
Program Synthesis

Program Synthesis

Sumit Gulwani

Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov

University of Washington

polozov@cs.washington.edu

Rishabh Singh

Microsoft Research

risin@microsoft.com

Boston — Delft

sumitg@microsoft.com
polozov@cs.washington.edu
risin@microsoft.com

Foundations and Trends® in

Programming Languages

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Gulwani, O. Polozov and R. Singh. Program Synthesis. Foundations and Trends®

in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.

This Foundations and Trends® issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-292-1
© 2017 S. Gulwani, O. Polozov and R. Singh

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in-
ternal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Foundations and Trends® in

Programming Languages

Volume 4, Issue 1-2, 2017

Editorial Board

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martín Abadi
Google &
UC Santa Cruz

Anindya Banerjee
IMDEA

Patrick Cousot
ENS Paris & NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research &
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Oracle

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI-SWS & UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
UMass, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
TU Denmark

Peter O’Hearn
UCL

Benjamin C. Pierce
UPenn

Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Purdue University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weirich
UPenn

Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey

and tutorial articles in the following topics:

• Abstract interpretation

• Compilation and interpretation

techniques

• Domain specific languages

• Formal semantics, including

lambda calculi, process calculi,

and process algebra

• Language paradigms

• Mechanical proof checking

• Memory management

• Partial evaluation

• Program logic

• Programming language

implementation

• Programming language security

• Programming languages for

concurrency

• Programming languages for

parallelism

• Program synthesis

• Program transformations and

optimizations

• Program verification

• Runtime techniques for

programming languages

• Software model checking

• Static and dynamic program

analysis

• Type theory and type systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2017, Volume 4, 4 issues.

ISSN paper version 2325-1107. ISSN online version 2325-1131. Also available

as a combined paper and online subscription.

Foundations and Trends® in Programming Languages
Vol. 4, No. 1-2 (2017) 1–119

© 2017 S. Gulwani, O. Polozov and R. Singh
DOI: 10.1561/2500000010

Program Synthesis

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Oleksandr Polozov
University of Washington

polozov@cs.washington.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

sumitg@microsoft.com
polozov@cs.washington.edu
risin@microsoft.com

Contents

1 Introduction 3

1.1 Program Synthesis . 3

1.2 Challenges . 5

1.3 Dimensions in Program Synthesis 7

1.4 Roadmap . 13

2 Applications 15

2.1 Data Wrangling . 15

2.2 Graphics . 23

2.3 Code Repair . 26

2.4 Code Suggestions . 30

2.5 Modeling . 31

2.6 Superoptimization . 32

2.7 Concurrent Programming 34

3 General Principles 37

3.1 Second-Order Problem Reduction 37

3.2 Oracle-Guided Synthesis 39

3.3 Syntactic Bias . 45

3.4 Optimization . 53

ix

x

4 Enumerative Search 57

4.1 Enumerative Search . 57

4.2 Bidirectional Enumerative Search 62

4.3 Offline Exhaustive Enumeration and Composition 63

5 Constraint Solving 65

5.1 Component-Based Synthesis 67

5.2 Solver-Aided Programming 71

5.3 Inductive Logic Programming 75

6 Stochastic Search 77

6.1 Metropolis-Hastings Algorithm for Sampling Expressions . 77

6.2 Genetic Programming . 80

6.3 Machine Learning . 84

6.4 Neural Program Synthesis 85

7 Programming by Examples 91

7.1 Problem Definition . 91

7.2 Version Space Algebra . 93

7.3 Deduction-Based Techniques 95

7.4 Ambiguity Resolution . 100

8 Future Work 107

Acknowledgements 111

References 113

Abstract

Program synthesis is the task of automatically finding a program in the

underlying programming language that satisfies the user intent expressed

in the form of some specification. Since the inception of AI in the 1950s,

this problem has been considered the holy grail of Computer Science.

Despite inherent challenges in the problem such as ambiguity of user

intent and a typically enormous search space of programs, the field of

program synthesis has developed many different techniques that enable

program synthesis in different real-life application domains. It is now

used successfully in software engineering, biological discovery, computer-

aided education, end-user programming, and data cleaning. In the last

decade, several applications of synthesis in the field of programming by

examples have been deployed in mass-market industrial products.

This survey is a general overview of the state-of-the-art approaches

to program synthesis, its applications, and subfields. We discuss the

general principles common to all modern synthesis approaches such as

syntactic bias, oracle-guided inductive search, and optimization tech-

niques. We then present a literature review covering the four most

common state-of-the-art techniques in program synthesis: enumerative

search, constraint solving, stochastic search, and deduction-based pro-

gramming by examples. We conclude with a brief list of future horizons

for the field.

S. Gulwani, O. Polozov and R. Singh. Program Synthesis. Foundations and Trends®

in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017.

DOI: 10.1561/2500000010.

1

Introduction

1.1 Program Synthesis

Program Synthesis is the task of automatically finding programs from

the underlying programming language that satisfy user intent expressed

in some form of constraints. Unlike typical compilers that translate

a fully specified high-level code to low-level machine representation

using a syntax-directed translation, program synthesizers typically per-

form some form of search over the space of programs to generate a

program that is consistent with a variety of constraints (e.g. input-

output examples, demonstrations, natural language, partial programs,

and assertions).

The problem of program synthesis has long been considered the holy

grail of Computer Science. Pnueli considered program synthesis to be

one of the most central problems in the theory of programming [110].

There has been a lot of progress made in this field in many different

communities including programming languages, machine learning, and

artificial intelligence. The idea of constructing interpretable solutions

(algorithms) with proofs by composing solutions of smaller sub-problems

was considered as early as in 1932 in the early work on constructive

Mathematics [70]. After the development of first automated theorem

3

4 Introduction

provers, there was a lot of pioneering work on deductive synthesis

approaches [41, 85, 144]. The main idea behind these approaches was to

use the theorem provers to first construct a proof of the user-provided

specification, and then use the proof to extract the corresponding logical

program. Another approach that became popular shortly afterwards was

that of transformation-based synthesis [86], where a high-level complete

specification was transformed repeatedly until achieving the desired

low-level program.

The deductive synthesis approaches assumed a complete formal

specification of the desired user intent was provided, which in many

cases proved to be as complicated as writing the program itself. This

lead to new inductive synthesis approaches that were based on induc-

tive specifications such as input-output examples, demonstrations etc.

Shaw et al. [125] developed a framework for learning restricted Lisp

programs from a single input-output example. Summers [137] and Bier-

mann [13] developed techniques to learn a rich class of LISP programs

from multiple input-output examples. Pygmalion [131] was one of the

first successful programming by demonstration systems that inferred

recursive programs from a set of concrete executions of a program. There

has also been a lot of pioneering work on using genetic programming

approaches to automatically evolve programs that are consistent with a

specification [73]. These approaches are inspired from Darwin’s theory

of evolution, and evolve a random population of programs continuously

into new generations until generating the desired programs.

The more recent program synthesis approaches allow a user to

additionally provide a skeleton (grammar) of the space of possible

programs in addition to the specification [3]. This results in two benefits.

First, the grammar provides structure to the hypothesis space, which can

result in a more efficient search procedure. Second, the learnt programs

are also more interpretable since they are derived from the grammar.

The Sketch [132] system pioneered this idea to allow programmers to

write partial program sketches (programs with holes), which are then

automatically completed given some specification. FlashFill [43, 49] is

perhaps one of the most visible Programming By Examples system that

is shipping in Microsoft Excel. FlashFill defines the hypothesis space of

1.2. Challenges 5

programs using a domain-specific language of regular expression based

string transformations, and uses version-space algebra based synthesis

techniques to efficiently synthesize string transformation programs from

few input-output examples.

Many modern program synthesis applications are built on top of

some meta-synthesis framework. Such frameworks allow a user to sepa-

rately define a program space (a grammar or a program skeleton) and

describe some insights for the synthesis algorithm (e.g. encoding of the

synthesis problem into SAT/SMT constraints or inverse semantics of the

program’s operators). The framework then automatically converts these

definitions into an efficient synthesizer for the given application domain.

Most popular synthesis frameworks include the aforementioned Sketch

system [132], the PROSE framework for FlashFill-like programming

by examples [113], and the Rosette virtual machine for solver-aided

programming [139].

1.2 Challenges

Program synthesis is a notoriously challenging problem. Its inherent

challenge lies in two main components of the problem: intractability of

the program space and diversity of user intent.

Program Space In its most general formulation (for a Turing-complete

programming language and an arbitrary constraint) program synthesis

is undecidable, thus almost all successful synthesis approaches perform

some kind of search over the program space. This search itself is a hard

combinatorial problem. The number of programs in any non-trivial

programming language quickly grows exponentially with program size,

and this vast number of possible candidates for a long time has rendered

the task intractable.

Early approaches to program synthesis focused on deductive and

transformational methods [85, 86]. Such methods are based on a ex-

ponentially growing tree of theorem-proving deductive inferences or

correctness-preserving code rewrite rules, respectively. Both approaches

guarantee that the produced program satisfies the provided constraint

6 Introduction

by construction but the non-deterministic nature of a theorem-proving

or code-rewriting loop cannot guarantee efficiency or even termination

of the synthesis process. Modern successful applications of similar tech-

niques employ clever domain-specific heuristics for cutting down the

derivation tree (see, for example, [63, 104]).

The last two decades brought a resurgence of program synthesis

research with a number of technological and algorithmic breakthroughs.

First, Moore’s law and advances in constraint solving allowed exploring

larger program spaces in reasonable time. This led to many success-

ful constraint-based synthesis applications tracing their roots back to

Sketch and the invention of counterexample-guided inductive synthe-

sis [132]. Second, novel approaches to program space enumeration such as

stochastic techniques [105, 123] and deductive top-down search [43, 113]

enabled synthesis applications in new domains that were difficult to

formalize through theorems and rewrite rules.

However, even though modern-day synthesis techniques produce

sizable real-life code snippets, they are still rarely applicable to industrial-

size projects. For instance, at the time of this writing, the state-of-the-art

superoptimization technique (i.e., synthesizer of shorter implementations

of a given function; see §2.6) by Phothilimthana et al. [109] is able to

explore a program space of size 1079. In contrast, discovering an expert

implementation of the MD5 hash function requires exploring a space of

105943 programs!1 New algorithmic advances and clever exploitation of

domain-specific knowledge to facilitate large program space exploration

is an active research area in program synthesis.

User Intent Even armed with an efficient search technique, program

synthesizers may not immediately reach the dream of automatic pro-

gramming. The second challenge in synthesis is accurately expressing

and interpreting user intent—the specification on the desired program.

Different methods for expressing user intent range from formal

logical specifications to informal natural-language descriptions or input-

output examples. Specifications on the formal end of this spectrum

1See Rastislav Bodik’s ICFP-2015 keynote talk “Program Synthesis: Opportunities
for the Next Decade” for a detailed comparison: https://youtu.be/PI99A08Y83E.

https://youtu.be/PI99A08Y83E

1.3. Dimensions in Program Synthesis 7

(traditionally required by deductive synthesis techniques) often appear

to the user as complex as writing the program itself. Specifications on

the informal end, on the other hand, are highly ambiguous. For instance,

for a given input-output example (“John Smith” → “Smith, J.”) the

program space of FlashFill [43] may contains millions of programs

consistent with it. Most of these programs simply overfit the example

and do not satisfy the spirit of user intent. However, FlashFill has no

way to discover this without additional communication from the user.

Many real-life application domains for program synthesis are too com-

plex to be described completely with formal or informal specifications.

First, such a description would likely contain so many implementation

details and special cases that it would be comparable in size to the

produced program. Second, and most importantly, the users themselves

often do not imagine the full scope of their intent until they begin an

interaction with a programmer or a program synthesis system. Both

of these observations imply that applying program synthesis to larger

industrial applications is much a human-computer interaction (HCI)

problem as it is an algorithmic one. This survey mostly focuses on

algorithmic approaches to program synthesis but we also briefly discuss

some HCI-related research in §3.2, 3.3 and 7.4.

1.3 Dimensions in Program Synthesis

A synthesizer is typically characterized by three key dimensions: the

kind of constraints that it accepts as expression of user intent, the

space of programs over which it searches, and the search technique it

employs [42]. The synthesized program may be explicitly presented to

the user for debugging, re-use, or for being incorporated as part of a

larger workflow. However, in some cases, the synthesized program may

be implicit and is simply used to automate the intended one-off task

for the user, as in case of spreadsheet string transformations [43].

1.3.1 User Intent

The user intent can be expressed in various forms including logical

specification, examples [44], traces, natural language [28, 46, 79], partial

8 Introduction

programs [132], or even related programs. A particular choice may be

more suited in a given scenario depending on the underlying task as

well as on the technical background of the user.

A logical specification is a logical relation between inputs and out-

puts of a program. It can act as a precise and succinct form of functional

specification of the desired program. However, complete logical specifi-

cations are often quite tricky to write.

End users, who are not programming experts, may find providing

examples as more approachable and natural. Example-based specifi-

cations more generally include asserting properties of the output (as

opposed to specifying the full output) on a given input state [113]. A

key challenge in this environment is that of resolving ambiguity that

is inherent in the example-based specification. Such an ambiguity is

often resolved in an interactive loop with the user, where the user may

iteratively provide more examples dependant on the behavior of the

program synthesized in the last step.

A trace is a detailed step-by-step description of how the program

should behave on a given input. A trace is a more detailed description

than an input-output example since it also illustrates how a specific input

should be transformed into the corresponding output as opposed to just

describing what the output should be. Traces are an appropriate model

for programming by demonstration systems [25], where the intermediate

states resulting from the user’s successive actions on a user interface

constitute a valid trace. From the perspective of the synthesizer, traces

are preferable to input-output examples since the former contains more

information. From the user’s perspective, providing demonstrations in

may be more taxing in general than providing input-output examples.

In some cases, a program itself might act as the best means of

specifying the intent. This happens trivially for certain applications

such as superoptimization [9, 109], deobfuscation [59] and synthesis of

program inverses [134], where the program to be optimized, deobfus-

cated, or inverted respectively forms the specification. However, even

for applications such as discovery of new algorithms [47], users might

find it easier to write the specification as an inefficient program rather

than a logical relation.

1.3. Dimensions in Program Synthesis 9

1.3.2 Search Space

The search space should strike a good balance between expressiveness

and efficiency. On one hand, the space should be large/expressive enough

to include a large class of programs for the underlying domain. While on

the other hand, the space of the programs should be restrictive enough

so that it is amenable to efficient search, and it should be over a domain

of programs that are amenable to efficient reasoning.

The search space can be over imperative or functional programs

(with possible restrictions on the control structure or the operator

set), The program space can be restricted to a subset of an existing

programming language (general purpose or domain-specific) or to a

specifically designed domain-specific language. The space of programs

can be qualified by at least two attributes: (i) the operators used

in the program, and (ii) the control structure of the program. The

control structure of the program may be restricted to a user-provided

looping template [135], a partial program with holes [132], straight-line

programs [8, 47, 63, 87, 109], or a guarded statement set with control

flow at the very top [43].

The search space can even be over restricted models of computations

such as regular or context-free grammars/transducers. Regular expres-

sion synthesis can be used for constructing text editing programs [100].

Context-free grammar synthesis is useful for paser construction [81].

Succinct logical representations may also serve as a good choice for the

search space. For instance, class of first order logic together with fixed

point equals the class of PTIME algorithms over ordered structures

such as graphs, trees, and strings. Hence, this class and also some of

its useful subclasses (such as those with a fixed quantifier depth) can

serve as good target languages for synthesizing efficient graph or tree

algorithms [57].

1.3.3 Search Technique

The search technique can be based on enumerative search, deduction,

constraint solving, statistical techniques, or some combination of these.

10 Introduction

Enumerative An enumerative search technique enumerates programs

in the underlying search space in some order and for each program

checks whether or not it satisfies the synthesis constraints. While this

might appear simple, it is often a very effective strategy. A naïve imple-

mentation of enumerative search often does not scale. Many practical

systems that leverage enumerative search innovate by developing various

optimizations for pruning the search space or by ordering it.

Deductive The deductive top-down search [113] follows the standard

divide-and-conquer technique, where the key idea is to recursively reduce

the problem of synthesizing a program expression e of a certain kind and

that satisfies a certain specification φ to simpler sub-problems (where

the search is either over sub-expressions of e or over sub-specifications

of φ), followed by appropriately combining those results. The reduction

logic for reducing a synthesis problem to simpler synthesis problems

depends on the nature of the involved expression e and the inductive

specification φ. In particular, if e is of the form F (e1, e2), the reduction

logic leverages the inverse semantics of F to push constraints on e down

through the grammar into constraints on e1 and e2.

While enumerative search is bottom-up (i.e., it enumerates smaller

sub-expressions before enumerating larger expressions), the deductive

search is top-down (i.e., it fixes the top-part of an expression and

then searches for its sub-expressions). Enumerative search can be seen

as finding a programmatic path (within an underlying grammar that

connects inputs and outputs) starting from the inputs to outputs.

Deduction does the same, but it searches for the programmatic path in

a backward direction starting from the outputs leveraging the operator

inverses. If the underlying grammar allows for a rich set of constants,

the bottom-up enumerative search can get lost in simply guessing the

right constants. On the other hand, the top-down deductive technique

can deduce constants based on the accumulated constraints as the last

step in the search process.

Constraint Solving The constraint solving based techniques [132, 135]

involve two main steps: constraint generation, and constraint resolution.

1.3. Dimensions in Program Synthesis 11

Constraint generation refers to the process of generating a logical

constraint whose solution will yield the intended program. Generating

such a logical constraint typically requires making some assumption

about the control flow of the unknown program and encoding that

control flow in some manner. Three different kinds of methods have been

used in the past for constraint generation: invariant-based, path-based,

and input-based. On one extreme, we have invariant-based methods

that generate constraints that faithfully assert that the program satisfies

the given specification [133].

Such methods also end up synthesizing an inductive proof of correct-

ness in addition to the program itself. A disadvantage of such methods

is that the generated constraints may be very sophisticated since the

inductive invariants are often much more complicated and over a richer

logic than the program itself. On the other extreme, we have input-

based methods that generate constraints that assert that the program

satisfies the given specification on a certain collection of inputs [132].

Such constraints are usually much simpler in nature than the ones

generated by the invariant-bases method. Unless paired with a sound

counterexample guided inductive synthesis strategy (CEGIS), described

in §3.2, this method trades off soundness for efficiency. A middle ground

is achieved by path-based methods that generate constraints that assert

that the program satisfies the given specification on all inputs that

execute a certain set of paths [134]. Compared to input-based methods,

these methods may achieve a faster convergence, if paired up with an

outer CEGIS loop.

Constraint solving involves solving the constraints outputted by the

constraint generation phase. These constraints often involve second-

order unknowns and universal quantifiers. A general strategy is to first

reduce the second-order unknowns to first-order unknowns and then

eliminate universal quantifiers, and then solve the resulting first-order

quantifier-free constraints using an off-the-shelf SAT/SMT solver. The

second-order unknowns are reduced to first-order unknowns by use of

templates. The universal quantifiers can be eliminated using a variety

of strategies including Farkas lemma, cover algorithms, and sampling.

12 Introduction

Statistical Various kinds of statistical techniques have been proposed

including machine learning of probabilistic grammars, genetic program-

ming, MCMC sampling, and probabilistic inference.

Machine learning techniques can be used to augment other search

methodologies based on enumerative search or deduction by providing

likelihood of various choices at any choice point. One such choice point

is selection of a production for a non-terminal in a grammar that

specifies the underlying program space. The likelihood probabilities can

be function of certain cues found in the input-ouput examples provided

by the user or the additionally available inputs [89]. These functions

are learned in an offline phase from training data.

Genetic programming is a program synthesis method inspired by

biological evolution [72]. It involves maintaining a population of in-

dividual programs, and using that to produce program variants by

leveraging computational analogs of biological mutation and crossover.

Mutation introduces random changes, while crossover facilitates sharing

of useful pieces of code between programs being evolved. Each vari-

ant’s suitability is evaluated using a user-defined fitness function, and

successful variants are selected for continued evolution. The success

of a genetic programming based system crucially depends on the fit-

ness function. Genetic programming has been used to discover mutual

exclusion algorithms [68] and to fix bugs in imperative programs [146]

MCMC sampling has been used to search for a desired program

starting from a given candidate. The success crucially depends on

defining a smooth cost metric for Boolean constraints. STOKE [124], a

superoptimization tool, uses Hamming distance to measure closeness

of generated bit-values to the target on a representative test input set,

and rewards generation of (almost) correct values in incorrect locations.

Probabilistic inference has been used to evolve a given program by

making local changes, one at a time. This relies on modeling a program

as a graph of instructions and states, connected by constraint nodes.

Each constraint node establishes the semantics of some instruction by

relating the instruction with the state immediately before the instruction

and the state immediately after the instruction [45]. Belief propagation

1.4. Roadmap 13

has been used to synthesize imperative program fragments that execute

polynomial computations and list manipulations [62].

1.4 Roadmap

This survey is organized as follows. We start out by discussing some

prominent applications of program synthesis in Chapter 2. We then

discuss some general principles used across many synthesis techniques in

Chapter 3. We then describe the four key search techniques: enumerative

(Chapter 4), constraint-solving based (Chapter 5), stochastic (Chap-

ter 6), and deduction-based programming by examples (Chapter 7).

Chapter 8 concludes with some discussion on future work.

2

Applications

2.1 Data Wrangling

While the digital revolution resulted in massive digitization of human

generated data, the past few years have seen an explosive growth in

machine generated data because of cloud computing and IoT (Internet

of Things). Data is the new oil. It is the new currency of the digital world

that enables business decisions, advertising, and recommendations.

Data Wrangling refers to the process of cleaning, transforming,

and preparing data from its raw semi-structured format to a more

structured format that is amenable for analysis and presentation. It

is estimated that data engineers/scientists spend 80% of their time in

data wrangling to bring the data into a form where they can apply

machine learning techniques to draw appropriate insights from. A typical

data wrangling pipeline involves various kinds of activities including

extraction, transformation, and formatting, which we discuss below.

PBE can enable easier and faster data wrangling [44]. In case of one-off

scenarios that deal with small-sized data that is easy to eye-ball, the user

interaction with the system can happen simply at the level of examples

and the synthesized program may be hidden from the user. However,

when the user intends to execute the synthesized program multiple

15

16 Applications

times or over big data, the user may want to inspect the program to

validate its correctness on unseen inputs.

