
Program Slicing of Hardware Description

Languages�

E. M. Clarke1,6, M. Fujita3, S. P. Rajan3, T. Reps4,7, S. Shankar1,5,6, and
T. Teitelbaum2,4

1 Carnegie Mellon University, Pittsburgh, PA, USA
emc+@cs.cmu.edu

2 Cornell University, Ithaca, NY, USA
3 Fujitsu Labs of America, Sunnyvale, CA, USA

{fujita,sree}@fla.fujitsu.com
4 Grammatech, Inc., Ithaca, NY, USA

{reps,tt}@grammatech.com
5 Hunter College and the Graduate School, The City University of New York

New York, NY, USA
sshankar@roz.hunter.cuny.edu

6 Verysys Design Automation, Inc., Fremont, CA, USA
7 University of Wisconsin, Madison, WI, USA

Abstract. Hardware description languages (HDLs) are used today to
describe circuits at all levels. In large HDL programs, there is a need
for source code reduction techniques to address a myriad of problems in
formal verification, design, simulation, and testing. Program slicing is a
static program analysis technique that allows an analyst to automatically
extract portions of programs relevant to the aspects being analyzed. We
extend program slicing to HDLs, thus allowing for automatic program
reduction to allow the user to focus on relevant code portions. We have
implemented a VHDL slicing tool composed of a general inter-procedural
slicer and a front-end that captures VHDL execution semantics. This
paper provides an overview of program slicing, a discussion of how to
slice VHDL programs, a description of the resulting tool, and a brief
overview of some applications and experimental results.

1 Introduction

Hardware description languages (HDLs) are used today to describe circuits at all
levels from conceptual system architecture to low-level circuit implementations
� This research is supported in part by the Semiconductor Research Corporation
(SRC) (Contract 97-DJ-294), the National Science Foundation (NSF) (Grants CCR-
9505472, CCR-9625667, CCR-9619219), the Defense Advanced Research Projects
Agency (DARPA) (Contract DABT63-96-C-0071), the United States-Israel Bina-
tional Science Foundation (Grant 96-00337), IBM, and the University of Wisconsin
(Vilas Associate Award). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the supporting agencies.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 298–313, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Program Slicing of Hardware Description Languages 299

suitable for synthesis. There are also several tools that apply model checking [1]
to formally verify correctness of HDL designs (one such system for VHDL is
described in [2]). The fundamental problem in model checking is state explosion,
and there is consequently a need to reduce the size of HDL descriptions so that
their corresponding models have fewer states. For many designs, it is not even
possible to build the state transition relation, and the need for HDL program
reduction techniques is even more critical in these cases.

HDL reduction is also useful for other design, simulation, and testing tasks
since a major lack in current simulation methodologies is the need for structured
design and analysis techniques. The use of automatic reduction techniques allows
an analyst to focus on relevant code portions for further study. Moreover, with
the increasing use of reusable libraries of existing code, reduction techniques are
also useful to simplify the usage and/or modification of unstructured libraries.

Several of these desiderata have close parallels in the software-engineering
domain, where it is desirable to understand and manipulate large programs. This
is difficult to do, partly because of the presence of large quantities of irrelevant
code. Program slicing was defined by Weiser [3] to cope with these problems by
performing automatic decomposition of programs based on data- and control-
flow analysis. A program slice consists of those parts of a program that can
potentially affect (or be affected by) a slicing criterion (i.e., a set of program
points of interest to the user). The identification of program slices with respect
to a slicing criterion allows the user to reduce the original program to one that
is simpler but functionally equivalent with respect to the slicing criterion.

Program slicing results in the software engineering world suggest that the
techniques can also be applied to HDLs to solve many of the problems mentioned
above. However, most traditional slicing techniques are designed for sequential
procedural programming languages, and the techniques are not directly applica-
ble to HDLs, which have a fundamentally different computation paradigm: An
HDL program is a non-halting reactive system composed of a set of concurrent
processes, and many HDL constructs have no direct analogue in more tradi-
tional programming languages. In this paper, we present an approach for slicing
VHDL based on its operational semantics. Our approach is based on a mapping
of VHDL constructs onto traditional programming language constructs, in a way
that ensures that all traces of the VHDL program will also be valid traces in
the corresponding sequential program. Corresponding to this approach, we have
implemented a VHDL slicing tool consisting of a VHDL front-end coupled with
a language-independent toolset intended for inter-procedural slicing of sequen-
tial languages such as C. We have applied the tool to some formal verification
problems, and have achieved substantial state space reductions.

