise, is inefficient due to (1) some unnecessary repeated
computations ofsumAfter and (2) the use of additional arrayB[] passing from the
upper for-loop to the lower for-loop. We may expect that an automatic transformation
can produce the following efficient linear-time program.

sumBiggers = 0;
sumAfter = 0;
for (i=n-1; i>=0; i--) {

if (A[i] > sumAfter)
sumBiggers += A[i];

sumAfter += A[i];
}
return sumBiggers;

In this paper, rather than writing programs using C or Java, we use Haskell [Bir98], a
functional language. The special characteristics and advantages of functional program-
ming are two-fold. First, it is good for writing clear and modular programs because it
supports a powerful and elegant programming style. As Hughes [Hug85] pointed out,
functional programming offers important advantages for software development. Sec-
ond, it is good for performing transformation because of its nice mathematical proper-
ties.

We can express the above two C programs, inefficient and efficient, in Haskell,
where loops are represented by recursions.

sumBiggers= sum◦ biggers
where

biggers[] = []
biggers(a : x) = if a > sum x then a : biggersx else biggersx
sum[] = 0
sum(a : x) = a + sumx

Program Optimizations and Transformations in Calculation Form 3

sumBiggersx = let (b, c) = sumBiggers’x in a
where

sumBiggers’[] = (0, 0)
sumBiggers’(a : x) = let (b, c) = sumBiggers’x

in if a > c then (a + b, a + c) else (b, a + c)

One methodology that offers some scope for making the construction ofefficient
programs more mathematical istransformational programming[BD77,Fea87,Dar81].
Program calculationis a kind of program transformation based on the theory ofCon-
structive Algorithmics[Bir87,Bac89,MFP91,Fok92,Jeu93,BdM96]. It is a kind oftrans-
formational programmingthat derives an efficient program in a step-by-step way through
a series of ”transformations” that preserve the meaning and hence the correctness. A
significant practical problem in traditional transformational programming is that a very
large number of steps seem needed: the individual steps are too small, while in program
calculation, formalisms and theories are developed with which a whole series of small
steps can be combined into one single step at a higher level.

Program calculation proceeds by means of manipulation of programs based on a
rich collection of identities and transformation laws. It resembles the manipulation of
formulas as in high school algebra: a formulaF is broken up into its semantic relevant
constituents and the pieces are assembled together into a different but semantically
equivalent formulaF ′, thus yielding the equalityF = F ′. The following example
shows a calculation of the solution ofx for the equationx2 − c2 = 0.

x2 − c2 = 0
≡ { by identity:a2 − b2 = (a− b)(a + b) }

(x− c)(x + c) = 0
≡ { by law:ab = 0 ⇔ a = 0 or b = 0 }

x− c = 0 or x + c = 0
≡ { by law:a = b ⇔ a± d = b± d }

x = c or x = −c

Here we calculatex rather than guess orjust invent, based on some identities and laws
(rules). Particularly, we make use of the transformation law that a higher order equation
should be factored into several first order ones whose solution can be easily obtained.

In this tutorial, we will see thatprogram calculationprovides a powerful tool to con-
cisely formalize various kinds of program transformations and program optimizations
[HIT96,HITT97,HTC98,HIT99], besides its usefulness in guiding people to derive effi-
cient algorithms. We will explain the basic idea of program calculation from the practi-
cal point of view, demonstrate that a lot of program optimizations and transformations,
including the well-known loop fusion and parallelization, can be concisely reformalized
in calculational forms, and show that program transformation in calculational forms is
of higher modularity and more suitable for efficient implementation.

It is worth noting that all transformations in this tutorial have been tested with the
Yicho system [YHT04], a transformation system developed in the University of Tokyo.
We encourage the reader to play with the Yicho system when reading this material. The
Yicho system is available at the following site.

http://www.ipl.t.u-tokyo.ac.jp/yicho/

4 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

The rest of this tutorial is organized as follows. We start with a simple example
to illustrate the basic concepts of program calculation, and clarify its difference from
the traditional fold/unfold transformations in Section 2. Then, we demonstrate how to
formalize two nontrivial transformations, namely loop fusion and parallelization, in
calculational forms in Sections 3 and 4 respectively. And we show that program calcu-
lations can be efficiently implemented by the Yicho system, a combinator library with
deterministic higher-order patterns, in Section 5. Finally, we conclude the paper with
a summary of the advantages of formalizing program transformations in calculational
forms in Section 6.

2 Fold/unfold Transformations vs Program Calculation

In this section, we illustrate with a simple example the basic concepts of program cal-
culation, show the main idea of calculational approach to program transformation, and
clarify its difference from the traditional fold/unfold approach to program transforma-
tions and program optimizations.

2.1 Notational Conventions

First of all, we briefly review the notational conventions known as Bird-Meertens For-
malisms [Bir87]. The notations are similar to those in Haskell [Bir98].

Functions Programs are defined as functions. Functional application is denoted by a
space and the argument which may be written without brackets. Thusf a meansf (a).
Functions are curried, and application associates to the left. Thusf a b means(f a) b.
Functional application is regarded as more binding than any other operator, sof a ⊕ b
means(f a)⊕ b, but notf (a ⊕ b). Functional composition is denoted by a centralized
circle ◦. By definition,(f ◦ g) a = f (g a). Functional composition is an associative
operator, and the identity function is denoted byid.

Lambda expressions are sometimes used to define a function without giving its
name. Soλx. e denotes a function, accepting an inputx, computinge, and returning
its value as result. For example,λx.2 ∗ x simply denotes a function doubling the input.

Infix binary operators will often be denoted by⊕,⊗ and can besectioned; an infix
binary operator like⊕ can be turned into unary functions as follows.

(a⊕) b = a⊕ b = (⊕ b) a

Lists Lists are finite sequences of values of the same type. The type of thecons lists
with elements of typea is defined as follows.

data [a] = [] | a : [a]

A list is either empty or a list constructed by inserting a new element to a list. We write
[] for the empty list,[a] for the singleton list with elementa (and [·] for the function

Program Optimizations and Transformations in Calculation Form 5

takinga to [a]), andx ++ y for the concatenation of two listsx andy. Concatenation is
associative, and[] is its unit. For example, the term[1] ++ [2] ++ [3] denotes a list with
three elements, often abbreviated to[1, 2, 3]. As seen above, we usually usea, b, c to
denote list elements, andx, y, z to denote lists.