2.1.1 Transformations

One of the most useful applications of program synthesis has been in

the context of string or other datatype transformations. This is a task

that is routinely performed by many people, and most of those people

do not have the programming expertise to automate it.

Languages like Perl, Awk, Python came into existence to support ef-

ficient string/text processing, while mainstream languages like Java/C#

already provide a rich support for string processing. Even spreadsheet

systems like Microsoft Excel allow users to write macros using a rich

inbuilt library of string and numerical functions. There are around one

billion users of such spreadsheet systems. Unfortunately, 99% of those

users are not proficient in programming; they find it too difficult to

write desired macros or scripts. A case study of spreadsheet help forums

identified that string processing is one of the most common class of

programming problems that end users struggle with [43]. These users

described the specification of an intended program to the experts on

the other side of the help forums using examples. Since examples may

lead to underspecification, the interaction between the user and the

expert often involved a few rounds of communication (over multiple

days). PBE is the ideal technology to automate such interactions.

Syntactic String Transformations Consider, for instance, the task of

converting an email address of the form “Firstname.Lastname@domain”

to “firstname lastname” as illustrated in Figure 2.1. Such syntactic

transformations are useful for converting strings from one format to

another, normalizing strings into a unified format, cleaning incorrectly

formatted strings. The FlashFill PBE technology [43] can generate an

intended program for such syntactic string transformations once the

user provides a representative set of examples.

Semantic String Transformations Some string transformation tasks

also require making use of some background knowledge that is encoded

2.1. Data Wrangling 17

Figure 2.1: The FlashFill PBE technology, released in Excel 2013, can automate
syntactic string transformations. Once the user provides one instance of the transfor-
mation (row 2, col. B) and proceeds to transforming another instance (row 3, col. B),
FlashFill synthesizes an intended program and applies it to the remaining rows to
populate col. B.

in the form of relational tables. Figure 2.2 illustrates such as task. The

task requires performing a join of two (bottom) tables, then indexing

the resultant table with the input columns (from the top table). The

task also requires performing syntactic transformations before indexing

and on the values read after indexing.

Number and Date Transformations PBE can also be useful for num-

ber transformations [126] and date transformations [129]. Consider the

task of formatting numbers to two decimal places in Figure 2.3(a). A

task even as simple as this would require a programmer to discover/re-

call the format descriptor in the underlying programming language as

shown in Figure 2.3(b). In contrast, examples act as a natural means

18 Applications

Input v1 Input v2 Output

Stroller 10/12/2010 $145.67+0.30*145.67
Bib 23/12/2010 $3.56+0.45*3.56
Diapers 21/1/2011 $21.45+0.35*21.45
Wipes 2/4/2009 $5.12+0.40*5.12
Aspirator 23/2/2010 $2.56+0.30*2.56

MarkupRec

Id Name Markup

S30 Stroller 30%
B56 Bib 45%
D32 Diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
· · · · · · · · ·

CostRec

Id Date Price

S30 12/2010 $145.67
S30 11/2010 $142.38
B56 12/2010 $3.56
D32 1/2011 $21.45
W98 4/2009 $5.12
A46 2/2010 $2.56
· · · · · · · · ·

Figure 2.2: A semantic string transformation that requires performing syntactic
manipulations on multiple lookup results. The goal is to compute the selling price

of an item (Output) from its name (Input v1) and selling date (Input v2) using the
MarkupRec and CostRec tables. The selling price of an item is computed by adding
its purchase price (for the corresponding month) to its markup charges, which in
turn is calculated by multiplying the markup percentage by the purchase price. Such
transformations can be inferred by examples [127].

of describing intent in such cases, and PBE can be used to automate

such tasks. The PBE paradigm also naturally extends to enabling more

sophisticated transformations of the kind shown in Figure 2.3(c) and

Figure 2.3(d).

Splitting Transformations Splitting involves extracting the various

sub-fields from a long string. For instance, consider the input column

and the desired output table in Figure 2.4. Performing the desired

splitting is challenging since there are multiple delimiters and not all

occurrences of a delimiter string are actual delimiters. Again, examples

can serve as a natural means for expressing intent in such cases.

While the above-mentioned transformations convert a tuple of strings

into another string, the splitting transformation converts a string into

2.1. Data Wrangling 19

Input Output

123.4567 123.46
123.4 123.40
78.234 78.23

Format descriptor
Language for rounding to

two decimal places

Excel, C# #.00
Python, C .2f

Java #.##

(a) (b)

Input Output

0d 5h 26m 5:00
0d 4h 57m 4:30
0d 4h 27m 4:00
0d 3h 57m 3:30

Input Output

08/21/2010 08/21/2010
07/24/2010 07/24/2010
20.08.2010 08/20/2010
23.08.2010 08/23/2010
2010-06-07 07/06/2010
2010-24-08 08/24/2010

(c) (d)

Figure 2.3: Sample number and date transformations that can be automated
using PBE: (a) Rounding to two decimal places, (c) Nearest lower half hour, (d)
Formatting dates to a consistent format. (b) shows the format descriptors in different
programming languages required to perform the rounding transformation in (a).

a tuple of strings. Though splitting can be seen as multiple instances of

a string transformation, this view does not leverage the specific cues

about the splitting intent. Leveraging that domain knowledge, in fact,

enables a predictive synthesis technique for splitting [116], wherein the

intended splitting can be performed without any user specification but

from just the input data.

2.1.2 Extraction

Data is locked up into documents of various types such as text/log

files, semi-structured spreadsheets, webpages, JSON, XML, and pdf

documents. These documents offer great flexibility for storing and

20 Applications

(a)

(b)

Figure 2.4: PBE can be used for column splitting: (a) input data column, (b)
output columns.

2.1. Data Wrangling 21

(a) (b)

Figure 2.5: FlashRelate can transform the semi-structured table (a) into the output
structured table (b) once the user provides a couple of examples of tuples in the
output table, for instance, the ones highlighted in orange and green, respectively.

organizing hierarchical data by combining presentation/formatting with

the underlying data. However, this flexibility makes it hard to perform

tasks such as querying or transforming data in content or to another

storage format. The ability to extract data out of such documents into

a structured tabular form can facilitate such desired processing using

appropriate data-processing tools.

The FlashRelate PBE technology allows extracting tabular/rela-

tional data from semi-structured spreadsheets. The two-dimensional

grid structure of a spreadsheet leads to creative solutions for storing

higher-dimensional data through use of spatial layouts involving headers,

whitespace, and relative positioning. While this leads to compact and

intuitive visual representations of data well suited for human understand-

ing, such encodings complicate the use of powerful data-manipulation

tools (e.g., relational query engines) that expect data in a certain form.

We call these spreadsheets semi-structured because their data is in a

regular format that is nonetheless inaccessible to data-processing tools.

It is conjectured that around 50% of spreadsheets contain data in this

not-easy-to-use format. FlashRelate allows a user to provide examples

of tuples in the output table—it then synthesizes a program to extract

more such tuples from the input semi-structured spreadsheet. Figure 2.5

illustrates the capability of FlashRelate.

22 Applications

The FlashExtract PBE technology allows extracting structured

(tabular or hierarchical) data from semi-structured text/log files and

webpages. For each field in the output data schema, the user provides

positive/negative instances of that field and FlashExtract generates

a program to extract all instances of that field. Figure 2.6 illustrates

the capability of FlashExtract. The FlashExtract technology has been

shipped in two Microsoft products: (i) ConvertFrom-String cmdlet in

Powershell in Windows 10, wherein the user provides examples of the

strings to be extracted by inserting tags around them in text. Several

Microsoft MVPs (Most Valued Professionals) have built UI experiences

on top of this cmdlet. (ii) Custom Fields feature in Microsoft Operations

Management Suite—a SAAS service for IT professionals to collect

machine data from any cloud and get operational insights. This feature

allows extracting custom fields from log files by providing examples.

2.1.3 Layout

Users sometimes want to perform layout transformations of data or-

ganized in tables or tree-shaped structures like XML/JSON. Such

transformations do not change the textual content of any data element,

but they rearrange the layout of the data, i.e. the manner in which the

various data elements are spatially/logically arranged or grouped.

For instance, consider the directory structure of music files shown

in Figure 2.8(a). The user may want to categorize her music based

on file type while also maintaining the original organization based on

genre as shown in Figure 2.8(b). PBE techniques can help automate

such transformations, thereby obviating the need to write bash scripts

or XSLT expressions for transforming such hierarchically structured

data [149].

Another interesting class of layout transformations is that of re-

formatting semi-structured tables in spreadsheets. This is challenging

because of their special layout or formatting attributes such as sub-

headers, footers, and filter cells (blank cells or cells with some special

characters to aid visual readability of table content). For instance, con-

sider the reformatting task illustrated in Figure 2.7. Examples can again

2.2. Graphics 23

(a) (b)

Figure 2.6: FlashExtract enables tabular data extraction from text/log files and
web pages using examples. Once the user highlights one or two examples of each field
in a different color (in the text file on the left side), FlashExtract extracts more such
instances and arranges them in a structured data format (table on the right side).

act as a natural means of describing intent in such cases and PBE

techniques can help automate such transformations [52].

2.2 Graphics

Synthesizing programs for constructing graphical objects has many

applications.

Constructive programmatic descriptions of graphical objects can

enable dynamic geometry that can lead to quick recomputation of

coordinates of various dependant points after a new value is assigned

to a free variable. This can enable interactive editing experiences and

efficient animations. Program synthesis techniques have been applied to

24 Applications

PROJ CAT SPONSOR DEPT ELTS DUE

SPEC OOH Infiniti Design elt 1 11/10

SPEC OOH Infiniti Desing elt 2

SPEC Print Design elt 3 11/30

SPEC Print Design elt 4 11/30

SPEC Print Infiniti Design elt 5 11/30

SPEC

OOH

Infiniti Design elt 1 11/10

Infiniti Desing elt 2

Print

Design elt 3 11/30

Design elt 4 11/30

Infiniti Design elt 5 11/30

(a) (b)

Figure 2.7: PBE can help automate reformatting transformations over semi-
structured spreadsheet tables: (a) Example input table, (b) Example output table.

(a) (b)

Figure 2.8: PBE can help automate transformations on tree-structured data like
directory structure [149].

2.2. Graphics 25

(a) (b) (c)

Figure 2.9: PBE can be used for constructing structured repetitive drawings from
a few examples of the repetitive drawing elements: (a) Lines moving on a circle
pattern, (b) Linear pattern, (c) Polylines moving on circle pattern.

generate solutions to geometry construction problems of the kind found

in high-school curriculum [48].

Images and drawings sometimes contain structured repetition as in

brick patterns, tiling patterns, and architectural drawings. Figure 2.9

illustrates some such drawings. Constructing such drawings requires the

user to write a script using CAD APIs or perform tedious copy-paste

operations with some underlying mathematical logic. PBE can be to

used to construct such structured drawings, wherein the user provides a

few examples of repetitive drawing elements, and the underlying system

predicts the next elements in the sequence [21].

PBE can bring together the complementary strengths of direct ma-

nipulation and programmatic manipulation. While direct manipulation

enables easy (but simple) manipulation of a concrete object, program-

matic manipulation allows for much more freedom and reusability (but

requires skill). Gulwani et.al. have proposed an approach that enables

construction of complex shell scripts in steps, where the user provides

examples for each step [50]. Chugh et.al. have proposed an approach

called prodirect manipulation that enables creation and modification

of programs using GUI-based manipulation for the domain of scalable

vector graphics [23, 53]. The user draws shapes, relates their attributes,

groups and edits them using the GUI, and the drawing is kept syn-

chronized with an underlying program. The various GUI-based actions

translate to constraints over example drawing. Constraint solvers are

used to generate candidate modifications to the underlying program

so that the resultant program execution generates a drawing satisfying

26 Applications

those constraints. Smart heuristics are used to select an intended mod-

ification from among the many solutions. A skilled user can edit the

resulting program during any step to refine the automatically generated

modification or to implement some new functionality.

Example 2.1. Consider the task of drawing three equi-distant rectangles

as shown in Figure 2.10(d) using the SKETCH-N-SKETCH tool [53]

that implements prodirect manipulation. The user starts out by drawing

a single rectangle using the GUI (Figure 2.10(a)), which results in the

code shown in Figure 2.10(e). The user then makes two copies of the

rectangle and drags them, roughly aligning them in the vertical direction

and roughly spacing them evenly in the horizontal direction. The user

then invokes the Merge selection over the three rectangles to indicate a

relationship and the tool abstracts the underlying representation to the

code shown in Figure 2.10(f). The user then performs the MakeEqual

selection over the y-positions of the boxes (Figure 2.10(b)), followed

by DigHole selection over the x-positions of the boxes (Figure 2.10(c)),

resulting in the refactored code shown in Figure 2.10(g). The user then

manually text-edits the hole to redefine rect2x to bind the result of the

expression (+rect1x (/ (-rect3x rect1x) 2)) to encode the desired

spacing (since there isn’t a built-in GUI selection for “distributing” the

shapes), resulting in the intended drawing in Figure 2.10(d).

2.3 Code Repair

There have been many synthesis techniques recently developed for the

code repair problem [26, 60, 99, 130]. Given a buggy program P and a

specification φ, the code repair problem requires to compute modifica-

tions to the buggy program to obtain a new program P’ such that P’

now satisfies the specification φ. The general idea of these techniques

is to first insert alternate choices for the expressions present in the

buggy program and then use synthesis techniques to find replacements

or modifications of the expressions from the inserted choices such that

the updated program satisfies the given specification. Some example

code repairs generated by the SemFix [99] and AutoProf [130] systems

are shown in Figure 2.11 and Figure 2.12 respectively.

2.3. Code Repair 27

(a) (b) (c) (d)

(def rect1 (let [x y w h color] [50 60 40 90 'blue']

(rect color x y w h)))

(def main (svg [rect1]))

(e)

(def customRect (λ (x y) (let [w h color] [40 90 'blue']

(rect color x y w h))))

(def main (svg[(customRect 50 60) (customRect 110 73)

(customRect 200 55)]))

(f)

(def y 60); Variable to equate values

; Variables and Hole to relate Values

(def [rect1x rect2x rect3x] [50 110 200])

(def main (svg[(customRect rect1x y) (customRect rect2x y)

(customRect rect3x y)]))

(g)

Figure 2.10: Prodirect Manipulation using SKETCH-N-SKETCH [53]. The user
arrives at the diagram in (d) by going through the intermediate stages in (a), (b),
and (c). Correspondingly, the underlying code evolves as shown in (e), (f), and, (g).

28 Applications

Test set

Input Output

inb usep dsep expected actual

1 0 100 0 0

1 11 110 1 0

0 100 50 1 1

1 -20 60 1 0

0 0 10 0 0

1 int buggy(int inb, int usep, int dsep) {

2 int bias;

3 if (inhb)

4 bias = dsep; //fix: bias = usep+100

5 else

6 bias = usep;

7 if (bias > dsep)

8 return 1;

9 else

10 return 0;

11 }

Figure 2.11: An example code repair synthesized by the SemFix [99] on a Tcas
benchmark using the set of passing and failing test cases.

Given a buggy program P and a test suite T consisting of both

passing and failing test cases, SemFix first uses statistical fault local-

ization techniques to generate a list of program statements ranked by

their suspiciousness of being the cause of the bug. It then iteratively

tries to repair statements in the order of their suspiciousness until a

successful repair is generated. For a given statement, it replaces the

statement with an unknown function over the live variables, and uses

component-based synthesis to compute the unknown function such that

it satisfies the constraints obtained from the testcases.

AutoProf uses constraint-based synthesis to repair student submis-

sions. Unlike SemFix, AutoProf uses the reference implementation as

the specification. It first uses an error model (corresponding to com-

mon mistakes that students typically make on a given assignment) to

2.3. Code Repair 29

1 def computeDeriv(pol):

2 deriv = []

3 zero = 0

4 if (len(pol)==1):

5 return deriv

6 for e in range(0, len(pol)):

7 if (pol[e]==0):

8 zero += 1

9 else:

10 deriv.append(pol[e]*e)

11 return deriv

Generated Feedback (Repair)

The program requires 3 changes:

• In the return statement return deriv
in line 5, replace deriv by [0].

• In the comparison expression (pol[e]
== 0) in line 7, change (pol[e] ==
0) to False.

• In the expression range(0, len(pol))
in line 6, change 0 to 1.

Figure 2.12: An example repair generated by the AutoProf [130] system on a
student submission to an introductory programming course on the edX platform.

define the space of modifications to a student program. It then uses the

Sketch solver to find minimum number of changes (from the space

of modifications) to the student submission such that it becomes func-

tionally equivalent to the reference implementation. Similar synthesis

techniques have also been developed for auto-grading assignments for

an Embedded systems laboratory course [65] and was recently deployed

for a MOOC course. Recently, a technique has been proposed to also

take into account semantic distance in addition to syntactic distance to

compute better repairs for student submissions [26].

There are also some game-based repair techniques [60]. The game

consists of the product of a modified version of the program and an

automaton representing the LTL specification of the program. The

program game is an LTL game that captures the possible repairs of the

program by making some values in the program unknown. The game is

played between the environment that provides the inputs and the system

that provides the correct value for the unknown expression. The game

is won if for any input, the system can provide a value for the unknowns

such that the specification is satisfied. The repair technique computes

a memoryless winning strategy for the game, which corresponds to a

repair for the buggy program.

30 Applications

2.4 Code Suggestions

Finding code suggestions or completing code snippets is a direct appli-

cation of program synthesis to software engineering, in the spirit of the

original vision of the field. Most modern code editors and IDEs include

an “autocompletion” capability, which predicts the next likely token

in the program based on the previously typed ones (e.g., IntelliSense

in Microsoft Visual Studio or Content Assist in Eclipse). Program syn-

thesis has the potential to enhance this capability by automatically

completing whole snippets of code instead of single tokens. In addition,

it can take into account optional annotations about the desired snippet

properties from the programmer such as expression types or keywords

in the identifiers.

Automatic code completion is particularly handy in the presence of

unfamiliar APIs. Modern software libraries/framework include tens of

thousands of members, which are difficult to navigate for an outsider.

A programmer often needs to write a multi-line snippet composing mul-

tiple unconnected API calls in order to accomplish a task. Researchers

in program synthesis have proposed several approaches to resolve this

issue, most notable being statistical models [114], type-directed comple-

tion [106], and tools like InSynth [51] and Bing Developer Assistant [151].

Statistical techniques, employed by Raychev et al. [114] and Zhang

et al. [151], use probabilistic models to solve the synthesis problem in

whole or in part. They leverage the vast dataset of Web code snippets

from GitHub, StackOverflow, and other programmer networks (colloqui-

ally known as “Big Code”) to build a model of API call sequences [114]

or to find a snippet matching a given natural language query [151].

In [114], API call sequences are treated similarly to textual sentences,

and modelled using N -gram or RNN-based language models. In [151],

a user-provided query like “how to save an image” is submitted to a

search engine, and then the discovered code snippets are transformed

to fit the user’s code context (e.g. input/output variable names). Both

projects share some common important characteristics:

2.5. Modeling 31

• They require a logic-based component to analyze data flow and

control flow of the synthesized snippets, since treating programs

purely as text is likely to produce nonsensical output.

• They rely on some high-quality ranking function to present a

list of suggestions to the user. This ranking function commonly

involves a mix of statistically induced similarity scores based

on the user’s query and dataset, and some heuristically chosen

weights for precise tailoring.

Both approaches are highly successful. Raychev et al. predict the desired

completion among top 3 suggestions in more than 90% of cases. Bing

Developer Assistant was released as a Visual Studio extension with

more than 600K downloads and mostly positive reviews. According to

Zhang et al., it saved 28% of the time for the programmers in their

experimental study.

Gvero et al. [51] and Perelman et al. [106] use typing information

as a primary driver behind their completion approaches. Both projects

solve the problem of synthesizing a snippet of API calls from a partial

program (optionally annotated with keywords or type information).

They solve it using enumerative search (forward in [106] and backward

in [51]), augmented with a ranking function and space abstractions.

The key part of both algorithms is some form of space abstraction.

It leverages type information to reformulate the synthesis problem in a

more concise and abstract program space. The particular abstraction

techniques vary: Gvero et al. introduce an abstract lambda calculus

based on succinct types (i.e. program types grouped by equivalence

modulo products and currying), and Perelman et al. infer abstract types

such as “path” or “font family name” based on usage patterns. This

abstraction makes the enumerative search tractable, bringing its runtime

to a fraction of a second for a typical query.

2.5 Modeling

Probabilistic modeling is a technique for analysis of complex dependent

systems based on empirical evidence. The most widespread tools for

probabilistic modeling are various forms of machine learning: Markov

32 Applications

models, neural networks, Bayesian networks, etc. Typically, a proba-

bilistic model involves two components: a structure of the system (i.e.

a description of dependencies between system components) and its

parameters (i.e. particular statistical distributions for all component).

Most forms of machine learning focus on inferring parameters of the

model, assuming a given structure such as linear regression. Program

synthesis has been applied to learning the model structure in a form of

a probabilistic program [101].

Figure 2.13 shows an example of a sketch for a probabilistic program

for modeling player skills in an online game, together with associated

empirical evidence: some sample outcomes of such games. In this sketch,

the assumed distributions for the system components (that is, player

skills and their performances in individual games) are replaced with holes.

The programmer also annotates holes with hypothesized dependencies

between the components. The PSketch system [101] takes this sketch

and a dataset as an input, and completes the sketch by synthesizing

probabilistic expressions for the holes that match the empirical evidence.

The synthesis problem includes both the model structure (that is, which

distributions should be chosen for the components) and its parameters.

2.6 Superoptimization

Superoptimization is the task of synthesizing an optimal sequence

of instructions (over some target architecture) that is functionally

equivalent to a given piece of code [87].

Superoptimization is used to generate optimized machine code. The

traditional application is to optimize straight-line code fragments [9, 109].

However, it has also been applied to optimize loop fragments in the

context of auto-vectorization [12]. Superoptimization has also been used

to synthesize bitvector programs, which combine arithmetic and bitwise

operations. Bitvector programs can be quite unintuitive and extremely

difficult for average, or sometimes even expert, programmers to discover

methodically. Consider, for example, the problem of computing the

average of two numbers x and y without using conditionals. Note that

(x + y)/2 is not correct since the computation can overflow. Instead

2.6. Superoptimization 33

Sketch:

1 struct game {

2 int id;

3 int p1;

4 int p2;

5 int result;

6 }

8 double[] TSSketch(struct game[] games, int count) {

9 double[] skills;

10 int[] r;

12 for i=0 to count-1

13 skills[i] := ??;

14 foreach g in games

15 r[g.id] = ??(skills[g.p1], skills[g.p2]);

16 foreach g in games

17 observe(g.result == r[g.id]);

18 return skills;

19 }

Data:

m.p1 m.p2 result

0 1 1
1 2 1
0 2 1

id skill

0 105
1 95
2 90

Figure 2.13: A sketch of a probabilistic program for a TrueSkill model [55], and
associated evidence data (re-used from [101]). The holes ?? should be replaced with
synthesized probabilistic expressions so that the entire program best matches the
data. For this example, the first hole is filled in with Gaussian(100, 10) and the
second one with Gaussian(skills[g.p1], 15) > Gaussian(skills[g.p2], 15).

