
Sound Program Transformation
Based on Symbolic Execution and
Deduction

Beweisbar korrekte Programmtransformation basierend auf symbolischer Ausführung und
Deduktion
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Ran Ji M.Sc. aus Tianjin, China

1. Gutachten: Prof. Dr. Reiner Hähnle
2. Gutachten: Prof. Dr. Bernhard Beckert

Tag der Einreichung: 18.12.2013
Tag der Prüfung: 20.06.2014

Juni 2014 — Darmstadt — D 17

Fachbereich Informatik
Software Engineering

Abstract

In this thesis, we are concerned with the safety and security of programs. The problems ad-

dressed here are the correctness of SiJa (a subset of Java) source code and Java bytecode, and

the information flow security of SiJa programs. A lot of research has been made on these top-

ics, but almost all of them study each topic independently and no approach can handle all of

these aspects. We propose a uniform framework that integrates the effort of proving correctness

and security into one process. The core concept for this uniform approach is sound program

transformation based on symbolic execution and deduction. The correctness of SiJa source code

is verified with KeY, a symbolic execution based approach. Partial evaluation actions are in-

terleaved during symbolic execution to reduce the proof size. By synthesizing the symbolic

execution tree achieved in the source code verification phase, we can generate a program that

is bisimilar to, but also more optimized than, the original one with respect to a set of observ-

able locations. The soundness of program transformation is proven. Apply the sound program

transformation approach, we can generate a program bisimilar to the original program with

respect to the low security level variables. This results in a more precise analysis of information

flow security than the approaches based on security type systems. We can also generate Java

bytecode from SiJa source code program transformation approach, where the the correctness of

the Java bytecode is guaranteed and compiler verification is not necessary.

i

Acknowledgment

First of all, I would like to express my deepest gratitude to Prof. Dr. Reiner Hähnle, for being a

great supervisor and a best friend. His wise guidance always shows me a way out of the puzzle

and lights up the new hope. My personal life is also enriched by his appreciation of art, wine,

food and many more. It would be even better if and only if he is more interested in football.

I own my sincerely grateful to Dr. Richard Bubel. For all the times when I am in need, he is

ready for an inspiring discussion. He shows me a good example of being not only a talented

researcher but also a true gentleman.

It has been a great fun to work in our research group, thanks to the amazing colleagues

and friends: Martin Hentschel, Antonio Flores Montoya, Nathan Wasser, Huy Quoc Do, Crystal

Chang Din, and all the members of Prof. Dr. Mira Mezini’s group. There exists a person I need

to mention separately. Our secretary Gudrun Harris is always kind and helpful, and she has

even taught me some German language that I will probably never learn from anywhere else.

I have pleasure to work with many excellent researchers in the KeY project and the HATS

project. Every meeting and discussion with them is truly enjoyable. Among them, I would

specially thank Prof. Dr. Bernhard Beckert for being the opponent for my PhD dissertation,

whose valuable comments help a lot to improve this work.

It was in Chalmers University of Technology, when I started my PhD work. I am grateful to

my co-supervisor Dr. Wolfgang Ahrendt, my colleague Gabriele Paganelli, and many nice people

there, for your accompany of my two-and-a-half-years cheerful life in Göteborg, Sweden.

Last but not least, to my parents, I love you.

iii

Contents

Abstract i

Acknowledgment iii

1 Introduction 1

1.1 Overview: Software Correctness and Security . 1

1.2 Problems and Contributions . 3

1.3 Publications . 6

2 Background 9

2.1 KeY and Symbolic Execution . 9

2.2 Programming Language . 12

2.3 Program Logic . 15

2.4 Sequent Calculus . 21

3 Partial Evaluation 31

3.1 Partial Evaluation . 31

3.2 Interleaving Symbolic Execution and Partial Evaluation 33

3.2.1 General Idea . 34

3.2.2 The Program Specialization Operator . 36

3.2.3 Specific Specialization Actions . 37

3.3 Example . 39

3.4 Evaluation . 40

4 Program Transformation 43

4.1 Weak Bisimulation Relation of Programs . 43

4.2 The Weak Bisimulation Modality and Sequent Calculus Rules 45

4.3 Soundness . 54

4.4 Optimization . 59

4.4.1 Sequentialized Normal Form of Updates . 59

4.4.2 Sequent Calculus Rules Involving Updates . 62

4.5 Implementation and Evaluation . 72

v

5 Information Flow Security 77

5.1 Introduction . 77

5.2 Enforcing Information Flow Security by Program Transformation 80

6 Deductive Compilation 87

6.1 Introduction . 87

6.2 Sequent Calculus for Bytecode Generation . 87

6.3 Example . 92

7 Conclusion 97

7.1 Summary . 97

7.2 Future Work . 100

Bibliography 101

vi

List of Figures

1.1 Software correctness and security: traditional approaches. 4

1.2 Software correctness and security: a uniform framework. 5

2.1 Work flow of KeY. 12

2.2 Syntax of SiJa. 13

2.3 A SiJa program fragment. 14

2.4 Syntax of SiJa simple statements. 14

2.5 A SiJa program fragment contain only simple statements. 15

2.6 Definition of SiJa-DL semantic evaluation function. 19

2.7 Update simplification rules. 20

2.8 First-order calculus rules (excerpt). 23

2.9 Selected sequent calculus rules. 27

2.10 Selected sequent calculus rules for decomposition of complex expressions. 28

2.11 Symbolic execution tree with loop invariant applied. 28

3.1 Partial evaluation schema. 31

3.2 A simple control circuit SiJa program and its control flow graph. 32

3.3 Partial evaluation example. 33

3.4 Symbolic execution tree of the control circuit program. 34

3.5 Symbolic execution with interleaved partial evaluation. 35

3.6 Type hierarchy for the GUI example. 39

4.1 Program in a sequential block. 47

4.2 A collection of sequent calculus rules for program transformation. 48

4.3 Work flow of synthesizing loop. 51

4.4 Symbolic execution tree until conditional. 52

4.5 Symbolic execution tree of then branch. 52

4.6 Symbolic execution tree of else branch. 53

4.7 The generated program for Example 7. 53

4.8 The generated program for Example 8. 54

4.9 Rules for computing SNF updates. 61

4.10 A collection of sequent calculus rules for program transformation using SNF update. 64

4.11 Symbolic execution tree until conditional. 65

4.12 Symbolic execution tree of then branch. 66

4.13 Symbolic execution tree of else branch. 66

vii

4.14 The generated program for Example 12. 67

4.15 Specialization of the while-loop by different means. 70

4.16 The result of program transformation. 72

4.17 Code fragment of bank account. 74

4.18 Source code of the Power example as found in the JSpec suite. 75

5.1 Non-interference. 78

5.2 Some extended sequent calculus rules tailored to information flow analysis. 84

6.1 Mapping of SiJa programs to Java bytecode. 90

6.2 A collection of sequent calculus rules for generating Java bytecode. 93

6.3 Program to be compiled into bytecode. 94

6.4 Generated Java bytecode. 96

7.1 Software correctness and security: a uniform framework. 99

viii

1 Introduction

When we had no computers, we had no programming problem either. When we had

a few computers, we had a mild programming problem. Confronted with machines a

million times as powerful, we are faced with a gigantic programming problem.

— Edsger W. Dijkstra [Dij86]

1.1 Overview: Software Correctness and Security

Along with the development of information technology, computers play an important role in

the modern society. Not only are they used everywhere, especially for handling complicated

tasks, but the computer itself is getting more and more complex in both hardware and software

aspects. Though it is difficult to make the hardware part working flawlessly, it is even more

challenging to ensure the correctness of the software part. Sometimes, the software failures can

result in a disaster, such as the infamous explosion of Ariane 5 [Boa06]. There are more than

100 “software horror stories” listed in this website document [Der], to show the consequence of

software bugs. Therefore, ensuring the correctness of software is extremely important, no matter

of its difficulties.

What is the meaning of “correctness”? The correctness of software is asserted when it is

correct with respect to the specification that describes the intended behavior of the software.

Specification can be informal, in which case it can be considered as a blueprint or user manual

from a developer’s point of view. Formal specification, that models the software behavior in a

mathematically rigorous way, will contribute to achieving a more reliable software system.

Assertions can be considered as a lightweight formal specification. When a program reaches

a particular execution point, the assertions, normally written in Boolean expressions or for-

mulas, should always be satisfied. An extension of the assertion mechanism is design by con-

tract [Mey86, Mey92], which uses preconditions, postconditions and invariants to specify the

classes of the object-oriented programs. The Eiffel programming language [Mey00] features

built-in support for design-by-contract specifications.

It is worth to mention that writing a good formal specification is nontrivial due to the math-

ematical skills required from the programmers and the expressiveness of the specification lan-

guage that is used. Research on specification generation includes QuickSpec [CSH10] that

generates the specification automatically for sets of pure functions based on testing, and the

ABS [CDH+11] specification language that bridges the gap between a highly abstract modeling

language and an implementation-oriented specification language.

1

A natural way to ensure the correctness of software is to take some inputs and execute the

program to see if the outputs are as expected with respect to the specification. This method is

known as program testing. In the testing process, a collection of test cases are used to cover

as thoroughly as possible the program execution branches to show whether errors will occur.

The chosen test cases are the key factor of testing; several quality criteria for a test suite have

been proposed to describe the degree of code coverage [Mye04]. The test cases can also be

generated automatically [EH07]. Testing is the most used method to establish high quality of

software in industry nowadays, and it will retain its importance in the future. However, certain

limitations of testing imply that it is not the only, not even the best, way to achieve bug-free

software. For many software systems, the state space is too large for exhaustive testing; while

in a concurrent setting, it is simply impossible to reproduce all feasible runs. As Dijkstra [Dij70]

famously pointed out, “Program testing can be used to show the presence of bugs, but never to

show their absence".

Another way to design reliable software is by using formal methods. It is a mathematically

rigorous technique for specification, design and verification of software systems. One kind of

formal methods is oriented on the abstract design process. The examples are the modeling

languages such as ASM [BS03], B [Abr96], Z [Spi92] and Alloy [Jac02].

Formal software verification usually concentrates on the source code level, ensuring the correct-

ness of the software implemented in a certain programming language. Both dynamic and static

techniques can be used in software verification, depending on whether to execute the program

or not. Assertions and design-by-contract specifications are often used for dynamic run-time

checks to indicate whether a test run has been successful. Static verification techniques, which

do not rely on program execution, include abstract interpretation [CC77], software model check-

ing [MCDE02, HJMS03, CKL04, BBC+06] and deductive verification [Hoa69].

Abstract interpretation relates abstract analysis to program execution by evaluating the be-

havior of a program on an abstract domain to obtain an approximate solution. Software model

checking is often combined with abstraction techniques, e.g., predicate abstraction [FQ02], since

the state space of software programs is typically too large to analyze directly. In both methods,

abstraction techniques are used, but no formal logical proofs are created. Deductive verification

constructs a logical proof of the program to show its correctness. The generated proof obliga-

tions or verification conditions for the program are proved automatically, or manually with some

interactions, by theorem provers or SMT solvers. No matter which formal software verification

technique is used, the state space exploration problem is always one of the major concerns and

it is an important research topic in this area.

There are many formal software verification techniques to ensure the correctness of the source

code, despite their limitations, however, the correctness of the software system is not guaranteed

by the correct source code only, because errors can also happen e.g. due to a buggy compiler.

Another important topic is compiler verification [Dav03] that aims to ensure the correctness of

2

the compiled code (bytecode), with respect to the source code. It normally requires reasoning

about actual compiler implementations and the behavior of the compiler for an infinite number

of programs and their translations, so compiler verification is very expensive and hard to scale

to realistic programming languages and sophisticated optimization.

A “grand challenge” for computer science proposed by Hoare [Hoa03] is to achieve a “ver-

ifying compiler” that checks the correctness of a program along with compilation, just like a

compiler performing type checking nowadays.

Since flow of information plays a growing role in society, the preservation of confidentiality

becomes an important concern. Confidentiality of programs is an issue of software security.

Information-flow control [Den82] tracks the flow of information in programs to ensure that no

information leak occurs. Language-based information flow security [SM03] applies language-

based techniques to analyze the program, in an automated manner, to enforce that the program

satisfies a security policy of interest.

In information-flow control, a security policy is accompanied by a permissive enforcement

mechanism, proven sound with respect to a security policy. When run on a program, if the

enforcement reports a positive result, then the soundness proof implies that the program satisfies

the policy. There are several ways to achieve this. Static analysis approaches take the form

of a security type system [VIS96, HS06], by tracking the confidentiality level of information

contained in variables and program context, (over-)approximates information flows occurring

in (an over-approximation of) the control flow paths the program can take. Dynamic analysis

approaches are usually security monitors [Vol99, AS09], which monitor the propagation of the

input data that is labeled with the confidentiality level at run time. Static analysis approaches

have the advantage of no runtime overhead; while dynamic analysis approaches need to access

to the current control flow path so that highly dynamic language constructs can be treated in a

permissive manner.

1.2 Problems and Contributions

Traditionally, source code correctness, bytecode correctness and source code security are ana-

lyzed independently with different approaches and tools, as illustrated in Figure 1.1.

In this thesis, we try to integrate all these 3 aspects into a uniform framework, so that it is

possible to ensure software correctness and security within one process. We studied SiJa as the

programming language in this thesis. It is a subset of Java with certain restrictions.

The core concept is a sound approach of program transformation. A program transformation

is an operation that takes a program and generates another program. The transformed pro-

gram is required to be semantically equivalent to the original one. Our program transformation

approach is realized based on symbolic execution and deduction, and it contains two phases.

The first phase is symbolic execution [Kin76] of the source code performed by KeY [BHS06],

3

source
code

bytecode

correct
source code

correct
bytecode

secure
source code

source code
verification

bytecode
verification

compilation

information flow
analysis

Figure 1.1: Software correctness and security: traditional approaches.

a state-of-the-art verification tool for Java programs. The symbolic execution is carried out by

the application of sequent calculus rules, and the integrated first order deduction engine in KeY

helps to achieve a precise analysis of variable dependencies, aliasing, and elimination of unfea-

sible paths. In the second phase, we extend the sequent calculus rules with suitable ingredients,

e.g. observable locations, such that the rules can be applied reversely and the target program

is generated in a step-wise manner. The soundness of our program transformation process is

proved.