The remainder of the paper is organized as follows: Section 2 presents requi-
site background material while Section 3 presents our techniques for performing
language-independent interprocedural slicing. Section 4 shows how we capture
VHDL semantics for slicing. Section 5 describes the architecture and implemen-
tation of the VHDL slicing tool, and provides a walkthrough of a simple VHDL
example. Section 6 lists some applications of slicing, and provides experimental

300 E.M. Clarke et al.

results that concretely illustrate the benefits of slicing in reducing state space
size for model checking. We compare our work with other approaches in Sec-
tion 7. Finally, Section 8 summarizes our conclusions and briefly discusses our
future plans in this area.

2 Background

Slicing is an operation that identifies semantically meaningful decompositions of
programs, where the decompositions consist of elements that are not necessarily
textually contiguous [4,3,5,6,7,8]. (See [9,10] for surveys on slicing.) Slicing, and
subsequent manipulation of slices, has applications in many software-engineering
tasks, including program understanding, maintenance [11], debugging [12], test-
ing [13,14], differencing [15,16], specialization [17], reuse [18], and merging [15].

There are two kinds of slices: a backward slice of a program with respect to
a slicing criterion C is the set of all program elements that might affect (either
directly or transitively) the values of the variables used at members of C; a
forward slice with respect to C is the set of all program elements that might be
affected by the computations performed at members of C.

A related operation is program chopping [19,20]. A chop answers questions of
the form “Which program elements serve to transmit effects from a given source
element s to a given target element t?”. Given sets of source and target program
points, S and T , the chop consists of all program points that could transmit the
effect of executing a member of S to a member of T.

It is important to understand the distinction between two different but re-
lated “slicing problems”: the closure slice of a program P with respect to program
point p and variable x identifies all statements and predicates of P that might
affect the value of x at point p; the executable slice of P with respect to p and x
is a reduced program that computes the same sequence of values for x at p (i.e.,
at point p the behavior of the reduced program with respect to x is indistin-
guishable from that of P). In intraprocedural slicing, an executable slice can
be obtained from the closure slice; however, in interprocedural slicing, where a
slice can cross the boundaries of procedure calls, an executable slice is harder
to obtain since the closure slice might contain different subsets of a procedure’s
parameters for different calls to the same procedure. However a closure slice can
always be extended to an executable slice [21]. Our system does closure slicing,
with partial support for executable slicing.

A second major design issue is the type of interprocedural slicing. Some slic-
ing and chopping algorithms are precise in the sense that they track dependences
transmitted through the program only along paths that reflect the fact that when
a procedure call finishes, control returns to the site of the most recently invoked
call [7,8,20]. In contrast, other algorithms are imprecise in that they safely, but
pessimistically, track dependences along paths that enter a procedure at one call
site, but return to a different call site [22,19].

Program Slicing of Hardware Description Languages 301

Precise algorithms are preferable because they return smaller slices. Precise
slicing and chopping can be performed in polynomial time [7,8,20]. Our VHDL
slicing tool supports precise interprocedural slicing and chopping.

3 Inter-procedural Slicing

The value of a variable x defined at p is directly affected by the values of the
variables used at p and by the predicates that control how many times p is
executed. Similarly, the value of a variable y used at p is directly affected by
assignments to y that reach p and by the predicates that control how many
times p is executed. Consequently, a slice can be obtained by following chains of
dependences in the directly-affects relation. This observation is due to Ottenstein
and Ottenstein [5], who noted that procedure dependence graphs (PDGs), which
were originally devised for use in parallelizing and vectorizing compilers, are a
convenient data structure for slicing.