34 Applications

this can be achieved using the following composition of bitwise and

arithmetic operators: (x|y)− ((x⊕ y) >> 1).

One approach to superoptimization has been to simply enumerate

sequences of increasing length or cost, testing each for equality with the

target specification [87]. Another approach has been to constrain the

search space to a set of equality-preserving transformations expressed

by the system designer [63] and then select the one with the lowest

cost. Yet another approach has been to reduce the code sequence search

problem to that of SAT/SMT constraint solving, thereby allowing use

of powerful off-the-shelf constraint solvers [47].

Sometimes superoptimization can be too expensive to be performed

during a compilation phase. One scalability paradigm has been to

generate general purpose peephole optimizers in an offline phase—by

automatically discovering replacement rules mapping original sequences

to their optimized counterparts and organizing them into a lookup

table [8]. Another paradigm has been to develop new optimization

techniques. The LENS algorithm [109] does this elegantly in the context

of enumerative search methods—it leverages an elegant memoization

strategy, wherein it computes programs of bounded size that satisfy a

given set of examples and incrementally refines these programs with

more examples in the next iteration. The algorithm also leverages a

powerful meet-in-the-middle pruning technique based on bidirectional

search, where the candidate programs are enumerated forward from

input states and also backward from output states.

2.7 Concurrent Programming

Writing concurrent programs with efficient synchronization is a chal-

lenging and error-prone task even for proficient programmers. There

have been several synthesis techniques designed to help programmers

write such complex code, e.g. by automatically synthesizing placement

of minimal synchronization constructs in a concurrent program [17, 143]

or by inferring placement of memory fences in concurrent programs run-

ning on relaxed memory models [75]. The Abstraction-Guided Synthesis

(AGS) [143] technique models the problem of efficient synchronization

2.7. Concurrent Programming 35

T1 {

x += z;

x += z;

}

T2 {

z++;

z++;

}

T3 {

y1 = f(x);

y2 = x;

assert (y1 != y2)

}

f(x){

if(x==1) return 3;

if(x==2) return 6;

return 5;

}

Figure 2.14: A simple example program executing three processes T1, T2, and T3
in parallel taken from [143].

inference in a given concurrent program as one in which both the ab-

straction of the program (using abstract interpretation) and the program

itself are allowed to be modified until the abstraction becomes precise

enough to verify the program.

Consider a simple example of a program executing three processes

T1|T2|T3 in parallel in Figure 2.14 taken from [143]. The variables y1

and y2 in T3 can take different values depending upon the different

interleavings of the statements in the processes. For example, the inter-

leaving z++; x+=z; x+=z; y1=f(x); y2=x; z++; assert results in the

values {y1=6, y2=2}, whereas the interleaving x+=z; x+=z; y1=f(x);

y2=x; z++; z++; assert results in {y1=5, y2=0}. The interleaving

z++; x+=z; y1=f(x); z++; x+=z; y2=x;assert results in the assertion

violation with {y1=3, y2=3}. The goal of the synthesis process is to

place minimal synchronization such that the safety requirements are

met, i.e. the assert statement in T3 is satisfied.

The AGS algorithm first performs an abstract interpretation of the

program using an abstract domain and checks if there is any abstract

interleaving that results in violation of the safety constraint. If none, it

returns the current program. Otherwise, there exists a counter-example

interleaving that violates the assertion and AGS has two choices: either

refine the abstraction (parity to interval, interval to octagon etc.) or

modify the program by adding synchronization such that this interleav-

ing is disallowed. The algorithm non-deterministically chooses one (may

need to backtrack sometimes) and continues this process until finding

a program that can be verified given the abstraction. For the simple

example, a sample run of the algorithm is shown in Figure 2.15.

36 Applications

T1

x += z;

x += z;

T2

z++;

z++;

T3

y1 = f(x);

y2 = x;

assert (y1 != y2)

T1

x += z;

x += z;

T2

z++;

z++;

T3

y1 = f(x);

y2 = x;

assert (y1 != y2)

T1

x += z;

x += z;

T2

z++;

z++;

T3

y1 = f(x);

y2 = x;

assert (y1 != y2)

T1

x += z;

x += z;

T2

z++;

z++;

T3

y1 = f(x);

y2 = x;

assert (y1 != y2)

T1

x += z;

x += z;

T2

z++;

z++;

T3

y1 = f(x);

y2 = x;

assert (y1 != y2)

parity

parity parity

interval interval

Figure 2.15: A sample run of the AGS algorithm on the example problem in
Figure 2.14.

3

General Principles

3.1 Second-Order Problem Reduction

Program synthesis is a second-order search problem, where the goal is

to discover a function that satisfies a given specification. Clearly, this is

an undecidable problem in general. If we can reduce this second-order

search problem to a first-order search problem, we can leverage off-the-

shelf constraint solvers that can deal with first-order constraints. One

approach to doing that is via use of templates, which are hints about

the syntactic structure of the artifact to be discovered [135]. The syn-

thesis task thus reduces to searching for the missing components in the

template. The templates act as an expressive yet accessible mechanism

for the programmer to express their insight since the programmer’s

task is now limited to simply specifying the high-level structure without

worrying about the low level details.

As an example, consider the task of drawing a pixelated line, approx-

imating a real line, between coordinates points (0, 0) and (X,Y), say in

the top-right quadrant. The desired program is expected to generate

(x, y) for the pixelated line such that the output values should not

deviate more than half a pixel away from the real value, i.e., we need

|y − Y
X
x| ≤ 1

2 for any (x, y). This property is captured formally using

37

38 General Principles

(a) (b)

(c) (d)

Figure 3.1: (b) shows the inductive loop invariant to establish correctness of
Bresenhams code in (d). Both (b) and (d) can be synthesized from the templatized
Bresenhams code in (c) and the specification in (a).

the notFar predicate in Figure 3.1(b). The programmer may specify

the program template shown in Figure 3.1(c) the involves a loop with

an unknown loop body and some unknown initialization.

While it is obvious that the statements will involve updates to x and

y, the insight for using an auxiliary variable v1 may not immediately

occur to the programmer. The programmer may add that in a template

refinment step after the synthesizer fails to return a solution. It turns

out that this extra variable v1 is used by the program as a measure of

the error variable between the discrete line and the real line as shown

in the synthesized program in Figure 3.1(d).

The template-based program synthesis approach builds on top of

the template-based program verification approach [133]. The latter

attempts to find a inductive proof of correctness, given a program and the

pre/postcondition pair. For instance, such techniques can automatically

synthesize the inductive invariant in Figure 3.1(b), given the program in

Figure 3.1(d) and an appropriate template for the inductive invariant. It

turns out that this verification methodology extends to the more general

3.2. Oracle-Guided Synthesis 39

synthesis setting where the program statements are also abstracted away

via templates as shown in Figure 3.1(c).

Templates are quite similar to sketches in the Sketch system [132],

discussed in §3.3.1. However, there are two key differences. Sketch

synthesizes integers that are bounded for each hole, while program tem-

plates contain holes that are arbitrary expressions and predicates, and

therefore the synthesizer needs to generate values that are potentially

unbounded. Secondly, Sketch only has the notion of partial programs

and ensures only bounded verification, while templates fit well with

an underlying template-based full verification methodology that allows

specification of partial invariants as well.

3.2 Oracle-Guided Synthesis

Templates work well for reducing complexity of program synthesis,

when they are straightforward to compose. In most cases, however,

relevant domain-specific templates are unavailable. For such situations,

the community has adopted an alternative simple approach to program

synthesis. It is based on the following observation: while synthesizing a

program that satisfies a given property is a second-order problem that

may be infeasible, verifying if a given program satisfies that property is

a first-order problem, and typically more straightforward [132].

Consider the task of finding a maximum number m in a list ℓ.

Formally, synthesizing a program Pmax that solves this task can be

described by the following specification:

∃Pmax ∀ℓ,m : Pmax(ℓ) = m =⇒ (m ∈ ℓ) ∧ (∀x ∈ ℓ : m ≥ x) (3.1)

This is a second-order formula. Suppose now that we have a candi-

date program Pmax. Validating that Pmax does, in fact, solve the task

is equivalent to validating the following formula:

∀ℓ,m : Pmax(ℓ) = m =⇒ (m ∈ ℓ) ∧ (∀x ∈ ℓ : m ≥ x) (3.2)

Instead of proving Equation 3.2 we can disprove its negation:

∃ ℓ,m : (Pmax(ℓ) = m) ∧ (m 6∈ ℓ ∨ ∃x ∈ ℓ : m < x) (3.3)

40 General Principles

Equation 3.3 is a first-order formula.1 If it is unsatisfiable, then Pmax

is a valid solution to the original problem. If it is satisfiable, then a

specific binding of ℓ and m constitutes a counterexample. If we take

this counterexample (ℓ,m) into account during our subsequent search,

then our new candidate programs must not return m on an input ℓ –

thus we have strengthened the specification, eliminating the previous

incorrect candidate Pmax.

Furthermore, we can reformulate our verification procedure to pro-

duce a constructive counterexample – an input ℓ together with the

corresponding correct output m∗.

∃ ℓ,m∗ : (Pmax(ℓ) 6= m∗) ∧ (m∗ ∈ ℓ) ∧ (∀x ∈ ℓ : m∗ ≥ x) (3.4)

If Equation 3.4 is satisfiable, it produces a input-output pair (ℓ,m∗) that

our desired program must satisfy. In contrast, Equation 3.3 produces

an input-output pair (ℓ,m) that the desired program must not satisfy,

which is a much weaker constraint. Note that such reformulation is only

possible when only one correct output can satisfy the specification.

Observation above leads us to the architecture called counterexample-

guided inductive synthesis (CEGIS), shown in Figure 3.2. In CEGIS,

we split the synthesis problem into search and verification. The first

component (often called the solver) starts with a simple first-order

specification, which is a simplified version of the original second-order

requirement on the desired program. It produces a program candidate

that satisfies this simplified specification. The second component (of-

ten called the verifier) validates that this program candidate satisfies

the original specification. If it does not, the verifier produces a coun-

terexample, which is returned back to the solver. The solver adds it

to the specification and repeats its search, looking for a new program

candidate that, in addition, satisfies this counterexample. This process

repeats in iterations until either (a) the verifier accepts some program

candidate – that is, we have found a program that satisfies the entire

second-order specification, or (b) the solver cannot find a candidate

that is consistent with its current specification – that is, the original

problem is unsolvable.

1Apparently nested existential quantifiers can in fact be flattened into one because
ℓ is a finite list of numbers.

3.2. Oracle-Guided Synthesis 41

Solver
(search component)

Verifier
(validation component)

Specification φ

X Success✗ Fail

Search space

Candidate program P

Counterexample x−

Figure 3.2: Counterexample-guided inductive synthesis.

CEGIS was introduced by Solar-Lezama in his dissertation for

Sketch [132] (covered in more detail in §3.3.1). Later, Jha and

Seshia generalized the principle to oracle-guided inductive synthesis

(OGIS) [58]. In OGIS, the solver first searches for a program candidate

using a simplified specification (as described above), and then consults

an oracle regarding validity of this candidate. Different flavors of OGIS

use different kinds of oracles. CEGIS, the most popular variant of OGIS,

requires a correctness oracle: for a given candidate program P , the

oracle may return “YES” if P satisfies the required specification φ, or

(“NO”, x−) if P does not satisfy φ and x− is a counterexample – an

input to P on which it violates φ. Other useful oracle queries have been

studied in the literature; the most interesting one, the distinguishing

input oracle, is covered in more detail in §3.2.1.

3.2.1 Distinguishing Inputs

The idea of distinguishing inputs has been first presented by Jha et al.

in 2010 [59]. In this work, the goal is to automatically synthesize loop-

free programs from a library of basic components that satisfy a given

specification. Such a procedure is useful in multiple domains, including

bitvector manipulation and function deobfuscation, studied in the paper.

The problem definition assumes the existence of a complete but

expensive validation oracle. It takes as input a candidate program P and

verifies whether it satisfies the specification. Depending on the domain

42 General Principles

and the specification, writing such an oracle may be a challenging task.

For instance, if the specification is given by an alternative inefficient

implementation Pφ, we can run a program equivalence tool on P and

Pφ to detect whether they behave identically on all possible inputs.

However, program equivalence in a general case is undecidable. In

general, the best validation oracle for most domains and specifications

tends be the user, who can inspect the candidate program P manually.

Obviously, this approach prevents us from querying the validation oracle

automatically during synthesis often and in a scalable way.

To avoid querying the validation oracle, Jha et al. reformulate

the problem in terms of program distinguishability on concrete inputs.

Instead of a validation oracle, they require an I/O oracle that can

produce a valid program output on an arbitrary given input. They then

reduce the problem using these key observations:

1. If a program P is consistent with a specification φ, it must be con-

sistent with any input/output pairs (i1, o1), · · · , (in, on) produced

by the I/O oracle.

2. Let P be an incorrect program that is consistent with n input/out-

put pairs (i1, o1), · · · , (in, on) produced by the I/O oracle. If there

exists a correct program P ∗, then P and P ∗ should produce the

same outputs on all inputs i1, · · · , in but they should produce

different outputs on some other input i∗.

Observation Item 1 tells us that a program that is consistent with

a finite number of valid input/output pairs is a good candidate for a

program that may be consistent with the entire specification φ. Obser-

vation Item 2 tells us that an incorrect candidate that happens to be

consistent with a chosen set of inputs can be detected by extending the

set with a new distinguishing input. That input yields different behavior

for the current candidate program P and some other possible candidate

P ∗ (which is still consistent with the previous inputs). If such input

does not exist, then all programs that are consistent with the chosen set

of inputs are semantically equivalent – they produce the same outputs

on all inputs. Thus, either any such candidate is correct (which can be

verified with a single call to the validation oracle), or a correct program

3.2. Oracle-Guided Synthesis 43

function CBSynthesis(I/O oracle I, validation oracle V, components L)
Set of examples E ← {i0, I(i0)} // Initialize E with an arbitrary input
loop

I/O constraint ψE ← BuildIOConstraint(E, L)
Candidate program P ← SAT(ψE)
if P = ⊥ then

return “Components L are insufficient to satisfy the spec.”

Distinguishing constraint ψP ← BuildDistConstraint(E, P)
Distinguishing input i∗ ← SAT(ψP)
if i∗ = ⊥ then

if V(P) then return P
else return “Components L are insufficient to satisfy the spec.”

E ← E ∪ {i∗, I(i∗)}

Figure 3.3: The learning procedure of Jha et al. [59]. The I/O constraint ψE

constructs a program that is consistent with the current set of input/output pairs E.
The distinguishing constraint ψP constructs an input i∗ that yields different behavior
for the current candidate program P and some other program P ∗ that is consistent
with E. For finite domains, CBSynthesis either terminates with a semantically
unique solution or reports that components L are insufficient to build one.

cannot be constructed from given components. The final procedure is

summarized at a high level in Figure 3.3.

It turns out that for the bitvector domain, even with a random choice

of distinguishing inputs, this procedure converges to a semantically

unique program in at most 25 steps [59]. More generally, the number of

iterations depends on the chosen distinguishing inputs. They split the

search space for the programs more or less aggressively, depending on the

number of collisions that different operators yield on these inputs. This

property surfaces in many settings; for example, when replacing an SMT

solver with random sampling to discover distinguishing inputs faster.

In the bitvector domain, most common operators are more influenced

by rightmost bits of the input [145, Chapter 2]. This suggests that

sampling inputs with a bias for more variety in rightmost bits should

discover distinguishing inputs faster, which was confirmed by Jha et al.

experimentally.

Godefroid and Taly took this idea further in their automated syn-

thesis of symbolic instruction encodings [38]. They determined that for

a given subset of candidate functions, there exists a subset of universal

44 General Principles

distinguishing inputs—a set that is a priori guaranteed to distinguish

any two functions from the subset. Moreover, they have designed the

templates (function subsets) and corresponding universal distinguishing

inputs that cover 534 instructions of Intel x86 ALU. The domain here is

the same bitvector operations as in the work of Jha et al., but without

a verification oracle.

End-user confidence Distinguishing inputs are useful not only from

a technical perspective as a tool for speeding up synthesis. They also

play an important role as a medium for communication with the user.

Consider a program synthesis system that is exposed to a user, who

iteratively introduces constraints on the synthesis task. At each round,

the system presents the user with a candidate program, which satisfies

the constraints accumulated so far. Ultimately, the user here acts as a

verification oracle: she needs to determine when the current program

satisfies her overall intent and does not require adding more constraints

to synthesize a better program. However, in some cases such a verifi-

cation may be cumbersome or even impossible for the user. In such

cases, the system may help her with interactive feedback, suggesting

ways to validate that the current candidate program is unambiguous.

Distinguishing inputs is one such possible feedback.

Mayer et al. introduced this idea in their FlashProg system, and called

it conversational clarification. FlashProg is a system for programming by

examples – a subfield of program synthesis where specification is provided

by the means of inputs-ouput examples (Chapter 7). Programming by

examples has been applied to many different domains; in FlashProg,

the chosen one is data wrangling (§2.1). In this domain, the user is

trying to extract some information from a semi-structured text file by

the means of providing examples of extracted data, and the system

is synthesizing an extraction script in the underlying DSL. In such a

setting, verifying the validity of a candidate extraction script is tedious:

it requires verifying the entire extracted dataset and matching it against

the input file.

To alleviate the verification workload, FlashProg automatically de-

tects when the current candidate program is ambiguous. It examines

3.3. Syntactic Bias 45

alternative programs in the DSL that are consistent with the current

examples, runs them on the entire input document, and detects any

discrepancies in their output. A discrepancy between the outputs of

a candidate program and its alternative suggests a location in the in-

put document that serves as a distinguishing input. FlashProg then

proactively asks the user a question: “Should the extracted output in

this location be X, Y , or something else?” Such proactive clarification

points the user to sources of ambiguity, allowing her to quickly find

errors in the output and increasing her confidence in the final result.

3.3 Syntactic Bias

As outlined in §1.3, one of the key ideas to scaling up modern program

synthesis is syntactically restricting the space of possible programs.

This syntactic bias can be expressed by various means such as a partial

program sketch, a grammar, or a domain-specific language (DSL). In

this subsection, we introduce these common means, and discuss practical

design considerations for a tractable and usable DSL.

3.3.1 Sketching

Sketch [132] is a synthesis system that allows programmers to provide

insights through a partial program called sketch, which expresses the

high-level structure of the intended implementation but leaves holes

for low-level implementation details. The Sketch synthesizer fills up

these holes from a finite set of choices such that the completed program

satisfies the provided specification using the CEGIS algorithm. The main

idea in using sketches is to make synthesis accessible to programmers as

they can provide insights easily using the programming model formalism

they already know without having to learn other formalism such as

specification languages or theorem proving.

The syntax for the Sketch language is quite similar to a language

like C with only one additional feature – a symbol ?? that represent an

unknown constant integer value. A simple example sketch is shown in

Figure 3.4. The sketch represents a partial program with an unknown

integer h and a simple assertion. The harness keyword indicates to the

46 General Principles

1 harness void tripleSketch(int x) {

2 int h = ??; // hole for unknown constant

3 assert h * x == x + x + x;

4 }

Figure 3.4: A simple sketch for computing three times an input value x.

1 int tripleSketch(int x) implements tripleRef {

2 int h = ??; // hole for unknown constant

3 return h * x;

4 }

6 int tripleRef(int y) {

7 return y + y + y;

8 }

Figure 3.5: A simple sketch with reference implementation sketch.

synthesizer that it should compute a value for h such that the assertion is

satisfied for all input values x. For this example, the Sketch synthesizer

computes the value h = 3 as expected.

In addition to assertions, another mechanism to write desired speci-

fication in Sketch is to provide a reference implementation. The simple

example sketch from Figure 3.4 can be equivalently rewritten with a

reference implementation specification as shown in Figure 3.5. The

implements keyword specifies the synthesizer to compute the values

for holes such that completed sketch program has the same functional

behavior as the reference implementation.

These unknown integers can be used to specify a hypothesis space

over a richer class of expressions in the sketches. For example, the sketch

in Figure 3.6 uses an integer hole to define a space of five different binary

operator expressions over two integer values lhs and rhs. The Sketch

language also provides a succinct language construct to specify such

expression choices: lhs {| + | - | * | / | % |} rhs.

The Sketch language also supports a generator function construct

to specify a hypothesis space of possible code fragments that can be

used to complete sketches. The generator functions can be used in

3.3. Syntactic Bias 47

1 int chooseBinOp(int lhs, int rhs) {

2 int h = ??;

3 assert h < 5;

5 if (h == 0) return lhs + rhs;

6 if (h == 1) return lhs - rhs;

7 if (h == 2) return lhs * rhs;

8 if (h == 3) return lhs / rhs;

9 if (h == 4) return lhs % rhs;

10 }

Figure 3.6: Using holes to encode the space of richer expressions.

1 generator int linexp(int x, int y) {

2 return ?? * x + ?? * y;

3 }

5 harness void main(int x, int y) {

6 assert linexp(x, y) == x + x + y;

7 assert linexp(x, y) == x + y + y;

8 }

Figure 3.7: A sketch using a generator function.

the same way as a function, but the key difference between them and

functions is that every call to a generator will be replaced by a concrete

piece of code defined by the generator and the generator function

can produce different code fragments for different calls. For example,

consider the following sketch in Figure 3.7 with a generator function

for linear expressions (linexp). The result of running the synthesizer

on this sketch is shown in Figure 3.8.

The main expressive power of generator functions comes from their

ability to recursively define a large space of expressions succinctly. For

example, Figure 3.9 shows a recursive generator function defining a

context-free grammar of possible expressions over two variables.

The Sketch language supports several other advanced features

such as function closures, higher order functions, and algebraic data

48 General Principles

1 void main(int x, int y) {

2 assert (((2 * x) + y) == ((x + x) + y));

3 assert ((x + (2 * y)) == ((x + y) + y));

4 }

Figure 3.8: The result of running the Sketch synthesizer on the sketch in Figure 3.7.