Recursive Functions Functions may be defined recursively. The following are two
recursive functions for sorting a list.

sort [] = []
sort (a : x) = inserta (sortx)
inserta [] = [a]
inserta (b : x) = if a ≥ b then a : insertb x

else b : inserta x

Heresort is recursively called in its definition body, and so doesinsert.

Higher order Functions Higher order functions are functions which can take other
functions as arguments, and may also return functions as results. A simple but useful
higher order function ismap, which applies a function to each element of a list. For
instance, we may writemap(1+) to increase each element of a list by1.

map(1+) [1, 2, 3, 4, 5] = [2, 3, 4, 5, 6]

2.2 Fold/Unfold Approach to Program Transformation

Before explaining the calculational approach [Bir87,Mal90,MFP91,BdM96] to pro-
gram transformation, the topic of this tutorial, let us take a look at the traditional un-
fold/fold approach [BD77,Fea87,Dar81,PP96] and explain its problems.

To be concrete, consider the problem of finding a maximum in a list. Suppose that
we already havesort (as defined above) in hand. Then, a direct solution is to sort the
input and to return the first element:

maxx = hd (sortx)

wherehd is a function to return the first element from a list if the list is not empty, and
to return−∞ otherwise:

hd [] = −∞
hd (a : x) = a.

This solution is obviously inefficient; it is a quadratic algorithm.
Let us demonstrate how to apply the fold/unfold transformations to obtain a new

efficient recursive definition formax. For the base case (a singleton list), we unfold the

6 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

definition step by step.
max[]

= { unfoldmax}
hd (sort [])

= { unfoldsort}
hd []

= { unfoldhd}
−∞

And we getmax[a] = a. Then for the recursive case, we do unfolding similarly.

max(a : x)
= { unfoldmax}

hd (sort (a : x))
= { unfoldsort}

hd (inserta (sort x))

We get stuck here; we cannot perform folding to get a recursive definition unless more
information is exposed. To expose more information, we unfoldinsert, by assuming
b : x′ = sortx, that is

b = hd (sortx)
x′ = tail (sortx)

and continue our transformation.

hd (inserta (b : x′))
= { unfold insert}

hd (if a ≥ b then a : insertb x′ else b : inserta x′)
= { law: f (if b then e1 else e2) = if b then f e1 else f e2 }

if a ≥ b then hd (a : insertb x′) else hd (b : inserta x′)
= { unfoldhd}

if a ≥ b then a else b
= { unfold b }

if a ≥ hd (sortx) then a else hd (sortx)
= { fold max}

if a ≥ maxx then a else maxx

The last folding step is the key to the success of the derivation of the following efficient
program.

max[] = −∞
max(a : x) = if a ≥ maxx then a else maxx

The fold/unfold approach to program transformation is general and powerful, but it
suffers from several problems which often prevent it from being used in practice.

– It is difficult to decide when unfolding steps should stop while guaranteeing expo-
sition of enough information for later folding steps.

– It is expensive to implement, because it requires keeping records of all possible
folding patterns and have them checked upon any new subexpressions produced
during transformation.

Program Optimizations and Transformations in Calculation Form 7

– Each transformation step is very small, but an effective way is lacking to group
and/or structure them into bigger steps.

2.3 Program Transformations in Calculational Form

A distinguished feature of the calculational approach to program transformation isno
use of folding during transformation, which solves the first two problems the fold/unfold
approach has, and the challenge is how to formalize necessary folding steps by means
of calculation laws (rules). Transformations that are based on a set of calculation laws
but exclude the use of folding steps will be calledtransformation in calculation form
in this paper. The calculational approach to program transformation advocates more
structuredprogramming, where the inner structure of a loop (recursion) is taken into
account.

Procedure to Formalize Transformations in Calculational Form

The procedure to formalize a program transformation in calculational form consists of
the following three major steps.

1. Define a specific form of programs that are best suitable for the transformation and
can be used to describe a class of interesting computations.

2. Develop calculational rules (laws) for implementing the transformation on pro-
grams in the specific form.

3. Show how to turn more general programs into those in the specific form and how
to apply the newly developed calculational rules systematically.

The first step plays a very important role in this formalization. The specific form de-
fined in the first step should meet two requirements. First, it should be powerful enough
to describe computations of our interest. Second, it should be manipulable and suit-
able for later development of calculational laws. In fact, theConstructive Algorithmics
theory [Bir87,Mal90,MFP91,Fok92] provides us a nice theoretical framework to define
such specific forms and to develop calculational rules.

In Constructive Algorithmics, the calculations are based on calculation rules that
are built upon the algebra of programs, a collection of identities. These identities can
be provided by exploiting the algebraic structure of the algebraic data concerned, such
as lists or trees. In particular, there is a close correspondence between data structures
(terms in an algebra) and control structures (homomorphisms mapping from that alge-
bra to another). This correspondence is well captured by categorical functors, which are
very theoretical and fall outside the scope of this tutorial.

Homomorphisms: General Structured Recursive Functions

Recall the structured programming methodology for imperative language, where the
use of arbitrary goto’s is abandoned in favor of structured control flow primitives such

8 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

as conditionals and while-loop so that program transformation becomes easier and el-
egant. For high level algorithmic programming like functional programming, recursive
definitions provide a powerful control mechanism for specifying programs. Consider
the following recursive definition on lists:

f (a : x) = · · · f x · · · f (g x) · · · f (f x) · · ·
There is usually no specific restriction on the right hand side; it can be any expression
where recursive calls tof may be of any form and appear anywhere. This somehow
resembles the arbitrary use of goto’s in imperative programs, which makes recursive
definitions hard to manipulate. In contrast, the calculational approach imposes suitable
restrictions on the right hand side resulting in a suitable calculation form. Homomor-
phisms are one of the most general and important calculational forms.

Homomorphisms are functions that manipulate algebraic data structures such as
lists and trees. They are derivable from the concerned structure of the algebraic data.
Recall the list data structure[α]. It can be considered as the algebra of

([α], [] :: [α], (:) :: a → [α] → [α])

in which the carrier[α] denotes all lists whose elements are of typeα, and two opera-
tions, namely[] with type[α] and(:) with typea → [α] → [α], are the data constructors
for building up lists. An important recursive form known as list homomorphismhoml,
capturing a basic recursive form of recursive functions over lists, maps from this algebra
to another similar one, say(R, e :: R, (⊕) :: a → R → R), and is defined by

homl :: [α] → R
homl [] = e
homl (a : x) = a⊕ homl x.