The PDG for a procedure is a directed graph whose vertices represent the
individual statements and predicates of the procedure. Vertices are included for
each of the following constructs:

– Each procedure has an entry vertex.
– Each formal parameter has a vertex representing its initialization from the

corresponding actual parameter.
– Each assignment statement has a vertex.
– Each control-structure condition (e.g., if) has a vertex.
– Each procedure call has a vertex.
– Each actual parameter to a procedure has a vertex representing the assign-

ment of the argument expression to some implicit (generated) variable.
– Each procedure with a return value has a vertex representing the assignment

of the return value to some generated name.
– Each formal parameter and local variable has a vertex representing its dec-

laration.

A procedure’s parameters may sometimes be implicit. If a procedure assigns to
or uses a global variable x (either directly or transitively via a procedure call), x
is treated as an “hidden” input parameter, thus giving rise to additional actual-
in and formal-in vertices. Similarly, if a procedure assigns to a global variable x
(either directly or transitively), x is treated as a “hidden” output parameter,
thus giving rise to additional actual-out and formal-out vertices.

Denote the program code corresponding to a vertex V as #V . PDG vertices
are connected through the following types of edges:

– There is a flow dependence edge between two vertices v1 and v2 if there exists
a program variable x such that v1 can assign a value to x, v2 can use the
value in x, and there is an execution path in the program from #v1 to #v2

along which there is no assignment to x.

302 E.M. Clarke et al.

– There is a control dependence edge between a condition vertex vc and a
second vertex v if the truth of the condition of #vc controls whether or
not #v is executed.

– There is a declaration edge from the declaration vertex for a program vari-
able, x, to each vertex that can reference x.

– There is a summary edge corresponding to each indirect dependence from a
procedure call’s actual parameters and its output(s). These edges are used to
avoid recomputing these summary relationships, for efficiency reasons. They
are actually computed after PDG construction.

Given PDGs for each procedure, a system dependence graph (SDG) is then
constructed by connecting the PDGs appropriately using the following additional
types of edges:

– There is a call edge from a procedure call vertex to the corresponding pro-
cedure entry vertex.

– There is a parameter-in edge between each actual parameter and the corre-
sponding formal parameter.

– There is a parameter-out edge between each procedure output value vertex
and the vertex for an implicit (generated) variable on the caller side desig-
nated to receive it.

Figure 1 illustrates a SDG for a small pseudocode program.

FUNCTION add(a,b)
 return(a+b);
FUNCTION main()

 i <= 1;
 while (i < 11)
 sum <= add(sum,i);
 i <= add(i,1);
 print(sum);
 print(i);

 sum <= 0;

Fig. 1. Sample SDG

The complete algorithm for building a SDG from a program is:

1. Build a Control Flow Graph (CFG) for each procedure in the program.
2. Build the call graph for the program.
3. Perform global variable analysis, turning global variables into hidden param-

eters of the procedures that reference or modify them.

Program Slicing of Hardware Description Languages 303

4. Construct PDGs by doing control-dependence and flow-dependence analysis.
5. Optionally compress the PDG so that each strongly connected region is

represented by one node.
6. Bring together the PDGs and the call graph to form the SDG.
7. Compute summary edges for procedures that describe dependences between

the inputs and the outputs of each procedure.

Then, slices and chops are computed by following the chains of dependences
represented in the edges of the SDG.

4 VHDL Slicing

Rather than creating an independent slicer built specifically for VHDL, our
approach is to map VHDL constructs onto constructs for more traditional pro-
cedural languages (e.g., C, Ada), utilizing the operational semantics provided by
the VHDL LRM [23]. Figure 2 lists the mapping between VHDL and traditional
constructs that we use:

VHDL Construct Traditional Construct

Process, Concurrent Assignment Procedure
Function, Procedure

Architecture variable Local variable

Signal, Port Global variable

Sequential Statement Statement

Fig. 2. Mapping of VHDL Constructs

While many of these mappings may seem obvious, there are several major
differences between VHDL and traditional programming languages which com-
plicate the generation of the SDG. A VHDL program executes as a series of
simulation cycles, as illustrated in Figure 3.