1 generator int recGen(int x, int y) {

2 int h = ??;

3 if (h == 0) return x;

4 if (h == 1) return y;

5 int a = recGen(x, y);

6 int b = recGen(x, y);

7 if (h == 2) return a + b;

8 if (h == 3) return a - b;

9 if (h == 4) return a * b;

10 if (h == 5) return a / b;

11 }

12 void main(int x, int y) {

13 assert recGen(x, y) == (x + y) * (y - x);

14 }

Figure 3.9: The result of running the Sketch synthesizer on the sketch in Figure 3.7.

types. A more detailed description about the language and different

features can be found in the Sketch language manual.2

3.3.2 Syntax-Guided Synthesis

Syntax-Guided Synthesis [3] is a recent community effort towards formal-

izing the problem of program synthesis where the logical specification is

supplemented with a user-provided syntactic template to constrain the

hypothesis space of possible programs. The input to the syntax-guided

synthesis problem (SyGuS) consists of a background theory T that de-

fines the vocabulary and interpretation of function and relation symbols,

a semantic correctness specification for the desired program given by

a logical formula φ, and a syntactic set of candidate implementations

2
https://people.csail.mit.edu/asolar/manual.pdf

https://people.csail.mit.edu/asolar/manual.pdf

3.3. Syntactic Bias 49

1 ; set the background theory to LIA

2 (set-logic LIA)

4 ; grammar for max2 candidate implementations

5 (synth-fun max2 ((x Int) (y Int)) Int

6 ((Start Int (x y 0 1

7 (+ Start Start)

8 (- Start Start)

9 (ite StartBool Start Start)))

10 (StartBool Bool ((and StartBool StartBool)

11 (or StartBool StartBool)

12 (not StartBool)

13 (<= Start Start)

14 (= Start Start)

15 (>= Start Start)))))

17 ; universally quantified input variables x and y

18 (declare-var x Int)

19 (declare-var y Int)

21 ; correctness constraints on the max2 function

22 (constraint (>= (max2 x y) x))

23 (constraint (>= (max2 x y) y))

24 (constraint (or (= x (max2 x y)) (= y (max2 x y))))

26 ; synthesize command

27 (check-synth)

Figure 3.10: The SyGuS formulation for the max function over two variables.

given by a context-free grammar G. The computation problem then is to

find an implementation from the set of candidate implementations (i.e.

a derivation in the grammar G) such that the implementation satisfies

the specification φ in the given theory T .

As an example, consider the problem of synthesizing a max2 func-

tion that computes the maximum value of two given values x and

y. The SyGuS formulation of the problem is shown in Figure 3.10.

The encoding first defines the background theory of Linear Integer

Arithmetic (LIA), where each variable is either a Boolean or an in-

50 General Principles

teger, and the vocabulary consists of Boolean and integer constants,

addition, comparisons, and conditionals. The grammar for the un-

known function max2 defines the type signature of the function and

the space of possible candidate implementations. The grammar in the

example corresponds to if-then-else expressions (ite) and linear expres-

sions with additions and subtractions over the terminal values x, y,

0, and 1. The correctness specification defines the following logical

constraint φ1 ∧ φ2, where φ1 ≡ max2(x,y) ≥ x ∧ max2(x,y) ≥ y, and

φ2 ≡ max2(x,y) = x ∨ max2(x,y) = y. Given this formulation, one can-

didate implementation from the grammar that satisfies the specification

is (ite (>= x y) x y).

The SyGuS effort has resulted in a community effort in collecting

benchmarks from various synthesis domains into a common format. It

has also lead to SyGuS-Comp, an annual synthesis competition, that

allows solvers to compete on a collection of benchmarks. In the 2015

competition, 8 different solvers competed in three tracks corresponding

to LIA (Conditional Linear Integer arithmetic track), INV (invariant

generation track), and General (General SyGuS track) [5]. The Sy-

GuS solvers employed various solving techniques including enumerative

search, stochastic search, constraint-based search, machine learning, etc.

3.3.3 DSL Design

The choice of a domain-specific language is inspired by several factors.

Balanced Expressivity: On one hand, the DSL should be expressive

enough to represent a wide variety of tasks in the underlying task

domain. On the other hand, it should be restricted enough to

allow efficient search.

Choice of Operators: The DSL should be made up of operators

that allow efficient reasoning. For instance, the operators should

have small inverses to enable a top-down deductive search strat-

egy (§7.3) to be efficient.

Naturalness: The programs in the DSL should involve natural com-

putational patterns that can be easily understood by the users.

3.3. Syntactic Bias 51

This can increase user’s confidence in the system. In fact, these

computational patterns should be similar to how programmers

might have written the code themselves. These programs might

be read by users, who might then select between these programs,

edit them, and even use them as part of larger workflows.

Efficiency: The operators in the DSL should have efficient implemen-

tations. This is important if the synthesized program is expected

to be run in a tight loop over large number of inputs.

The synthesis designer can select an existing DSL or its subset that

meets the desired constraints. For instance, Cheung et.al. [22] leveraged

a subset of the SQL DSL when synthesizing optimized database-backed

applications. Recently, Panchekha and Torlak leveraged a subset of the

CSS language [103] for synthesizing non-trivial spreadsheet styles from

layout constraints. However, in other cases, new DSLs might need to

be designed. An approach to designing an appropriate DSL is to first

manually write down programs for a variety of tasks in the underlying

task domain and then identify common patterns/templates for inclusion

in the DSL. Designing a good DSL is often the first non-trivial idea

in developing a good program synthesizer. We next discuss such ideas

behind some non-trivial DSLs from the data wrangling domain.

Flash Fill DSL The Flash Fill DSL for syntactic string transforma-

tions [43] contains programs that take an n-ary tuple of strings as input

and return a string as output. These programs involve computing sub-

strings of the strings in the input tuple, and then concatenating them

appropriately along with some constant strings. There is also support

for restricted forms of loops that concatenate a sequence of substrings

from the input string (with the same delimited constant string) to

facilitate more sophisticated string transformations as in abbreviation

computation or string reversal. The Flash Fill programs can contain

conditionals at the very top level to allow for different transformations

for different kinds of data formats—this feature is useful for normaliz-

ing strings that may come in multiple formats. Consider, for instance,

the task shown in Figure 2.1. The synthesized program extracts the

52 General Principles

first two words from the input string, converts them to lowercase, and

concatenates them separated by a space character.

The most interesting aspect of the Flash Fill DSL is the design of

its substring construct that takes as input a string s and two position

expressions in that string, and evaluates to the substring between those

positions. A position expression can either be a constant offset (from the

start or end of the string s) or is a Pos(s, r1, r2, k) construct denoting

the kth occurrence of a position p such that (some suffix of the part of

the string s on) the left side of p matches with r1 and (some prefix of

the part of the string s on) the right side of p matches with r2. Consider

the expression e = Substring(s, p, p′), where p = Pos(s, r1, r2, k) and

p′ = Pos(x, r′

1, r
′

2, k
′). When r1 = r′

2 = ǫ, then e describes a constraint

over the substring to be extracted. When r2 = r′

1 = ǫ, then e describes

a constraint over the context around the substring to be extracted.

The general case is even more expressive allowing constraints over

both the substring to be extracted and its context with use of simple

(and hence efficiently learnable) regular expressions. For instance, if

p = Pos(s, ǫ,Word, 2) and p2 = Pos(s,Word, ǫ, 2), then e describes the

second word in string s. If p1 = Pos(s,′ [′, ǫ, 1) and p2 = Pos(s, ǫ,′]′, 1),

then e describes the content within the (first occurrence of opening and

closing) brackets.

The Flash Fill DSL has been extended to allow semantic string

transformations that involve lookup operations into some background

tables [127]. This is done in a tightly integrated manner with the rest

of the language by taking substrings of the input strings, using them to

index into the key columns of a table and read a value from some other

column, and then further treating that value as another input string

for any subsequent computation.

FlashExtract DSL The FlashExtract DSL [78] contains programs

that take a large string (representing a semi-structured text/log file)

and a data structure definition (composed of nested structure and

sequence constructs) and returns an instance of that data structure.

Each program is composed of multiple sub-programs whose data-flow

dependence follows the data structure definition. There are two kinds of

3.4. Optimization 53

sub-programs: One that generates a substring of a given input string, and

the other that generates a list of substrings of a given input string. The

latter involves splitting the input string into a list of lines, filtering the

result, and then mapping it to another list using a substring operator.

FlashRelate DSL The FlashRelate DSL contains programs that take

a two-dimensional array (representing a semi-structured spreadsheet) as

input and return a list of n-ary tuples (representing a relational table)

as output [10]. These programs extract one of the output columns via

a filter operation over cells of the two-dimensional input array, while

other output columns are extracted as map operations over cells of an

already extracted column. The filter and map operations employ spatial

constraints over cells of the two-dimensional array in addition to regular

expression based constraints over values in those cells. Consider, for

instance, the task in Figure 2.5. The synthesized program computes the

Harvest column via a filter operation that identifies all non-empty cells

that are located vertically below any cell with string content “value”.

The Date column is computed via a map operation (over cells of the

input array whose content appears in the Harvest column) that picks

the cell on the immediate right. The Country column is computed via

a map operation that picks the first cell on the left side containing

alphabetic content.

3.4 Optimization

A basic formulation of the program synthesis problem asks to find any

program P in an underlying space L (e.g. a DSL) that satisfies a spec φ.

However, in many settings we are interested not just in any program,

but in the best program according to some cost function. This is known

as ranking or optimization in synthesis. Some interesting cost functions

that arise in practice are:

Program speed. This is the default choice in superoptimization (§2.6).

Robustness. This is the default setting in programming by examples

(Chapter 7) for data wrangling (§2.1), where a program is learned

54 General Principles

on a small selection of input data, but it should be applicable on

the rest of yet-unseen user data. In other words, learning should

not overfit to provided input-output examples.

“Naturalness” or “readability”. This is a measure of a program

being acceptable to a developer. For instance, this cost function

may take into account common idioms in an underlying language.

The notion of idioms may be exploited explicitly, either by mining

them from a corpus of source code [2], or by delegating ranking

to a search engine [151].

Program AST size is often used as an approximation to all afore-

mentioned cost functions. Arguably, a smaller program is more readable,

a smaller program may be faster, and a smaller program may be more

generally applicable. However, it is not always the case. For instance, a

constant program has size 1 but it is not robust: it outputs the same

value on all inputs. As another example, on certain Intel x86 microar-

chitectures the inc instruction may be slower than add 1, despite being

shorter and more specific.

Ranking in program synthesis has been approached with many

different techniques, including Markov Chain Monte Carlo (MCMC)

methods (explained in detail in §6.1 and 6.2), version space algebras

(§7.2), machine learning (§6.3 and 7.4.1), and metasketches [15].

Markov Chain Monte Carlo MCMC techniques in program synthesis

employ a variation of genetic programming, where Metropolis-Hastings

algorithm is used to explore a search space of possible programs. In

MCMC sampling, we aim to draw programs from the space with prob-

ability proportional to their cost. In the limit, the most frequently

sampled program will be the global optimum on the cost function; in

practice, running an MCMC sampling process for a reasonable amount

of time usually discovers a “sufficiently good” local optimum. In a sense,

Metropolis-Hastings algorithm can be viewed as a “smart” hill climbing

algorithm that is resilient to getting stuck at local optima and only

limited by its time budget [123].

3.4. Optimization 55

Version Space Algebras Version Space Algebras (VSAs) offer a suc-

cinct representation of the program space that is amenable to structure-

based ranking [113]. Assuming a monotonic cost function h(P), 3 the

problem of finding the topmost program in a VSA is solvable with a

beam search through the VSA structure, which constructs the desired

program from its subexpressions, bottom-up.

Machine Learning Machine Learning methods have been used ex-

tensively for program synthesis and optimization. Their applications

include automatically learning cost functions [7, 128], dealing with

noise in the specification [115], and even end-to-end program synthe-

sis [40, 64, 76, 98, 105, 118]. We describe some of these applications in

§6.3 and 7.4.1.

Metasketches A metasketch [15] is a generalization of a sketch (§3.3.1).

Instead of a single partial program, it gives an ordered family of such

partial programs, along with a cost function and a gradient, which

suggests which sketches in the family may contain a program with

a lower cost. In other words, it describes a search space as a family

of finite sub-spaces that can be explored independently, and provides

guiding functions to navigate these sub-spaces in a cost-effective way.

Using this formulation, Bornholt et al. present an optimal synthesis

algorithm, which explores multiple local sub-spaces independently in

parallel using CEGIS, and coordinates their findings using a separate

global component to guide the search toward more optimal programs.

3A cost function h(P) is called monotonic over the program structure, if better-
valued subexpressions w.r.t. h lead to better-valued expressions w.r.t. h:

h(P1) ≥ h(P2) ⇒ h(F [P1]) ≥ h(F [P2])

where F is any DSL operator (straightforwardly generalizable to arbitrary arity).

4

Enumerative Search

Enumerative search based synthesis techniques have proven to be one

of the most effective techniques for synthesizing small programs in rich

complex hypothesis spaces. Smart pruning techniques in enumerative

search have resulted in synthesizers that won the recent ICFP program

synthesis competition [1] and the SyGuS competition [6]. The key idea

in enumerative techniques is to first structure the hypothesis space

using some program metrics such as program size, complexity etc.,

and then enumerate programs in the space with pruning to efficiently

search for a program that satisfies the specification. The enumerative

algorithms are typically designed to be semi-decidable for the infinite

hypothesis spaces, but they are generally applicable for almost all kinds

of hypothesis spaces and specification constraints.

4.1 Enumerative Search

We now describe a simple enumerative synthesis algorithm for hypothesis

spaces that are defined using a CFG (similar to SyGuS [3]), but the

algorithm can be easily extended to other forms of hypothesis spaces such

as partial programs, context-sensitive languages etc. Let the hypothesis

57

58 Enumerative Search

S → x | y | (S + S) | (S - S) | if(B,S,S)

B → (S ≤ S) | (S = S) | (S ≥ S)

Figure 4.1: A simple context-free grammar for defining a space of conditional linear
integer arithmetic expressions.

space be defined by a context-free grammar G = (V,Σ, R, S), where V

denotes the set of non-terminals in the grammar, Σ denotes a finite

set of terminals including constants and program variables, R denotes

a finite relation from V to (V ∪ Σ)∗ corresponding to the grammar

production rules, and S denotes the start symbol. For example, a simple

grammar for defining the hypothesis space of a set of conditional linear

arithmetic expressions is shown in Figure 4.1, where V = {S,B}, Σ =

{x, y,+,−, if, (,),≤,=,≥}, S = {S}, and the relation R corresponds

to the 8 relations shown in the figure.

The derivations (programs) in the grammar G can be enumerated

either in a top-down or a bottom-up fashion to find a derivation that is

consistent with the given specification.

4.1.1 Top-down Tree search

A simple top-down enumerative algorithm for searching over programs

that satisfy a specification φ in a hypothesis space defined by a grammar

G is shown in Figure 4.2. The algorithm enumerates the derivations in

the grammar and maintains an ordered list of partial derivations P̃ in a

top-down manner starting from the start symbol S. In each iteration, it

selects the first derivation p from the set P̃ using the RemoveFirst()

function and checks whether p satisfies the given specification φ. If

yes, the algorithm returns p as the desired program. Otherwise, the

algorithm computes the set of all non-terminal nodes α̃ in the partial

derivation that can be expanded and ranks them using a pre-defined

RankNonTerminal function. It then considers each non-terminal α

in an ordered fashion and computes the set of possible production rules

β̃ for expanding α. The algorithm searches over the set of production

rules again in a ranked order (using RankProductionRule function)

to compute expanded derivations p′ where the non-terminal node α is

4.1. Enumerative Search 59

function EnumTopDownSearch(grammar G, spec φ)

P̃ ← [S] // An ordered list of partial derivations in G

P̃v ← {S} // A set of programs

while P̃ 6= ∅ do
p← RemoveFirst(P̃)
if φ(p) then // Specification φ is satisfied

return p

α̃← NonTerminals(p)
foreach α ∈ RankNonTerminals(α̃, φ) do

β̃ ← {β|(α, β) ∈ R}
foreach β ∈ RankProductionRule(β̃, φ) do

p′ ← p[α→ β]

if ¬Subsumed(p′, P̃v, φ) then

P̃ .Insert(p′)

P̃v ← P̃v ∪ p′

Figure 4.2: A simple top-down enumeration algorithm to search for a derivation p
in a hypothesis space defined by a CFG G that satisfies a given specification φ.

replaced by β. Finally, the algorithm prunes the search space by avoiding

adding newly expanded programs p′ if p′ is already subsumed by some

program in P̃V that has previously been considered by the algorithm.

The algorithm iteratively continues until it finds a program p satisfying

the specification. This algorithm is also typically provided with an

additional bound for the maximum size of the program derivations,

which is used to terminate the search.

Consider the grammar for conditional linear integer arithmetic in

Figure 4.1 (without the subtraction operator for brevity), and let the

specification φ be provided as the following input-output examples :

φ ≡ {(x = 0, y = 1, f(x, y) = 1), (x = 1, y = 2, f(x, y) = 3)}, where f

denotes the unknown function to be synthesized. A possible function

f that satisfies the specification is f(x, y) = x + y. An example run

of the top-down enumerative algorithm is shown in Figure 4.3, with a

simple ranking function that prefers expressions with fewer number of

non-terminals. Note that the subsumption check can help prune the

search by disallowing programs such as S1 +x to be added to P̃ if x+S2

is already present in P̃v.

60 Enumerative Search

P̃ p α̃ β̃

[S] S [S] [x, y, S1 + S2,
if(B, S1, S2)]

[x, y, S1 + S2, if(B, S1, S2)] x ⊥ ⊥
[y, S1 + S2, if(B, S1, S2)] y ⊥ ⊥
[S1 + S2, if(B, S1, S2)] S1 + S2 [S1, S2] [x+ S2, y + S2,

S3 + S4 + S2,
if(B2, S3, S4) + S2,
S1 + x, S1 + y,
S1 + S3 + S4,
S1 + if(B2, S3, S4)]

[x+ S2, y + S2, · · ·] x+ S2 S2 [x+ x, x+ y,
x+ S5 + S6, . . .]

[x+ x, x+ y, · · ·] x+ x ⊥ ⊥
[x+ y, · · ·] x + y

Figure 4.3: An example run of the top-down enumerative search algorithm on the
addition of two numbers x and y.

4.1.2 Bottom-up Tree-search

The bottom-up tree search approach caches the results of intermediate

programs constructed during the search to prune a redundant family

of programs. Specifically, if two derivations (programs) p and p′ are

equivalent with respect to the specification φ, then only one of them

needs to be considered during the search. For the top-down algorithm

shown in Figure 4.2, this check is performed inside the Subsumed

function to avoid adding a derivation p′ to the set of derivations P̃ . This

optimization does not greatly reduce the search space in the top-down

enumerative strategy because of a limitation that only full derivations

can be evaluated for equivalence. However, it can have a dramatic effect

on a bottom-down search technique [4, 141], which we describe below.

A simple bottom-up enumerative algorithm is shown in Figure 4.4.

The algorithm first starts building a set of leaf expressions in the

grammar G in the order of their size progSize. It then incrementally

builds the set of candidate expressions Ẽ using the smaller expressions

to find one that satisfies the specification. The key idea in this algorithm

is to maintain a semantically unique set of expressions Ẽ, i.e. no two

4.1. Enumerative Search 61

function EnumBottomUpSearch(grammar G, spec φ)

Ẽ ← {Φ} // Set of expressions in G
progSize← 1
while True do

C̃ ← EnumerateExprs(G, Ẽ, progSize)

foreach c ∈ C̃ do
if φ(c) then // Specification φ is satisfied

return c
if ¬∃ e ∈ Ẽ : Equiv(e, c, φ) then

Ẽ.Insert(c)

progSize← progSize + 1

Figure 4.4: A simple bottom-down enumeration algorithm to search for a derivation
e in a hypothesis space defined by a CFG G that satisfies a given specification φ.

expressions e and e′ in Ẽ are functionally equivalent with respect to

the specification φ. This pruning allows the bottom-up enumeration

algorithm to significantly decrease the space of expressions that need

to be considered before finding the desired expression.

Consider the grammar for conditional linear integer arithmetic

in Figure 4.1 with an additional leaf denoting constant 1 and the

specification of the unknown function f to be synthesized to be that of

the maximum function such that φ : f(x, y) ≥ x∧f(x, y) ≥ y∧(f(x, y) =

x ∨ f(x, y) = y). The bottom-up algorithm uses the CEGIS algorithm

to incrementally build the input-output examples for the specification.

Let’s assume the enumeration algorithm first starts with a random

example of (x = 0, y = 1, f(x, y) = 1). It can construct the expression y

as a satisfying expression. The verifier then returns a counter-example

(x = 1, y = 0, f(x, y) = 1). Given these two examples, the algorithm

constructs the conforming expression 1 and the verifier again returns

the counter-example (x = 0, y = 0, f(x, y) = 0). The search algorithm

can now return x+ y as a conforming expression. Note that during this

search since both x+y and y+x are functionally equivalent, only one of

these expressions are added to the candidate set for constructing larger

expressions. This iteration between the bottom-up search algorithm

and the verifier continues until the search algorithm finds the desired

62 Enumerative Search

Candidate Expressions Counter-example from Verifier

x (x = 0, y = 1, f(x, y) = 1)

y (x = 1, y = 1, f(x, y) = 1)

1 (x = 0, y = 0, f(x, y) = 0)

x+ y (x = 1, y = 1, f(x, y) = 1)

if(x ≤ y, y, x) φ

Figure 4.5: An example run of the bottom-up enumerative search algorithm on the
maximum of two numbers x and y [3].

expression if(x ≥ y, x, y). An example run of an enumerative solver is

shown in Figure 4.5.

4.2 Bidirectional Enumerative Search

The previous enumerative algorithms search for programs that when

run on the inputs produce the corresponding outputs, which can also be

explained as performing a forward search starting from the inputs (input

states) and transforming the states through a series of intermediate

states until obtaining the desired output states. This search space of

programs grows exponentially with the size (depth) of the programs.

In some cases, the search can be performed more efficiently with a

bidirectional search, where the forward search from the input states is

combined with a backward search from the desired output states.

A simple bidirectional enumerative algorithm is shown in Figure 4.6.