The result of the program transformation is a program that has the same behavior as (or is

bisimilar to) the original program with respect to the observable locations. The soundness of the

program transformation process guarantees the soundness of the generated program. It enjoys

the following properties:

• The generated program is optimized over the original program for the sake of the first order

logic reasoning and possible simple partial evaluation steps performed during symbolic

execution.

• We can generate a program that is bisimilar to the original one with respect to certain

observable locations, e.g., low sensitive variables. This helps to achieve an information

flow analysis.

• We can generate bytecode form source code, so that if the source code is verified correctly,

the bytecode is also correct without further verification. This is a deductive compilation

approach.

Figure 1.2 gives an overview of the contributions of this thesis. To summarize:

• We interleave symbolic execution and partial evaluation to reduce the proof state space

and speed up the proving process.

4

source
code

correct
source code

correct
bytecode

secure
source code

optimized
source code

program verification
(symbolic execution
+ partial evaluation)

rule based
generation

rule based
generation

rule based
generation

deductive
compilation

program optimization

information flow
analysis

Figure 1.2: Software correctness and security: a uniform framework.

• We propose a sound approach of program transformation that ensures the correctness of

the generated code with respect to the source code.

• We propose further optimization techniques for program transformation.

• We implement a partial evaluator for SiJa.

• We apply program transformation to information flow analysis.

• We apply program transformation to deductive compilation.

The following chapters are organized as follows:

• Chapter 2 gives the background of KeY and symbolic execution;

• Chapter 3 introduces partial evaluation and shows its interleaving with symbolic execution

for speeding correctness proofs;

• Chapter 4 concentrates on the main approach of program transformation and its soundness

proof;

• Chapter 5 shows the application of the program transformation to information flow;

• Chapter 6 gives an introduction of applying program transformation technique to bytecode

compilation;

• Chapter 7 concludes the thesis and points out some further research directions.

5

1.3 Publications

Here is a list of publications related to this thesis work:

• Interleaving Symbolic Execution and Partial Evaluation. Richard Bubel and Reiner Hähnle

and Ran Ji. 8th International Symposium on Formal Methods for Components and Objects

(FMCO). Eindhoven, the Netherlands. 2009. [BHJ09]

It is concerned with the source code level verification for sequential Java programs. In this

paper, we show that symbolic execution and partial evaluation not only are compatible

with each other, but that there is considerable potential for synergies. Specifically, we

integrate a simple partial evaluator for a Java-like language into the logic-based symbolic

execution engine of the software verification tool KeY [BHS06]. This allows to interleave

symbolic execution and partial evaluation steps within a uniform (logic-based) framework

in a sound way. Intermittent partial evaluation during symbolic execution has the effect

that the remaining program that is yet to be executed is continuously simplified relative

to the current path conditions and the current symbolic state in each symbolic execution

trace.

I carried out the experiments and was involved in the paper writing.

• Program Specialization Via a Software Verification Tool. Richard Bubel and Reiner Hähnle

and Ran Ji. 9th International Symposium on Formal Methods for Components and Objects

(FMCO). Graz, Austria. 2010. [BHJ10]

We propose a new approach to specialize Java-like programs via the software verifica-

tion tool KeY, in which a symbolic execution engine is used. It is a two-phase procedure

that first symbolically executes the program interleaved with a simple partial evaluator,

and then synthesizes the specialized program in the second phase. The soundness of the

approach is guaranteed by a bisimulation relation on the source and specialized programs.

I designed the main theory and was involved in the paper writing.

• PE-KeY: A Partial Evaluator for Java Programs. Ran Ji and Richard Bubel. 9th International

Conference on Integrated Formal Methods (iFM). Pisa, Italy. 2012. [JB12]

In this paper we present a prototypical implementation of a partial evaluator for Java

programs, named PE-KeY, based on the verification system KeY. We argue that using

a program verifier as technological basis provides potential benefits leading to a higher

degree of specialization. We discuss in particular how loop invariants and preconditions

can be exploited to specialize programs. First experimental results are provided.

I did the main implementation and was involved in the paper writing.

6

• Program Transformation Based on Symbolic Execution and Deduction. Ran Ji and Reiner

Hähnle and Richard Bubel. 11th International Conference on Software Engineering and For-

mal Methods (SEFM). Madrid, Spain. 2013. [JHB13]

In this paper, we present a program transformation framework based on symbolic execu-

tion and deduction. Its virtues are: (i) behavior preservation of the transformed program

is guaranteed by a sound program logic, and (ii) automated first-order solvers are used

for simplification and optimization. Transformation consists of two phases: first the source

program is symbolically executed by sequent calculus rules in a program logic. This in-

volves a precise analysis of variable dependencies, aliasing, and elimination of unfeasible

execution paths. In the second phase, the target program is synthesized by a leave-to-root

traversal of the symbolic execution tree by backward application of (extended) sequent

calculus rules. We prove soundness by a suitable notion of bisimulation and we discuss

one possible approach to automated program optimization.

I developed the main theory and was involved in the paper writing.

7

2 Background

2.1 KeY and Symbolic Execution

KeY [BHS06] is a deductive verification system for programs written in the Java language, or

more precisely Java Card language [Mos05] that is roughly a subset of sequential Java with some

smart card extensions. The Java Modeling Language (JML) [LBR03] is used as its specification

language. On proving a program, KeY first translates the specifications into proof obligations,

which are logic formulas whose logical validity corresponds to the correctness of the program

with respect to the specification. The logic used is dynamic logic [Pra76, HKT00b], an extension

of first-order predicate logic with modal operators that contain executable program fragments

of some programming language. More specifically, KeY uses Java Dynamic Logic (JavaDL) in

which the program fragments are written in Java. Based on the proof obligations, KeY acts as a

theorem prover to perform deductive verification. A novel feature of JavaDL compared to other

variants of dynamic logic is the use of state updates [Bec01, Rüm06], which capture the state

changes during the program execution. The program is executed in a symbolic way such that

the symbolic values of the program variables are used instead of the concrete ones. When the

symbolic execution ends, the programs are removed completely from the JavaDL formulas and

therefore the verification goal is reduced to prove the validity of first-order formulas with the

help of some built-in theories. The proofs are usually performed by KeY itself, or handled by

external satisfiability modulo theories (SMT) solvers such as Simplify [DNS05] or Z3 [dMB08].

In fact, KeY is not only a Java verifier, it also supports other useful features such as test case

generation [EH07] and symbolic visual debugging [HBBR10] in its variants. The most recent

version of KeY supports explicit memory heap reasoning [Wei11].

Tools for deductive verification of object-oriented programs that are similar to KeY include

KIV [HHRS86, Ste04], Jive [MPH00] and VeriFast [JP08]. KIV uses a dynamic logic like KeY

and performs verification within one prover. Jive uses a Hoare logic and employs a generic

theorem prover, Isabelle/HOL [NPW02], or an SMT solver for proving program-independent

properties. VeriFast works with separation logic [Rey02] and emphasizes on fast verification of

C and Java.

While SMT solvers can be used in KeY as a trusted “black box” to gain possibly better au-

tomation and performance by sacrificing some traceability, they are treated as the primary

foundation for several other tools. These include ESC/Java [FLL+02], ESC/Java2 [CK05],

Spec# [BLS05, BFL+11] and Frama-C [CKK+12]. The common paradigm of them is verifica-

tion condition generation, in which the program and its specification are translated into first-

order formulas named verification conditions that are passed to an SMT solver. In practice, the

9

source code is often compiled to an intermediate language before generating the verification

condition. This allows the modularization of the verification system, however, as discussed ear-

lier, the compilation itself is a non-deductive step, thus also needs to be verified. For instance,

Boogie [BCD+05] is a tool used to generate verification conditions from the intermediate lan-

guage for Spec#. Some other Java verifiers based on verification condition generation also use

theorem provers for higher-order logic, in addition to SMT solvers, to prove the verification con-

ditions, e.g., JACK [BRL03] and Krakatoa/Why [FM07]. The verification condition generation

is usually not a deductive, rule-based process.

The mechanism used in KeY that corresponds to verification condition generation is sym-

bolic execution. Dating back to its introduction in the 1970s [Kin76, Bur74, BEL75], symbolic

execution has only recently been realized efficiently for industrially relevant programming lan-

guages. It is a central, very versatile program analysis technique that is used for formal program

verification [BHS06, HRS87, PV04], extended static checking and verification [BLS05], debug-

ging [Bau07], and automatic test case generation [dHT08, EH07]. In the last decade a number

of efficient symbolic execution engines for real heap-based programming and intermediate lan-

guages were created including, besides KeY (for Java, C, ABS, see [BHS06]), KIV (for Java, see

[Ste04]), Bogor/Kiasan (for BIR, see [DLR06]), Pex (for MSIL, see [dHT08]), VeriFast (for C,

Java, see [JP08]) and COSTA/PET (for Java bytecode, see [AAG+07, AGZP10]).

The main idea of symbolic execution is to use symbolic values, instead of actual data, as input,

and to represent the values of program variables as symbolic expressions. The output values

computed by a program are expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the (symbolic) values of program vari-

ables, a path condition and a program counter. The path condition is a (quantifier-free) boolean

formula over the symbolic inputs which accumulates constraints that the inputs must satisfy

in order for an execution to follow the particular path. The program counter defines the next

statement to be executed. A symbolic execution tree, in which the nodes represent the program

states, characterizes the execution paths followed during the symbolic execution of a program.

Symbolic execution in KeY is performed based on the sequent calculus rules for JavaDL, and

therefore it is a deductive process compared to verification condition generation. In general, a

sequent is an expression of the form Γ =) ∆ with the antecedent Γ, and the succedent ∆ being

sets of formulas. A sequent has the same meaning as the formula

V
�2Γ�!

W
 2∆ .

Sequent rules have the general form

name
s1 · · · sn

s

10

where s, s1, . . . , sn are sequents. The sequents above the line are the rule’s premises while

sequent s is called the rule’s conclusion. A sequent proof is a tree whose nodes are labeled

with sequents and with a sequent whose validity is to be proven at its root. This proof tree is

constructed by applying sequent rules r to leaf nodes n whose sequent matches the conclusion

r. The premises of r are then added as children of n. A branch of a proof tree is closed if and

only if it contains an application of an axiom. A proof tree is closed if and only if all its branches

are closed.

Accordingly, sequent rules for JavaDL work on a first active statement s and a current update

U in the following general form of a conclusion:

Γ=)U [⇡ s; !]�,∆

Path conditions are represented by suitable formulas and accumulate in the antecedent Γ,

and ! is the remaining program. In addition, ⇡ stands for an inactive prefix containing labels,

opening braces or method-frames. In this thesis, we do not write down ⇡ explicitly, but keep in

mind this possible inactive prefix.

An example of symbolic execution is shown in the following program fragment that orders

the values of x and y. After its execution, x is the maximum of x0, y0 and y their minimum.

int x = x0;

int y = y0;

if (x > y) {

int t = x;

x = y;

y = t;

}

State update captures the state changes during program execution. We use location-value pairs

to represent states in symbolic execution. The expression {l1 := t1 || · · · ||ln := tn} denotes a

symbolic state in which each program location of the form li has the expression t i as its symbolic

value. After symbolic execution of the first three statements of the program above we obtain

the symbolic state U = {x := x0 ||y := y0}. Symbolic execution of the conditional splits the

execution into two branches, because the value x0 > y0 of the guard expression is symbolic and

cannot be reduced immediately. The value of the guard becomes a path condition relative to

which symbolic execution continues. Under the path condition P1 ⌘ x0 > y0 the body of the

conditional is executed which results in the final symbolic state U 0 = {x := y0 ||y := x0 ||t :=

x0}. The other branch terminates immediately in state U under path condition P2 ⌘ x0  y0.

Symbolic execution as realized in KeY makes sure that every possible branch of the execution

is considered. With the help of the built-in reasoning system, e.g. preconditions, path condi-

tions, invariants, some unfeasible paths can be eliminated and the branches to be proved are

reduced. The work flow of KeY can be summarized in Figure. 2.1.

11

JML
specification

+
Java

program

JavaDL
proof

obligations

FOL
formulas

Yes
No

Unknown

parsing
symbolic
execution

FOL
reasoning

Figure 2.1: Work flow of KeY.

2.2 Programming Language

In this thesis, we use SiJa as the programming language. The object-oriented programming

language SiJa is a simplified Java variant and closely related to the language defined in [BP06].

The differences to Java can be summarized as follows:

• Unsupported Features. Multi-threading, graphics, dynamic class loading, generic types or

floating point datatypes are not supported by SiJa. Formal specification and verification of

these features is a topic of ongoing research, therefore, left out completely.

• Restricted Features. For ease of presentation SiJa imposes some additional restrictions com-

pared to Java. The KeY tool and the prototype implementation of our ideas evaluated

in Chapter 3 do not impose these restrictions, but model and respect the Java semantics

faithfully. The following restrictions apply to SiJa:

Inheritance and Polymorphism. For the sake of a simple semantics for dynamic dispatch of

method invocations SiJa abstains from Java-like interfaces and method overloading.

Likewise, with exception of the Null type, the type hierarchy induced by user-defined

class types has a tree structure with class Object as root.

Prohibiting method overloading allows to identify a method within a class unambigu-

ously by its name and number of parameters. We allow polymorphism (i.e. methods

can be overwritten in subclasses) but require that their signature must be exactly the

same, otherwise it is a compile-time error.

Visibility. All classes, methods and fields are publicly visible. This restriction contributes

also to a simpler dynamic dispatch semantics.

No Exceptions. SiJa has no support for exceptions. Instead of runtime exceptions like

NullPointerExceptions the program will simply not terminate in these cases.

No class/object Initialization. In Java the first active usage of a type or creation of a new

instance triggers complex initialization. SiJa supports only instance creation, but does

not initialize fields upon creation. In particular, SiJa does not support static or instance

initializers. User defined constructors are also missing in SiJa, a new instance is simply

created by the expression new T ().

12

Primitive Types. Only boolean and int are available. To keep the semantics of standard

arithmetic operators simple, int is an unlimited datatype representing the whole

numbers Z rather than a finite datatype with overflow.

A SiJa program p is a non-empty set of class declarations with at least one class

of name Object. The class hierarchy is a tree with class Object as root. A class

Cl := (cname, scnameopt, fld, mtd) consists of (i) a classname cname unique in p, (ii) the name

of its superclass scname (only omitted for cname = Object), and (iii) a list of field fld and

method mtd declarations.