In essence,homl is a relabeling: it replaces every occurrence of[] with e and every
occurrence of : with⊕ in the cons list. Since such a list homomorphism is uniquely
determined bye and⊕, we usually describe it by

homl = ([e,⊕])l

and when it is clear from the context, we may omit the subscriptl.
List homomorphisms are important in defining functions to manipulate lists. The

following lists several useful functions:sumsums up all elements of a list,prod mul-
tiples all elements of a list,maxlist returns the maximum element of a list,reverse
reverses a list,inits computes all initial prefix lists of a list, andmapf applies function
f to every element of a list.

sum = ([0,+])
prod = ([1,×])
maxlist= ([−∞, ↑]) where a ↑ r = if a ≥ r then a else r
reverse= ([[],⊕]) where a⊕ r = r ++ [a]
inits = ([[[]],⊕]) where a⊕ r = [] : map(a :) r
mapf = ([[],⊕]) where a⊕ r = f a : r

Program Optimizations and Transformations in Calculation Form 9

For a complicated computation on lists, it may be difficult to define it by a single
homomorphism, but it should be easy to define it by composition of simpler homomor-
phisms. For example, the following gives a clear program for computing the maximum
sum of all initial segments of a list:

mis= maxlist ◦ (map sum) ◦ inits

which is defined by composition of several list homomorphisms.
Similar studies can be addressed on trees or other algebraic data structures. In this

tutorial, we shall focus ourselves on lists.

Promotion Rule

Homomorphisms enjoy many calculation properties. Among them, the following pro-
motion rule is of great importance, saying that a composition of a function with a ho-
momorphism can be merged into a single homomorphism under a certain condition.

promotion:
f (a⊕ x) = a⊗ f x

f ◦ ([e,⊕]) = ([f e,⊗])

If functions are defined only by homomorphisms rather than by arbitrary recursive
definitions, we can use the promotion rule to manipulate them. Recall the example of
computing the maximum from a list early this section:

max= hd◦ sort

Inefficiency of this program lies in thatsortx computes a result that contains too much
useless information for the later computation byhd. The standard way is to fuse the two
functionshdandsort into a single one which does not include unnecessary computation.
Fusion based on the fold/unfold transformations has been explained before. Let us see
how to calculate an efficientmaxwith the promotion calculation rule. Notice thatsort =
([[], insert]). The promotion rule tells us that if we can derive⊗ such that

∀a, x. hd (inserta x) = a⊗ hdx

then we can transformhd◦sort to ([−∞,⊗]). This⊗may be obtained via a higher order
matching algorithm [dMS01]. Here, we show another concise calculation.

a⊗ b = { let x be any list}
a⊗ hd (b : x)

= { the condition in the promotion rule}
hd (inserta (b : x))

= { definition of insert}
hd (if a ≥ b then a : insertb x else b : inserta x)

= { if property}
if a ≥ b then hd (a : insertb x) else hd (b : inserta x)

= { definition ofhd}
if a ≥ b then a else b

10 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

In summary, we have derived the following definition formax.

max= ([−∞,⊗])
where a⊗ b = if a ≥ b then a else b

And it is equivalent to

max[] = −∞
max(a : x) = if a ≥ maxx then a else maxx

which is the same as the result obtained by the fold/unfold program transformation
before. It is worth noting that the transformation here does not need any folding step,
rather we focus on deriving a new operator from the condition of the promotion rule.

3 Loop Fusion in Calculation Form

In this section, we demonstrate how to formalizeloop fusionin calculation-Al form.
Loop fusion, a well-known optimization technique in compiler construction [ASU86],
is to fuse some adjacent loops into one loop to reduce loop overhead and improve
run-time performance. In the introduction, we have seen an inefficient program for
sumBiggerswhich consists of three loops, and an equivalent efficient one which uses
only a single loop.

In our framework, loop is specified by recursive definitions. There are basically
three cases for two adjacent loops: (1) one loop is put after another and the result com-
puted by the first is used by the second; (2) one loop is put after another and the result
computed by the first is not used by the second; and (3) one loop is used inside another.
The second case is much simpler. We have seen the first and the third cases in the defi-
nition of sumBiggersin the introduction. Recall the following definition ofsumBiggers:

sumBiggers = sum◦ biggers
biggers[] = []
biggers(a : x) = if a ≥ sumx then a : biggersx else biggersx
sum[] = []
sum(a : x) = a + sumx

The use of one loop after another is specified by a composition of two recursive func-
tions (sum◦ biggers), and a nested loop is specified by other function calls applying
to the same input data in the definition body (sumx appears in the definition body of
biggers).

We shall illustrate how to formalize the loop fusion in calculational form by the
three steps in Section 2.3.

3.1 Structured Recursive Form for Loop Fusion

Now we are facing the problem of choosing a proper structured form for recursive
functions. There are two basic requirements for this form. First, it should be powerful

Program Optimizations and Transformations in Calculation Form 11

enough to describe computation that manipulates list. Second, it should be suitable for
loop fusion, where the three cases of loop combination can be coped with. We would
like to show that list mutumorphism is a suitable form for this purpose.

Definition 1 ((List) Mutumorphism). A functionf1 is said to be a list mutumorphism
with respect to other functionsf2, . . . , fn if eachfi (i = 1, 2, . . . , n) is defined in the
following form:

fi [] = ei

fi (a : x) = a⊕i (f1 x, f2 x, . . . , fn x)
whereei (i = 1, 2, . . . , n) are given constants and⊕i (i = 1, 2, . . . , n) are given binary
functions. We representf1 as follows.

f1 = [[(e1, . . . , en), (⊕1, . . . ,⊕n)]]. ¤

List mutumorphisms have strong expressive power, covering all primitive recursive
functions on lists. It should be noted that list homomorphisms are a special case of list
mutumorphisms:

([e,⊕]) = [[(e), (⊕)]]

Recall thesumBiggers. We may redefinesumandbiggersin terms of mutumorphisms
(or homomorphism) as below.

sumBiggers= ([0,+]) ◦ [[([], 0), (⊕1,⊕2)]]
where a⊕1 (r, s) = if a ≥ s then a : r else r

a⊕2 (r, s) = a + s

3.2 Calculational Rules for Loop Fusion

After formalizing loops by mutumorphisms, we turn to develop calculation rules (laws)
for fusing such loops. We will consider the three cases for loop combination.