Given a specification φ ≡ (φpre, φpost), where φpre specifies the set of

input states and φpost specifies the set of output states, the algorithm

maintains two sets of expressions F̃ and B̃. The set F̃ comprises of

expressions derived by performing a forward enumerative search starting

from the input states φpre, whereas the set B̃ comprises of expressions

derived by performing a backward search starting from the output states

φpost. It iteratively builds the two sets in increasing order of program

sizes until finding an expression f ∈ F̃ and b ∈ B̃ such that the states

corresponding to f and b can be matched. The resulting program is

obtained by combining the two expressions.

4.3. Offline Exhaustive Enumeration and Composition 63

function BidrectionalSearch(grammar G, spec φ ≡ (φpre, φpost))

F̃ ← φ // Set of expressions from Forward search

B̃ ← φ // Set of expressions from Backward search
progSize← 1
while ¬∃f ∈ F̃ , b ∈ B̃ : MatchState(f, b) do

F̃ ← EnumForwardExprs(G, F̃ , φpre, progSize)

B̃ ← EnumBackwardExprs(G, B̃, φpost, progSize)
progSize← progSize + 1

p← f ⊕ b,where ∃f ∈ F̃ , b ∈ B̃ : MatchState(f, b)
return p

Figure 4.6: A bidirectional enumeration algorithm to search for a derivation p in
a hypothesis space defined by a CFG G that satisfies a given specification φ with
inputs satisfying φpre and outputs satisfying φpost.

The bidirectional enumerative search has been used for many syn-

thesis domains including learning programs to solve geometry construc-

tions [48] and scaling up superoptimization of assembly code [109].

4.3 Offline Exhaustive Enumeration and Composition

Another interesting, but resource intensive, enumeration technique is to

perform an offline exhaustive enumeration of all programs upto a given

size. The programs are then evaluated on a large set of pre-defined inputs

to obtain a corresponding mapping function from programs to the input-

output pairs. Finally, given a set of input-output examples, the programs

are retrieved using the mapping function. This strategy has been suc-

cessfully implemented in systems such as MagicHaskeller [67] and

Unagi [1].

The Unagi system won the 2013 ICFP program synthesis competition

beating several state-of-the-art program synthesis techniques [1]. Given

a DSL of bit-vector programs used in the competition, the Unagi system

first perform an offline exhaustive enumeration of all expressions in the

DSL upto a given size (15 in their case). During enumeration, several

pruning techniques were employed to merge equivalent programs. For

example, the expression (not (if x (not y) z)) was normalized to

(if x y (not z)). After performing the enumeration, each program

64 Enumerative Search

was evaluated on 256 pre-defined input bitvectors to create a mapping

from programs to the input-output examples. During the competition,

for smaller programs upto size 15, the Unagi system used the direct

mapping to quickly find the corresponding program.

For enumerating larger programs, Unagi used an incomplete but

effective pruning strategy based on input-output equivalence. It prunes

expressions that results in the same output on 256 inputs to construct

larger programs. In addition, using the training problems, Unagi also

learnt several syntactic priors over the space of large programs, e.g. it

learnt that the expression trees tend to be unbalanced in the training

data and the initial accumulator value for fold problems was always

zero. It used these syntactic priors to further guide the exhaustive

enumeration.

Finally, to learn even larger programs of size greater than 50, it

used a unification strategy to decompose the input-output examples

to different sets. Each set of input-output examples could be solved

by a smaller program and then the sets are glued together using if

conditions. The Unagi system used 32 threads running independent

search strategies and used 3000 hours of compute time on Amazon’s

EC2 cloud for the competition. Notably, this technique of unification

of smaller expressions to learn larger programs was also used by the

enumerative synthesis system that won the 2016 SyGuS competition [6].

5

Constraint Solving

Many successful applications of program synthesis rely on some con-

straint solving technique. In general, constraint solving refers to finding

an instantiation of free variables in a formula (a model) that would

make the formula true [37]. The key idea in applying constraint solving

to program synthesis is encoding both the specification and the syn-

tactic program restrictions in a single formula so that any true model

corresponds to a correct program. The encoding should map variables

in the formula to choices of subexpressions in the desired program.

We illustrate this idea on a simple example. Consider a small DSL

of bitwise operations upon a 8-bit input variable x:

program P ::= plus(E,E) | mul(E,E) | shl(E,C) | shr(E,C)

expression E ::= x | C
8-bit constant C ::= 000000002 | 000000012 | 000000102 | . . . | 111111112

Every program in this DSL contains a single top-most binary operation,

with each operand being either the input or some 8-bit constant.

In the theory of bitvectors TBV [11], the following formula

Φ(hP , hE1, hE2, c1, c2) encodes any program P in this DSL that sat-

65

66 Constraint Solving

isfies the spec φ : ∀x P (x) ≥ 0 (as a signed integer).1 In other words,

any valid assignment of free variables hP , hE1
, hE2, c1, c2 corresponds

to a valid program in the DSL.

1 (define-sort Bit8 () (_ BitVec 8)) ;A “8-bit vector” type
2 ;Free variables of Φ
3 (declare-const hP Int)

4 (declare-const hE0 Bool)

5 (declare-const hE1 Bool)

6 (declare-const c0 Bit8)

7 (declare-const c1 Bit8)

8 (assert (and (>= hP 0) (< hP 4)))

10 ;Definition of P (x)
11 (define-fun prog ((x Bit8)) Bit8

12 (let ((left (ite hE0 c0 x))

13 (right (ite hE1 c1 x)))

14 (ite (= hP 0) (bvadd left right)

15 (ite (= hP 1) (bvmul left right)

16 (ite (= hP 2) (bvshl left c1)

17 (bvlshr left c1))))))

18 ;Spec φ : ∀x P (x) ≥ 0
19 (assert (forall ((x Bit8)) (bvsge (prog x) #x00)))

The variable hP encodes a non-deterministic choice between alterna-

tives for the nonterminal P . It ranges in {0, 1, 2, 3}, which correspond to

plus, mul, shl, and shr, respectively. hE1 and hE2 are Boolean variables

that encode a similar choice for the nonterminal E used as the first

or the second operand, respectively. Here true corresponds to C and

false to x. Finally, c0 and c1 encode non-deterministic choices for the

constants supplied for the left and right operand. If a program uses x

instead of a constant for some operand i ∈ {0, 1} (that is, hEi = false

for that model of Φ), the value of ci in the model is irrelevant.

One possible satisfying model for Φ is {hP = 3, hE0 = hE1 = false,

c1 = 000000012, c0 is irrelevant}. It corresponds to the program P =

shr(x, 000000012), which obviously satisfies φ for any input.

1For clarity, we display most SMT formulas in this section in SMT-LIB syntax [11].

5.1. Component-Based Synthesis 67

5.1 Component-Based Synthesis

5.1.1 End-to-end SMT Encoding

The first constraint-based approaches to program synthesis encoded the

language and the spec into SAT/SMT constraints directly, similarly

to our example above. A classical example of such an encoding is

component-based synthesis by Jha et al. [59]. We introduced this work in

§3.2.1 to present the idea of distinguishing inputs. Now, we will discuss

their overall encoding of the synthesis problem.

In component-based synthesis, our syntactic bias is a library of

allowed components. Each component is a domain-specific function that

may be used in the desired program. Usually, there are no syntactic

restrictions on their composition (e.g., no grammar): any type-safe

well-formed combination of components constitutes a valid program in

the language. Without loss of generality, we assume that every program

uses all provided components, each exactly once (multiple uses of a

component can be achieved by including multiple copies in the library).

Jha et al. first apply their encoding to the domain of bit manipulation

programs. In it, there is a single type (a fixed-length bitvector), thus all

component usages are a priori type-safe. To solve a synthesis problem,

they need to encode, at the minimum, that the desired program

(a) is well-formed,

(b) uses all components without violating their respective specs, and

(c) is consistent with the provided spec (e.g., input-output examples).

In addition, to apply the distinguishing inputs technique (see §3.2.1),

they encode in a separate query that the program

(d) disagrees with some other consistent program on a new input.

We now describe the component-based synthesis constraints (a)-(c).

Well-formedness A loop-free program is well-formed if it forms a

directed acyclic graph (DAG) of components and their connections

(that is, usages of outputs of one component as inputs in the others).

In addition, it must use all components from the library exactly once.

An SMT encoding of well-formedness associates each variable in

the program with a single line number where it is defined and assigned.

68 Constraint Solving

For component output variables Oi, this is also the line where the

corresponding component fi is used. For component input variables Iij ,

this is the line that defines the output variable that is passed as a jth

argument to the component fi.
2

With this notation, encoding well-formedness reduces to:

(a) Ensuring that all line numbers range in their respective domain

bounds (that is, program inputs are assigned in the first lines

of the program, and all library components are invoked in the

following lines).

(b) Ensuring consistency: all output variables (and their corresponding

line numbers) should be different.

(c) Ensuring acyclicity: components should only take as input vari-

ables that were assigned earlier.

Component usage In the framework of [59], every component fi is

annotated with a specification φi(~Ii, Oi), which describes its semantics

and relates its inputs ~Ii with its output Oi. All these specifications are

appended to the synthesis constraint, with their inputs and outputs

mapped to the corresponding variables in the program. To further ensure

that the program’s data flow is consistent, we add another constraint

that ensures that an output variable retains the same value when it is

used as an input to another component.

Specification The problem specification φ(~I, P (~I)) relates its output

(implicitly taken from the last line of the program) with its inputs. Jha

et al. used input-output examples as a specification, which are easy to

encode in additional clauses appended to the synthesis constraint. In

general, any specification form would suffice as long as it can be encoded

in the underlying SMT logic (or already represented as such). However,

complex logical specifications may make the synthesis constraint more

difficult to resolve, and thus a combination of input-output examples

and an external validation oracle, employed by Jha et al., is preferable

for efficient program synthesis.

2For simplicity, we represent global program arguments as additional 0-ary com-
ponents in the library. They are “invoked” in the first lines of the program.

5.1. Component-Based Synthesis 69

Example 5.1. Suppose we want to synthesize a program that turns

off the rightmost 1 bit in a given 5-bit vector. Our desired program

has a single input I and a single output O. Our library consists of 2

components, with the following specifications:

Component Semantics

f1(x1, x2) := x1 & x2 φ1(x1, x2, y) : [y = bvand(x1, x2)]

f2(x) := x− 1 φ2(x, y) : [y = bvsub(x, 000012)]

Finally, our spec φ is a single input-output example: (010102, 010002).

Figure 5.1 shows the SMT constraint that encodes this problem

and includes all constraints (a)-(c), discussed above. Note that in this

case φ contains a single input-output example, thus we need to encode

only one data flow through the program (i.e. variables ijk and oj). In

general, every input-output example requires its own set of data flow

variables. The location variables ℓijk and ℓoj , however, are only defined

once: they represent structure of the desired program, which does not

change across different input-output examples.

A valid model for this constraint contains the following assignments

for the location variables:

{ℓo1 = 2, ℓo2 = 1, ℓi11 = 1, ℓi12 = 0, ℓi21 = 0, ℓi0 = 0, ℓo = 2}

They correspond to the following program P (x), which indeed turns off

the rightmost 1 bit of x:

def P(x) { t1 := x - 1; t2 := t1 & x; return t2; }

5.1.2 Sketch generation and completion

The synthesis approach of Jha et al. produced a complete SMT encoding

of the entire synthesis problem, given a library of components and the

desired spec. While powerful, such an encoding is difficult to design and

implement. An alternative solution is to split the synthesis process into

sketch generation and sketch completion. The sketching technique, as

introduced in §3.3.1, assumes the presence of a sketch – a partial program

with holes to be filled with subexpressions by the solver. Typically, these

70 Constraint Solving

1 (define-sort Bit5 () (_ BitVec 5))

2 (define-fun input-count () Int 1)

3 (define-fun component-count () Int 2)

4 (define-fun line-count () Int (+ input-count component-count))

6 ;Component semantics
7 (define-fun comp1 ((x1 Bit5) (x2 Bit5)) Bit5 (bvand x1 x2))

8 (define-fun comp2 ((x Bit5)) Bit5 (bvsub x #b00001))

10 ; ijk – kth input of component fj ; oj – its output;
11 (declare-const i11 Bit5) (declare-const i12 Bit5) (declare-const i21

Bit5) (declare-const o1 Bit5) (declare-const o2 Bit5)

12 ; ℓijk and ℓoj are the corresponding line numbers
13 (declare-const li11 Int) (declare-const li12 Int) (declare-const li21

Int) (declare-const lo1 Int) (declare-const lo2 Int)

14 ;Variables and line numbers for the program input i0 and output o
15 (declare-const i0 Bit5) (declare-const li0 Int)

16 (declare-const o Bit5) (declare-const lo Int)

17 (assert (and (= li0 0) (= lo (- line-count 1))))

19 ;Well-formedness constraints
20 (assert (and (>= li11 0) (< li11 line-count)

21 (>= li12 0) (< li12 line-count)

22 (>= li21 0) (< li21 line-count)

23 (>= lo1 input-count) (< lo1 line-count)

24 (>= lo2 input-count) (< lo2 line-count)))

25 (assert (not (= lo1 lo2)))

26 (assert (and (< li11 lo1) (< li12 lo1) (< li21 lo2))) ;Acyclicity
27 (assert (and (= o1 (comp1 i11 i12)) (= o2 (comp2 i21)))) ;Components

29 ;Data flow constraints: equal locations should hold equal variables
30 (assert (and (=> (= lo2 lo) (= o2 o))

31 (=> (= li0 li11) (= i0 i11)) (=> (= li0 li12) (= i0 i12))

32 (=> (= li0 li21) (= i0 i21)) (=> (= li0 lo1) (= i0 o1))

33 (=> (= li0 lo2) (= i0 o2)) (=> (= li0 lo) (= i0 o))

34 (=> (= li11 li12) (= i11 i12)) (=> (= li11 li21) (= i11 i21))

35 (=> (= li11 lo1) (= i11 o1)) (=> (= li11 lo2) (= i11 o2))

36 (=> (= li11 lo) (= i11 o)) (=> (= li12 li21) (= i12 i21))

37 (=> (= li12 lo1) (= i12 o1)) (=> (= li12 lo2) (= i12 o2))

38 (=> (= li12 lo) (= i12 o)) (=> (= li21 lo1) (= i21 o1))

39 (=> (= li21 lo2) (= i21 o2)) (=> (= li21 lo) (= i21 o))

40 (=> (= lo1 lo2) (= o1 o2)) (=> (= lo1 lo) (= o1 o))))

42 (assert (and (= i0 #b01010) (= o #b01000))) ; Input-output example

Figure 5.1: A program synthesis constraint that encodes the problem in Example 5.1.

5.2. Solver-Aided Programming 71

sketches are written by a human, but it is also possible to generate

them automatically.

Recently, Feng et al. developed SyPet, a technique for component-

based synthesis that (a) does not require the component library to

be annotated with specifications, and (b) deliberately decomposes

the synthesis process into sketch generation and sketch completion

to keep the analysis tractable [31]. In this approach, the first phase

performs reachability analysis on the component APIs (represented as

a Petri net [119]). Every found reachable path corresponds to a viable

combination of components in the library as a sketch. The second phase

then completes this sketch with program parameters and variables using

an SMT encoding.

The separation of component-based synthesis into two phases that

are resolved by different techniques is a key idea that makes SyPet

scale. While it is possible to construct a Petri net that represents the

entire synthesis problem, that net is much larger, and analyzing its

reachable paths quickly becomes intractable. We also note that the

choice of Petri nets as a technology for sketch generation is specific to

SyPet; a different application might warrant a different approach.

5.2 Solver-Aided Programming

Developing a problem-specific SAT/SMT encoding and generating the

corresponding formula can be cumbersome and time-consuming. For

this reason, the community built several frameworks for expressing

synthesis problems (and some related ones) that translate a represen-

tation in a high-level programming language into the corresponding

formula behind the scenes. More generally, such frameworks implement

the idea of solver-aided programming: they augment high-level program-

ming languages with new constructs that require constraint solving to

be materialized [139]. Such constructs enable embedding second-level

subproblems into regular programs in the host language.

In §3.3.1, we described sketching—a form of syntactic bias that

describes the program space for synthesis as a program in a high-level

C-like programming language augmented with symbolic holes and gener-

72 Constraint Solving

ators. Sketch is the first framework for solver-aided program synthesis:

its compiler translates the sketches into equivalent SAT formulas such

that their satisfying models can be mapped to the corresponding choices

for the holes and generator traces [132]. Thus, a sketch can be seen as

a program in a high-level programming language whose compiler relies

on a SAT solver to materialize some language constructs.

In 2013, Torlak and Bodik [139] and, independently, Uhler and

Dave [142] extended the ideas of Sketch to more general forms of

solver-aided programming. Torlak and Bodik developed Rosette: a

symbolic framework that integrates into the virtual machine of Racket3

and extends the language with new solver-aided constructs. Smten

implements a similar idea in the Haskell host language.

Apart from program synthesis, solver-aided constructs enable em-

bedding verification, fault localization, and angelic execution queries

into the programs. For instance, Rosette extends Racket with the

following solver-aided constructs:

• (define-symbolic 〈id〉1 . . . 〈id〉k 〈type〉)
Defines k symbolic holes that may be in Racket computations as

regular variables. The Rosette compiler interprets an expression

with such a hole symbolically, representing it as an AST. The

parts without any holes are evaluated by the Racket VM as usual.

• (verify 〈expr〉)
A verification query. Attempts to find any binding of the symbolic

variables in the expression that violates the assertions in scope.

• (solve 〈expr〉)
An angelic execution query. Attempts to find a binding of the

symbolic variables in the expression that satisfies the assertions

in scope.

• (synthesize #:forall 〈inputs〉 #:guarantee 〈expr〉)
A synthesis query. Finds a binding of the symbolic variables in

the expression that are not universally quantified in the inputs,

such that they satisfy the assertions in scope. In addition to

explicitly defined holes, these variables are also generated by

3
http://racket-lang.org

http://racket-lang.org

5.2. Solver-Aided Programming 73

grammars, which are defined similarly to generators in Sketch.

Applying generate-forms to the binding produces a syntactic

representation of the synthesized expression in that grammar.

• (debug [〈filter〉] 〈failing-expr〉)
A debugging or fault localization query. Produces a minimal un-

satisfiable core of the expressions specified by the filter—that is,

some subset of expressions that is guaranteed to be relevant to

the given assertion failure. In other words, the assertion cannot be

satisfied without changing at least one expression from the core.

Example 5.2 (Re-used from [140]). Consider a domain of finite state

automata (FSAs). As shown in [74], it is possible to use Racket’s meta-

programming facilities (i.e., macros) to define a fast and concise FSA

DSL with executable semantics. In this DSL, an example definition of

an FSA that accepts the language c(ad)∗r looks as follows:

1 (define m (automaton init

2 [init : (c → more)]

3 [more : (a → more) (d → more) (r → end)]

4 [end :]))

where automaton is a Racket macro that accepts a list of states and

transitions, and returns an executable FSA.

Using Rosette’s symbolic evaluation facilities, we can use solver-

aided queries to verify FSA behavior, synthesize FSAs, or angelically

execute them in search for an accepted input. We first define some

utility functions to create and manipulate symbolic words:

1 ; Draws a word of length k from the given alphabet.
2 (define (word k alphabet)

3 (for/list ([i k])

4 (define-symbolic* idx integer?)

5 (list-ref alphabet idx)))

7 ; Draws a word of length 0 ≤ n ≤ k from the given alphabet.
8 (define (word* k alphabet)

9 (define-symbolic* n integer?)

10 (take (word k alphabet) n))

12 ; Returns a string encoding of the given list of symbols w.

74 Constraint Solving

13 ; For example, (word->str ’(c a r)) returns "car".
14 (define (word->str w) (apply str-append (map symbol->str w)))

16 ; Returns true iff regex matches the string encoding of w.
17 (define (spec regex w) (regexp-match? regex (word->str w)))

and then construct the desired queries:

1 ; Angelic execution: find a word of length ≤ 4 accepted by m.
2 (define w (word* 4 '(c a d r)))

3 (define model (solve (assert (m w))))

4 (evaluate w model) ; ’()

5 ; Indicates that the empty word ’() is accepted by m.

7 ; Verification: find a counterexample to a given regex that m accepts.
8 (verify (assert (eq? (spec #px"^c[ad]*r$" w) (m w))))

9 verify: no counterexample found

11 ; Synthesis: find an FSA that implements the regex ^c[ad]+r$ for all
words of length ≤ 4 using an FSA sketch M [140, Figure 3].

12 (define model

13 (synthesize #:forall w

14 (assert (eq? (spec #px"^c[ad]+r$" w) (M w)))))

15 (generate-forms model)

16 ; (define M

17 ; (automaton init

18 ; [init : (c → s1)]

19 ; [s1 : (a → s2) (d → s2) (r → reject)]

20 ; [s2 : (a → s2) (d → s2) (r → end)]

21 ; [end :]))

Implementation Internally, Rosette implements these constructs

by embedding a symbolic evaluator into the Racket’s VM. It follows

the standard evaluation strategy, tracking the symbolic expressions as

ASTs and evaluating the concrete ones using Racket semantics. Most

importantly, Rosette’s VM implements a clever technique for merging

symbolic expressions produced by different conditional branches in the

program’s control flow [140]. Without such merging, the number of sym-

bolic subexpressions and the resulting formula would grow exponentially,

overlooking many opportunities for concrete evaluation.

5.3. Inductive Logic Programming 75

The result of symbolic evaluation for each solver-aided construct is

an SMT query to the underlying solver. Its solution (either a model

or an unsatisfiable core) is translated by the VM back into the host

language (Racket or Haskell) in terms of the original program.

In addition to simplifying design of problem encodings, solver-aided

frameworks also enable domain separation: an application designer can

focus on their DSL design without intertwining it with the encoding

details of solver-aided queries. As a result, these frameworks are widely

successful. Rosette, for instance, is used in numerous research projects

on program synthesis and verification (e.g. [14, 107, 108, 147]).

5.3 Inductive Logic Programming

Inductive logic programming (ILP) is the field of automatic inference

of logical programs from examples [92]. In contrast to other synthesis

approaches in this survey, ILP is focused on synthesizing first-order rules

and relations instead of functional expressions or programs. However, it

is similar to constraint-based synthesis in its methodology—applying

logical inference to derive the desired relation. Since the main specifi-

cation kind in ILP is a set of examples, ILP is also closely related to

programming by examples, discussed in Chapter 7.