The VHDL computational paradigm differs fundamentally from traditional
languages in three ways:

1. A VHDL program is a non-halting reactive system, rather than a collection
of halting procedures.

2. A VHDL program is a concurrent composition of processes, without any
explicit means for these processes to be invoked (in the manner of traditional
procedures).

3. VHDL processes communicate through multiple-reader signals to which they
are sensitive, instead of through parameters defined at a single procedure
entry point.

VHDL procedures and functions are modeled in the traditional way. How-
ever, VHDL process models must capture the above differences, and we do this
through three types of modifications:

304 E.M. Clarke et al.

Begin simulation

��
Assign signals

��
Run processes

��

End simulation
Process resumption or
signal transaction ?

yes

��

no
�� Run processes��

Update time �� Update signals

��

Fig. 3. Simplified VHDL simulation cycle

– The CFGs model the non-halting reactive nature of VHDL processes.
– The PDGs capture an additional dependence corresponding to VHDL signal

communication.
– An implicit generated master “main” procedure controls process invocation,

analogous to the event queue that controls VHDL simulator execution.

These mechanisms are described below. Although the discussion only mentions
processes, concurrent statements are to be treated analogously.

4.1 Constructing the CFG

CFG construction for traditional languages is well understood, and the identical
technique is used for VHDL procedures and functions. VHDL processes require
some CFG modifications. We first consider processes with an explicit sensitivity
list or a single wait statement. The non-halting nature of processes is modeled
simply by passing control from the end of the process back to its beginning. The
wait statement provides the only complication. As suggested by Figure 3, from
a wait statement, either control passes to the next statement or the simulation
exits (in case the wait condition is never satisfied). This is simple to capture
in the CFG by creating two corresponding child control-flow arcs from the wait
statement. Figure 4 illustrates a CFG for a simple process.

The situation is substantially more complicated when there are multiple wait
statements in the process. Although the above procedure still works, the result-
ing slice may be substantially larger than needed. Since each wait statement
corresponds to a point where a region of the process may be invoked, a for-
ward slice that affects a wait statement needs to include only the portion of the
process between the wait statement and the next wait statement (and similarly
for backward slices). To model this, we partition each process into regions cor-
responding to portions of processes between successive wait statements. More
precisely, for each wait statement w in a process p, let T be the set of statements

Program Slicing of Hardware Description Languages 305

Use x2

Use y3

Use x
4 Kill z

Exit1 PROCESS BEGIN
2 WAIT ON x;
3 IF (y = ’1’)
4 THEN z <= x;
5 END IF;
6 END PROCESS;

Fig. 4. Sample CFG

region 1

region 3

region 2

 THEN WAIT ON x3;

WAIT ON x
y <= ’1’;
z <= x;

WAIT ON x2;
IF (x2 = ’1’)

END IF;
z <= x2;

Fig. 5. Process re-
gions in the presence
of multiple wait
statements

in some process execution trace starting at w and proceeding until another wait
statement w′ with no intervening wait statements (w′ �∈ T). Let T be the set of
all such traces. Then, there is a process region corresponding to w which includes
all the statements in T . Figure 5 illustrates a simple example.

Note that we only require that each end node of a region precedes a wait
statement; there may be multiple end nodes, and regions may overlap in the
presence of wait statements within branching control structures (though very few
VHDL programs have such control structures in practice). Then, a procedure for
each process region is created, and a CFG for each of the resulting procedures is
created as usual. To capture context information between process regions within
the same process, all objects local to the process (e.g., variables) are treated as
global variables after renaming to avoid conflicts with other processes (recall that
the SDG build algorithms treat global variables as hidden parameters). Thus,
for a process with W wait statements, W+1 procedures are created, one starting
at each of the wait statements and one starting at the beginning of the process.