First, we consider merging nested loops. Mutumorphism itself is actually a nested
loop, as seen in the definition ofbiggers. We may flatten this kind of nested loops by
the following flattening calculation rule [HITT97].

Lemma 1 (Flattening).

[[(e1, e2, . . . , en), (⊕1,⊕2, . . . ,⊕n)]] = fst◦ ([(e1, e2, . . . , en),⊕])
where a⊕ r = (a⊕1 r, a⊕2 r, . . . , a⊕n r)

Here,fst is a projection function returning the first element of a tuple. ¤

The flattening calculation rule, as its name suggests, flattens a nested loop repre-
sented by a mutumorphism to a homomorphism. Consider, as an example, to apply the
flattening rule tobiggersto flatten the nested loop.

biggers
= { mutumorphism forbiggers}

[[([], 0), (⊕1,⊕2)]]
= { flattening rule}

fst◦ ([([], 0),⊕])
where a⊕ (r, s) = (if a ≥ s then a : r else r, a + s)

12 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

Inlining the homomorphism in the derived program gives the following readable recur-
sive program, which consists of a single loop.

biggersx = let (r, s) = homx in r
where hom[] = ([], 0)

hom(a : x) = let (r, s) = homx
in (if a ≥ s then a : r else r, a + s)

Second, we consider to merge two independent loops. Since mutumorphism can be
transformed into homomorphism, it is suffice to consider merging of two independent
homomorphisms that manipulate the same lists. This can be done by the following
tupling calculation rule [HITT97].

Lemma 2 (Tupling).

(([e1,⊕1]) x, ([e2,⊕2]) x) = ([(e1, e2),⊕]) x
where a⊕ (r1, r2) = (a⊕1 r1, a⊕2 r2) ¤

For example, the following program to compute the average of a list:

averagex = sumx/lengthx

which has two loops can be merged into a single loop by applying the tupling rule.

averagex = let (s, l) = tupx in s/l
where tup = ([(0, 0), λa (s, l). (a + s, 1 + l)])

Here, to save space we choose to use lambda expression to define the new binary oper-
ator, which acceptsa and(s, l), and returns(a + s, 1 + l).

Finally, we consider fusion of two loops where the result of one loop is used by the
other. When the loops are formalized as homomorphisms, we can use the promotion rule
in Section 2.3 for this fusion, as seen in the example of fusinghd◦ sort. The promotion
rule fuses functionf to a homomorphism from left:

f ◦ ([e,⊕])

and the following calculation rule [GLJ93,TM95] shows how to fuse a function to a
homomorphism from right.

Lemma 3 (Shortcut Fusion).

([e,⊕]) ◦ build g = g (e,⊕)

Here, the functionbuild is a list production function defined by1

build g = g ([], (:)). ¤
1 Strictly speaking, it requires parametricity on the type ofg.

Program Optimizations and Transformations in Calculation Form 13

The shortcut fusion rule indicates that if one can express a function inbuild, then
it can be cheaply fused into a homomorphism from its right. Compared with the pro-
motion rule, the shortcut fusion rule is much simpler and cheap to implement, because
it is just a simple expression substitution. On the other hand, it needs a preparation of
deriving a build form from a homomorphism. The following warm-up rule is for this
purpose.

Lemma 4 (Warm-up).

([e,⊕]) = build (λ(d,⊗). ([d,⊗]) ◦ ([e,⊕])) ¤

Note that the warm-up rule may introduce an additional loop, but this loop is usually
easier to be fused with others. Recall that we have obtained the following definition for
biggers.

biggers= fst◦ ([([], 0),⊕])
where a⊕ (r, s) = (if a ≥ s then a : r else r, a + s)

We can obtain the following build form:

biggers= build (λ(d,⊗). fst◦ ([(d, 0),⊕′]))
where a⊕′ (r, s) = (if a ≥ s then a⊗ r else r, a + s)

Now applying the shortcut fusion rule to

sumBiggers= ([0,+]) ◦ bigger

soon yields the following single-loop program forsumBiggers:

sumBiggers= fst◦ ([(0, 0),⊗])
where a⊗ (r, s) = (if a ≥ s then a + r else r, a + s)

which is actually the same as that in the introduction.
Before finishing our development of calculation rules for loop fusion, we give an-

other calculation rule for fusing a function with a mutumorphism. This may not be nec-
essary as mutumorphism can be transformed into homomorphism, but it may provide
us with more flexibility in rule application.

Lemma 5 (Mutumorphism Promotion).

fi(a⊕i (x1, . . . , xn)) = a⊗i (f1 x1, . . . , fn xn) (i = 1, . . . , n)
f1 ◦ [[(e1, . . . , en), (⊕1, . . . ,⊕n)]] = [[(f1 e1, . . . , fn en), (⊗1, . . . ,⊗n)]]

¤

3.3 A Calculational Algorithm for Loop Fusion

This is the last step, where we should make it clear how to turn a program into our
specific form and how to apply the newly developed calculational laws in a systematic
way for loop fusion, as seen in [OHIT97,HITT97,HTC98]. Below we summarize our
calculational algorithm for loop fusion.

14 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

1. Represent as many recursive functions on lists by mutumorphisms as possible.
2. Apply the flattening rule to transform all mutumorphism to homomorphisms.
3. Apply the promotion rule and shortcut fusion rule as much as possible.
4. Apply the tupling rule to merge independent homomorphisms.
5. Inline homomorphism/mutumorphism to output transformed program in a friendly

manner.

We have indeed followed this algorithm in fusing the three loops insumBiggers.
One remark should be made on the first step above. It would be unnecessary if pro-
grams are restricted to be strictly written in terms of mutumorphisms, but there are two
reasons to have it. First, it makes our system extensible; we may extend our system by
showing that a wider class of functions can be transformed to mutumorphisms by some
preprocessing. For example, the following recursive function

foo [] = 0
foo [a] = a
foo (a : b : x) = a + foo (b : x) + foox

may not be target for loop fusion at the start. When we find a way to make such kinds
of foo in terms of a mutumorphism, we can empower our system by adding it as a
preprocessing. In fact, it is shown in [HITT97] thatfoo belongs to the class of tuplable
functions and can be automatically transformed to that in terms of homomorphisms.
Second, we may want to apply our loop fusion to legacy programs. As a matter of fact,
it is possible to obtain mutumorphism automatically from many recursive functions on
lists.