The syntax for class declaration is the same as in Java. The only lacking features are construc-

tors and static/instance initialization blocks. SiJa knows also the special reference type Null

which is a singleton with null as the only element. It may be used in place of any reference

type and is the only type that is a subtype of all class types.

To keep examples short we agree on the following convention: if not explicitly stated other-

wise, any given sequence of statements is seen as if it would be the body of a static, void method

declared in a class Default with no fields declared.

Dynamic dispatch works in SiJa as follows: we need to determine the implementation of

a method on encountering a method invocation such as o.m(a). To do so, first look up the

dynamic type T of the object referenced by o. Then scan all classes between T and the static

type of o for an implementation of a method named m and the correct number of parameters.

The first match is taken.

The syntax of the executable fragment of SiJa is given in Figure 2.2.

Statements

stmnt ::= stmnt stmnt | lvarDecl | locExp’=’exp’;’ | cond | loop

loop ::= while ’(’exp’)’ ’{’stmnt’}’

lvarDecl ::=Type IDENT (’=’ exp)opt’;’

cond ::= if ’(’exp’)’ ’{’stmnt’}’ else ’{’stmnt’}’

Expressions

exp ::= (exp.)optmthdCall | opExp | locExp

mthdCall::= mthdName’(’expopt(’,’exp)⇤’)’

opExp ::= opr(expopt(,exp)⇤) | Z | TRUE | FALSE | null

opr ::= ! | - | < | <= | >= | > | == | && | || | + | - | * | / | % | ++

Locations

locExp ::= IDENT | exp.IDENT

Figure 2.2: Syntax of SiJa.

Figure 2.3 shows an example of SiJa program. It can be used in an online shopping session.

If the customer buys at least 3 items and has a coupon, a 10% discount for all but the first two

items will be granted.

13

public class OnLineShopping {

boolean cpn;

public int read() { /* read price of item */ }

public int sum(int n) {

int i = 1;

int count = n;

int tot = 0;

while(i <= count) {

int m = read();

if(i >=3 && cpn) {

tot = tot + m * 9 / 10;

i++; }

else {

tot = tot + m;

i++; }

}

return tot;

}

}

Figure 2.3: A SiJa program fragment.

Any complex statement can be easily decomposed into a sequence of simpler statements with-

out changing the meaning of a program, e.g., y = z ++; can be decomposed into int t = z;

z = z + 1; y = t;, where t is a fresh variable, not used anywhere else. As we shall see later,

a suitable notion of simplicity is essential, for example, to compute variable dependencies and

simplify symbolic states. This is built into our semantics and calculus, so we need a precise

definition of simple statements. In Figure 2.4, statements in the syntactic category spStmnt have

at most one source of side effect each. This can be a non-terminating expression (such as a null

pointer access), a method call, or an assignment to a location.

spStmnt ::= spLvarDecl | locVar’=’spExp’;’ | locVar’=’spAtr’;’| spAtr’=’spExp’;’

spLvarDecl ::=Type IDENT’;’

spExp ::= (locVar.)optspMthdCall | spOpExp | litVar

spMthdCall::= mthdName’(’litVaropt(’,’litVar)⇤’)’

spOpExp ::= !litVar | -litVar | litVar binOpr litVar

litVar ::= litval | locVar litval ::=Z | TRUE | FALSE | null

binOpr ::= < | <= | >= | > | == | && | || | + | - | * | / | %

locVar ::= IDENT

spAtr ::= locVar.IDENT

Figure 2.4: Syntax of SiJa simple statements.

By decomposing every complex statement, a SiJa program p can be transformed into an equiv-

alent (on the variables of p) program containing only simple statements. The program shown

14

in Figure 2.5 has the same meaning as the program in Figure 2.3, but contains only simple

statements.

public class OnLineShopping {

boolean cpn;

public int read() { /* read price of item */ }

public int sum(int n) {

int i = 1;

int count = n;

int tot = 0;

while(i <= count) {

int m;

m = read();

boolean b;

b = i >= 3;

boolean b1;

b1 = b && cpn;

if(b1) {

int t;

t = m * 9;

int t1;

t1 = t / 10;

tot = tot + t1;

i = i + 1; }

else {

tot = tot + m;

i = i + 1; }

}

return tot;

}

}

Figure 2.5: A SiJa program fragment contain only simple statements.

Because SiJa is a simple version of Java, the theories developed in this thesis are naturally

applicable for this subset of Java. The implementation is integrated and evaluated in the KeY

system.

2.3 Program Logic

Our program logic is dynamic logic (DL) [HKT00a]. The target program occurs in unencoded

form as a first-class citizen inside the logic’s connectives. Sorted first-order dynamic logic is

sorted first-order logic that is syntactically closed with respect to the program correctness

modalities [·]· (box) and h·i· (diamond). The first argument is a program and the second a

dynamic logic formula. Let p denote a program and � a dynamic logic formula then [p]� and

hpi� are DL-formulas. Informally, the former expresses that if p is executed and terminates then

15

in all reached final states � holds; the latter means that if p is executed then it terminates and

in at least one of the reached final states � holds. The box modality expresses partial correctness

of a program, while the diamond modality coincides with total correctness. Hoare logic [Hoa69]

can be subsumed by dynamic logic since the Hoare triple {pre} p {post} can be expressed as the

DL formula pre! [p]post.

We consider only deterministic programs, hence, a program p executed in a given state s

either terminates and reaches exactly one final state or it does not terminate and there are no

reachable final states.

A dynamic logic based on SiJa-programs is called SiJa-DL. The signature of the program logic

depends on a context SiJa-program C .

Definition 1 (SiJa-Signature ΣC). A signature ΣC = (Sort,�,Pred,Func,LVar) consists of:

(i) a set of names Sort called sorts containing at least one sort for each primitive type and one for

each class Cl declared in C : Sort◆ {int,boolean} [{Cl | for all classes Cl declared in C };

(ii) a partial subtyping order �: Sort⇥ Sort that models the subtype hierarchy of C faithfully;

(iii) a set of predicate symbols Pred := {p : T1 ⇥ . . .⇥ Tn | Ti 2 Sort, n 2 N}. We call ↵(p) =

T1⇥ . . .⇥ Tn the signature of the predicate symbol.

(iv) a set of function symbols Func := { f : T1 ⇥ . . .⇥ Tn ! T | Ti, T 2 Sort, n 2 N}. We call

↵(f) = T1 ⇥ . . .⇥ Tn ! T the signature of the function symbol. Func := Funcr [PV [Attr

is further divided into disjoint subsets:

– the rigid function symbols Funcr;

– the program variables PV = {i,j, . . .}, which are non-rigid constants;

– the non-rigid function symbols attribute Attr, such that for each attribute a of type T

declared in class Cl an attribute function a@Cl : Cl! T 2 Attr exists. We omit the @Cl

from attribute function names if no ambiguity arises.

(v) a set of logical variables LVar := {x : T | T 2 Sort}.

We distinguish between rigid and non-rigid function and predicate symbols. Intuitively, the

semantics of rigid symbols does not depend on the current state of program execution, while

non-rigid symbols are state-dependent. Local program variables, static, and instance fields are

modeled as non-rigid function symbols and together form a separate class of non-rigid symbols

called location symbols. Specifically, local program variables and static fields are modeled as

non-rigid constants, instance fields as unary non-rigid functions.

Example 1. In the program shown in Figure 2.3,

• int, boolean are sorts;

16

• <=, && are predicate symbols;

• +, =, *, / are rigid function symbols;

• i, count, tot are program variables;

ΠΣC
denotes the set of all executable SiJa programs (i.e., sequences of statements) with loca-

tions over signature ΣC . In this thesis, we use the notion of a program to refer to a sequence

of executable SiJa-statements. If we want to include class, interface or method declarations, we

either include them explicitly or make a reference to the context program C .

The inductive definition of terms and formulas is standard, but we introduce a new syntactic

category called update to represent state updates with symbolic expressions.

Definition 2 (Terms, Updates and Formulas). Terms t, updates u and formulas � are well-sorted

first-order expressions of the following kind:

t ::= x | i | t.a | f (t, . . . , t) | (� ? t : t) |

Z | TRUE | FALSE | null | {u}t

u ::= i := t | t.a := t | u k u | {u}u

� ::= true | false | p(t, . . . , t) | ¬� | � �� (� 2 {^,_,!,$}) | (� ? � : �) |

8x : T.� | 9x : T.� | [p]� | hpi� | {u}�

where a 2 Attr, f 2 Func, p 2 Pred,i 2 PV, x : T 2 LVar, and p is a sequence of executable SiJa

statements.

An elementary update i := t or t.a := t is a pair of location and term. They are of static

single assignment (SSA) form [AWZ88, RWZ88], with the same meaning as simple assignments.

Elementary updates are composed to parallel updates u1ku2 and work like simultaneous assign-

ments. Updates applied to terms or formulas are again terms or formulas.

Terms, formulas and updates are evaluated with respect to a SiJa-DL Kripke structure.

Definition 3 (Kripke structure). A SiJa-DL Kripke structure KΣSiJa = (D, I , S) consists of

(i) a set of elements D called domain,

(ii) an interpretation I with

– I(T) = DT , T 2 Sort assigning each sort its non-empty domain DT . It adheres to the

restrictions imposed by the subtype order �; Null is always interpreted as a singleton set

and subtype of all class types;

– I(f) : DT1
⇥. . .⇥DTn

!DT for each rigid function symbol f : T1⇥. . .⇥Tn! T 2 Funcr;

– I(p)✓ DT1
⇥ . . .⇥DTn

for each predicate symbol p : T1⇥ . . .⇥ Tn 2 Pred;

17

(iii) a set of states S assigning meaning to non-rigid function symbols: let s 2 S then s(a@Cl) :

DCl!DT , a@Cl : Cl! T 2 Attr and s(i) : DT , i 2 PV.

The pair D = (D, I) is called a first-order structure.

As usual in first-order logic, to define evaluation of terms and formulas in addition to a struc-

ture we need the notion of a variable assignment. A variable assignment � : LVar! DT maps a

logical variable x : T to its domain DT .

Definition 4 (Evaluation function). A term, formula or update is evaluated relative to a given

first-order structure D = (D, I), a state s 2 S and a variable assignment � , while programs and ex-

pressions are evaluated relative to a D and s 2 S. The evaluation function val is defined recursively.

It evaluates

(i) every term t : T to a value valD,s,�(t) 2 DT ;

(ii) every formula � to a truth value valD,s,�(�) 2 {tt, ff };

(iii) every update u to a state transformer valD,s,�(u) 2 S! S;

(iv) every expression e : T to a set of pairs of state and value valD,s(e)✓ 2S⇥T ;

(v) every statement st to a set of states valD,s(st)✓ 2S.

Since SiJa is deterministic, all sets of states or state-value pairs have at most one element.

Figure 2.6 shows a collection of the semantic definition. The expression s[x v] denotes a

state coincides with s except at x which is mapped to the evaluation of v.

Example 2 (Update semantics). We illustrate the semantics of updates of Figure 2.6. Evaluating

{i := j+1}i� j in a state s is identical to evaluating the formula i� j in a state s0 which coincides

with s except for the value of i which is evaluated to the value of valD,s,�(j+ 1). Evaluation of the

parallel update i := jkj := i in a state s leads to the successor state s0 identical to s except that the

values of i and j are swapped. The parallel update i := 3ki := 4 has a conflict as i is assigned

different values. In such a case the last occurring assignment i := 4 overrides all previous ones of

the same location. Evaluation of {i := j}{j := i}� in a state s results in evaluating � in a state,

where i has the value of j, and j remains unchanged.

Remark. {i := j}{j := i}� is the sequential application of updates i := j and j := i on the

formula �. To ease the presentation, we overload the concept of update and also call {i := j}{j :=

i} an update. In the following context, if not stated otherwise, we use the upper-case letter U to

denote this kind of update, compared to the real update that is denoted by a lower-case letter u. An

update U could be the of form {u} and {u1} . . . {un}. Furthermore, {u1} . . . {un} can be simplified

into the form of {u}, namely the normal form (NF) of update.

18

For terms:

valD,s,�(TRUE) = True

valD,s,�(FALSE) = False, where {True, False}= D(boolean)

valD,s,�(x) = �(x), x 2 LVar
valD,s,�(x) = s(x), x 2 PV
valD,s,�(o.a) = s(a)(valD,s,�(o)), a 2 Attr
valD,s,�(f (t1, . . . , tn)) = D(f)(valD,s,�(t1), . . . , valD,s,�(tn))

valD,s,�(? t1 : t2) =

⇢
valD,s,�(t1) if valD,s,�() = tt

valD,s,�(t2) otherwise
valD,s,�({u}t) = valD,s0,�(t), s0 = valD,s,�(u)(s)

For formulas:

valD,s,�(true) = tt

valD,s,�(false) = ff

valD,s,�(p(t1, . . . , tn)) = tt iff (valD,s,�(t1), . . . , valD,s,�(tn)) 2 D(p)

valD,s,�(¬�) = tt iff valD,s,�(�) = ff

valD,s,�(^�) = tt iff valD,s,�() = tt and valD,s,�() = tt

valD,s,�(_�) = tt iff valD,s,�() = tt or valD,s,�() = tt

valD,s,�(! �) = valD,s,�(¬ _�)

valD,s,�($ �) = valD,s,�(! � ^�!)

valD,s,�([p]�) = tt iff ff /2 {valD,s0,�(�)|s
0 2 valD,s(p)}

valD,s,�({u}�) = valD,s0,�(�), where s0 = valD,s,�(u)(s)

For updates:

valD,s,�(x := t)(s) = s[x t]

valD,s,�(o.a := t)(s) = s[(a)(valD,s,�(o)) t]

valD,s,�(u1ku2)(s) = valD,s,�(u2)(valD,s,�(u1)(s))

valD,s,�({u1}u2)(s) = valD,s0,�(u2)(s
0), where s0 = valD,s,�(u1)(s)

For expressions:

valD,s(x) = {(s, s(x))}, x 2 PV
valD,s(o.a) = {(s0, s(a)(d)) | (s0, d) 2 valD,s(o)^ d 6= null}

valD,s(e1 � e2) = {(s
00, D(�)(d1, d2)) | (s

0, d1) 2 valD,s(e1)^ (s
00, d2) 2 valD,s0(e2)}

� 2 {+,�,⇤, . . .}

For statements:

valD,s(x= e) = {s0[x d] | (s0, d) 2 valD,s(e)}, x 2 PV
valD,s(o.a= e) = {s00[a(do) de] | (s

0, do) 2 valD,s(o)^ (s
00, de) 2 valD,s0(e)}

valD,s(p1;p2) =
S

s02valD,s(p1)
valD,s0(p2)

valD,s(if(e) {p} else {q}) =

8
<
:

valD,s0,�(p), (s0, True) 2 valD,s(e)

valD,s0,�(q), (s0, False) 2 valD,s(e)

;, otherwise

valD,s(while(e){p}) =

8
<
:

S
s12S1

valD,s1
(while(e){p}) where S1 = valD,s0(p),

if (s0, True) 2 valD,s(e)

{s0}, if (s0, False) 2 valD,s(e)

;, otherwise

Figure 2.6: Definition of SiJa-DL semantic evaluation function.