4.2 PDG Modifications

In traditional languages, inter-procedure communication occurs through global
variables and parameters explicitly passed from the calling procedure to a called
procedure. In contrast, VHDL process communication occurs through signals,
and a process (or region) is invoked when it is at a wait statement w, and
there is an event on a signal that w is sensitive to. This communication is cap-
tured through the notion of signal dependence (in addition to the dependence
types listed in Section 3): A process region p is said to be signal dependent on
statement s if s assigns a value to a signal that p is sensitive to. Rather than
modeling this signal dependence explicitly in the PDG, we generate implicit pro-
cedure calls in the CFG every time a signal is potentially assigned. For example,
every assignment to signal s is followed by implicit calls to every procedure (e.g.,
VHDL process region, concurrent assignment) that is sensitive to s.

306 E.M. Clarke et al.

4.3 The Master Process

The above changes do not handle the reactive nature of VHDL, since processes
may also be invoked by events on input ports. For simplicity, the following dis-
cussion deals with processes, though the same arguments are also applicable to
process regions. Consider a VHDL program Π =‖n

i=1 Pi, where the Pi’s are the
processes comprising the program (as before, other concurrent statements are
treated as one-line processes for the purposes of this discussion). Partition Π into
two disjoint sets Π1, Π2, where Π1 is the set of processes that are sensitive to at
least one input port (hence, Π2 = Π \Π1). It is clearly not possible to determine
a priori whether a process P ∈ Π1 is invoked in the simulation (after its initial
invocation). In contrast, any non-initial invocations of a process Q ∈ Π2 must
occur after an assignment to a signal that Q is sensitive to, and such invocations
are handled using the signal dependences discussed above. Given these two ob-
servations, a CFG for the master process comprising the following (pseudocode)
steps can be constructed:

for Q ∈ Π – initial invocations of each process
call Q

while (true) – subsequent invocations of Π1 processes
for P ∈ Π1

call P

Given PDGs for the master process and each procedure in the VHDL pro-
gram, the SDG is constructed as usual.

4.4 Correctness

Our motivation for the VHDL mapping discussed above is captured in the fol-
lowing theorem: First, define a VHDL process invocation trace to be a sequence
T = 〈T1, T2, . . . , Ti, . . .〉, where Ti ∈ 2Π , and Ti is the set of processes that are
invoked on simulation cycle i of the trace.

Theorem 1 Let the VHDL program Π have a process invocation trace T =
〈T1, T2, . . . , Ti, . . .〉. Then, for any Pj ∈ Ti, either 1) Pj ∈ Π1 or 2) there is a
signal dependence from some statement in Pk ∈ T� to Pj for some � < i.

The theorem can be seen to follow from VHDL operational semantics.
Since the two cases of the theorem are captured using the master process

and our notion of signal dependence, any inter-process dependences will have
corresponding call edges in the SDG, by construction, and correctness of our
VHDL slicing semantics thus follows from the theorem.

5 The Slicer

Figure 6 illustrates the architecture of the VHDL slicer. The tool implements
all the issues discussed above except process regions. The CFG Extractor and

Program Slicing of Hardware Description Languages 307

CFG
Extractor

VHDL
Program

CFGS
Database

Slicer
Core

SDG
Builder SDG

Scheme Scripts

Fig. 6. VHDL Slicer Architecture

SDG Builder perform the algorithm described in Section 3 and output the SDG,
as well as a map from PDG nodes to source-text references. The slicing and
chopping algorithms are embedded in the slicer core.

The slicer user interface is through the source code: By maintaining appro-
priate maps between the underlying SDG on which slicing is performed and the
source code, the user specifies the slicing criterion by selecting program elements
in the display of the source code, and the slice itself is displayed by highlighting
the appropriate parts of the program. Slices may be forward or backward, and
unions of slices may be computed using the GUI. The toolset GUI also supports
browsing of projects and project files, as well as navigation through dependence
graphs, slices, and chops.

5.1 Tool Walkthrough

To give a feel for the interface and some capabilities of our tool, we use a
simple VHDL program, consisting of 1 D flip-flop and 2 logic functions (Fig-
ures 7(a),(b))1. The project view provides hierarchical summary information
that is interactively viewable (partially shown in the figure), while the file view
provides the actual text comprising the program.