4 Parallelization in Calculation Form

Our second example is about Parallelization [BENP93,HTC98], a transformation for
automatically generating parallel code from high level sequential description. Paral-
lelization is of key importance to the wide spread use of high performance machine
architectures, but it is a big challenge to clarify what kind of sequential programs can
be parallelized and how they can be systematically parallelized.

Program calculation suggests a new way to face this challenge. As we know from
the theory of Constructive Algorithmics that the control structure of the program should
be determined by the data structure the program is to manipulate. For list, there are two
views of it. One view is known as cons lists which are “sequential”: a list is constructed
by an empty list, or by an element with a list.

ConsLista = [] | a : ConsLista

Another view is known as join lists which are “parallel”: a list is an empty list, or a
singleton list, or a list joining two shorter lists.

JoinLista = [] | [.] a | JoinLista ++ JoinLista

Program Optimizations and Transformations in Calculation Form 15

So given a list[1, 2, 3, 4, 5, 6], we may represent it in the following two ways:

1 : (2 : (3 : (4 : (5 : (6 : [])))))
([1] ++ [2] ++ [3]) ++ ([4] ++ [5] ++ [6])

Programs defined on cons lists inherit sequentiality from cons lists, while programs
defined on join lists gain parallelism from join lists. The following are two such versions
for sum.

sumS(a : x) = a + sumSx
sumP(x ++ y) = sumPx + sumPy

With the above in mind, we may consider parallelization of functions on lists as
mapping a function on cons lists (e.g.,sumS) to an equivalent one on join lists (e.g.,
sumP).

4.1 J-Homomorphism: A Parallel Form for List Functions

As in loop fusion, we introduce a recursive form, J-homomorphsim2, to capture parallel
computations on lists.

Definition 2 (J-Homomorphism).J-homomorphismsare those functions on finite lists
thatpromotethrough list concatenation — that is, functionh for which there exists an
associative binary operator⊕ such that, for all finite listsx andy, we have

h (x ++ y) = h x ⊕ h y

where++ denotes list concatenation. ¤

In fact, it has been attracting wide attention to make use of J-homomorphisms in par-
allel programming [Col93,Ski94,Gor95]. Intuitively, the definition of J-homomorphisms
means that the value ofh on the larger list depends in a particular way (using binary op-
eration⊕) on the values ofh applied to the two pieces of the list. The computations of
h x andh y are independent each other and can thus be carried out in parallel. This sim-
ple equation can be viewed as expressing the well-known divide-and-conquer paradigm
of parallel programming.

As a running example, consider themaximum segment sum problem, which finds the
maximum of the sums of contiguous segments within a list of integers. For example,

mss[3,−4, 2,−1, 6,−3] = 7

where the result is contributed by the segment[2,−1, 6]. We may write the following
sequential functionmssto solve the problem, wheremis is to compute the maximum
initial-segment sum of a list.

mss[] = 0
mss(a : x) = a ↑ (a + misx) ↑ mssx
mis [] = 0
mis(a : x) = a ↑ (a + misx)

2 It is usually called list homomorphism in many literatures [Col93,HIT97]. We call it J-
homomorphism here because we have used the word list homomorphism in loop fusion.

16 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

How can we find an equivalent parallel program in J-homomorphism?

4.2 A Parallelizing Rule

In Section 3, we have seen that list homomorphisms play a very important role in de-
scribing computations on lists. Our parallelization rule is to show how to map a list
homomorphism to a J-homomorphism. As a preparation, we define the composition-
closed3 property of a function.

Definition 3 (Composition-closed).Let xi
n
1 denote a sequencex1 x2 · · · xn. A func-

tion f xi
n
1 r is said to be composition-closed if there existn functionsgi (i = 1, · · · , n),

so that
f xi

n
1 (f yi

n
1 r) = f gi xi

n
1

n

1 r ¤

For example, the function

f x1 x2 r = x1 ↑ (x2 + r)

is composition-closed, as seen in the following calculation.

f x1 x2 (f y1 y2 r)
= { definition off }

x1 ↑ (x2 + (y1 ↑ (y2 + r)))
= { sincea + (b ↑ c) = (a + b) ↑ (a + c) }

x1 ↑ ((x2 + y1) ↑ (x2 + (y2 + r)))
= { associativity of+ and↑ }

(x1 ↑ (x2 + y1)) ↑ ((x2 + y2) + r)
= { defineg1 x1 x2 y1 y2 = (x1 ↑ (x2 + y1), g2 x1 x2 y1 y2 = x2 + y2 }

(g1 x1 x2 y1 y2) ↑ (g2 x1 x2 y1 y2 + r)

The following is our main calculation rule for parallelizing homomorphisms to J-
homomorphisms.

Lemma 6 (Parallelization of Homomorphism to J-Homomorphism).Given a ho-
momorphism([e,⊕]), if there exists a composition-closed functionf with respect to
g1, g2, . . . , gn, such that

a⊕ r = f ei
n
1 r

whereei is an expression which may containa but notr, then

([e,⊕]) x = let (a1, a2, . . . , an) = h x in f a1 a2 · · · an e

whereh is a J-homomorphism defined by

h [a] = (e1, e2, . . . , en)
h(x ++ y) = h x⊗ h y

where xi
n
1 ⊗ yi

n
1 = gi x1

n
1 yi

n
1

n

1) ¤
3 This property is called context-preservation in [CTH98].

Program Optimizations and Transformations in Calculation Form 17

To see how this parallelization rule works, consider to parallelize the functionmis,
which is actually a homomorphism:

mis= ([0,⊕]) where a⊕ r = a ↑ (a + r)

The difficulty is to find a composition-closed function from⊕. In fact, such functionf
is

f x1 x2 r = x1 ↑ (x2 + r)

whose composition-closed property has been shown. Now we have

a⊕ r = f a a r.

Applying Lemma 6 tomisgives the following parallel program:

misx = let (a1, a2) = h x in a1 ↑ (a2 + e)

where

h [a] = (a, a)
h (x ++ y) = h x⊗ h y

where (x1, x2)⊗ (y1, y2) = (x1 ↑ (x2 + y1), x2 + y2).