19

Definition 5 (Normal form of update). An update is in normal form, denoted byU nf , if it has the

shape {u1k . . .kun}, n � 0, where each ui is an elementary update and there is no conflict between

ui and u j for any i 6= j.

Example 3 (Normal form of update). For the following updates,

• {i := j+ 1} and {i := j+ 1kj := i} are in normal form.

• {i := j+ 1}{j := i} is not in normal form.

• {i := j+ 1kj := iki := i+ 1} is not in normal form, because there is a conflict between

i := j+ 1 and i := i+ 1.

The normal form of an update U = {u1} . . . {un} can be achieved by applying a sequence of

update simplification steps shown in Figure 2.7. Soundness of these rules and that they achieve

normal form are proven in [Rüm06].

{. . .kx := v1k . . .kx := v2k . . .}v † {. . .k . . .k . . .kx := v2k . . .}v

where v 2 t [f [�

{. . .kx := v
0k . . .}v † {. . .k . . .}v , where v 2 t [f [�, x /2 f pv (v)

{u}{u0}v † {uk{u}u0}v , where v 2 t [f [�

{u}x † x , where x 2 LVar

{u} f (t1, . . . , tn)† f ({u}(t1), . . . , {u}(tn))

{u}¬�† ¬{u}�

{u}(�1 ��2)† {u}(�1) � {u}(�2), where � 2 {^,_,!,$}

{u}(x := v)† x := {u}v

{u}(o.a := v)† o.a := {u}v

{u}(u1ku2)† {u}u1k{u}u2

{x := v }x† v

{o.a := v }o.a† v

Figure 2.7: Update simplification rules.

Finally, we give the definitions of satisfiability, model and validity of formulas.

Definition 6 (Satisfiability, model and validity). A formula �

• is satisfiable, denoted by D, s,� |= �, if there exists a first-order structure D, a state s 2 S and

a variable assignment � with valD,s,�(�) = tt.

• has a model, denoted by D, s |= �, if there exists a first-order structure D, a state s 2 S, such

that for all variable assignments � : valD,s,�(�) = tt holds.

20

• is valid, denoted by |= �, if for all first-order structures D, states s 2 S and for all variable

assignments � : valD,s,�(�) = tt holds.

We also introduce two other notions which will be used later.

Definition 7 (Signature Extension). Let Σ,Σ0 denote two signatures. Σ0 is called a signature

extension of Σ if there is an embedding �(Σ) ⇢ Σ0 that is unique up to isomorphism and enjoys

the following properties:

• �(SortΣ) = SortΣ0

• �(FuncΣ) ✓ FuncΣ0 where for any arity countably infinite additional function symbols exist

(analogously for predicates and logic variables)

• �(ΠΣ)✓ ΠΣ0

An important property of signature extensions is the following:

Lemma 1. Let Σ0 ◆ Σ denote a signature extension as described in Definition 7. If a SiJa-DL -

formula� overΣ has a counter example, i.e., a SiJa-DL -Kripke structureKΣ, s 2 SΣ withK , s 6|= �,

then �(K , s) 6|= � . In words, signature extensions are counter example preserving.

Finally, we define the notion of an anonymizing update. The motivation behind anonymizing

updates is to erase knowledge about the values of the fields included in the modifier set mod of

locations that can be modified by a program. This is achieved by assigning fresh constant or

function symbols to those locations. For example, an anonymizing update for modΣ = {i,j} is

{i := ci ||j := c j} where ci, c j are constants freshly introduced in the extended signature Σ0.

Definition 8 (Anonymizing Update). Let mod denote a set of terms built from location symbols

in Σ. An anonymizing update for mod is an update Vmod over an extended signature Σ0 assigning

each location l(t1, . . . , tn) 2mod a term f 0
l
(t1, . . . , tn) where f 0

l
2 Σ0\Σ.

2.4 Sequent Calculus

To analyze a SiJa-DL formula for validity, we use a Gentzen style sequent calculus. A sequent

�1, . . . ,�n| {z }
Γ

=) 1, . . . , m| {z }
∆

is a pair of sets of formulas Γ (antecedent) and ∆ (succedent). Its meaning is identical to the

meaning of the formula
^

�2Γ

�!
_

 2∆

21

A sequent calculus rule

rule

premisesz }| {
Γ1 =)∆1 . . . Γn =)∆n

Γ=)∆| {z }
conclusion

consists of one conclusion and possibly many premises. One example of a schematic sequent

calculus rule is the rule andRight:

andRight
Γ=) �, ∆ Γ=) , ∆

Γ=) � ^ , ∆

We call � and schema variables which match here any arbitrary formula. A rule is applied

on a sequent s by matching its conclusion against s. The instantiated premises are then added

as children of s. For example, when applying andRight to the sequent =) i � 0^¬o.a
.
= null

we instantiate � with i � 0 and with ¬o.a
.
= null. Here,

.
= is an equality predicate symbol.

The instantiated sequents are then added as children to the sequent and the resulting partial

proof tree becomes:

=) i� 0 =) ¬o.a
.
= null

=) i� 0^¬o.a
.
= null

Figure 2.8 shows a selection of first-order sequent calculus rules. A proof of the validity of a

formula � in a sequent calculus is a tree where

• each node is annotated with a sequent,

• the root is labeled with =) �,

• for each inner node n: there is a sequent rule whose conclusion matches the sequent of n

and there is a bijection between the rule’s premises and the children of n, and,

• the last rule application on each branch is the application of a close rule (axiom).

So far the considered rules were pure first-order reasoning rules. The calculus design regarding

rules for formulas with programs is discussed next. Since in most cases the partial correctness of

programs (without termination) is our main concern, we consider only the box modality variant

of these rules.

Our sequent calculus variant is designed to symbolically execute a program in a step-wise

manner. It behaves for most parts as a symbolic program interpreter. A sequent for SiJa-DL is of

the form

Γ=)U [p]�,∆

22

Axioms

close
⇤

� =) �
closeTrue

⇤

=) true
closeFalse

⇤

false=)

Propositional Rules

andLeft
Γ, ,� =)∆

Γ,� ^ =)∆
orRight

Γ=) �, ,∆

Γ=) � _ , ∆
impRight

Γ,� =) ,∆

Γ=) �! , ∆

andRight
Γ=) �, ∆ Γ=) , ∆

Γ=) � ^ , ∆
orLeft

Γ,� =)∆ Γ, =)∆

Γ,� _ , ∆=)

First-Order Rules

allLeft
Γ,�[x/t] =)∆

Γ,8x : T.� =)∆
exRight

Γ=) �[x/t],∆

Γ=) 9x : T.� ∆

allRight
Γ=) �[x/c],∆

Γ=)8x : T.�, ∆
exLeft

Γ,�[x/c] =)∆

Γ,9x : T.� =)∆

c new, freeVars(�) = ;

Figure 2.8: First-order calculus rules (excerpt).

The general form of sequent calculus rules for SiJa-DL is:

ruleName
Γ1 =)U1[p1]�1,∆1 . . . Γn =)Un[pn]�n,∆n

Γ=)U [p]�,∆

During symbolic execution performed by the sequent rules, the antecedents Γ accumulate path

conditions and contain possible preconditions. The updatesU record the current symbolic value

at each point during program execution and the �’s represent postconditions.

We explain the core concepts along a few selected rules. Starting with the assignment rule:

assignment
Γ=)U {x := litVar}[!]�,∆

Γ=)U [x= litVar;!]�,∆

where x 2 PV, and litVar is either a boolean/integer literal or a program variable, and! the rest

of the program. The assignment rule works as most program rules on the first active statement

23

ignoring the rest of the program (collapsed into!). Its effect is the movement of the elementary

program assignment into an update.

The assignment rule for an elementary addition is similar and looks like

assignAddition
Γ=)U {x := litVar1+ litVar2}[!]�,∆

Γ=)U [x= litVar1+ litVar2;!]�,∆

There is a number of other assignment rules for the different program expressions. All of the

assignment rules have in common that they operate on elementary (pure) expressions. This

is necessary to reduce the number of rules and also as expressions may have side-effects that

need to be “computed” first. Our calculus works in two phases: first complex statements and

expressions are decomposed into a sequence of simpler statements, then they are moved to an

assignment or are handled by other kinds of rules (e.g., a loopInvariant rule). The decomposition

phase consist mostly of so called unfolding rules such as:

assignAdditionUnfold
Γ=)U [Texp1

v1 = exp1;Texp2
v2 = exp2; x= v1+ v2;!]�,∆

Γ=)U [x= exp1+ exp2;!]�,∆

where exp1, exp2 are arbitrary (nested) expressions of type Texp1
, Texp2

; and v1,v2 fresh program

variables not yet used in the proof or in !.

The conditional rule is a typical representative of a program rule to show how splits in control

flows are treated:

ifElse
Γ,U b=) {U }[p;!]�,∆ Γ,U¬b=) {U }[q;!]�,∆

Γ=)U [if (b) {p} else {q} !]�,∆

where b is a program variable.

The calculus provides two different kinds of rules to treat loops. The first one realizes—as one

would expect from a program interpreter—a simple unwinding of the loop:

loopUnwind
Γ=)U [if (b) {p;while (b) {p}} !]�,∆

Γ=)U [while (b) {p} !]�,∆

24

The major drawback of this rule is that except for cases where the loop has a fixed and known

number of iterations, the rule can be applied arbitrarily often. Instead of unwinding the loop,

one often used alternative is the loop invariant rule loopInvariant:

loopInvariant

Γ=)U inv,∆ (init)

Γ,UVmod(b^ inv) =)UVmod[p]inv,∆ (preserves)

Γ,UVmod(¬b^ inv) =)UVmod[!]�,∆ (use case)

Γ=)U [while (b) {p} !]�,∆

The loop invariant rule requires the user to provide a sufficiently strong formula inv capturing

the functionality of the loop. The formula needs to be valid before the loop is executed (init

branch) and must not be invalidated by any loop iteration started from a state satisfying the loop

condition (preserves branch). Finally, in the third branch the symbolic execution continues

with the remaining program after the loop.

The anonymizing update Vmod requires further explanation. We have to show that inv is pre-

served by an arbitrary iteration of the loop body as long as the loop condition is satisfied. But

in an arbitrary iteration, values of program variables may have changed and outdated the in-

formation provided by Γ,∆ and U . In traditional loop invariant rules, this context information

is removed completely and the still valid portions have to be added to the invariant formula

inv. We use the approach described in [BHS07] and avoid to invalidate all previous knowl-

edge. For this we require the user to provide a superset of all locations mod that are potentially

changed by the loop. The anonymizing update Vmod erases all knowledge about these locations

by setting them to a fixed, but unknown value. An overapproximation of mod can be computed

automatically.

The last rule we want to introduce is about method contracts and it is a necessity to achieve

modularity in program verification. More important for this thesis is that it allows to achieve a

modular program transformation scheme. Given a method T m(T param1, . . . ,Tn paramn) and a

method contract

C(m) = (pre(param1, . . . ,paramn), post(param1, . . . ,paramn,res), mod)

The formulas pre and post are the precondition and postcondition of the method with access

to the parameters and to the result variable res (the latter only in post). The location set

mod describes the locations (fields) that may be changed by the method. When we encounter

a method invocation, the calculus first unfolds all method arguments. After that the method

contract rule is applicable:

25

methodContract

Γ=)U {param1 := v1k . . .kparamn := vn}pre,∆

Γ=)U {param1 := v1k . . .kparamn := vn}Vmod(post! [r= res;!]�),∆

Γ=)U [r= m(v1, . . . ,vn); !]�,∆

In the first branch we have to show that the precondition of the method is satisfied. The

second branch then allows us to assume that the postcondition is valid and we can continue

to symbolically execute the remaining program. The anonymizing update Vmod erases again all

information about the locations that may have been changed by the method. About the values

of these locations, the information encoded in the postcondition is the only knowledge that is

available and on which we can rely in the remaining proof.

Figure 2.9 gives a selection of sequent calculus rules, more detail can be found in [BHS07].

Some decomposition rules are given in Figure 2.10.

Symbolic execution of a program works as follows:

1) Select an open proof goal with a [·] modality. If no [·] exists on any branch, then symbolic

execution is completed. Focus on the first active statement (possibly empty) of the program

in the modality.

2) If it is a complex statement, apply rules to decompose it into simple statements and goto

1), otherwise continue.

3) Apply the sequent calculus rule corresponding to the first active statement.

4) Simplify the resulting updates using update simplification rules given in Figure 2.7, and

apply first-order simplification to the premises. This might result in some closed branches.

It is possible to detect and eliminate infeasible paths in this way. This step is optional.

5) Goto 1).

Example 4. We look at typical proof goals that arise during symbolic execution:

1. Γ, i> j)U [if (i>j) {p} else {q} !]�.

Applying rule ifElse and simplification eliminates the else branch and symbolic execution

continues with p !.

2. Γ) {i := ck . . .}[j = i; !]� where c is a constant.

It is sound to replace the statement j= i with j= c and continue with symbolic execution.

This is known as constant propagation. Chapter 3 shows more actions for partial evaluation

that can be integrated into symbolic execution.