Figure 7(c) shows a file view of the executable statements in the forward slice
on the program point t1 <= t0 AND not(a);. As expected, the slice includes
the flip-flop but not any input circuitry. Figure 7(d) shows a project view of the
backward slice on the same program point as above. This time, the slice excludes
the flip-flop. In large files, the colorbars to the right of the scrollbar allow the
user to quickly scroll to the slice.
1 The screenshots reproduced here are dithered monochrome versions of the color tool
output, and thus suffer from some loss of clarity here

308 E.M. Clarke et al.

(a)

(b)

(c) (d)

Fig. 7. Example (a) Project View, (b) File View, (c) Forward Slice, (d) Backward
Slice

6 Applications

HDL slicing is useful in model checking to prove circuit correctness. The major
problem in model checking is state space explosion. A backward slice on the set
of statements assigning values to variables in the temporal specification results
in a program subset consisting of only the statements that can potentially affect
the correctness of the specification. Figure 8 illustrates the state space reduction
that was achieved in the verification of the controller logic for a RISC processor,
using the model checker described in [2] and sliced with respect to two different
CTL specifications (all builds and slicing operations needed negligible time).

Processes
Concurrent
Statements

Total
States

Reachable
States

Original 7 18 1.8X1047 2.5X1037

Sliced (safety) 4 3 2.0X1031 2.8X1021

Original 7 18 1.8X1047 6.5X1039

Sliced (liveness) 4 1 3.1X1029 1.1X1022

Fig. 8. Benefits of Slicing for Formal Verification

Program Slicing of Hardware Description Languages 309

The benefits of slicing vary widely depending on the nature of the circuit and
the property being verified, and the above circuit was selected to be a typical one.
However, an interesting aspect of slicing-based program reduction is a reverse-
scalability effect. Since smaller VHDL programs tend to have fewer irrelevant
components, we have observed the benefits of slicing to improve (percentage-
wise) as programs grow in size.

There are numerous other applications of slicing in hardware design, simula-
tion, and testing. The reader is referred to [24] for a more detailed description
of the applications of slicing, but we briefly list some of them in this section.
Sample questions that a slicer can assist an engineer in answering include:

– How do you specialize (or modify) an existing IP design for reuse?
– What part of the design is relevant to the actual function (and not the

design-for-test and debug circuitry)?
– What part of the circuit is in the control path (and not the datapath)?
– What code portions can potentially cause an unexpected signal value found

in simulation?
– What portions of the circuit can be affected by changing a particular code

segment?
– What potentially harmful interactions with other modules can result from

changing a particular code segment?
– What execution paths are covered by a given test vector?
– What part of the circuit must be retested if a certain code segment is changed

(i.e., regression testing)?
– What portion of a circuit is controllable from a given set of input ports?
– What portion of a circuit is observable from a given set of output ports?
– What portion of a circuit is testable (i.e., both controllable and observable)

from a given set of input and output ports?

7 Related Work

The only other application of program slicing to HDLs that we are aware of is
by [25], which discusses a number of issues and applications related to VHDL slic-
ing (a resulting system that implements some of these is discussed in [26]). Our
approach differs since it captures VHDL operational semantics within existing
procedural frameworks so that the benefits of existing precise slicing technology
can better be exploited. We believe that using such an approach will enable us
to cover a larger subset of VHDL, and get finer slices. Also, to the best of our
knowledge, we are the first to have used HDL slicing for formal verification.

A tool for slicing Promela, the input language for the Spin model checker, is
currently being constructed ([27]). However, the concurrency issues dealt with
there are different from those in VHDL.

SDG-like structures form the basis of many gate-level test-generation algo-
rithms. However, our approach works at the VHDL source level, thus avoiding
the heavy complexity of synthesis. Moreover, many applications of slicing de-
scribed in Section 6 make sense only at the VHDL source level.

310 E.M. Clarke et al.

Another area of related work occurs in the model checking domain, where
state space size is reduced using the cone of influence reduction (COI) or local-
ization reduction ([28]).

COI can be expressed as a fixpoint computation that constructs the set of
state variables that can potentially affect the value of a variable in the CTL
specification (i.e., the set of variables in the cone of influence of the variable of
interest). Alternatively, COI can be thought of as building a dependence graph
for the program, and then using graph reachability to determine what parts of
the specification are relevant to the variable of interest. The actual dependence
graph may be either on the VHDL source-code (pre-encoding) or on the set
of equations that represent the transition function (post-encoding), though the
former is difficult.