4.3 A Parallelization Algorithm

After developing a general calculation rule for parallelizing general homomorphisms
to J-homomorphisms, we propose the following algorithm to systematically apply it
to parallelize sequential programs in practice. The input to the algorithm is a program
defined in terms of mutumorphisms, and the output is a new program where parallelism
is explicitly described by J-homomorphisms.

1. Apply the loop fusion calculation to the program to obtain a compact program
defined in terms of homomorphisms.

2. Apply the parallelizing rule to map homomorphisms to J-homomorphisms.

The first step has been explained in details in Section 3. The second step is the core
of the algorithm, where the key to applying the parallelizing rule is to find a suitable
composition-closed function from the definition of the binary operator in a homomor-
phism. It has been shown in [XKH04] that a powerful normalization algorithm can be
applied to derive such composition-closed functions. The details of the normalization
algorithm is beyond the scope of this tutorial.

Return to the program ofmss. First, we apply the loop fusion calculation to obtain

mss= fst◦mssmis

wheremssmis is the homomorphism defined below:

mssmis= ([(0, 0),⊕])
where a⊕ (s, i) = (a ↑ (a + i) ↑ s, a ↑ (a + i)).

18 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

Then, we apply the parallelizing rule to mapmssmis to a J-homomorphism to make
parallelism explicit. To this end, we define the following composition-closed function
by the algorithm in [XKH04]:

f x1 x2 x3 x4 x5 (s, i) = (x1 ↑ (x2 + i) ↑ (x3 + s), x4 ↑ (x5 + i))

with respect tog1, g2, g3.g4.g5 defined by

g1 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x1 ↑ (x2 + y4) ↑ (x3 + y1)
g2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = (x2 + y5) ↑ (x3 + y2)
g3 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x3 + y3

g4 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x4 ↑ (x5 + y4)
g5 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 = x5 + y5

And we have
a⊕ (s, i) = f a a 0 a a (i, s).

By applying the parallelizing rule we soon obtain the following efficient parallel pro-
gram formssmis:

mssmisx = let (a1, a2, a3, a4, a5) = h x in f a1 a2 a3 a4 a5 (0, 0)

whereh is a J-homomorphism defined as follows.

h [a] = (a, a, 0, a, a)
h(x ++ y) = h x⊗ h y

where (x1, x2.x3.x4.x5)⊗ (y1, y2, y3, y4, y5)
= (x1 ↑ (x2 + y4) ↑ (x3 + y1),

(x2 + y5) ↑ (x3 + y2),
x3 + y3,
x4 ↑ (x5 + y4),
x5 + y5)

As an exercise, the readers are suggested to consider parallelizing the homomor-
phism forsumBiggersin Section 3.

5 Yicho: An Environment for Implementing Transformations in
Calculational Forms

Program Calculation rules are short and concise, but their implementations are not as
easy as one may expect. Many attempts [dMS01,YHT04] have been made to develop
systems for supporting direct and efficient implementation of calculation rules. Yicho is
such a system built upon Template Haskell [SP02] and designed for concise specifica-
tion of program calculations [YHT03]. Its main feature lies in itsexpressive determinis-
tic higher-order patterns[YHT04] together with an efficient deterministic higher-order
matching algorithm. This leads to a straightforward description of calculation rules.

In this section, we briefly review the Yicho system, before illustrating with some
examples how calculation rules and calcualtion algorithms can be efficiently imple-
mented.

Program Optimizations and Transformations in Calculation Form 19

5.1 Program Representation

We manipulate programs as values by meta-programming, and Template Haskell [SP02]
provides such a mechanism to handle abstract syntax trees of Haskell in Haskell itself.
Enclosing a program in brackets[| |] yields its abstract syntax tree whose type is
ExpQ, and the inverse operation is unquote described by a dollar$. For example, given
a function to calculate the sum of a given list,sum, which has type4 [Int] -> Int .
Quotation of this function[| sum |] has typeExpQ, whereas$([| sum |]) has
the same type assum, i.e.,[Int] -> Int .

The following gives the representation of the initial program ofmax.

def =
[d|

max = hd . sort

sort [] = []
sort (a:x) = insert a (sort x)

insert a [] = b
insert a (b:x) = if a >= b then a : insert b x

else b : insert a x
|]

Here, quasi-quote bracket[d| _ |] is syntax of Template Haskell. It quotes a list
of declaration whose type isQ [Dec] . These definitions are spliced by unquote$ by
$(def) .

5.2 Basic Combinators for Programming Calculations

Yicho is implemented as a monadic combinator library for program transformation in
Haskell. The combinator library usesdeterministic higher-order patternsas first-class
values which can be passed as parameters, constructed by smaller ones in compositional
way, returned as values, etc. As a result, Yicho’s patterns provide more flexible binding
than first-order ones, and enables more abstract and modular descriptions of program
transformation.

We define the calculation monadY to capture updating of transformation environ-
ments and to handle exceptions that occur during transformation, and we useExpY

ExpY = Y ExpQ

to denote an expression in the calculation environment. We useret to lift ExpQ into
ExpY, and userunY to go back toExpQ from ExpY.

ret :: ExpQ→ ExpY
runY :: ExpY → ExpQ

4 Strictly speaking, the type of functionsum is Num a ⇒ [a] → a in Haskell. Here, for
simplicity, we ignore type classes and polymorphism.

20 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

There are five important combinators in our Yichi library, as listed below.

Match (<==) :: ExpQ -> ExpQ -> Y ()
Rule (==>) :: ExpQ -> ExpQ -> RuleY
Sequence (>>) :: Y () -> Y () -> Y ()
Choice (<+) :: ExpY -> ExpY -> ExpY
Case casem :: ExpQ -> [RuleY] -> ExpY

In the following, we explain them one by one with some examples.

Match

The most essential combinator is the match combinator, which is used to match a pattern
with a term and produce a substitution (embedded in monadicY).

(<==) :: ExpQ -> ExpQ -> Y ()
pat <== term

As an example, consider that we want to express the expression

\a x -> if a >= sum x then a : biggers x
else biggers x

in the form ofa ⊕ (biggersn, sumx) where⊕ is a binary operator. We may code this
intention by

[| \a x -> $oplus a (biggers x, sum x) |]
<== [| \a x -> if a >= sum x then a : biggers x

else biggers x |]

which will yield the following match:

{ $oplus := \x (b,s) ->
if x > s then x : b else b }.