26

emptyBox
Γ=)U�,∆

Γ=)U []�,∆

assignment
Γ=)U {x := litVar}[!]�,∆

Γ=)U [x= litVar;!]�,∆

assignAddition
Γ=)U {x := litVar1+ litVar2}[!]�,∆

Γ=)U [x= litVar1+ litVar2;!]�,∆

writeAttribute
Γ,U¬(o

.
= null) =)U {o.a := se}[!]�,∆

Γ=)U [o.a= se; !]�,∆

ifElse
Γ,U b=)U [p;!]�,∆ Γ,U¬b=)U [q;!]�,∆

Γ=)U [if (b) {p} else {q} !]�,∆

loopUnwind
Γ=)U [if (exp) {p;while (exp) {p}} !]�,∆

Γ=)U [while (exp) {p} !]�,∆

loopInvariant

Γ=)U inv,∆ (init)
Γ,UVmod(b^ inv) =)UVmod[p]inv,∆ (preserves)
Γ,UVmod(¬b^ inv) =)UVmod[!]�,∆ (use case)

Γ=)U [while (b) {p} !]�,∆

methodInvocation

Γ,U¬(o
.
= null) =) {U }[

if (o instanceof Tn) res= o.m(se)@Tn;

else if(o instanceof Tn�1) res= o.m(se)@Tn�1;

. . .

else res = o.m(se)@T1;

!]�,∆

Γ=)U [res= o.m(se); !]�,∆

methodContract

Γ=)U {param1 := v1k . . .kparamn := vn}pre,∆

Γ=)U {param1 := v1k . . .kparamn := vn}Vmod(post! [r= res;!]�),∆

Γ=)U [r= m(v1, . . . ,vn); !]�,∆

Figure 2.9: Selected sequent calculus rules.

27

For decomposition of complex expressions:

postInc
Γ=)U [Ty v1 = y;y= y+ 1;x= v1;!]�,∆

Γ=)U [x= y++;!]�,∆

assignAdditionUnfold
Γ=)U [Texp1

v1 = exp1;Texp2
v2 = exp2; x= v1+ v2;!]�,∆

Γ=)U [x= exp1+ exp2;!]�,∆

writeAttributeUnfold
Γ=)U [Tnse v1 = nse;v1.a= se; !]�,∆

Γ=)U [nse.a= se; !]�,∆

ifElseUnfold
Γ=)U [boolean b = nse; if (b) {p} else {q} !]�,∆

Γ=)U [if (nse) {p} else {q} !]�,∆

Figure 2.10: Selected sequent calculus rules for decomposition of complex expressions.

3. Γ) {o1.a := v1k . . .}[o2.a = v2; !]�.

After executing o2.a= v2, the alias is analyzed as follows: (i) if o2 = null is true the program

does not terminate; (ii) else, if o2 = o1 holds, the value of o1.a in the update is overriden

and the new update is {o1.a := v2k . . .ko2.a := v2}; (iii) else the new update is {o1.a :=

v1k . . .ko2.a := v2}. Neither of (i)–(iii) might be provable and symbolic execution split into

these three cases when encountering a possibly aliased object access.

The result of symbolic execution for a SiJa program p following the sequent calculus rules is a

symbolic execution tree (SET), as illustrated in Figure 2.11. Note that, here we do not show the

part that does not contain any SiJa program, e,g, the init branch obtained after applying the

loopInvariant rule.

Program

. . . ;

. . .
if (cond) {

. . . }

else {
. . . }

while (guard) {

. . . }
. . .
. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

bl0

bl1 then-branch bl2 else-branch

bl3 loop body
bl4

bl5 loop body
bl6

SE
SE

Figure 2.11: Symbolic execution tree with loop invariant applied.

Complete symbolic execution trees are finite acyclic trees whose root is labeled with Γ =)

[p]�,∆ and no leaf has a [·] modality. Without loss of generality, we can assume that each

inner node i is annotated by a sequent Γi =) Ui[pi]�i,∆i, where pi is the program to be

28

executed. Every child node is generated by rule application from its parent. A branching node

represents a statement whose execution causes branching, e.g., conditional, object access, loops

etc.

Definition 9 (Sequential block). A sequential block (SB) is a maximal program fragment in an

SET that is symbolically executed without branching.

For instance, there are 7 sequential blocks bl0,. . . ,bl6 in the SET in Figure 2.11.

Definition 10 (Child, descendent and sibling sequential block). For sequential blocks bl0 and

bl1:

• bl1 is the child of bl0, if bl0 ends in a branching node n and bl1 starts with n.

• bl1 is the descendant of bl0, if there exists sequential blocks bl0,. . . ,blm,0 < m such that

bl0=bl0, bl1=blm and each bl i+1 is the child of bl i for 0  i < m. Intuitively when m = 1,

a child is also a descendant.

• bl1 is the sibling of bl0, if both bl0 and bl1 starts with the same branching node n .

In the SET in Figure 2.11, bl3 is the child of bl1, the sibling of bl4 and the descendant of bl0.

Definition 11 (Generalized sequential block). A generalized sequential block (GSB) is a sequen-

tial block together with all its descendant sequential blocks.

It is a recursive definition, so a GSB always ends with leaf nodes. In the SET in Figure 2.11,

we have GSB {bl1, bl3, bl4} and {bl2, bl5, bl6}. However, {bl0, bl1, bl2, bl5, bl6} is not a GSB

because bl1 does not end with leaf nodes. Another remark is that a program is a GSB itself,

which is {bl0, bl1, bl2, bl3, bl4, bl5, bl6} in this SET. For convenience, we refer to a GSB with the

father sequential block. For instance, GSB {bl1, bl3, bl4} is denoted as GSB(bl1).

29

3 Partial Evaluation

3.1 Partial Evaluation

The ideas behind partial evaluation go back in time even further than those behind symbolic

execution: Kleene’s well-known smn theorem from 1943 states that for each m + n-ary com-

putable function f (~x , ~y) where ~x = x1, . . . , xm, ~y = y1, . . . , yn there is an m+1-ary primitive

recursive function sm
n

such that �sm
n (f ,~x) = �~y . f (~x , ~y). Partial evaluation can be characterized as

the research problem to prove Kleene’s theorem under the following conditions:

1. �sm
n (f ,~x) is supposed to run more efficiently than f for any given ~x .

2. f is a program from a non-trivial programming language, not merely a recursive function.

3. The construction of �sm
n (f ,~x) is efficient, i.e., its runtime should be comparable to compila-

tion of f -programs.

In contrast to symbolic execution the result of a partial evaluator is not the value of output

variables, but another program. The known input (named ~x above) is also called static input

while the general part ~y is called dynamic input. The partial evaluator or program special-

izer is often named mix. Figure 3.1 taken from [JGS93] gives a schematic overview of partial

evaluation.

partial
evaluator
mix

static
input ~x

specialized
program p~x

specialized
program p~x

outputdynamic
input ~y

target
program p

Figure 3.1: Partial evaluation schema.

The first efforts in partial evaluation date from the mid 1960s and were targeted towards

Lisp. Due to the rise in popularity of functional and logic programming languages, the 1980s

saw a large amount of research in partial evaluation of such languages. A seminal text on partial

evaluation is the book by Jones et al. [JGS93].

31

There has been relatively little research on partial evaluation of Java. JSpec [SLC03] is the

state-of-the-art program specializer for Java. It worked by cross-translation to C as an inter-

mediate language. In fact, JSpec does not support full Java but a subset without concurrency,

exception, reflection. JSpec uses an offline partial evaluation technique that depends on binding

time analysis, which in general is not as precise as online partial evaluation. Civet [SC11] is a

recent partial evaluator for Java based on hybrid partial evaluation, which performs offline-style

specialization using an online approach without static binding time analysis. The programmer

needs to explicitly identify to which parts of the programs partial evaluation should be applied.

There is one other (commercial) Java partial evaluator called JPE1, but its capabilities and

underlying theory is not documented.

The application context of partial evaluation is rather different from that of symbolic execu-

tion: in practice, partial evaluation is not only employed to boost the efficiency of individual

programs, but often used in meta-applications such as parser/compiler generation.

We illustrate the main principles of partial evaluation by a small SiJa program depicted in

Figure 3.2 on the left. The program approximates the value of variable y to a given threshold

with accuracy eps by repeatedly increasing or decreasing it as appropriate.

y = 80;

threshold = 100;

if (y > threshold) {

decrease = true;

} else {

decrease = false;

}

while (|y-threshold| > eps) {

if (decrease) {

y-1;

} else {

y+1;

}

}

y=80

threshold=100

y>threshold ?

decrease=true decrease=false

|y-threshold| > eps ?

decrease ?

y=y-1 y=y+1

•
•

Figure 3.2: A simple control circuit SiJa program and its control flow graph.

We can imagine to walk a partial evaluator through the control flow graph (for the example

on the right of Figure 3.2) while maintaining a table of concrete (i.e., constant) values for the

program locations. In the example, that table is empty at first. After processing the two initial

1 http://www.gradsoft.ua/products/jpe_eng.html

32

http://www.gradsoft.ua/products/jpe_eng.html

assignments it contains U = {y := 80 ||threshold := 100} (using the update notation of

Section 2.3).

Whenever a new constant value becomes known, the partial evaluator attempts to propagate

it throughout the current control flow graph (CFG). For the example, this constant propagation

results in the CFG depicted in Figure 3.3 on the left. Note that the occurrences of y that are part

of the loop have not been replaced. The reason is that y might be updated in the loop so that

these latter occurrences of y cannot be considered to be static. Likewise, the value of decrease

after the first conditional is not static either. The check whether the value of a given program

location can be considered to be static with respect to a given node in the CFG is called binding

time analysis (BTA) in partial evaluation.

Partial evaluation of our example proceeds now to the guard of the first conditional. This

guard became a constant expression which can be evaluated to false. As a consequence, one can

perform dead code elimination on the left branch of the conditional. The result is depicted in

Figure 3.3 in the middle. Now the value of decrease is static and can be propagated into the

loop (note that decrease is not changed inside the loop). After further dead code elimination,

the final result of partial evaluation is the CFG on the right of Figure 3.3.

y=80

threshold=100

80>100 ?

decrease=true decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

decrease ?

y=y-1 y=y+1

•
•

y=80

threshold=100

decrease=false

|y-100| > eps ?

y=y+1

•
•

Figure 3.3: Partial evaluation example.

Partial evaluators necessarily approximate the target programming language semantics, be-

cause they are supposed to run fast and automatic. In the presence of such programming

language features as exceptions, inheritance with complex localization rules (as in Java), and

aliasing (e.g., references, array entries) BTA becomes very complex [SLC03].

3.2 Interleaving Symbolic Execution and Partial Evaluation

33

3.2.1 General Idea

Recall from Section 2.4 that a symbolic execution tree unwinds a program’s control flow graph

(CFG). As a consequence, identical code is (symbolically) executed in many branches, however,

under differing path conditions and symbolic states. Merging back different nodes is usually not

possible without approximation or abstraction [BHW09, Wei09].

threshold=100

y>100 ?

decrease=true decrease=false

|y-100|>eps ? |y-100|>eps ?

decrease ? decrease ?

y=y-1 y=y+1 y=y-1 y=y+1

|y-100|>eps? |y-100|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

|y-100|>eps? |y-100|>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

Figure 3.4: Symbolic execution tree of the control circuit program.

The hope with employing partial evaluation is that it is possible to factor out common parts

of computations in different branches by evaluating them partially before symbolic execution

takes place. The naïve approach, however, to first evaluate partially and then perform symbolic

execution fails miserably. The reason is that for partial evaluation to work well the input space

dimension of a program must be significantly reducible by identifying certain input variables to

have static values.

Typical usage scenarios for symbolic execution like program verification are not of this kind.

For example, in the program shown in Figure 3.2, it is unrealistic to classify the value of y as

static. If we redo the example without the initial assignment y= 80 then partial evaluation

can only perform one trivial constant propagation. The fact that input values for variables are

not required to be static can even be considered to be one of the main advantages of symbolic

execution and is the source of its generality: it is possible to cover all finite execution paths

simultaneously and one can start execution at any given source code position without the need

for initialization code.

The central observation that makes partial evaluation work in this context is that during sym-

bolic execution static values are accumulated continuously as path conditions added to the

current symbolic execution path. This suggests to perform partial evaluation interleaved with

symbolic execution.

34

threshold=100

y>100?

decrease=true decrease=false

|y-100|>eps? |y-100|>eps?

y=y-1 y=y+1

|y-100|>eps?

y=y-1

|y-100|>eps?

y=y+1

mix mix

mix

Figure 3.5: Symbolic execution with interleaved partial evaluation.

To be specific, we reconsider the example shown in Figure 3.2, but we remove the first state-

ment assigning the static value 80 to y. As observed above, no noteworthy simplification of the

program’s CFG can be achieved by partial evaluation any longer. The structure of the CFG after

partial evaluation remains exactly the same and only the occurrences of variable threshold are

replaced by the constant value 100. If we perform symbolic execution on this program, then the

resulting execution tree spanned by two executions of the loop is shown in Figure 3.4. The first

conditional divides the execution tree in two subtrees. The left subtree deals with the case that

the value of y is too high and needs to be decreased. The right subtree with the complementary

case.

All subsequent branches result from either the loop condition (omitted in Figure 3.4) or the

conditional expression inside the loop body testing the value of decrease. As decrease is not

modified within the loop, some of these branches are infeasible. For example the branch below

the boxed occurrence of y= y+ 1 (filled in red) is infeasible, because the value of decrease

is true in that branch. Symbolic execution will not continue on these branches (at least for

simple cases like that), but abandon them as infeasible by proving that the path condition is

contradictory. Since the value of decrease is only tested inside the loop, however, the loop

must still be first unwound and the proof that the current path condition is contradictory must be

repeated. Partial evaluation can replace this potentially expensive proof search by computation

which is drastically cheaper.

In the example, specializing the remaining program in each of the two subtrees after the

first assignment to decrease eliminates the inner-loop conditional, see Figure 3.5 (the partial

evaluation steps are labeled with mix). Hence, interleaving symbolic execution and partial

evaluation promises to achieve a significant speed-up by removing redundancy from subsequent

symbolic execution.

35

3.2.2 The Program Specialization Operator

We define a program specialization operator suitable for interleaving partial evaluation with

symbolic execution in SiJa-DL. A soundness condition ensures that the operator can be safely

integrated into the sequent calculus. This approach avoids to formalize the partial evaluator in

SiJa-DL which would be tedious and inefficient.