The localization reduction performs a related function. Intuitively, it works by
conservatively abstracting system components and verifying a localized version
of the specification. If the localized version is not verifiable, the abstractions
are iteratively relaxed by adding more components, until the specification is
eventually provable. Added components are in the specification’s COI.

Several differences between these two reductions and slicing are worth noting
(the first 3 apply only if the reductions are done as post-encoding operations):
– In HDL formal verification, the difficulty often lies in model generation rather

than model checking, and it is sometimes not even possible to build the
model. Any post-encoding method obviously does not help in such cases.

– The model generation process often does some translation of the VHDL
program into a restricted VHDL subset, and it is thus difficult or impossible
to trace back to statements in the original program. Most of the design,
simulation, and testing applications mentioned in this paper are consequently
not possible using a post-encoding technique.

– One of the variables that the model size is a function of is the size of the
input program (e.g., the bits needed to represent the program counters).
Post-encoding reductions cannot reduce this overhead in general.

– Slicing permits more complex reductions of programs to be specified than
is possible using COI. For example, suppose the specification is of the form
“Signal x is always false”. In verification, we are primarily interested in
ensuring that counterexamples in the original program are also in the slice.
Thus, we can select the set of all statements that potentially assign non-false
values to x as the slicing criterion, and perform a backward slice with respect
to these statements to produce the desired reduced program. In the most
general case, the structure of the specification can be analyzed to determine
the appropriate combination of forward and backward slices that result in
an equivalent program.

– The precise interprocedural slicing technique used is based on “matched-
parenthesis reachability” [7,8,29], which is more involved than the ordinary
graph reachability used by pre-encoding COI. As mentioned in Section 2,
not all SDG paths are possible execution paths, since paths in which calls
and returns are mismatched can be excluded. Although the problem of de-
termining the feasibility of a given SDG path is in general undecidable, such

Program Slicing of Hardware Description Languages 311

mismatched paths can be excluded using a balanced parenthesis language.
Ordinary reachability is an example of CFL-reachability in which the CFL
is the regular language e∗ (where all edges are labeled with e), while this
balanced parenthesis condition can not be expressed either with a regular
language or with a linear-CFL. Thus, a pre-encoding COI requires a com-
plete elaboration and unfolding of function calls to achieve the same effect,
which results in greater design size.

8 Conclusions

In this paper, we have shown how to extend traditional slicing techniques to
VHDL, using an approach based on capturing VHDL operational semantics with
traditional constructs. We have implemented a tool for automatic slicing, and
the paper listed many applications of the tool along with some experimental
results showing the state space reduction achievable in model checking. We are
currently pursuing further research along four lines. First, we are enhancing the
class of supportable HDL (both VHDL and Verilog) constructs. Second, we are
investigating techniques to achieve more precise slices, by capturing VHDL se-
mantics more accurately in the SDGs. The current SDGs are conservative in
allowing for more dependences than actually exist, and more inter-cycle analysis
of VHDL can remove some of these dependences. Third, we are working on de-
veloping slicing techniques for general concurrent languages, since the techniques
described here extend readily to other concurrent languages. Finally, we are de-
veloping a theoretical basis to generate slicing criteria from CTL specifications
for use in formal verification.

References

1. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986. 299

2. D. Déharbe, S. Shankar, and E.M. Clarke. Model checking VHDL with CV. In
Formal Methods in Computer Aided Design (FMCAD), page to appear, 1997. 299,
308

3. M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984. 299, 300

4. M. Weiser. Program slices: Formal, psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, University of Michigan,
1979. 300

5. K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
pages 177–184, New York, NY, 1984. ACM Press. 300, 301

6. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
3(9):319–349, 1987. 300

312 E.M. Clarke et al.

7. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60,
January 1990. 300, 301, 310

8. S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings of
the Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 11–20, New York, NY, December 1994. ACM Press. 300, 301, 310