A problem in ILP is given by examples (a set of facts) and, optionally,

background knowledge (a set of rules that describe the domain). For

instance, given the following examples:

parent(jack, mary).

parent(mary, bob).

father(jack, mary).

mother(mary, bob).

male(jack). male(bob).

female(mary).

an ILP system is able to infer first-order rules and constraints such as:

← male(X), female(X).

male(X) ← father(X, Y).

father(X, Y), mother(X, Y) ← parent(X, Y).

A specification in ILP is a target predicate used in the examples

whose definition is to be inferred. It is also not uncommon to omit it and

let the system infer any interesting facts and rules from the provided

76 Constraint Solving

data. In both capacities ILP has been successfully applied to numerous

domains, including biological discovery [69, 95, 122, 136], ecology [138],

and natural language processing [83, 150].

Modern ILP algorithms perform various forms of hypothesis search,

employing a combination of inductive and deductive logical inference.

Specific search techniques such as inverse resolution [94] and inverse

entailment [93] are beyond the scope of this survey. We refer the reader

to ILP surveys [27, 92] for a comprehensive introduction.

The most notable recent development in ILP is meta-interpretive

learning (MIL) [96, 97]. It extends classic generalization techniques with

an efficient implementation of predicate invention: automatic introduc-

tion of useful sub-predicates in the derivation. This allows MIL to learn

complex logical programs including recursive predicate definitions and

clauses that are hierarchically constructed from re-usable blocks.

6

Stochastic Search

The stochastic synthesis approaches learn a distribution over the space of

programs in the hypothesis space that is conditioned on the specification,

and then sample programs from the distribution to learn a consistent

program. The goal of these techniques is to use the learnt distribution

to guide the search of programs that are more likely to lead to programs

that conform with the specification. Some common approaches to learn

program distributions include Metropolis-Hastings algorithm, genetic

programming, and machine learning. We now briefly describe the main

ideas of these approaches.

6.1 Metropolis-Hastings Algorithm for Sampling Expressions

The stochastic SyGuS solver [3] uses Metropolis-Hastings algorithm to

sample expressions from a given grammar to learn an expression that

is consistent with a specification. This solver was inspired from the

work on using Markov Chain Monte Carlo (MCMC) sampling based

techniques for super-optimizing the loop-free binary assembly code [124].

The key idea of the search algorithm is to first define a Score function

that assign a cost to every program in the hypothesis space of all

77

78 Stochastic Search

possible programs, which defines a probability distribution over the

domain of programs. Since the cost function aims to model a highly

irregular and high-dimensional search space, it is typically complex and

non-continuous, which makes it difficult for direct sampling techniques

to sample programs from this distribution. Therefore, the Metropolis-

Hastings algorithm is used to sample desired programs.

The space of all possible programs (of some fixed length) in the

hypothesis space can be represented using a large dense graph, where the

nodes represent different partial expressions and an edge from node n1

(corresponding to expression e1) to node n2 (corresponding to expression

e2) denote the single-edit transformation to obtain expression e2 from

e1. The Metropolis-Hastings algorithm performs a probabilistic walk

on the graph starting from a random node to reach the desired node

that satisfies the specification. Let Score(e) denote the cost function

associated with a node n denoting the expression e, which captures

the notion of the extent to which e meets the specification φ. Having

the probability distribution P assign probability P (e) ∝ Score(e), we

increase the chances of the algorithm to reaching the desired expression

with the best score. The algorithm performs the probabilistic walk in

the direction of increasing expression scores. However, since the cost

function is non-continuous, the algorithm can also move to expressions

in the graph with a lower score, with some low probability.

The stochastic SyGuS solver defines the score of an expression

e as Score(e) = e−βC(e), where β is a constant set to 0.5 and C(e)

denotes the number of examples for which e is incorrect. The value

of Score(e) is large when C(e) is small denoting that the expression

e is correct on most of the specification examples. When C(e) = 0,

the expression e is the desired expression. Consider the size of the

programs is fixed to a constant k and the graph consists of all programs

of size k in the hypothesis space. The solver picks the first expression

e randomly in the graph. It then randomly selects a node ν in the

parse tree of e. Let eν denote the sub-expression that is rooted at

this node ν. The algorithm then uniformly chooses another expression

e′

ν of size equal to that of eν from its neighborhood. Let e′ denote

the new expression obtained by replacing the subexpression eν in e

6.1. Metropolis-Hastings Algorithm for Sampling Expressions 79

2

1

5 6

3 4
2

1

5 6

3 4

x / y / 0 / 1

<= / = / >=

if

1/3

1/4
1/4

1/4

1/4

(a) (b)

Figure 6.1: (a) The shape of all expressions of size 6 in the grammar shown in
Figure 4.1, (b) The likelihood of assigning different terminal symbols to each node
in the parse trees of size 6.

with e′

ν . Given the original expression e and the mutated expression

e′, the Metropolis-Hastings algorithm chooses to make the mutated

expression the new candidate expression using the following acceptance

ratio: α(e, e′) = min(1, Score(e)/Score(e′)). Intuitively, the algorithm

accepts the mutation if the new expression results in higher score value

(i.e. α(e, e′) = 1). Otherwise, it chooses to accept the new expression

with probability equal to α(e, e′) < 1.

Give a specification φ, the size of the desired expression is typically

not known apriori. The stochastic solver starts with the program size

k = 1 and using some probability pm searches for programs of size k+ 1

after each iteration of the Metropolis-Hastings algorithm.

Consider the conditional linear integer arithmetic grammar in Fig-

ure 4.1 (with additional leaf terminals denoting constants 0 and 1) and

the specification of the unknown function f to be synthesized to be

that of the maximum function such that φ : f(x, y) ≥ x ∧ f(x, y) ≥
y ∧ (f(x, y) = x ∨ f(x, y) = y). Let’s assume the stochastic solver is

currently searching for expressions of size k = 6. The shape of the parse

trees of all expressions of size 6 in the grammar is shown in Figure 6.1(a).

There are in total 768 such expressions. The possible values of terminals

for different nodes in the parse tree is shown in Figure 6.1(b).

80 Stochastic Search

>=

if

0 x

y x

e

>=

if

0 y

y x

e’

Figure 6.2: An example mutation considered by the stochastic solver.

Let us assume the solver chose the expression e = if(x ≤ 0, y, x)

as the current candidate expression (whose likelihood is 1/768), and

the solver selects the Boolean predicate x ≤ 0 to mutate. The example

mutation is shown in Figure 6.2. Since there are 48 different predicate

choices, the probability to mutate the predicate x ≤ 0 to y ≤ 0 is

1/6 × 1/48 = 1/288 and e′ = if(y ≤ 0, y, x). For a given set of input-

output examples {(−1, 4), (−3,−1), (−1,−2), (1, 2), (3, 1), (6, 2)}, the

scores of the expressions are Score(e) = e−2β and Score(e′) = e−3β.

The solver then choose to mutate expression e to e′ with probability

equal to e−β. Note that if the algorithm had considered the mutation

to obtain the expression e′′ = if(x ≤ y, y, x), then the score would have

been Score(e′′) = 1, and e′′ would be the new candidate expression

chosen with probability 1 by the algorithm.

6.2 Genetic Programming

Genetic programming [73] can be considered as an extension of genetic

algorithms [56] to the domain of computer programs, where a popula-

tion of programs are continuously evolved and transformed into new

6.2. Genetic Programming 81

generations of programs using principles inspired from biological evolu-

tion such as Darwin’s theory of natural selection and natural genetic

operations including crossover, mutation, duplication, and deletion [71].

Compared to the traditional genetic algorithms, the evolving structures

in genetic programming are hierarchical computer programs of dynam-

ically varying shape and size, where a set of functions and terminal

symbols define the complete hypothesis space of possible programs. The

genetic programming algorithms maintain a population of individual

programs and use the mutation and crossover operations to generate

program variants. The mutation operation performs random changes to

programs, whereas the crossover operation allows for reusing useful sub-

programs across different programs. The fitness function corresponds to

the notion of how well a program satisfies the specification and is used

to suitability of different program variants. A program that meets the

specification during the evolution is then returned as the desired one.

The Genetic programming algorithm starts with a set of terminals

and functions that are appropriate for a given domain. This set defines

the complete search space of programs considered by the algorithm.

There are two key requirements of the hypothesis space: i) the desired

program to be synthesized exists in the search space, and ii) each

function should be able to accept as its argument a value returned by

any other function or a terminal value. The first requirement ensures

existence of the desired program, whereas the second requirement en-

sures the well-formedness of the programs obtained by mutations and

crossover during the evolution of the programs.

There are four main steps in designing the genetic programming

algorithm. First, a set of terminal and function symbols need to be

defined. Second, a fitness measure needs to be defined that corresponds

to the viability of a program, i.e. how well the program satisfies the

specification. Third, we need to define a number of search parameters

such as the size of population, number of expressions in a program,

probability of crossover, mutation, reproduction, deletion, etc. These

parameters guide the evolutionary process. Finally, we need to deter-

mine the termination criterion for ending the evolutionary process and

returning the resulting program.

82 Stochastic Search

The genetic algorithm first creates a random population of pro-

grams, where each individual program in the population are generated

randomly using the terminal and function symbols. Each program in

the population is syntactically correct because of the requirement on

the set of terminal and function symbols. The fitness of each program

in the population is then measured. The fitness measures are typi-

cally domain-specific and problem dependent. Some examples of fitness

measures include the number of input-output examples being correct,

the deviation between the program output and desired outputs, prop-

erties based on program execution (such as time, energy etc.), or a

multi-objective cost function combining multiple criterion. The initial

generation consisting of random programs generally has very poor fit-

ness, but some individuals have a higher fitness score than others. This

difference between fitness scores is used for performing crossover and

mutation operations.

The crossover operation randomly selects two programs from the

population (called parents) based on their fitness scores. It then ran-

domly selects a node (in the corresponding parse trees) independently

from each of the two programs and swaps them. We now obtain two

offspring programs. This operation is repeated multiple times to obtain a

set of new offspring programs. An example crossover operation is shown

in Figure 6.3. The mutation operation randomly selects a program based

on the fitness score and selects a node. It then deletes the sub-tree

rooted at the selected node and grows a new sub-tree randomly using

the terminal and function symbols. An example mutation operation is

shown in Figure 6.4. The reproduction operation randomly selects a

program based on the fitness scores and copies it to the new population.

The genetic programming algorithm iteratively uses these operations

to evolve population of programs until the termination criterion is

satisfied. After termination, the single best program produced during

the evolution based on the fitness score is harvested and returned as

the result. If the returned program corresponds to the desired program,

the run of the genetic algorithm is designated as a successful run.

The success of genetic programming based systems crucially de-

pends on the design of a good fitness function, which require non-trivial

6.2. Genetic Programming 83

*

+

z 2

-

x 4

x

*

-

y 2

-

+

y 2

-

x 4

x

*

*

z 2

parent1 parent2

offspring1 offspring2

Figure 6.3: An example crossover operation. The algorithm randomly selects
two nodes in two parent programs and swaps them to generate two new offspring
programs.

*

+

z 2

-

x 4

parent offspring

*

+

z 2

-

x +

2 y

Figure 6.4: An example mutation operation. The algorithm randomly selects a
node in a parent program and replaces the sub-tree rooted at it with a new randomly
generated expression.

84 Stochastic Search

insights and creativity. Genetic programming has been used to discover

new mutual exclusion algorithms [68] and to fix bugs in imperative

programs [80]. There have also been some interesting recent work in

combining genetic programming techniques with logical reasoning tech-

niques [61, 68].

6.3 Machine Learning

There have been some machine learning based techniques developed

to guide the search process for learning a correct program from the

hypothesis space [82, 89]. The main idea of these techniques is to learn

a probability distribution over the space of programs that is conditioned

by the specification (such as input-output examples). This probability

distribution is then used to sample programs that are more likely to be

consistent with the given specification.

Menon et al. [89] propose a machine learning framework for Pro-

gramming By Example, where the hypothesis space is defined by a

context-free grammar (CFG), and given a set of input-output exam-

ples, the system learns weights for different rules (called clues) in the

grammar to obtain a corresponding probabilistic context-free grammar

(PCFG). The PCFG is then used to guide the enumerative search to find

the desired program. The weights of different grammar rules conditioned

on the input-output examples are trained using a training corpus of

input-output examples and the corresponding programs.

The framework is instantiated on a text processing language, which

adds text functions on top of the FlashFill DSL [43]. The domain

expert then manually defines certain features that can help the learning

algorithm identify correct programs given the input-output examples.

Some features include dedup_cue that checks whether any string in

the set of output strings is duplicated, sort_cue that checks if the

output strings are sorted etc. The learning process exploits the fact

that the chance of a rule being used for a desired program for a set of

input-output pairs (x̄, ȳ) greatly depends on certain characteristics in

the structure of x̄ and x̄, namely the features. This approach results in

an order of magnitude better performance over an enumerative baseline.

6.4. Neural Program Synthesis 85

A drawback of this framework is that designing useful clues (features)

manually is a time consuming and difficult task, and requires a lot of

domain expertise. Moreover, since the learnt weight results in a PCFG,

the framework can not use contextual information about the partial trees

generated during the search to more efficiently guide the exploration.

6.4 Neural Program Synthesis

The problem of program synthesis and program induction has seen a

lot of recent interest from the deep learning community. The proposed

approaches can be divided into two categories: i) program induction, and

ii) program synthesis. The neural architectures that perform program

induction learn a network that is capable of replicating the behavior of

the desired program, whereas the neural systems that perform program

synthesis return an interpretable program that matches the desired

specification behavior.

The program induction techniques develop new neural architectures

that can learn the behavior of a program that is consistent with a given

set of input-output examples. Many of these approaches are inspired

from computation modules such as CPU [40, 118], GPU [66], and data

structures such as stacks [64]. The key idea in these approaches is to

develop a continuous representation of the atomic operations of the

network, and then use either end-to-end training of a neural controller

or reinforcement learning to learn the program behavior. Even though

this work on program induction has led to several promising neural

architectures, there are also some shortcomings. One shortcoming is

that these techniques do not generate an interpretable model of the

learnt program, and typically require large computational resources and

several thousands of input-output examples per synthesis task.

Some recently proposed neural systems do learn interpretable pro-

grams. The Neural FlashFill [105] system develops two neural architec-

tures: 1) the cross correlation I/O encoder that produces a continuous

representation of the set of input-output examples, and ii) the Recursive-

Reverse-Recursive Neural Network (R3NN) that incrementally synthe-

sizes a program in the DSL given the continuous representation of the

86 Stochastic Search

examples. Neural-RAM [76] learns a circuit composed of a given set of

modules that is consistent with a set of input-output examples. It first

develops a continuous representation of all modules, and then learns a

controller that defines how the different modules are connected with

each other. DeepCoder [7] learns embeddings of integer input-output

examples to learn a distribution over the possible space of functions

that are likely to be useful for the desired transformation on the ex-

amples. It then uses the learnt distribution over functions to guide a

depth-first based top-down enumerative algorithm similar to the one

shown in §4.1.1. Finally, there are also some recent probabilistic pro-

gramming languages such as Terpret [36] and Forth [120] that enable

programmers to write partial programs and use gradient descent based

techniques to complete them such that the completed programs satisfy

the input-output examples.

Given the FlashFill DSL, the Neural FlashFill [105] system learns

a generative model of programs in the DSL that is conditioned on

the input-output examples. The generative model is trained end-to-

end using a large training set of programs in the DSL together with

their corresponding input-output examples. The training set is generate

automatically by sampling programs from the DSL and then using a

rule-based approach to generate conforming input-output examples. The

system develops two key neural architectures: i) The I/O encoder and ii)

the R3NN network. Starting from the start symbol of the grammar, the

system uses the R3NN to incrementally construct the desired program.

The R3NN takes a partial program tree (derivation in the grammar),

and decides which non-terminal node in the tree to expand and with

which expansion rule. The generative process is conditioned by the I/O

encoding vector.

The I/O encoder generates a continuous representation of the set of

input-output examples. The cross correlation encoder first runs bidirec-

tional LSTMs over the input and output strings, and then computes

the cross correlation between the two output tensors obtained from the

LSTMs. The key idea insight is to learn which parts of output strings

come from which parts of the input strings.

6.4. Neural Program Synthesis 87

The R3NN learns a generative model over the trees in the DSL.

The model has the following 4 parameters: i) a vector representation

for each symbol in the grammar, ii) a vector representation for each

rule in the grammar, iii) a deep neural network that takes as input

the set of RHS symbols of a rule and generates a representation of

the corresponding LHS symbol, and iv) a deep neural network that as

input the representation of an LHS symbol of a rule and generates a

representation for each of the corresponding RHS symbols. The R3NN

first assigns a vector representation to each leaf node of a partial tree,

and then performs a recursive pass going up in the tree to assign a

global representation to the root. It then performs a reverse-recursive

pass from the root to assign a global representation to each node in the

tree. Intuitively, the idea is to assign a representation to each node in

the tree such that the node knows about every other node in the tree.

The R3NN encoding for an example partial tree in the grammar with

the recursive and reverse-recursive passes is shown in Figure 6.5 and

Figure 6.6 respectively.

The Neural FlashFill system after being trained on synthetic pro-

grams of size upto 13 is able to successfully synthesize both programs

(upto size 13) that it has seen during the training but with different

input-output examples, and programs that it has not seen during the

training. The 1-best strategy (choosing best expansion from the distri-

bution at each expansion) yields an accuracy of about 60% whereas it

increases to 97% with 300-samples. Moreover, it is also able to learn

desired programs for 91 (38%) of 238 real-world FlashFill benchmarks.

A majority of the unsolved FlashFill benchmarks belong to the category

of large programs. One shortcoming of the R3NN network is that it is

currently challenging to train for programs of larger size.

There has also been some work on synthesizing programs using

quantitative objectives [17, 18, 19]. The idea of program smoothing [19]

is to reduce the synthesis problem to a sequence of numerical optimiza-

tion problems, where the program is approximated in some continuous

space. The approximate objective becomes closer to the original quan-

titative objective as the sequence progresses. The idea of combining

88 Stochastic Search

Figure 6.5: The initial recursive pass of the R3NN.

Figure 6.6: The reverse-recursive pass of the R3NN.

6.4. Neural Program Synthesis 89

program smoothing with neural program synthesis techniques can be

quite beneficial for the synthesis tasks with quantitative objectives.

7

Programming by Examples

7.1 Problem Definition

As described in §1.3, the problem of program synthesis is largely defined

by the choice of its three main components: intent specification, program

space, and search algorithm. When dealing with a novel problem, we

can usually control the choice of the algorithm and, to some extent,

the program space. However, the particular specification kind is typi-

cally a fundamental part of the real-life problem. Since the available

specification kind naturally limits the available choice for the other two

problem components, it is not surprising that limits in intent specifica-

tion inspire the most innovations in subfields of synthesis. The subfield

of programming by example (PBE) is one such instance.

In PBE, the synthesis problem is given by input-output examples (or,

more generally, input-output constraints). They specify the behavior

of the desired program on a subset of its valid inputs. In the simplest

PBE scenario, the specification defines the program’s outputs; in more

complex cases, it specifies some properties or constraints on the outputs

instead of their precise values. Examples are generally preferred thanks

to their ease of use for a user specifying the problem, but sufficiently

simple constraints on the outputs may be used for the same purpose.

91

92 Programming by Examples

Example 7.1. The following set of input-output examples specifies the

behavior of the program
√
x : R+ → R:

{1 7→ 1, 9 7→ 3, −3 7→ ⊥}

Example 7.2. The following set of input-output examples specifies the

behavior of a Flash Fill program (see §2.1) that extracts the first word

from a given input string:

Input Output

Alice Smith Alice

Benjamin H. Baker Benjamin

Example 7.3. The following set of input-output constraints specify

the behavior of a program that filters valid numbers out of a given

list of strings. Each constraint specifies an input list and a subset of

the corresponding output list. Formally, an output constraint of kind

“? ⊒ [e1, . . . , en]” requires that the program’s output (“?”) must contain

[e1, . . . , en] as a sublist. Such a constraint is usually preferable to full

input-output examples when the correct output is too large to specify.

Input Output

[“Alice”, “50”, “North America”, “-34”, “0”, . . .] ? ⊒ [“50”, “0”]
[“Benjamin”, . . .] ? ⊒ []

Note how the first input-output constraint omits “-34” even though

it should also be present in the desired output (because the desired

program must filter all valid numbers from the given input list).

Input-output examples exhibit several unique properties, which set

the PBE subfield apart from the rest of program synthesis.

Ease of use: Examples are very easy to provide, explain, and verify (as

opposed to other widespread spec kinds such as logical formulas

and assertions). This makes them an ideal specification kind for

non-programming application domains such as data wrangling in

Excel or direct graphical manipulation.

7.2. Version Space Algebra 93

Ambiguity: Examples are an under-specification: most of the time,

there exists more than one program that is consistent with the

given set of examples. Moreover, in typical real-life languages, the

space of consistent programs is either infinite or extremely large

(e.g. up to 1020 in wrangling domains [113]). This inherent ambi-

guity in problem specification constitutes an additional challenge

in PBE: we need to find not just some program that is consistent

with the spec but the intended one (or semantically equivalent).

In the rest of this section, we focus on the most popular methods

for dealing with challenges of PBE: (a) finding consistent programs, (b)

handling an enormous space of consistent program candidates, and (c)

disambiguating user intent in order to pick a single program candidate.

7.2 Version Space Algebra

If a synthesis algorithm aims to satisfy an underlying user intent in

an example-based spec (as opposed to finding any single program that

is consistent with it), it must somehow deal with enormous spaces of

ambiguous program candidates. One popular tool to resolve that is using

a data structure called version space algebra (VSA) [77, 91, 113]. It

allows to represent potentially exponential program sets in polynomial

space and perform various operations on these sets in polynomial time.

Definition 1 (Version space algebra). Let N be a symbol in a DSL L. A

version space algebra is a representation for a set Ñ of programs rooted

at N . The grammar of VSAs is:

Ñ := {P1, . . . , Pk} | UUU(Ñ1, . . . , Ñk) | F
1
(Ñ1, . . . , Ñk)

where F is any k-ary operator in L, and Pj are some programs in L.
The semantics of VSA as a set of programs is given as follows:

P ∈ {P1, . . . Pk} if ∃ j : P = Pj

P ∈ UUU(Ñ1, . . . , Ñk) if ∃ j : P ∈ Ñj

P ∈ F1(Ñ1, . . . , Ñk) if P = F (P1, . . . , Pk) ∧ ∀j : Pj ∈ Ñj

Intuitively, a VSA is a DAG where each node represents a set of

programs. Leaf nodes contain explicit enumerations of programs; they

94 Programming by Examples

are composed into larger sets by two possible VSA constructor nodes.