Definition 12 (Program Specialization Operator). Let Σ be a signature and Σ0 an extension of Σ

as in Definition 7 containing countably infinite additional program variables and function symbols

for any type and arity. Let � be the embedding of Σ in Σ0 (�(Σ)✓ Σ0). The program specialization

operator

#Σ0◆Σ: ProgramElement⇥Updates
Σ
0 ⇥ ForΣ0 ! ProgramElement

takes as arguments a SiJa-statement (-expression), an update and a SiJa-DL-formula and maps these

to a SiJa-statement (-expression), where all arguments and the result are over Σ0.

The intention behind the above definition is that p #Σ0◆Σ (U ,') denotes a “simpler” but

semantically equivalent version of p under the assumption that both are executed in a state

coinciding with U and satisfying '. The signature extension allows the specialization operator

to introduce new temporary variables or function symbols.

A program specialization operator is sound if and only if Σ0 is the signature extension of Σ

and for all SiJa-DL-formulas 2 ForΣ, SiJa-DL-Kripke structures KΣ0 , and states s 2 SΣ0

KΣ0 , s |= h(p) #Σ0◆Σ (U ,')i)KΣ0 , s |=U ('! hpi) .

In words, the specialized program p #Σ0◆Σ (U ,') must be able to reach at least the same

post-states as the original program p when started in a state coinciding with U in which (path

condition) ' holds.

Interleaving partial evaluation and symbolic execution is achieved by introduction rules for

the specialization operator. The simplest possibility is:

introPE
Γ=)U [(p) # (U , true)]�,∆

Γ=)U [p]�,∆

where # is sound.

36

3.2.3 Specific Specialization Actions

We instantiate the generic program specialization operator of Definition 12 with some possible

actions. In each case we derive soundness conditions.

Specialization Operator Propagation.

The specialization operator needs to be propagated along the program as most of the different

specialization operations work locally on single statements or expressions. During propagation

of the operator, its knowledge base, the pair (U ,�), needs to be updated by additional knowl-

edge learned from executed statements or by erasing invalid knowledge about variables altered

by the previous statement. Propagation of the specialization operator as well as updating the

knowledge base is realized by the following rewrite rule

(p;q) # (U ,�) † p # (U ,�); q # (U 0,�0)

This rule is unsound for arbitrarily chosen U 0, �0. Soundness is ensured under a number of

restrictions:

1. Let mod denote the set of all program locations possibly changed by p. Then we re-

quire that the SiJa-DL-formula “U respectStrongModifies(p, mod)” is valid where the pred-

icate respectStrongModifies abbreviates a formula that is valid if and only if p changes

at most locations included in mod. “Strong” means that mod must contain even loca-

tions whose values are only changed temporarily. Such a formula is expressible in SiJa-DL,

see [ERSW09] for details.

2. Let Vmod be the anonymizing update for mod (Definition 8). By fixingU 0 :=UVmod we en-

sure that the program state reached by executing p is covered by at least one interpretation

and variable assignment over the extended signature.

3. �0 must be chosen in such a way that if KΣ |= Uhpi� then there exists also an extended

SiJa-DL-Kripke structure KΣ0 over an extended signature Σ0 such that KΣ0 |= U
0�0. This

ensures that the post condition of p is correctly represented by �0. One possible heuristic

to obtain �0 consists of symbolic execution of p and applying the resulting update to �.

This yields a formula �00 from which we obtain a candidate for �0 by “anonymizing” all

occurrences of locations in it that occur in mod.

Constant propagation.

Constant propagation is one of the most basic operations in partial evaluation and often a

prerequisite for more complex rewrite operations. Constant propagation entails that if the value

37

of a variable v is known to have a constant value c within a certain program region (typically,

until the variable is potentially reassigned) then usages of v can be replaced by c. The rewrite

rule

(v)#(U ,')† c

models the replacement operation. To ensure soundness the rather obvious condition U (' !

v

.
= c) has to be proved where c is a rigid constant.

Dead-Code Elimination.

Constant propagation and constant expression evaluation result often in specializations where

the guard of a conditional (or loop) becomes constant. In this case, unreachable code in the

current state and path condition can be easily located and pruned.

A typical example for a specialization operation eliminating an infeasible symbolic execution

branch is the rule

(if (b) {p} else {q}) # (U ,�) † p # (U ,�)

which eliminates the else branch of a conditional if the guard can be proved true. The sound-

ness condition of the rule is straightforward and self-explaining: U (�! b
.
= TRUE).

Another case is

(if (b) {p} else {q}) # (U ,�) † q # (U ,�)

where the soundness condition is: U (�! b
.
= FALSE).

Safe Field Access.

Partial evaluation can be used to mark expressions as safe that contain field accesses or casts

that may otherwise cause non-termination. We use the notation @(e) to mark an expression e

as safe, for example, if we can ensure that o 6= null, then we can derive the annotation @(o.a)

for any field a in the type of o. The advantage of safe annotations is that symbolic execution

can assume that safe expressions terminate normally and needs not to spawn side proofs that

ensure it. The rewrite rule for safe field accesses is

o.a # (U ,�) † @(o.a) # (U ,�) .

Its soundness condition is U (�! ¬(o
.
= null)).

38

Type Inference.

For deep type hierarchies dynamic dispatch of method invocations may cause serious perfor-

mance issues in symbolic execution, because a long cascade of method calls is created by the

method invocation rule (Section 2.4). To reduce the number of implementation candidates we

use information from preceding symbolic execution to narrow the static type of the callee as far

as possible and to (safely) cast the reference to that type. The method invocation rule can then

determine the implementation candidates more precisely:

res= o.m(a1, . . . ,an);# (U ,�) †

res=@((Cl)o # (U ,�)).m(a1 # (U ,�), . . . ,an # (U ,�));

The accompanying soundness condition U (� ! 9 Cl x; (o
.
= x)) ensures that the type of o is

compatible with Cl in any state specified by U , �.

3.3 Example

As an application of interleaving symbolic execution and partial evaluation, consider the ver-

ification of a GUI library. It includes standard visual elements such as Window, Icon, Menu

and Pointer. An element has different implementations for different platforms or operating

systems. Consider the following program snippet involving dynamic method dispatch:

framework.ui.Button button = radiobuttonX11;

button.paint();

The element Button is implemented in one way for Max OS X, while it is implemented in

a different way for the X Window System. The method paint() is defined in Button which

is extended by CheckBox, Component, and Dialog. Altogether, paint() is implemented in 16

different classes including ButtonX11, ButtonMPC, RadioButtonX11, MenuItemX11, etc. The

type hierarchy is shown in Figure 3.6. In the code above button is assigned an object with type

RadioButtonX11 which implements paint(). As a consequence, it should always terminate

and the SiJa-DL-formula hguiitrue should be provable where gui abbreviates the code above.

Button

CheckBox Component

DialogButtonX11 ButtonAqua ButtonMFC

RadioButtonX11 MenuItemX11

Figure 3.6: Type hierarchy for the GUI example.

First, we employ symbolic execution alone to do the proof. During this process,

button.paint() is unfolded into 16 different cases by the method invocation rule (Section 2.4),

39

each corresponding to a possible implementation of button in one of the subclasses of Button.

The proof is constructed automatically in KeY 1.6 with 161 nodes and 10 branches in the proof

tree.

In a second experiment, we interleave symbolic execution and partial evaluation to prove

the same claim. The partial evaluator propagates with the help of the TypeInference rule in

the previous section the information that the run-time type of button is RadioButtonX11 and

the only possible implementation of button.paint() is RadioButtonX11.paint(). All other

possible implementations are pruned. Only 24 nodes and 2 branches occur in the proof tree

when running KeY integrated with a partial evaluator.

3.4 Evaluation

We implemented a simple partial evaluator for SiJa and interleaved it with symbolic execution

in the KeY system as described above. We formally verified a number of Java programs with

KeY 1.6 with and without partial evaluation.

Table 3.1 shows the experimental results for a number of small Java programs. The column

“Program” shows the name of the program we prove, the column “Strategy” shows the strat-

egy we choose to perform the proof where “SE” means symbolic execution and “SE+PE” means

interleaving symbolic execution and partial evaluation; the column “#Nodes” shows the total

number of nodes in the proof; the column “#Branches” shows the total number of branches

in the proof. The results show that interleaving symbolic execution with partial evaluation

significantly speeds up the proof for complexEval, constantPropagation, dynamicDispatch,

safeAccess, and safeTypeCast which can all be considered to be amenable to partial evalua-

tion.

Program Strategy #Nodes #Branches

SE 261 15
complexEval

SE+PE 158 3
SE 65 1

constantPropagation
SE+PE 56 1
SE 161 10

dynamicDispatch
SE+PE 24 2
SE 113 4

methodCall
SE+PE 108 3
SE 28 4

safeAccess
SE+PE 24 3
SE 73 5

safeTypeCast
SE+PE 45 3

Table 3.1: Symbolic execution and partial evaluation for small Java programs.

40

Table 3.2 shows the experimental results of verifying a larger and more realistic Java e-

banking application used in [BHS06, Ch. 10]. The column “Proof Obligation” shows which

property we prove; the remaining columns are as in Table 3.1. The results show that symbolic

Proof Obligation Strategy #Nodes #Branches

SE 949 20
ATM.insertCard (EnsuresPost)

SE+PE 805 13
SE 2648 89

ATM.insertCard (PreservesInv)
SE+PE 2501 79
SE 661 7

ATM.enterPIN (EnsuresPost)
SE+PE 654 8
SE 1524 45

ATM.enterPIN (PreservesInv)
SE+PE 1501 44
SE 260 2

ATM.confiscateCard (EnsuresPost)
SE+PE 255 2
SE 739 19

ATM.confiscateCard (PreservesInv)
SE+PE 695 19
SE 1337 35

ATM.accountBalance (EnsuresPost)
SE+PE 1271 29
SE 2233 57

ATM.accountBalance (PreservesInv)
SE+PE 2223 59
SE 16174 136

Account.checkAndWithdraw (EnsuresPost)
SE+PE 17023 135
SE 14076 89

Account.checkAndWithdraw (PreservesInv)
SE+PE 10478 78

Table 3.2: Symbolic execution and partial evaluation for an e-banking application.

execution interleaved with partial evaluation can speed up verification proofs even for larger

applications. As is to be expected, depending on the structure of the program the benefit varies.

It is noteworthy that none of the programs and proof obligations used in the present chapter

have been changed in order to make them more amenable to partial evaluation. In no case we

have to pay a significant performance penalty which seems to indicate that partial evaluation is

a generally useful technology for symbolic execution and should generally be applied.

The case study in Section 3.3 suggests that it could pay off to take partial evaluation into

account when designing programs, specifications, and proof obligations.

41

4 Program Transformation

The structure of a symbolic execution tree makes it possible to synthesize a program by bottom-

up traversal. The idea is to apply the sequent calculus rules reversely and generate the program

step-by-step. This requires to extend the sequent calculus rules with means for program synthe-

sis. Obviously, the synthesized program should behave exactly as the original one, at least for

the observable locations. To this end we introduce the notion of weak bisimulation for SiJa pro-

grams and show its soundness for program transformation. Although this chapter assumes that

the target language is the same as the source, the concept can be easily generalized to pairs of

different languages, e.g., Java (SiJa) source code and bytecode, which is discussed in Chapter 6.

4.1 Weak Bisimulation Relation of Programs

Definition 13 (Location sets, observation equivalence). A location set is a set containing program

variables x and attribute expressions o.a with a 2 Attr and o being a term of the appropriate

sort. Let loc be the set of all program locations, given two states s1, s2 and a location set obs,

obs ✓ loc. A relation ⇡: loc⇥ S⇥ S is an observation equivalence if and only if for all ol 2 obs,

valD,s1,�(ol) = valD,s2,�(ol) holds. It is written as s1 ⇡obs s2. We call obs observable locations.

The semantics of a SiJa program p (Figure 2.6) is a state transformation. Executing p from

a start state s results in a set of end states S0, where S0 is a singleton {s0} if p terminates, or ;

otherwise. We identify a singleton with its only member, so in case of termination, valD,s(p) is

evaluated to s0 instead of {s0}.

A transition relation �!: Π⇥S⇥S relates two states s, s0 by a program p if and only if p starts

in state s and terminates in state s0, written s
p
�! s0. We have: s

p
�! s0, where s0 = valD,s(p). If p

does not terminate, we write s
p
�!.

Since a complex statement can be decomposed into a set of simple statements, which is done

during symbolic execution, we can assume that a program p consists of simple statements.

Execution of p leads to a sequence of state transitions: s
p
�! s0 ⌘ s0

sSt0
�! s1

sSt1
�! . . .

sStn�1
�! sn

sStn
�!

sn+1, where s = s0, s0 = sn+1, si a program state and sSti a simple statement (0  i  n). A

program state has the same semantics as the state defined in a Kripke structure, so we use both

notations without distinction.

Some simple statements reassign values (write) to a location ol in the observable locations

that affects the evaluation of ol in the final state. We distinguish these simple statements from

those that do not affect the observable locations.

Definition 14 (Observable and internal statement/transition). Consider states s, s0, a simple

statement sSt, a transition relation �!, where s
sSt
�! s0, and the observable locations obs; we

43

call sSt an observable statement and �! an observable transition, if and only if there exists

ol 2 obs, and valD,s0,�(ol) 6= valD,s,�(ol). We write
sSt
�!obs. Otherwise, sSt is called an internal

statement and �! an internal transition, written �!int.

In this definition, observable/internal transitions are minimal transitions that relate two states

with a simple statement. We indicate the simple statement sSt in the notion of the observable

transition
sSt
�!obs, since sSt reflects the changes of the observable locations. In contrast, an

internal statement does not appear in the notion of the internal transition.

Example 5. Given the set of observable locations obs={x, y}, the simple statement “x = 1 + z;”

is observable, because x’s value is reassigned. The statement “z = x + y;” is internal, since the

evaluation of x, y are not changed, even though the value of each variable is read by z.

Remark. An observable transition is defined by observing the changes of obs in the final state after

the transition. For a program that consists of many statements, the observable locations for the

final state may differ from that for some internal state. Assume an observable transition s
sSt
�!obs s0

changes the evaluation of some location ol 2 obs in state s0. The set of observable locations obs1 in

state s should also contain the locations ol1 that is read by ol, because the change to ol1 can lead to

a change of ol in the final state s0.