9. F. Tip. A survey of program slicing techniques. Technical Report CS-R9438,
Centrum voor Wiskunde en Informatica, 1994. 300

10. D. Binkley and K. Gallagher. Program slicing. In M. Zelkowitz, editor, Advances
in Computers, Vol. 43. Academic Press, San Diego, CA, 1996. 300

11. K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, SE-17(8):751–761, August 1991. 300

12. J. Lyle and M. Weiser. Experiments on slicing-based debugging tools. In Pro-
ceedings of the First Conference on Empirical Studies of Programming, June 1986.
300

13. D. Binkley. Using semantic differencing to reduce the cost of regression testing.
In Proceedings of the 1992 Conference on Software Maintenance (Orlando, FL,
November 9-12, 1992), pages 41–50, 1992. 300

14. S. Bates and S. Horwitz. Incremental program testing using program dependence
graphs. In ACM Symposium on Principles of Programming Languages, pages 384–
396, 1993. 300

15. S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345–387, July
1989. 300

16. S. Horwitz. Identifying the semantic and textual differences between two versions
of a program. In SIGPLAN Conference on Programming Languages Design and
Implementation, pages 234–245, 1990. 300

17. T. Reps and T. Turnidge. Program specialization via program slicing. In O. Danvy,
R. Glueck, and P. Thiemann, editors, Proc. of the Dagstuhl Seminar on Partial
Evaluation, volume 1110 of Lecture Notes in Computer Science, pages 409–429,
Schloss Dagstuhl, Wadern, Germany, February 1996. Springer-Verlag. 300

18. J.Q. Ning, A. Engberts, and W. Kozaczynski. Automated support for legacy code
understanding. Communications of the ACM, 37(5):50–57, May 1994. 300

19. D. Jackson and E.J. Rollins. A new model of program dependences for reverse
engineering. SIGSOFT 94: Proceedings of the Second ACM SIGSOFT Symposium
on the Foundations of Software Engineering, (New Orleans, LA, December 7-9,
1994), ACM SIGSOFT Software Engineering Notes, 19, December 1994. 300

20. T. Reps and G. Rosay. Precise interprocedural chopping. SIGSOFT 95: Pro-
ceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, (Washington, DC, October 10-13, 1995), ACM SIGSOFT Software
Engineering Notes, 20(4), 1995. 300, 301

21. D. Binkley. Precise executable interprocedural slices. ACM Letters on Program-
ming Languages and Systems, 2:31–45, 1993. 300

22. M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352–357, July 1984. 300

23. IEEE. IEEE Standard VHDL Language Reference Manual, 1987. Std 1076-1987.
303

24. E.M. Clarke, M. Fujita, S.P. Rajan, T. Reps, S. Shankar, and T. Teitelbaum.
Program slicing of hardware description languages. Technical Report CMU-CS-
99-103, Carnegie Mellon University, 1999. 309

Program Slicing of Hardware Description Languages 313

25. M. Iwaihara, M. Nomura, S. Ichinose, and H. Yasuura. Program slicing on VHDL
descriptions and its applications. In Asian Pacific Conference on Hardware De-
scription Languages (APCHDL), pages 132–139, 1996. 309

26. S. Ichinose, M. Iwaihara, and H. Yasuura. Program slicing on VHDL descriptions
and its evaluation. Technical report, Kyushu University, 1998. 309

27. L. Millett and T. Teitelbaum. Slicing promela and its applications to protocol
understanding and analysis. In 4th International SPIN Workshop, pages 75–83,
1998. 309

28. Robert P. Kurshan. ”Computer-Aided Verification of Coordinating Processes”.
Princeton University Press, 1994. 310

29. T. Reps. Program analysis via graph reachability. In Proc. of ILPS ’97: Int. Logic
Programming Symposium, pages 5–19, Cambridge, MA, 1997. M.I.T. 310

	Introduction
	Background
	Inter-procedural Slicing
	VHDL Slicing
	Constructing the CFG
	PDG Modifications
	The Master Process
	Correctness

	The Slicer
	Tool Walkthrough

	Applications
	Related Work
	Conclusions