Union nodes UUU represent a set union of their constituent VSAs. Join

nodes F
1

represent a cross-product of their constituent VSAs, with

an associated operator F applied to all combinations of parameter

programs from the cross-product.

One can also interpret VSA as a sub-language of its original DSL L.

If we associate each VSA leaf node with a fresh terminal symbol, and

each constructor node with a fresh nonterminal, we obtain a context-free

grammar L′ ⊂ L where join nodes correspond to operator calls and

union nodes correspond to alternations:

Example 7.4. Consider the following DSL L, which models a subset of

Flash Fill:

string N := ConstantString(s) | Substring(P, P);

int P := AbsolutePosition(k);

int k; string s;

It contains two nonterminals N and P , two terminals k and s, and ref-

erences three operators ConstantString, Substring, and AbsolutePosition.

Every program rooted at N in this DSL outputs a string–either a con-

stant string s or a substring of a given input defined by two positions

P . Each position, in turn, is defined by an integer k, which represents

an absolute position in a string, counted from the left if k ≥ 0 and from

the right if k < 0.
The following VSA Ñ represents 2 + 2× (1 + 2) = 8 programs in L:

Ñ = UUU (ConstantString
1
({“foo”, “bar”}),

Substring
1
(AbsolutePosition1({0, 1},

UUU (AbsolutePosition1({10}), AbsolutePosition1({−1,−5})))))

It is equivalent to the following context-free grammar L′ ⊂ L:

string N ′ := ConstantString(s′) | Substring(P ′

1, P
′

2);

int P ′

1 := AbsolutePosition(k′

1);

int P ′

2 := Q′

1 | Q′

2;

int Q′

1 := AbsolutePosition(k′

2);

7.3. Deduction-Based Techniques 95

int Q′

2 := AbsolutePosition(k′

3);

string s′ ∈ {“foo”, “bar”} ;

int k′

1 ∈ {0, 1}, k′

2 ∈ {10}, k′

3 ∈ {−1,−5}

The key property of VSAs is their ability to encode exponential sets

of programs in polynomial space. They achieve that by providing two

kinds of sharing among program subexpressions. One is provided by the

join nodes, which encode a cross-product of their subexpression sets.

The other is provided by the DAG structure of a VSA, which allows

subexpression sharing among program sets that reference the same VSA

node through different paths in the DAG.

Another powerful property of VSAs is ability to quickly perform

various set-theoretic operations on them. These operations are usually

defined inductively over the VSA structure. Thus, their running time

is proportional to the number of nodes in the VSA, as opposed to

the number of programs it represents (which is usually exponentially

greater). We refer the reader to [113] for the implementation details of

all such operations; in this overview, we simply present a list of them:

• VSA intersection Ñ1 ∩ Ñ2 constructs a VSA that represents all

programs present in both Ñ1 and Ñ2.

• VSA clustering Ñ/σ partitions a VSA Ñ into non-intersecting

sub-VSAs based on the output of their contained programs on a

given input σ.

• VSA ranking Toph(Ñ , k) finds the topmost k programs in a

VSA Ñ with respect to a ranking function h : Ñ → R.

• VSA projection, or filtering Ñ↾φ eliminates all programs in Ñ that

do not satisfy a given spec φ.

The synthesis algorithms in §7.3.1 make use of these operations.

7.3 Deduction-Based Techniques

Although any of the previously discussed synthesis algorithms can be ap-

plied to a PBE problem, certain specialized algorithms usually perform

96 Programming by Examples

much better. They are based on the idea of deductive search: pushing

the given examples through the grammar top-down. 1 Intuitively, it

applies the principle of divide-and-conquer to reduce the given synthe-

sis problem to smaller subproblems of the same kind. The particular

choice of subproblems and composition of their results depends on the

algorithm.

Two families of deduction-based techniques have been developed in

the last decade. One, popularized by Flash Fill [43] and the following

PROSE framework [113], uses inverse semantics of the DSL operators.

The other, popularized by the Myth [102] and Synquid [111] systems,

uses a type-theoretic interpretation of the PBE problem.

7.3.1 Inverse Semantics

In this approach, examples φ are propagated top-down through the

grammar from expressions to their subexpressions. In other words,

given a synthesis problem to find an expression of kind F (E1, E2) that

satisfies a spec φ (denoted as F (E1, E2) � φ), it reduces this problem

to several simpler subproblems of kind E1 � φ1 and E2 � φ2. Here φ1

and φ2 are fresh specs on the subexpressions E1 and E2 of the desired

program. They are constructed in a way that ensures that any program

F (E1, E2) with such subexpressions would satisfy φ.

Construction of subexpression specs depends on the requested top-

level operator F in the desired program. Essentially, we need to invert F :

if a program F (E1, E2) outputs y on an input σ, what should E1 and

E2 output on the same input? Answering this question provides us with

necessary specs on E1 and E2 that ensure the entire program satisfies φ.

In practice, using a complete inverse semantics for each operator in

the grammar may be overly computationally expensive. Most real-life

operators do not have a simple closed-form inverse. To find the necessary

subexpression specs, we may need to search over the entire codomain of

the corresponding subexpressions, which is often either infinite or too

1Also known in the literature as divide-and-conquer search, top-down search, and
backpropagation-based search (not to be confused with the backpropagation algorithm
for training neural networks [20], although this name was inspired by similarities
between the two techniques).

7.3. Deduction-Based Techniques 97

large. For example, consider an inverse semantics to a list-processing

operator Filter(λx → Π, L) with respect to a given output list ℓ. It

must find all lists L and predicates Π such that filtering of L with Π

yields ℓ. For any non-trivial grammar underneath the symbols L and Π

the number of possible such inputs is infinite.

To mitigate this, the approach uses three key ideas:

Witness function: A generalization of inverse semantics. It returns

a subset of the possible inputs that produce the outputs in φ by

employing some heuristics to pick only likely inputs. For instance,

in the Filter scenario above, it may ignore large input lists L.

Constraints: An under-specification that generalizes examples. It de-

scribes some property of the output of the desired program, as

opposed to providing the entire output value (like in Example 7.3).

In the Filter scenario, one necessary spec on L is “its output should

contain ℓ as a sub-list”. Of course, the witness functions for the

operators underneath L must be able to handle such a spec.

Case split: Per-parameter decomposition of inverse semantics. Instead

of constructing all subexpression specs (i.e., necessary inputs) at

the same time, we construct them one at a time. Each parameter

Ei of each operator has a corresponding witness function, which

constructs a necessary spec φi for that parameter subexpression.

We then recursively learn a set of programs Ẽi � φi that are

consistent with this spec. This set is split into subsets based on

the outputs of its programs on the inputs in φi.
2 After that, the

search considers each branch of the case split independently, under

the assumption that the desired subexpression Ei evaluates to the

corresponding output. All subsequent witness functions for the

other parameters take this assumption into account, constructing

smaller and simpler necessary specs.

In the Filter scenario, we can decompose the inverse semantics

by first synthesizing possible input lists L, and then splitting on

2If φi is an example-based spec, the split will contain only one subset because all
programs in Ẽi must output the same value. In a more general case where φi is a
constraint there may be more than one subset.

98 Programming by Examples

them to synthesize possible predicates Π. Suppose we learned some

finite set of programs L̃ that are consistent with the constraint

“its output should contain ℓ as a sub-list”. For each concrete input

list ℓ′ produced by some program in L̃ we can invoke a conditional

witness function for the parameter Π. This witness function con-

structs a necessary spec on Π, answering the following question:

what predicate filters a list ℓ′ into ℓ? One natural implementation

of this witness function constructs a constraint “Π must return

true on all values in ℓ, and false on all values in ℓ \ ℓ′.”

The overall algorithm relies on the designer-provided witness func-

tions to backpropagate the examples through DSL operators. Tradition-

ally, it also uses VSAs (§7.2) as its underlying representation for sets of

learnt programs. It does not have to be a VSA but this data structure

is particularly suitable as it supports efficient implementations of two

important operations:

Intersection of program sets: to construct a set of programs consis-

tent with multiple examples φ1 ∧ · · · ∧ φn from n sets of programs

that are consistent with individual examples.

Clustering of program sets: to perform a case split after learning

a program set for a single parameter of a DSL operator.

(Optional) Ranking: to learn the best program with respect to some

ranking function h, picking the best parameter programs from the

learnt program sets on the fly.

7.3.2 Type-Based Perspective

A type-based perspective on deductive top-down PBE interprets a syn-

thesis problem as a type inhabitance problem [33, 102, 111]. This inter-

pretation is most powerful in a setting where the underlying DSL is

loosely-constrained, that is, permits arbitrary type-safe combinations of

subexpressions. In particular, any ML-like calculus with algebraic data

types can serve as a core language for type-driven synthesis.

Type-theoretic interpretation of PBE relies on two key ideas. First,

it views examples, specs, and constraints on the desired program as type

7.3. Deduction-Based Techniques 99

refinements. The theory of refinement types [32, 34, 121] studies types

decorated with predicates from a decidable logic. For example, the type

{ν : List〈α〉 | length ν = n} describes all lists of a fixed length n. Under

this interpretation, an input-output example (i : τ1, o : τ2) is simply a

function type {ν : τ1 → τ2 | ν i = o}, or, more succinctly, {i} → {o}
where {x} denotes a singleton type which contains only the value x.

Second, the theory of refinement types has developed procedures

for solving the type inhabitance problem—finding a term that has a

given type (which can be viewed isomorphically as refinement type

checking). This is a well-studied problem in the literature, with natural

deduction [29] being the most common approach. More generally, all

such approaches to type checking/inhabitance exhibit properties similar

to the top-down search: they push the refinements on an expression

down to its subexpressions, and use the results of type checking for

the subexpressions to infer new refinements for the sibling terms. Since

ill-typed terms vastly outnumber well-typed ones, and local inference

procedures eliminate the ill-typed candidates, checking type inhabitance

is very efficient for sufficiently expressive refinements.

The most notable works that employ type-theoretic interpretation of

program synthesis are Myth [33, 102] and Synquid [111]. The Myth

framework is a type-theoretic interpretation of PBE, whereas Synquid

supports arbitrary decidable constraints as refinements. Both works

leverage and extend prior work on refinement type checking, described

above. Specifically, Frankle et al. develop a sequent calculus with an

efficient top-down theorem proving mechanism, and Polikarpova et al.

extend the calculus of liquid types [121] with a similar top-down type

inference procedure.

In addition to being an elegant interpretation of the synthesis prob-

lem, type-driven approaches also work extremely efficiently in scenarios

when the underlying language permits efficient reasoning by a type

inhabitance algorithm. A notable recent example of such a scenario is

the application of Synquid to enforcement of information flow poli-

cies [112]. In this work, a Synquid-based component repairs an invalid

access policy by synthesizing the weakest missing guard that would

make the policy safe. Since the language of access policies is encoded

100 Programming by Examples

using liquid types, Synquid repairs complex policies in at most 100 sec,

with the median time below 1 sec.

7.4 Ambiguity Resolution

Examples are inherently an under-specification, i.e. there might be

multiple possible programs in a rich hypothesis space that are consistent

with a given set of examples. Given enough examples, one can refine

the specification such that only desired programs are consistent. But in

many real-world settings, expecting users to provide large number of

examples is not realistic, and the usability of the PBE system is often

characterized by the fewest number of examples needed to understand

the user intent. The number or representative input-output examples

required to learn a desired program is a function of the underlying DSL

and has also been previously referred to as the teaching dimension of the

DSL [39]. As the expressiveness of the DSL increases (allowing users to

perform richer variety of tasks), the number of representative examples

needed to discriminate the programs in the DSL also increases. We now

discuss two techniques to enable learning programs in rich DSLs using

very few input-output examples (often only 1 input-output example).

7.4.1 Ranking

The main idea of ranking is to assign a likelihood score to each program

in the set of programs induced from a small set of input-output examples

such that the programs with the highest scores correspond to the desired

user-intended programs. There have been many previous approaches

in program synthesis where such ranking functions have been defined

manually [51, 84, 90, 106]. The design of a good ranking function

requires a lot of domain expertise and insights, and is typically a time-

consuming and error-prone process. Moreover, such ranking functions

are inherently not robust to changes in the DSL or benchmark problems

as the space of possible ranking functions is quite large and it is difficult

to analyze each possible function manually. Singh and Gulwani [128]

proposed a machine learning based technique to automatically learn a

ranking function (over syntactic program features) for PBE systems from

7.4. Ambiguity Resolution 101

training data. Ellis and Gulwani [30] proposed another machine learning

based technique to learn a ranking function that rely upon features that

are independent of the program structure, instead relying upon a learned

bias over program behaviors, and more generally over program execution

traces. There are three key challenges in automatically learning such

ranking functions. First, a large set of labeled training data is needed.

Second, an appropriate machine learning technique is needed with the

corresponding cost function to optimize. Finally, the ranking function

should be such that it allows for efficient identification of the top-ranked

program without having to enumerate every single program in the set

of induced programs.

The machine learning based ranking technique was applied to the

FlashFill PBE system [128] and resulted in significant improvements

over previous manually designed ranking functions. FlashFill constructs

the set of programs consistent with a given set of input-output examples

using a VSA consisting of union nodes, join nodes, and explicit enu-

meration nodes. The ranking function is correspondingly defined in a

hierarchical fashion in terms of individual ranking function for each kind

of node in the VSA. The ranking function first recursively computes the

top expression for each individual node in the DAG, and then composes

them using an algorithm similar to Dijsktra’s shortest path algorithm

to find the top ranked top-level expression in the DSL. The hierarchical

ranking function allows efficient identification of top-ranked program

without enumeration (i.e. without breaking up the VSA-based sharing).

The idea to rank programs is inspired from the work on learning

to rank [16, 24, 35, 54] techniques used in information retrieval. These

techniques typically aim at ranking all relevant documents above all

non-relevant documents or ranking the most relevant document as

highest. However, in program synthesis, it is sufficient to rank any

correct program higher than all incorrect programs. This is the key

insight that is used to design the cost function to be optimized.

Let’s assume the training data consists of a set of tasks T =

{t1, · · · , tn}. A task ti consists of a set of input-output examples

Ei = {ei
1, · · · , ei

n(ti)
}, where an example ei

j = (ini
j , out

i
j) denotes a

pair of input string (ini) and output string (outi). During training, it is

102 Programming by Examples

assumed that enough input-output examples are provided such that only

desired programs are consistent with the set of examples. The complete

set of input-output examples for all tasks can be obtained by taking the

union of the set of examples for each task E = {e1, · · · , en(e)} = ∪tE
t.

Let pi denote the set of synthesized programs that are consistent with

example ei such that pi = {p1
i , · · · , p

n(i)
i }, where n(i) denotes the num-

ber of programs in the set pi. The programs are labeled as positive and

negative programs using the following definition.

Definition 7.1 (Positive and Negative Programs). A program p ∈ pj is

labeled as a positive program if it belongs to the set intersection of the

set of programs for all examples of task ti, i.e. p ∈ p1 ∩ p2 ∩ · · · ∩ pn(ti).

Otherwise, the program p ∈ pj is labeled a negative (or incorrect)

program i.e. p 6∈ p1 ∩ p2 ∩ · · · ∩ pn(ti).

In other words, if a program is consistent with all the input-output

examples then it is labeled as a positive program. Otherwise, it is labeled

as a negative program.

The training data can be automatically generated given a set of

FlashFill benchmarks. Consider a training task ti consisting of the input-

output examples Ei = {(e1, · · · , en(ti)} and let pj be the set of programs

synthesized by the synthesis algorithm that are consistent with the input-

output example ej . For a task ti, the set of all positive programs can be

constructed as p1∩p2∩· · ·∩pn(ti), whereas the set of all negative programs

can be computed as the set: {pk \ (p1 ∩ p2 ∩ · · · ∩ pn(ti)) | 1 ≤ k ≤ n(ti)}.
The VSA based represented allows a polynomial time construction of

these labeled program sets. The set of programs pi = {p1
i , · · · , p

n(i)
i }

for an example ei are assigned a corresponding set of labels yi =

{y1
i , · · · , y

n(i)
i }, where label yj

i denotes the label for program pj
i . The

labels yj
i take binary values such that the value yj

i = 1 denotes that the

program pj
i is a positive program for the task, whereas the label value

0 denotes that program pj
i is a negative program for the task.

Given the labeled training data, task is to learn a ranking func-

tion that can assign a score to programs to prefer positive programs

over negative programs. A feature vector xj
i = φ(ei, p

j
i) can be com-

puted for each example-program pair (ei, p
j
i), ei ∈ E, pj

i ∈ pi. For

each example ei, a training instance (xi, yi) is added to the train-

7.4. Ambiguity Resolution 103

ing set, where xi = {x1
i , · · · , x

n(i)
i } denotes the list of feature vec-

tors and yi = {y1
i , · · · , y

n(i)
i } denotes their corresponding labels. The

goal is to learn a ranking function f that computes the ranking score

zi = (f(x1
i), · · · , f(x

n(i)
i)) for each example such that a positive program

is ranked as highest.

This problem formulation is similar to the problem formulation of

listwise approaches for learning-to-rank [16, 148]. The main difference

comes from the fact that while previous listwise approaches aim to rank

most documents in accordance with their training scores or rank the

most relevant document as highest, in program synthesis, it is sufficient

to rank any one positive program higher than all negative programs.

Therefore, the loss function counts the number of examples where a

negative program is ranked higher than all positive programs, as shown

in Equation 7.1. For each example, the loss function compares the

maximum rank of a negative program with the maximum rank of a

positive program, and adds 1 to the loss function if a negative program

is ranked highest (and subtracts 1 otherwise).

L(E) =

n(e)∑

i=1

L(yi, zi) (7.1)

=

n(e)∑

i=1

sign
(
max{f(xj

i) | yj
i = 0} −max{f(xk

i) | yk
i = 1}

)

The non-continuity of the sign and max functions loss function makes

it unsuitable for gradient descent based optimization as the gradient of

the function can not be computed. Therefore, smooth approximations

of the sign and max functions using the hyperbolic tanh function and

softmax function respectively (with scaling constants c1 and c2) are used

to obtain a continuous and differentiable loss function in Equation 7.2.

L(yi, zi) = tanh
(
c1 ×

(1

c2
× log

∑

y
j
i
=0

ec2×f(xj
i
)

− 1

c2
× log

∑

yk
i

=1

ec2×f(xk
i

)
))

(7.2)

104 Programming by Examples

The desired ranking function f(xj
i) = ~w ·xj

i is assumed to be a linear

function over the features. The features are defined over programs and

input-output example strings. Let there be m features in the feature

vector xj
i = {g1, · · · , gm} such that f(xj

i) = w0 + w1g1 + · · · + wmgm.

The weights for the function can be learnt using the gradient descent

algorithm that minimizes the loss function from Equation 7.2. The

algorithm needs to be restarted multiple times to avoid local minimas.

The learnt ranking function performed significantly better than a

ranking approach based on Occam’s razor that smallest programs are

the most general program. The learnt ranking function requires on

average 1.44 examples per benchmark as compared to 4.18 required by

the baseline approach. Moreover, it is able to learn the desired program

from only 1 example for 74% of the benchmarks.

7.4.2 Active Learning

Another approach to reduce ambiguity is using the active learning

approach to ask users for minimal number of additional input-output

examples. Jha et.al. [59] proposed the idea of synthesizing distinguishing

inputs for disambiguation in program synthesis, which we introduced in

§3.2.1. The traditional synthesis approaches learn a program P that is

consistent with a set of input-output examples {(ik, ok)}k. The idea in

active learning based approach is to synthesize two programs P1 and

P2, and an input i, such that the two programs are consistent on the set

of input-output examples, i.e. P1(ik) = P2(ik) = ok, but they produce

different output on the input i, i.e. P1(i) 6= P2(i). The system can then

ask the user to provide the desired output on input i to further guide

the synthesis process.

Distinguishing inputs is one form of active learning—soliciting addi-

tional feedback from the user to initiate a new round of learning. Other

user interaction models for PBE explored in the literature include:

• Displaying the program to the user. This may simplify finding a

discrepancy by letting her analyze the program’s behavior.

• Paraphrasing the program in natural language. This is a variation

of the previous option, more suitable for non-programmers.

7.4. Ambiguity Resolution 105

• Accepting negative examples, which indicate a discrepancy but do

not provide the correct output for it. This simplifies interaction if

manually computing the desired output is too cumbersome.

Mayer et al. used the FlashProg system [88], also described in §3.2.1,

to compare these interaction models in the domain of text extraction by

example. They found that disambiguating questions help achieve greater

correctness rates and faster task completion times, as compared to other

models. Comparison of different strategies for producing disambiguating

question that would potentially alleviate unnecessary cognitive burden

on the user is a topic of future research.

As of now, minimizing the number of clarifying questions during

active learning is an open research problem. As mentioned before,

the minimum number of questions required to learn a given concept

is known as a teaching dimension of the DSL. Not only finding an

optimal teaching sequence is NP-hard in general [39], it also has not

yet been computed or bounded for most non-trivial languages used in

program synthesis [58]. Despite the lack of optimal guarantees, active

learning based approaches tend to converge quickly to the right solution,

e.g. in 7 examples on average for SMT-guided learning of bitvector

programs [59].

8

Future Work

We have seen tremendous progress recently in program synthesis tech-

niques, and many PBE techniques are becoming mainstream inside

industrial products. However, many challenges still remain. We con-

clude here with an overview of some immediate problems for the field.

Debuggability An important challenge going forward will be that of

debuggability. The user would require active assistance to refine the

specification. The user would like to be be confident that the synthesizer

generated an intended program, especially when the synthesized program

needs to be executed more than once, on sensitive data, or on large

amounts of data where the results are not easy to verify manually.

Multi-modal input Another big opportunity is to define the next gen-

eration of programming experience that goes beyond the requirement to

compose syntactically correct sequence of instructions to realize a par-

ticular task. This new paradigm shall facilitate interactive programming

using multi-modal natural input from the user. While this article has

focused on techniques for handling example-based specifications, it turns

out that natural language is a better fit for certain class of tasks such as

107

108 Future Work

spreadsheet queries [46] and smartphone scripts [79]. The new paradigm

shall allow expressing intent using combination of various means [117]

such as examples, demonstrations, natural language, keywords, and

sketches.

Adaptivity Program synthesis techniques can potentially benefit by

leveraging data from past invocations of the synthesizer by the same

user or by other users in the cloud or enterprise. This past data can

help guide the search more efficiently or help resolve the ambiguity in

the user’s under-specification more effectively.