Example 6. Consider the set of observable locations obs={x, y} and program fragment “z = x +

y; x = 1 + z;”. The statement z = x + y; becomes observable because the value of z is changed

and it will be used later in the observable statement x = 1 + z;. The observable location set obs1

should contain z after the execution of z = x + y; .

Definition 15 (Weak transition). Given a set of observable locations obs, the transition relation

=)int is the reflexive and transitive closure of �!int: s =)int s0 holds if and only if for states

s0,. . .,sn, n�0, we have s = s0, s0 = sn and s0 �!int s1 �!int · · · �!int sn. In the case of n = 0,

s =)int s holds. The transition relation
sSt
=)obs is the composition of the relations =)int,

sSt
�!obs and

=)int: s
sSt
=)obs s0 holds if and only if there are states s1 and s2 such that s =)int s1

sSt
�!obs s2 =)int

s0. The weak transition
‘sSt
=)obs represents either

sSt
=)obs, if sSt observable or =)int otherwise.

In other words, a weak transition is a sequence of minimal transitions that contains at most

one observable transition.

Definition 16 (Weak bisimulation for states). Given two programs p1,p2 and observable locations

obs, obs0, let sSt1 be a simple statement and s1, s0
1

two program states of p1, and sSt2 is a simple

statement and s2, s0
2

are two program states of p2. A relation ⇡ is a weak bisimulation for states if

and only if s1 ⇡obs s2 implies:

• if s1

÷sSt1
=)obs0 s0

1
, then s2

÷sSt2
=)obs0 s0

2
and s0

1
⇡obs0 s0

2

44

• if s2

÷sSt2
=)obs0 s0

2
, then s1

÷sSt1
=)obs0 s0

1
and s0

2
⇡obs0 s0

1

where valD,s1
(sSt1)⇡obs0 valD,s2

(sSt2).

Definition 17 (Weak bisimulation for programs). Let p1,p2 be two programs, obs and obs0 are

observable locations, and ⇡ is a weak bisimulation relation for states. ⇡ is a weak bisimulation

for programs, written p1 ⇡obs p2, if for the sequence of state transitions:

s1

p1
�! s0

1
⌘ s0

1

sSt01
�! s1

1

sSt11
�! . . .

sStn�1
1
�! sn

1

sStn1
�! sn+1

1 , with s1 = s0
1
, s0

1
= sn+1

1 ,

s2

p2
�! s0

2
⌘ s0

2

sSt02
�! s1

2

sSt12
�! . . .

sStm�1
2
�! sm

1

sStm2
�! sm+1

2 , with s2 = s0
2
, s0

2
= sm+1

2 ,

we have (i) s0
2
⇡obs s0

1
; (ii) for each state si

1
there exists a state s

j

2 such that si
1
⇡obs0 s

j

2 for some

obs0; (iii) for each state s
j

2 there exists a state si
1

such that s
j

2 ⇡obs0 si
1

for some obs0, where 0 i  n

and 0 j  m.

The weak bisimulation relation for programs defined above requires a weak transition that

relates two states with at most one observable transition. This definition reflects the structural

properties of a program and can be characterized as a small-step semantics [Plo04]. It directly

implies the lemma below that relates the weak bisimulation relation of programs to a big-step

semantics [Kah87].

Lemma 2. Let p,q be programs and obs the set of observable locations. It holds p ⇡obs q if and

only if for any first-order structure D and state s, valD,s(p)⇡obs valD,s(q) holds.

4.2 The Weak Bisimulation Modality and Sequent Calculus Rules

We introduce a weak bisimulation modality which allows us to relate two programs that behave

indistinguishably on the observable locations.

Definition 18 (Weak bisimulation modality—syntax). The bisimulation modality [p «

q]@(obs, use) is a modal operator providing compartments for programs p, q and location sets

obs and use. We extend our definition of formulas: Let � be a SiJa-DL formula and p,q two SiJa

programs and obs, use two location sets such that pv(�)✓ obs where pv(�) is the set of all program

variables occurring in �, then [p « q]@(obs, use)� is also a SiJa-DL formula.

The intuition behind the location set usedVar(s,p, obs) defined below is to capture precisely

those locations whose value influences the final value of an observable location l 2 obs (or the

evaluation of a formula �) after executing a program p. We approximate the set later by the set

of all program variables in a program that are used before being redefined (i.e., assigned a new

value).

45

Definition 19 (Used program variable). A variable v 2 PV is called used by a program p with

respect to a location set obs, if there exists an l 2 obs such that

D, s |= 8v l .9v0.((hpil = v l)! ({v := v0}hpil 6= v l))

The set usedVar(s,p, obs) is defined as the smallest set containing all used program variables of p

with respect to obs.

The formula defining a used variable v of a program p encodes that there is an interference

with a location contained in obs. In Example 6, z is a used variable. We formalize the semantics

of the weak bisimulation modality:

Definition 20 (Weak bisimulation modality—semantics). With p,q SiJa-programs, D, s,� , and

obs, use as before, let valD,s,�([p « q]@(obs, use)�) = tt if and only if

1. valD,s,�([p]�) = tt

2. use◆ usedVar(s,q, obs)

3. for all s0 ⇡use s we have valD,s(p)⇡obs valD,s0(q)

Lemma 3. Let obs be the set of all locations observable by � and let p,q be programs. If p ⇡obs q

then valD,s,�([p]�)$ valD,s,�([q]�) holds for all D, s, � .

Proof. Direct consequence of Definition 20 and Lemma 2.

An extended sequent for the bisimulation modality is:

Γ=)U [p « q]@(obs, use)�,∆

The following lemma gives an explicit meaning of used variable set use.

Lemma 4. An extended sequent Γ=)U [p « q]@(obs, use)�,∆ within a sequential block bl (see

Definition 9) represents a certain state s1, where P is the original program of bl, p is the original

program to be executed in bl at state s1, and p0 is the original program already been executed in

bl; while Q is the program to be generated of bl, q is the already generated program in bl, and q0

is the remaining program to be generated in bl. The location set use are the dynamic observable

locations that the following relations hold:

(i) p⇡obs q

(ii) P⇡obs Q

(iii) p0 ⇡use q
0

46

Proof. The structure of this sequential block bl is illustrated in Figure 4.1.

(i) p⇡obs q

It is the direct consequence of Definition 20.

(ii) P⇡obs Q

Consider the initial state s0 of this sequential block, where use = use0, p=P and q=Q in the

sequent, we have s0
0
⇡use0

s0, according to Definition 20 and Lemma 2, P⇡obs Q holds.

(iii) p0 ⇡use q
0

Consider the truncated sequential block bl2 starting from the current state s1 and ending

with the final state s2 According to Definition 19, if there is no program in bl2, then we have

obs= use. Now consider the truncated sequential block bl1 starting from the initial state s0 and

ending with the current state s1. We have use = use0, p=p0, q=q0 and obs = use in the sequent,

according to Definition 20 and Lemma 2, p0 ⇡use q
0 holds.

s0

s1

s2

s0
0

s0
1

s0
2

p0

p q

q0

P Q

obs

use

use0

U

bl

bl2

bl1

Figure 4.1: Program in a sequential block.

The sequent calculus rules for the bisimulation modality are of the following form:

ruleName

Γ1 =)U1[p1 « q1]@(obs1, use1)�1,∆1

. . .

Γn =)Un[pn « qn]@(obsn, usen)�n,∆n

Γ=)U [p « q]@(obs, use)�,∆

Figure 4.2 shows some extended sequent calculus rules, where ! denotes the generated pro-

gram that is weakly bisimilar to !, and _ is a place holder for empty.

Unlike standard sequent calculus rules that are executed from root to leaves, sequent rule

application for the bisimulation modality consists of two phases:

Phase 1. Symbolic execution of source program p as usual. In addition, the observable

location sets obsi are propagated, since they contain the locations observable by pi and �i that

will be used in the second phase. Typically, obs contains the return variables of a method and

the locations used in the continuation of the program, e.g., program variables used after a loop

47

emptyBox
Γ=)U@(obs, _)�,∆

Γ=)U [_ « _]@(obs, obs)�,∆

assignment
Γ=)U {l := r}[! « !]@(obs, use)�,∆

✓
Γ=)U [l= r;! « l= r;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U [l= r;! « !]@(obs, use)�,∆ otherwise

◆

ifElse

Γ,U b=)U [p;! « p;!]@(obs, usep;!)�,∆

Γ,U¬b=)U [q;! « q;!]@(obs, useq;!)�,∆

Γ=)U [if (b) {p} else {q} ! «

if (b) {p;!} else {q;!}]@(obs, usep;! [useq;! [{b})�,∆

(with b boolean variable)

loopUnwind

Γ=)U [if (b) {p;while (b) {p}} ! «

if (b) {p;while (b) {p}} !]@(obs, use)�,∆

Γ=)U [while(b) {p} ! « if (b) {p;while(b) {p}} !]@(obs, use)�,∆

loopInvariant

Γ=)U inv,∆

Γ,UVmod(b^ inv) =)UVmod

[p « p]@(use1 [{b}, use2)inv,∆

Γ,UVmod(¬b^ inv) =)UVmod[! « !]@(obs, use1)�,∆

Γ=)U [while(b){p}! « while(b){p}!]@(obs, use1 [use2 [{b})�,∆

methodContractC=(pre,post,mod)

Γ=)U {prm1 := v1k . . .kprmn := vn}pre,∆

Γ=)U {prm1 := v1k . . .kprmn := vn}Vmod

(post! {r := res}[! « !]@(obs, use)�),∆

Γ=)U [r= m(v1, . . . ,vn); ! « r= m(v1, . . . ,vn);!]@(obs, use)�,∆

(Contract C is correct)

Figure 4.2: A collection of sequent calculus rules for program transformation.

48

must be reflected in the observable locations of the loop body. The result of this phase is a

symbolic execution tree as illustrated in Figure 2.11.

Phase 2. We synthesize the target program q and used variable set use from qi and usei

by applying the rules in a leave-to-root manner. One starts with a leaf node and generates

the program within its sequential block first, e.g., bl3, bl4, bl5, bl6 in Figure 2.11. These

are combined by rules corresponding to statements that contain a sequential block, such as

loopInvariant (containing bl3 and bl4). One continues with the generalized sequential block

containing the compound statements, e.g., GSB(bl2), and so on, until the root is reached. Note

that the order of processing the sequential blocks matters, for instance, the program for the

sequential block bl4 must be generated before that for bl3, because the observable locations in

node n3 depend on the used variable set of bl4 according to the loopInvariant rule.

We explain some of the rules in details.

emptyBox
Γ=)U@(obs, _)�,∆

Γ=)U [_ « _]@(obs, obs)�,∆

The emptyBox rule is the starting point of program transformation in each sequential block.

The location set use is set to obs, which is the direct result of Lemma 4.

assignment
Γ=)U {l := r}[! « !]@(obs, use)�,∆

Γ=)U [l= r;! « l= r;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U [l= r;! « !]@(obs, use)�,∆ otherwise

!

In the assignment rule, the use set contains all program variables on which a read access might

occur in the remaining program before being overwritten. In the first case, when the left side

l of the assignment is among those variables, we have to update the use set by removing the

newly assigned program variable l and adding the variable r which is read by the assignment.

The second case makes use of the knowledge that the value of l is not accessed in the remaining

program and skips the generation of the assignment.

ifElse

Γ,U b=)U [p;! « p;!]@(obs, usep;!)�,∆

Γ,U¬b=)U [q;! « q;!]@(obs, useq;!)�,∆

Γ=)U [if (b) {p} else {q} ! «

if (b) {p;!} else {q;!}]@(obs, usep;! [useq;! [{b})�,∆

(with b boolean variable)

49

On encountering a conditional statement, symbolic execution splits into two branches, namely

the then branch and else branch. The generation of the conditional statement will result in

a conditional. The guard is the same as used in the original program, the then branch is the

generated version of the source then branch continued with the rest of the program after the

conditional, and the else branch is analogous to the then branch.

Note that the statements following the conditional statement are symbolically executed on

both branches. This leads to duplicated code in the generated program, and, potentially to

code size duplication at each occurrence of a conditional statement. One note in advance: code

duplication can be avoided when applying a similar technique as presented later in connection

with the loop translation rule. However, it is noteworthy that the application of this rule might

have also advantages: as discussed in Chapter 3, symbolic execution and partial evaluation can

be interleaved resulting in (considerably) smaller execution traces. Interleaving symbolic execu-

tion and partial evaluation is orthogonal to the approach presented here and can be combined

easily. In several cases this can lead to different and drastically specialized and therefore smaller

versions of the remainder program ! and !. The use set is extended canonically by joining the

use sets of the different branches and the guard variable.

loopInvariant

Γ=)U inv,∆

Γ,UVmod(b^ inv) =)UVmod

[p « p]@(use1 [{b}, use2)inv,∆

Γ,UVmod(¬b^ inv) =)UVmod[! « !]@(obs, use1)�,∆

Γ=)U [while(b){p}! « while(b){p}!]@(obs, use1 [use2 [{b})�,∆

On the logical side the loop invariant rule is as expected and has three premises. Here we are

interested in compilation of the analyzed program rather than proving its correctness. There-

fore, it is sufficient to use true as a trivial invariant or to use any automatically obtainable

invariant. In this case the first premise (init) ensuring that the loop invariant is initially valid

contributes nothing to the program compilation process and is ignored from here onward (if

true is used as invariant then it holds trivially).

Two things are of importance: the third premise (use case) executes only the program fol-

lowing the loop. Furthermore, this code fragment is not executed by any of the other branches

and, hence, we avoid unnecessary code duplication. The second observation is that variables

read by the program in the third premise may be assigned in the loop body, but not read in the

loop body. Obviously, we have to prevent that the assignment rule discards those assignments

when compiling the loop body. Therefore, in the obs for the second premise (preserves), we

must include the used variables of the use case premise and, for similar reasons, the program

variable(s) read by the loop guard. In practice this is achieved by first executing the use case

50

premise of the loop invariant rule and then including the resulting use1 set in the obs of the

preserves premise. The work flow of the synthesizing loop is shown in Figure 4.3.

. . .

while(b)

body rest

5 1

3

4
2

Figure 4.3: Work flow of synthesizing loop.