Note that Function$oplus is a second-order pattern variable and can be efficiently
obtained by the deterministic higher-order matching algorithm [YHT04]. Note also that
$ means unquote, so the above match is equivalent to

{ oplus := [| \x (b,s) ->
if x > s then x : b else b |] }.

Rule

The rule combinator is used to build a transformation rule mapping from one program
pattern to another. A rule is described in the form of

(==>) :: ExpQ -> ExpQ -> RuleY
pat ==> body

Program Optimizations and Transformations in Calculation Form 21

For instance, we may define the shortcut fusion rule by

[| hom $e $oplus . build $g |] ==> [| g $e $oplus |]

where we represent a homomorphism([e,⊕]) by (hom e oplus). The semantics of a
rule may be clear from the following where we define a rule by the Match combinator.

(==>) :: ExpQ -> ExpQ -> RuleY
(pat ==> body) term = do pat <== term

ret body

Note that in the above, the functionret implicitly applies the match (i.e., substitution)
kept in the transformation monad tobody .

Sequence

Sequential updates of transformation environments can be realized by combining matches
with the sequence combinator (>>).

(>>) :: Y () -> Y () -> Y ()
(pat1 <== term1) >> (pat2 <== term2)

which can be written as sequence of matchings usingdo notation.

do pat1 <== term1
pat2 <== term2

Deterministic Choice and Case

The combinator (<+) is designed to express deterministic choice.

(<+) :: ExpY -> ExpY -> ExpY
transExp1 <+ transExp2

It returns the first argument if the transformation in it succeeds. Otherwise, it returns
the second argument as the result. For instance, we may write

(rule1 e) <+ (rule2 e)

to first applyrule1 to transforme, and if it succeeds, we return the result; otherwise
we try to applyrule2 to e.

Using the choice combinator, we can define a meta version of the case expression,
which tries to apply a list of rules one by one until one rule succeeds.

casem :: ExpQ -> [RuleY] -> ExpY
casem sel (r:rs) = r sel <+ casem sel rs

22 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

5.3 Code Calculation Rules in Yicho

To get a flavor of Yicho, we show how to use Yicho to code the promotion rule in
Section 2, and how it is used to optimize the program. Since the list homomorphism
([e,⊕]) is in fact the standard Haskell functionfoldr (⊕) e, we rewrite the promotion
theorem as follows.

promotion:
f(a⊕ x) = a⊗ f x

f ◦ foldr (⊕) e = foldr (⊗) (f e)

This rule is defined in Yicho as follows.

promotion :: ExpQ -> Y ExpQ
promotion exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== exp
[| \a x -> $otimes a ($f x) |]

<== [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

The promotion rule is defined as a function that takes code and returns code with its
environment. In the third line,f,oplus,e,otimes are declared to be variables; the
unquote$ is actually splicing the expression, but, intuitively we can regard expression
$x as meta variable with the name of$x . In the fourth line,exp is matched with the pat-
tern[| $f . foldr $oplus $e |] , with the variables$f,$oplus,$e being
bound in the environment. The next two lines are a straightforward translation of the
original promotion rule.$f and$oplus are instantiated and the both sides of<== are
matched and the resulting match is added to the environment. The pattern instantiation
contributes to the modularity of patterns. It should be noted here that the higher-order
patterns such as

[| \a x -> $otimes a ($f x) |]

play an important role in this concise definition. Finally, the result expression with its
environment are returned byret .

We can enhance the promotion rule with a rule (say for unfolding the definition or
simplification), and add it as an argument to the promotion function.

promotionWithRule :: RuleY -> ExpQ -> Y ExpQ
promotionWithRule rule exp = do

[f,oplus,e,otimes] <- pvars ["f","oplus","e","otimes"]
[| $f . foldr $oplus $e |] <== rule exp
[| \a x -> $otimes a ($f x) |]

<== rule [| \a x -> $f ($oplus a x) |]
ret [| foldr $otimes ($f $z) |]

To see how to apply the promotion rule, consider the following expression

oldExp = [| sum . foldr (\x y -> 2 * x : y) [] |]

Program Optimizations and Transformations in Calculation Form 23

and suppose that we hope to apply to this code the promotion rule together with some
other rulerule to obtain a new efficient expression, saynewExp. We can define this
newExp as follows.

newExp = runY (promotionWithRule rule ex1)

We may confirm the result ofnewExp under the GHCi Environment:

GHCi> prettyExpQ newExp
foldr (\x_1 -> (+) (2 * x_1)) 0

where we use functionprettyExpQ :: ExpQ -> IO () to print out an expres-
sion.

Now we can compare efficiency of the two expressions.

GHCi> $oldExp (take 100000 [1..])
10000100000
(0.33 secs, 21243136 bytes)

GHCi> $newExp (take 100000 [1..])
10000100000
(0.27 secs, 19581216 bytes)

It is worth noting that the promotion theorem is applied at compile time, and the func-
tion $newExp is actually improved both in the execution time and consumed heap
size.

The other calculation rules in this tutorial can be specified similarly. The readers are
invited to visit the Yicho home page for more examples.

6 Concluding Remarks

In this tutorial, we explain the basic technique of formalizing and implementing pro-
gram transformations and optimization in calculational form based on the Constructive
Algorithmics theory. We illustrate our idea with two important transformations, loop
fusion and parallelization, and we show how the transformations in calculational form
can be efficiently implemented with Yicho.

We summarized the main advantages of program transformations in calculational
form as follows.

– Modularity. A program transformation in calculational form does not require any
global analysis as other transformation systems often need. Instead, it only uses
a local program analysis to obtain the specialized form, and it can check locally
the applicability of their calculational rules. Therefore, it can be implemented in a
modular way, and guarantees to terminate.

– Generality. In this tutorial, we focus ourselves on transformation of programs on
lists. In fact, most of our calculational laws are polytypic, i.e., parameterized with
data types, it can be generalized to transformation of programs on any algebraic
data types.