Statistical techniques Program synthesis techniques have mostly

leveraged use of logical methods for search. While these techniques

are good at leveraging semantic knowledge or properties of the various

operators, they fall into scalability challenges when having to handle

many disjunctive choices during search. There have recently been very

impressive advances in use of deep learning methods for predicting

various kinds of intended artifacts after being trained on relevant data.

An interesting line of work would be to synergistically combine logical

techniques with statistical techniques like deep learning methods to

develop the next generation of foundational search techniques. It would

also facilitate reasoning and synthesis for larger pieces of code.

Scaling The current program synthesis techniques have been successful

at learning small programs with complex logic. Scaling the size of

programs that can be synthesized remains an active area of research.

Knowledge transfer Most modern synthesis approaches leverage some

form of domain-specific knowledge to reach sufficient scaling levels.

While developing fast universal search algorithms currently is out of

reach for synthesis, it may be possible to automatically generalize and

transfer the insights learned from one domain to another.

Industrialization An important milestone in the lifetime of a tech-

nology is making it accessible for the general engineering audience, as

109

opposed to professionals with a relevant background. Program synthesis

is a relatively new field, and thus is not yet as widespread as program

analysis. Further development of synthesis frameworks, solver-aided

languages, and separation of domain-specific search components should

help to further close this gap.

Acknowledgements

We thank Ravi Chugh for his assistance with the write-up on prodirect

manipulation, and Emina Torlak for her feedback and assistance with

the write-up on solver-aided programming.

111

References

[1] Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki
Kataoka, Naohiro Takahashi, Michał Moskal, and Nikhil Swamy. Cali-
brating research in program synthesis using 72,000 hours of programmer
time. Microsoft Research, Redmond, WA, USA, Technical Report, 2013.

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sut-
ton. Learning natural coding conventions. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 281–293. ACM, 2014.

[3] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design, FMCAD,
pages 1–8, 2013.

[4] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. Synthesis through
unification. In Proceedings of the 27th International Conference on
Computer-Aided Verification (CAV), pages 163–179, 2015.

[5] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.
Results and analysis of SyGuS-Comp’15. In Proceedings Fourth Workshop
on Synthesis, SYNT, pages 3–26, 2015.

[6] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.
SyGuS-Comp 2016: Results and analysis. In Proceedings of the Fifth
Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada, July 17-18,
2016., pages 178–202, 2016.

113

114 References

[7] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. DeepCoder: Learning to write programs.
CoRR, abs/1611.01989, 2016.

[8] Sorav Bansal and Alex Aiken. Automatic generation of peephole su-
peroptimizers. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages
394–403, 2006.

[9] Sorav Bansal and Alex Aiken. Binary translation using peephole super-
optimizers. In 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, Cal-
ifornia, USA, Proceedings, pages 177–192, 2008.

[10] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn.
FlashRelate: extracting relational data from semi-structured spreadsheets
using examples. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 218–228, 2015.

[11] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB
Standard Version 2.6, 2010.

[12] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, César Kunz, and
Mark Marron. From relational verification to SIMD loop synthesis.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013,
pages 123–134, 2013.

[13] Alan W Biermann. The inference of regular LISP programs from ex-
amples. IEEE transactions on Systems, Man, and Cybernetics, 8(8):
585–600, 1978.

[14] James Bornholt and Emina Torlak. Synthesizing memory models from
framework sketches and litmus tests. In Programming Languages Design
and Implementation, 2017.

[15] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimiz-
ing synthesis with metasketches. In ACM SIGPLAN Notices, volume 51,
pages 775–788. ACM, 2016.

[16] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In ICML, 2007.

References 115

[17] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun
Radhakrishna, and Rohit Singh. Quantitative synthesis for concurrent
programs. In Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
pages 243–259, 2011.

[18] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann,
and Rohit Singh. Measuring and synthesizing systems in probabilistic
environments. J. ACM, 62(1):9:1–9:34, March 2015. ISSN 0004-5411.

[19] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. Bridg-
ing boolean and quantitative synthesis using smoothed proof search.
SIGPLAN Not., 49(1):207–220, January 2014. ISSN 0362-1340.

[20] Yves Chauvin and David E. Rumelhart. Backpropagation: theory, archi-
tectures, and applications. Psychology Press, 1995.

[21] Salman Cheema, Sarah Buchanan, Sumit Gulwani, and Joseph J. LaViola
Jr. A practical framework for constructing structured drawings. In
IUI’14 19th International Conference on Intelligent User Interfaces,
IUI’14, Haifa, Israel, February 24-27, 2014, pages 311–316, 2014.

[22] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Opti-
mizing database-backed applications with query synthesis. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 3–14,
2013.

[23] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Pro-
grammatic and direct manipulation, together at last. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, pages 341–354, 2016.

[24] David Cossock and Tong Zhang. Subset ranking using regression. Learn-
ing Theory, 4005:605–619, 2006.

[25] Allen Cypher, editor. Watch What I Do – Programming by Demonstra-
tion. MIT Press, Cambridge, MA, USA, 1993.

[26] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification
(CAV). Springer-Verlag, 2016.

[27] Luc De Raedt. Logical and Relational Learning. Springer Publishing
Company, Incorporated, 1st edition, 2010.

116 References

[28] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey
Karkare, Mark Marron, Sailesh R., and Subhajit Roy. Program syn-
thesis using natural language. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), pages 345–356, 2016.

[29] Joshua Dunfield. A unified system of type refinements. PhD thesis, Air
Force Research Laboratory, 2007.

[30] Kevin Ellis and Sumit Gulwani. Learning to learn programs from exam-
ples: Going beyond program structure. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

[31] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. Component-based synthesis for complex APIs. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, 2017.

[32] Cormac Flanagan. Hybrid type checking. In ACM Sigplan Notices,
volume 41, pages 245–256. ACM, 2006.

[33] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. Example-directed synthesis: a type-theoretic interpreta-
tion. In ACM SIGPLAN Notices, volume 51, pages 802–815. ACM,
2016.

[34] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceed-
ings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, PLDI ’91, pages 268–277, New York, NY,
USA, 1991. ACM. .

[35] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An
efficient boosting algorithm for combining preferences. The Journal of
machine learning research, 4:933–969, 2003.

[36] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman,
Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. TerpreT: A
probabilistic programming language for program induction. CoRR,
abs/1608.04428, 2016.

[37] Khaled Ghédira. Constraint Satisfaction Problems: CSP Formalisms
and Techniques. John Wiley & Sons, 2013.

[38] Patrice Godefroid and Ankur Taly. Automated synthesis of symbolic
instruction encodings from I/O samples. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 441–452. ACM, 2012.

[39] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching.
Journal of Computer and System Sciences, 50:303–314, 1992.

References 117

[40] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[41] C. Cordell Green. Application of theorem proving to problem solving.
In IJCAI, pages 219–240, 1969.

[42] Sumit Gulwani. Dimensions in program synthesis. In Proceedings of 10th
International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2010, Lugano, Switzerland, October 20-23, page 1, 2010.

[43] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, pages 317–330, 2011.

[44] Sumit Gulwani. Programming by examples - and its applications in data
wrangling. In Dependable Software Systems Engineering, pages 137–158.
2016.

[45] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic
inference. In Proceedings of the 34th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007, pages 277–289, 2007.

[46] Sumit Gulwani and Mark Marron. NLyze: interactive programming
by natural language for spreadsheet data analysis and manipulation.
In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 803–814, 2014.

[47] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 62–73,
2011.

[48] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Syn-
thesizing geometry constructions. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 50–61,
2011.

[49] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet
data manipulation using examples. Commun. ACM, 55(8):97–105, 2012.

[50] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. StriSynth:
Synthesis for live programming. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE, pages 701–704, 2015.

118 References

[51] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Com-
plete completion using types and weights. In ACM SIGPLAN Notices,
volume 48, pages 27–38. ACM, 2013.

[52] William R. Harris and Sumit Gulwani. Spreadsheet table transformations
from examples. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 317–328, 2011.

[53] Brian Hempel and Ravi Chugh. Semi-automated SVG programming
via direct manipulation. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, UIST 2016, Tokyo, Japan,
October 16-19, 2016, pages 379–390, 2016.

[54] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin
rank boundaries for ordinal regression. Advances in Neural Information
Processing Systems, pages 115–132, 1999.

[55] Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkill™: A Bayesian
skill rating system. In Advances in neural information processing systems,
pages 569–576, 2006.

[56] John H. Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[57] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv.
A simple inductive synthesis methodology and its applications. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 36–46,
2010.

[58] Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via
Inductive Learning. ArXiv e-prints, May 2015.

[59] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd
International Conference on Software Engineering (ICSE), volume 1,
pages 215–224. IEEE, 2010.

[60] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program
repair as a game. In Computer Aided Verification (CAV), pages 226–238.
Springer-Verlag, 2005.

[61] Colin G. Johnson. Genetic programming with fitness based on model
checking. In European Conference on Genetic Programming, pages
114–124. Springer, 2007.

References 119

[62] Vladimir Jojic, Sumit Gulwani, and Nebojsa Jojic. Probabilistic inference
of programs from input/output examples. Technical Report MSR-TR-
2006-103, Microsoft Research, 2006.

[63] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Denali: A goal-directed
superoptimizer. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 304–314, 2002.

[64] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with
stack-augmented recurrent nets. In NIPS, pages 190–198, 2015.

[65] Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia.
CPSGrader: Synthesizing temporal logic testers for auto-grading an
embedded systems laboratory. In EMSOFT, pages 24:1–24:10, 2014.

[66] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv
preprint arXiv:1511.08228, 2015.

[67] Susumu Katayama. MagicHaskeller on the Web: Automated program-
ming as a service. In Haskell Symposium, 2013.

[68] Gal Katz and Doron A. Peled. Genetic programming and model checking:
Synthesizing new mutual exclusion algorithms. In Automated Technology
for Verification and Analysis, 6th International Symposium, ATVA 2008,
Seoul, Korea, October 20-23, 2008. Proceedings, pages 33–47, 2008.

[69] Ross D. King, Stephen Muggleton, Ashwin Srinivasan, and M.J. Stern-
berg. Structure-activity relationships derived by machine learning: The
use of atoms and their bond connectivities to predict mutagenicity by
inductive logic programming. Proceedings of the National Academy of
Sciences, 93(1):438–442, 1996.

[70] A. N. Kolmogorov. Zur deutung der intuitionistischen logik. Math.
Zeitschr, 35:58–365, 1932.

[71] John R. Koza. Hierarchical genetic algorithms operating on populations
of computer programs. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence (IJCAI), pages 768–774. Morgan
Kaufmann Publishers Inc., 1989.

[72] John R. Koza. Genetic programming - on the programming of computers
by means of natural selection. Complex adaptive systems. MIT Press,
1993.

[73] John R Koza. Genetic programming as a means for programming
computers by natural selection. Statistics and Computing, 4(2):87–112,
1994.

120 References

[74] Shriram Krishnamurthi. Educational pearl: Automata via macros. Jour-
nal of Functional Programming, 16(03):253–267, 2006.

[75] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic
inference of memory fences. In Proceedings of 10th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2010,
Lugano, Switzerland, October 20-23, pages 111–119, 2010.

[76] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-
access machines. arXiv preprint arXiv:1511.06392, 2015.

[77] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra
and its application to programming by demonstration. In Proceedings of
the 17th International Conference on Machine Learning (ICML), pages
527–534, 2000.

[78] Vu Le and Sumit Gulwani. FlashExtract: a framework for data extraction
by examples. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, page 55, 2014.

[79] Vu Le, Sumit Gulwani, and Zhendong Su. SmartSynth: synthesizing
smartphone automation scripts from natural language. In The 11th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys’13, Taipei, Taiwan, June 25-28, 2013, pages 193–206,
2013.

[80] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[81] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthe-
sis by example. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 565–574, 2015.

[82] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A
hierarchical Bayesian approach. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 639–646, 2010.

[83] Francesca A. Lisi. Building rules on top of ontologies for the Semantic
Web with inductive logic programming. Theory and Practice of Logic
Programming, 8(03):271–300, 2008.

[84] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid
mining: helping to navigate the API jungle. In PLDI, pages 48–61, 2005.

[85] Zohar Manna and Richard J. Waldinger. Toward automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

References 121

[86] Zohar Manna and Richard J. Waldinger. Knowledge and reasoning in
program synthesis. Artif. Intell., 6(2):175–208, 1975.

[87] Henry Massalin. Superoptimizer - A look at the smallest program. In
Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
II), Palo Alto, California, USA, October 5-8, 1987., pages 122–126, 1987.

[88] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron,
Oleksandr Polozov, Rishabh Singh, Ben Zorn, and Sumit Gulwani. User
interaction models for disambiguation in programming by example. In
28th ACM User Interface Software and Technology Symposium, pages
291–301. ACM, 2015.

[89] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lamp-
son, and Adam Kalai. A machine learning framework for programming
by example. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
pages 187–195, 2013.

[90] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-based se-
mantic code search over partial programs. In OOPSLA, pages 997–1016,
2012.

[91] Tom M. Mitchell. Generalization as search. Artificial intelligence, 18(2):
203–226, 1982.

[92] Stephen Muggleton. Inductive logic programming. New generation
computing, 8(4):295–318, 1991.

[93] Stephen Muggleton. Inverse entailment and Progol. New generation
computing, 13(3-4):245–286, 1995.

[94] Stephen Muggleton and Wray Buntine. Machine invention of first-order
predicates by inverting resolution. In Proceedings of the fifth international
conference on machine learning, pages 339–352, 1992.

[95] Stephen Muggleton, Ross D. King, and Michael J.E. Stenberg. Pro-
tein secondary structure prediction using logic-based machine learning.
Protein Engineering, 5(7):647–657, 1992.

[96] Stephen Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza
Tamaddoni-Nezhad. Meta-interpretive learning: application to grammat-
ical inference. Machine Learning, 94(1):25–49, 2014.

[97] Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad.
Meta-interpretive learning of higher-order dyadic Datalog: Predicate
invention revisited. Machine Learning, 100(1):49–73, 2015.

122 References

[98] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural program-
mer: Inducing latent programs with gradient descent. arXiv preprint
arXiv:1511.04834, 2015.

[99] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. SemFix: program repair via semantic analysis. In 35th
International Conference on Software Engineering, ICSE, pages 772–781,
2013.

[100] Robert P. Nix. Editing by example. In Conference Record of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, Salt
Lake City, Utah, USA, January 1984, pages 186–195, 1984.

[101] Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijay-
keerthy. Efficient synthesis of probabilistic programs. In ACM SIGPLAN
Notices, volume 50, pages 208–217. ACM, 2015.

[102] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed
program synthesis. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
pages 619–630. ACM, 2015.

[103] Pavel Panchekha and Emina Torlak. Automated reasoning for web
page layout. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, pages 181–194, 2016.

[104] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. Automatically improving accuracy for floating point expressions.
ACM SIGPLAN Notices, 50(6):1–11, 2015.

[105] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,
Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis.
CoRR, abs/1611.01855, 2016.

[106] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.
Type-directed completion of partial expressions. In ACM SIGPLAN
Notices, volume 47, pages 275–286. ACM, 2012.

[107] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Jonathan Jacky. Investigating Safety of
a Radiotherapy Machine Using System Models with Pluggable Checkers,
pages 23–41. Springer International Publishing, Cham, 2016. .

[108] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant
Totla, Sarah Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided
compiler for low-power spatial architectures. In ACM SIGPLAN Notices,
volume 49, pages 396–407. ACM, 2014.

References 123

[109] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodík, and
Dinakar Dhurjati. Scaling up superoptimization. In Proceedings of the
21st International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 297–310, 2016.

[110] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In POPL, pages 179–190. ACM, 1989.

[111] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program
synthesis from polymorphic refinement types. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 522–538. ACM, 2016.

[112] Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and Armando Solar-
Lezama. Type-driven repair for information flow security. arXiv preprint
arXiv:1607.03445, 2016.

[113] Oleksandr Polozov and Sumit Gulwani. FlashMeta: a framework for
inductive program synthesis. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 107–126, 2015.

[114] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In ACM SIGPLAN Notices, volume 49,
pages 419–428. ACM, 2014.

[115] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
Learning programs from noisy data. In ACM SIGPLAN Notices, vol-
ume 51, pages 761–774. ACM, 2016.

[116] Mohammad Raza and Sumit Gulwani. Automated data extraction using
predictive program synthesis. In AAAI, 2017.

[117] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Com-
positional program synthesis from natural language and examples. In
Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI), pages 792–800, 2015.

[118] Scott Reed and Nando de Freitas. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

[119] Wolfgang Reisig. Petri nets: an introduction, volume 4. Springer Science
& Business Media, 2012.

[120] Sebastian Riedel, Matko Bošnjak, and Tim Rocktäschel. Programming
with a differentiable Forth interpreter. arXiv preprint arXiv:1605.06640,
2016.

[121] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In
ACM SIGPLAN Notices, volume 43, pages 159–169. ACM, 2008.

124 References

[122] Jose C.A. Santos, Houssam Nassif, David Page, Stephen Muggleton,
and Michael J.E. Sternberg. Automated identification of protein-ligand
interaction features using inductive logic programming: a hexose binding
case study. BMC bioinformatics, 13(1):1, 2012.

[123] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In ACM SIGARCH Computer Architecture News, volume 41,
pages 305–316. ACM, 2013.

[124] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 305–316, 2013.

[125] David E. Shaw, William R. Swartout, and C. Cordell Green. Inferring
LISP programs from examples. In Proceedings of the 4th International
Joint Conference on Artificial Intelligence - Volume 1, pages 260–267.
Morgan Kaufmann Publishers Inc., 1975.

[126] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations
from input-output examples. In Computer Aided Verification - 24th
International Conference, CAV 2012, pages 634–651, 2012.

[127] Rishabh Singh and Sumit Gulwani. Learning semantic string transfor-
mations from examples. Proceedings of the VLDB Endowment, 5(8):
740–751, 2012.

[128] Rishabh Singh and Sumit Gulwani. Predicting a correct program in
programming by example. In CAV, pages 398–414, 2015.

[129] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types
using examples. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 343–356, 2016.

[130] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automatic
feedback generation for introductory programming assignments. In Pro-
ceedings of Programming Language Design and Implementation (PLDI),
pages 15–26, 2013.

[131] David Canfield Smith. Pygmalion: A Creative Programming Environ-
ment. PhD thesis, Stanford University, Stanford, CA, USA, 1975.

[132] Armando Solar-Lezama. Program synthesis by sketching. ProQuest,
2008.

References 125

[133] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From pro-
gram verification to program synthesis. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages
313–326, 2010.

[134] Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S.
Foster. Path-based inductive synthesis for program inversion. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 492–503, 2011.

[135] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-
based program verification and program synthesis. International Journal
on Software Tools for Technology Transfer (STTT), 15(5-6):497–518,
2013.

[136] Michael J.E. Sternberg, Alireza Tamaddoni-Nezhad, Victor I. Lesk, Emily
Kay, Paul G. Hitchen, Adrian Cootes, Lieke B. van Alphen, Marc P.
Lamoureux, Harold C. Jarrell, Christopher J. Rawlings, et al. Gene
function hypotheses for the campylobacter jejuni glycome generated by
a logic-based approach. Journal of molecular biology, 425(1):186–197,
2013.

[137] Phillip D. Summers. A methodology for LISP program construction
from examples. Journal of the ACM (JACM), 24(1):161–175, 1977.

[138] Alireza Tamaddoni-Nezhad, Ghazal Afroozi Milani, Alan Raybould,
Stephen Muggleton, and David A. Bohan. Construction and validation of
food webs using logic-based machine learning and text mining. Advances
in Ecological Research, 49:225–289, 2013.

[139] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with
Rosette. In Proceedings of the 2013 ACM international symposium on
New ideas, new paradigms, and reflections on programming & software,
pages 135–152. ACM, 2013.

[140] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual
machine for solver-aided host languages. In ACM SIGPLAN Notices,
volume 49, pages 530–541. ACM, 2014.

[141] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M.K. Martin, and Rajeev Alur. TRANSIT: Specifying
protocols with concolic snippets. In Proceedings of the 34th annual
ACM SIGPLAN conference on Programming Languages Design and
Implementation (PLDI), pages 287–296, 2013.

126 References

[142] Richard Uhler and Nirav Dave. Smten: automatic translation of high-level
symbolic computations into SMT queries. In International Conference
on Computer Aided Verification, pages 678–683. Springer, 2013.

[143] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided
synthesis of synchronization. In Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 327–338, 2010.

[144] Richard J. Waldinger and Richard C. T. Lee. PROW: A step toward
automatic program writing. In IJCAI, pages 241–252, 1969.

[145] Henry S. Warren. Hacker’s delight. Pearson Education, 2013.

[146] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings, pages 364–374, 2009.

[147] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. Scalable verification of border
gateway protocol configurations with an SMT solver. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 765–780.
ACM, 2016.

[148] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise
approach to learning to rank: theory and algorithm. In ICML, 2008.

[149] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaud-
huri. Synthesizing transformations on hierarchically structured data. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, pages 508–521, 2016.

[150] Xiaofeng Yang, Jian Su, Jun Lang, Chew Lim Tan, Ting Liu, and Sheng
Li. An entity-mention model for coreference resolution with inductive
logic programming. In ACL, pages 843–851, 2008.

[151] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar
Kaushik, Scott Ge, and Wenxiang Hu. Bing developer assistant: improv-
ing developer productivity by recommending sample code. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 956–961. ACM, 2016.

	Introduction
	Program Synthesis
	Challenges
	Dimensions in Program Synthesis
	Roadmap

	Applications
	Data Wrangling
	Graphics
	Code Repair
	Code Suggestions
	Modeling
	Superoptimization
	Concurrent Programming

	General Principles
	Second-Order Problem Reduction
	Oracle-Guided Synthesis
	Syntactic Bias
	Optimization

	Enumerative Search
	Enumerative Search
	Bidirectional Enumerative Search
	Offline Exhaustive Enumeration and Composition

	Constraint Solving
	Component-Based Synthesis
	Solver-Aided Programming
	Inductive Logic Programming

	Stochastic Search
	Metropolis-Hastings Algorithm for Sampling Expressions
	Genetic Programming
	Machine Learning
	Neural Program Synthesis

	Programming by Examples
	Problem Definition
	Version Space Algebra
	Deduction-Based Techniques
	Ambiguity Resolution

	Future Work
	Acknowledgements
	References