24 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

– Cheap Implementation. Transformations in calculational form are more practical
than the well-knownfold-unfoldtransformations [BD77]. Fold/unfold transforma-
tion basically has to keep track of all occurring function calls and introduce func-
tion definitions to be searched in the folding step. The process of keeping track of
function calls and controlling the steps cleverly to avoid infinite unfolding intro-
duces substantial cost and complexity, which often prevents it from being practi-
cally implemented. Though they may be less general than fold/unfold transforma-
tions, transformations in calculational form can be implemented in a cheap way
[GLJ93,SF93,TM95,HITT97] by means of a local program analysis and simple
rule application.

– Compatibility. It is usually difficult to make several transformations coexist well
in a single system, but transformations in calculational form can solve this prob-
lem well. For instance, fusion calculation can coexist well with tupling calculation
[HITT97]. There are two reasons. First, each transformation is based on the same
theoretical framework, Constructive Algorithmics. Second, local program analysis
and local application of laws make it easier to check compatibility of transforma-
tions.

We believe that more optimizations and transformations can be formalized in cal-
culational form to gain the advantages discussed above, and we are looking forward to
see more practical applications.

References

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers – Principles, Techniqies and Tools.
Addison-Wesley, 1986.

[Bac89] R. Backhouse. An exploration of the Bird-Meertens formalism. InSTOP Summer
School on Constructive Algorithmics, Ameland, September 1989.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs.Journal of the ACM, 24(1):44–67, January 1977.

[BdM96] R.S. Bird and O. de Moor.Algebras of Programming. Prentice Hall, 1996.
[BENP93] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua. Auto-

matic program parallelization.Proceedings of the IEEE, 81(2):211–243, 1993.
[Bir87] R. Bird. An introduction to the theory of lists. In M. Broy, editor,Logic of Program-

ming and Calculi of Discrete Design, pages 5–42. Springer-Verlag, 1987.
[Bir98] R.S. Bird. Introduction to Functional Programming using Haskell. Prentice Hall,

1998.
[Col93] M. Cole. Parallel programming, list homomorphisms and the maximum segment sum

problems. Report CSR-25-93, Department of Computing Science, The University of
Edinburgh, May 1993.

[CTH98] W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. InIEEE
Computer Society International Conference on Computer Languages, Loyola Univer-
sity Chicago, Chicago, USA, May 1998.

[Dar81] J. Darlington. An experimental program transformation system.Artificial Intelligence,
16:1–46, 1981.

[dMS01] Oege de Moor and Ganesh Sittampalam. Higher-order matching for program trans-
formation.Theor. Comput. Sci., 269(1-2):135–162, 2001.

Program Optimizations and Transformations in Calculation Form 25

[Fea87] M.S. Feather. A survey and classification of some program transformation tech-
niques. InTC2 IFIP Working Conference on Program Specification and Transfor-
mation, pages 165–195, Bad Tolz, Germany, 1987. North Holland.

[Fok92] M. Fokkinga. A gentle introduction to category theory — the calculational approach
—. Technical Report Lecture Notes, Dept. INF, University of Twente, The Nether-
lands, September 1992.

[GLJ93] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. InProc. Con-
ference on Functional Programming Languages and Computer Architecture, pages
223–232, Copenhagen, June 1993.

[Gor95] S. Gorlatch. Constructing list homomorphisms. Technical Report MIP-9512, Fakultät
für Mathematik und Informatik, Universität Passau, August 1995.

[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from recursive
definitions. InACM SIGPLAN International Conference on Functional Programming,
pages 73–82, Philadelphia, PA, May 1996. ACM Press.

[HIT97] Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of efficient parallel programs by
construction of list homomorphisms.ACM Transactions on Programming Languages
and Systems, 19(3):444–461, 1997.

[HIT99] Z. Hu, H. Iwasaki, and M. Takeichi. Caculating accumulations.New Generation
Computing, 17(2):153–173, 1999.

[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates mul-
tiple data traversals. InACM SIGPLAN International Conference on Functional Pro-
gramming, pages 164–175, Amsterdam, The Netherlands, June 1997. ACM Press.

[HTC98] Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In25th
ACM Symposium on Principles of Programming Languages, pages 316–328, San
Diego, California, USA, January 1998.

[Hug85] J. Hughes. Lazy memo-functions. InProc. Conference on Functional Programming
Languages and Computer Architecture(LNCS 201), pages 129–149, Nancy, France,
September 1985. Springer-Verlag, Berlin.

[Jeu93] J. Jeuring.Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science,
Utrecht University, 1993.

[Mal90] G. Malcolm. Data structures and program transformation.Science of Computer Pro-
gramming, (14):255–279, August 1990.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. InProc. Conference on Functional Program-
ming Languages and Computer Architecture(LNCS 523), pages 124–144, Cambridge,
Massachuetts, August 1991.

[OHIT97] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system HYLO.
In IFIP TC 2 Working Conference on Algorithmic Languages and Calculi, pages 76–
106, Le Bischenberg, France, February 1997. Chapman&Hall.

[PP96] A. Pettorossi and M. Proiett. Rules and strategies for transforming functional and logic
programs.Computing Surveys, 28(2):360–414, June 1996.

[SF93] T. Sheard and L. Fegaras. A fold for all seasons. InProc. Conference on Functional
Programming Languages and Computer Architecture, pages 233–242, Copenhagen,
June 1993.

[Ski94] D.B. Skillicorn. Foundations of Parallel Programming. Cambridge University Press,
1994.

[SP02] Tim Sheard and Simon L. Peyton Jones. Template metaprogramming for Haskell. In
Haskell Workshop, pages 1–16, Pittsburgh, Pennsylvania, May 2002.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. InProc. Con-
ference on Functional Programming Languages and Computer Architecture, pages
306–313, La Jolla, California, June 1995.

26 Zhenjiang Hu, Tetsuo Yokoyama and Masato Takeichi

[XKH04] Dana Na Xu, Siau-Cheng Khoo, and Zhenjiang Hu. Ptype system : A featherweight
parallelizability detector. InSecond ASIAN Symposium on Programming Languages
and Systems(APLAS 2004), pages 197–212, Taipei, Taiwan, November 2004. Springer,
LNCS 3302.

[YHT03] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Deterministic second-order
patterns and its application to program transformation. InInternational Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR 2003), pages 165–178.
Springer, LNCS 3018, August 2003.

[YHT04] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Deterministic second-order
patterns.Information Processing Letters, 89(6):309–314, March 2004.