Now we show the program transformation in action.

Example 7. Given observable locations obs={x}, we perform program transformation for the fol-

lowing SiJa program.

y = y + z;

if (b) {

y = z++;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

In the first phase, we do symbolic execution using the extended sequent calculus shown in Fig-

ure 4.2. We use spi to denote the program to be generated, and usei to denote the used variable

set. To ease the presentation, we omit postcondition �, as well as unnecessary formulas Γ and

∆. The first active statement is an assignment, so the assignment rule is applied. A conditional is

encountered. After the application of ifElse rule, the result is the symbolic execution tree shown

in Figure 4.4.

Now the symbolic execution tree splits into 2 branches. U1 denotes the update computed in

the previous steps: {y := y+ z}. We first concentrate on the then branch, where the condition

b is True. The first active statement y= z++; is a complex statement. We decompose it into

51

U1b=)U1[y= z++; . . . « sp2]@({x}, use2) U1¬b=)U1[z= 1; . . . « sp3]@({x}, use3)

=) {y := y+ z}[if(b){. . .}else{. . .} « sp1]@({x}, use1)

=) [y= y+ z; . . . « sp0]@({x}, use0)

Figure 4.4: Symbolic execution tree until conditional.

3 simple statements using the postInc rule introduced in Figure 2.10. Then after a few applica-

tions of the assignment rule followed by the emptyBox rule, the symbolic execution tree in this

sequential block is shown in Figure 4.5.

U1b=)U1{t := z}{z := z+ 1}{y := t}{x := z}@({x}, _)

U1b=)U1{t := z}{z := z+ 1}{y := t}{x := z}[« sp8]@({x}, use8)

U1b=)U1{t := z}{z := z+ 1}{y := t}[x= z; « sp7]@({x}, use7)

U1b=)U1{t := z}{z := z+ 1}[y= t; . . . « sp6]@({x}, use6)

U1b=)U1{t := z}[z= z+ 1; y= t; . . . « sp5]@({x}, use5)

U1b=)U1[int t= z; z= z+ 1; y= t; . . . « sp4]@({x}, use4)

U1b=)U1[y= z++; . . . « sp2]@({x}, use2)

Figure 4.5: Symbolic execution tree of then branch.

Now the source program is empty, so we can start generating a program for this sequential

block. By applying the emptyBox rule in the other direction, we get sp8 as _ (empty program)

and use8={x}. The next rule application is assignment. Because x 2 use8, the assignment

x= z; is generated and the used variable set is updated by removing x but adding z. So we

have sp7: x= z; and use7={z}. In the next step, despite another assignment rule application,

no statement is generated because y 62 use7, and sp6 and use6 are identical to sp7 and use7.

Following 3 more assignment rule applications, in the end we get sp2: z= z+ 1;x= z; and

use2={z}. So z= z+ 1;x= z; is the program synthesized in this sequential block.

So far we have done the program transformation for the then branch. Analogous to this,

we can generate the program for the else branch. After the first phase of symbolic execution,

the symbolic execution tree is built as shown in Figure 4.6. In the second phase, the program

is synthesized after applying a sequence of assignment rules. The resulting program for this

sequential block is sp3: z= 1;x= y+ z;y= x;x= y+ 2;, while use3={y}.

Now we have synthesized the program for both sequential blocks. Back to the symbolic execu-

tion tree shown in Figure 4.4, we can build a conditional by applying the ifElse rule. The result

is sp1: if(b) {z= z+ 1;x= z; } else {z= 1;x= y+ z;y= x;x= y+ 2; }, and use1={b,z,y}.

After a final assignment rule application, the program generated is shown in Figure 4.7.

52

U1¬b=)U1{z := 1}{x := y+ z}{y := x}{x := y+ 2}@({x}, _)

U1¬b=)U1{z := 1}{x := y+ z}{y := x}{x := y+ 2}[« sp12]@({x}, use12)

U1¬b=)U1{z := 1}{x := y+ z}{y := x}[x= y+ 2; « sp11]@({x}, use11)

U1¬b=)U1{z := 1}{x := y+ z}[y= x; . . . « sp10]@({x}, use10)

U1¬b=)U1{z := 1}[x= y+ z; . . . « sp9]@({x}, use9)

U1¬b=)U1[z= 1; . . . « sp3]@({x}, use3)

Figure 4.6: Symbolic execution tree of else branch.

y = y + z;

if (b) {

z = z + 1;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

Figure 4.7: The generated program for Example 7.

Remark. Our approach to program transformation will generate a program that only consists

of simple statements. The generated program is optimized to a certain degree, because the used

variable set avoids generating unnecessary statements. In this sense, our program transforma-

tion framework can be considered as program specialization. In fact, during the symbolic exe-

cution phase, we can interleave partial evaluation actions, i.e., constant propagation, deadcode-

elimination, safe field access and type inference (Section 3.2.2). It will result in a more optimized

program.

Example 8. We specialize the program shown in Example 7. In the first phase, symbolic execution

is interleaved with simple partial evaluation actions.

In the first 2 steps of symbolic execution until conditional, no partial evaluation is involved.

The resulting symbolic execution tree is identical to that shown in Figure 4.4.

There are 2 branches in the symbolic execution tree. Symbolical execution of the then branch

is the same as in Example 7. It builds the same symbolic execution tree (Figure 4.5).

Notice that after executing the statement t= z;, we did not propagate this information to the

statement y= t; and rewrite it to y= z;. The reason being z is reassigned in the statement

z= z+ 1; before y= t;, thus z is not a “constant” and we cannot apply constant propaga-

53

tion. In the program generation phase, we also get sp2: z= z+ 1;x= z; and use2={z} for this

sequential block.

The first step of symbolic execution of the else branch is the application of the assignment

rule on z= 1;. Now we can perform constant propagation and rewrite the following state-

ment x= y+ z; into x= y+ 1;. The next step is a normal application of the assignment rule

on x= y+ 1;. Now we apply the assignment rule on y= x;. Since neither x nor y is reassigned

before the statement x= y+ 2;, x is considered as a “constant” and we do another step of con-

stant propagation. The statement x= y+ 2; is rewritten into x= x+ 2;. After final application

of the assignment rule and emptyBox rule, we get the symbolic execution tree:

U1¬b=)U1{z := 1}{x := y+ 1}{y := x}{x := x+ 2}@({x}, _)

U1¬b=)U1{z := 1}{x := y+ 1}{y := x}{x := x+ 2}[« sp12]@({x}, use12)

U1¬b=)U1{z := 1}{x := y+ 1}{y := x}[x= x+ 2; « sp11]@({x}, use11)

U1¬b=)U1{z := 1}{x := y+ 1}[y= x; . . . « sp10]@({x}, use10)

U1¬b=)U1{z := 1}[x= y+ 1; . . . « sp9]@({x}, use9)

U1¬b=)U1[z= 1; . . . « sp3]@({x}, use3)

In the second phase of program generation, after applying the emptyBox rule and 4 times

assignment rules, we get sp3: x= y+ 1;x= x+ 2; and use3={y}.

Combining both branches, we finally get the specialized version of the original, shown in

Figure 4.8.

y = y + z;

if (b) {

z = z + 1;

x = z;

}

else {

x = y + 1;

x = x + 2;

}

Figure 4.8: The generated program for Example 8.

Compared to the result shown in Figure 4.7, we generated a more optimized program by

interleaving partial evaluation actions during symbolic execution phase. Further optimization

can be made by involving updates during program generation. This will be discussed later.

4.3 Soundness

Theorem 1. The extended sequent calculus rules are sound.

54

The deductive description of the presented program transformation rule system enables us to

reuse standard proof techniques applied in soundness proofs for classical logic calculi.

The basic approach is to prove soundness for each rule. The soundness of the whole method

is then a consequence of the soundness theorem for classical sequent calculi `:

Theorem 2. If all rules of the proof system ` are sound, then the proof system is sound.

The soundness proof for the classical calculus rules remains unchanged. The interesting part

is the soundness proof for the rules dealing with the weak bisimulation modality. The soundness

proof of these rules requires in particular to show, that the transformed program is equivalent to

the original one up to weak bisimulation with respect to a specified set of observable locations

obs.

We need first some lemmas which establish simple properties that are mostly direct conse-

quences of the respective definitions given in the Section 4.1.

The following lemma allows us to extend the weak bisimulation relation for two states when

we know that they coincide on the value of x.

Lemma 5. Let s1, s2 2 S be observation equivalent s1 ⇡obs s2 and x : T 2 PV. If s1(x) = s2(x) then

s1 ⇡obs[{x} s2.

Proof. Direct consequence of Definition 13.

The next lemma states that two bisimilar states remain bisimular if both are updated by iden-

tical assignments:

Lemma 6. Let s1, s2 2 S be observation equivalent s1 ⇡obs s2. If s0
1
, s0

2
are such that s0

1
= s1[x d]

and s0
2
= s2[x d] for a program variable x : T and domain element d 2 D(T) then s0

1
⇡obs s0

2
.

Proof. Direct consequence of Definition 13.

We need further that the bisimulation relation is anti-monotone with respect to the set of

observable locations.

Lemma 7. Given two programs p,q and location sets loc1, loc2 with loc1 ✓ loc2. If p ⇡loc2
q then

also p⇡loc1
q.

Proof. Direct consequence of Definition 17.

Finally, we need the fact that changes to unobserved locations have no effect on the bisimula-

tion relation between two states:

Lemma 8. Let loc denote a set of locations, l : T 2 PV and s1, s2 2 S.

If l 62 loc and s1 ⇡loc s2 then for all d 2 DT :

s1[l d]⇡loc s2

55

Proof. Direct consequence of Definition 13.

We can now turn to the soundness proof for the calculus rules. We prove here exemplarily

that the assignment rule for local variables is sound. The rule is central to the approach as it

performs a state change.

Lemma 9. The rule

assignment

Γ=)U {l := r}[! « !]@(obs, use)�,∆

Γ=)U [l= r;! « l= r;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U [l= r;! « !]@(obs, use)�,∆ otherwise

!

(with l, r local variables)

is sound.

Proof. To check the soundness of the rule, we have to prove that if all premises of the rule are

valid then its conclusion is also valid.

We fix a first-order structure D, a state s and a variable assignment � . Further, we assume

that for all formulas � 2 Γ: valD,s,�(�) = tt and for all formulas � 2 ∆: valD,s,�(∆) = ff holds.

Otherwise, the conclusion is trivially satisfied by D, s,� . Hence, we can assume that

valD,s,�(U {l := r}[! « !]@(obs, use)�) = tt

or, equivalently,

valD,bs,�([! « !]@(obs, use)�) = tt (4.1)

where

sU := valD,s,�(U)(s), bs := valD,sU ,�(l := r)(sU) = valD,s,�(UkU (l := r))(s)

holds.

Case 1 (l 2 use):

We have to show that

56

valD,s,�(U [l= r;! « l= r;!]@(obs, use0)�)

= valD,sU ,�([l= r;! « l= r;!]@(obs, use0)�)

= tt

with use0 := use� {l}[{r} holds.

To prove that valD,sU ,�([l= r;! « l= r;!]@(obs, use0)�) = tt we need to check the three

items of Definition 20:

Item 1 is satisfied if

valD,s,�(U [l= r;!]�) = tt

holds. This is a direct consequence from the correctness of the sequent calculus presented in

Section 2.4.

Item 2 use0 ◆ usedVar(s,l= r;!, obs) expresses that use0 captures at least all used variables and

it is a direct consequence of the definition of usedVar. By assumption use contains at least all

variables actually read by !. The program l= r;! redefines l which can be safely removed

from use while variable r is read and needs to be added.

Item 3 is the last remaining item that needs to be proven, i.e., that the two programs in the

conclusion are actually weak bisimular with respect to the location set obs.

We have to show that for all s1 ⇡use0 sU :

valD,sU
(l= r;!) ⇡obs valD,s1

(l= r;!)

holds. Following the semantics definitions given in Figure 2.6 we get

valD,sU
(l= r;!) =

S
s02valD,sU

(l=r;) valD,s0(!) = valD,bs(!)

and

valD,s1
(l= r;!) =

S
s0
1
2valD,s1

(l=r;) valD,s0
1
(!) = valD, bs1

(!) with {bs1}= valD,s1
(l= r;)

As use0 contains r and because s1 ⇡use0 sU we get

sU (r) = s1(r) (4.2)

57

and, hence,

bs(l) = bs1(l) (4.3)

Applying Lemma 6 we get

bs ⇡use0 bs1

, bs ⇡use�{l}[{r} bs1

)
Lemma 7 bs ⇡use�{l} bs1

)
(4.3) bs ⇡use bs1

With assumption (4.1) and Definition 18, we get valD,bs(!)⇡obs valD, bs1
(!) and hence

valD,sU
(l= r;!) = valD,bs(!)⇡obs valD, bs1

(!) = valD,s1
(l= r;!)

Case 2 (l 62 use): As for case 1 we have to check all three items. The first item is identical

to case 1 and the second item is trivial as the transformed program does not change. Item 3

remains to be checked, i.e., for an arbitrary s1 with

s1 ⇡use0 sU (4.4)

we have to prove that

valD,sU
(l= r;!) ⇡obs valD,s1

(!)

holds (i.e., that the final states are observation equivalent), we have to use the fact that l 62 use

and that item 2 holds, i.e., that use contains at least all variables read by !.

s1 ⇡use0 sU

) s1 ⇡use sU
)

Lemma 8 s1 ⇡use bs
)

(4.1) valD,bs(!) ⇡obs valD,s1
(!)

)
(4.1) valD,sU

(l= r;!) = valD,bs(!) ⇡obs valD,s1
(!)

58

We conclude this section with a short discussion of the loop invariant rule. The interesting

aspect of the loop invariant rule is that the observable location set obs of the second premise

differs from the others. This allows us to establish a connection to the notion of a program

context as used in compositional correctness proofs.

Compositional compiler correctness proofs consider the context C(�) in which the compiled

entity p is used. A context C is a description contain the placeholder � which can be instantiated

by ’any’ program entity q.

The idea is to formalize a stable interface on which p can rely on and with which p interacts.

A compositional compiler must now be able to compile p such that a given correctness criteria

are satisfied for the compilation pcompiled with respect to C .

The observable location set obs in the presented approach is similar to the context as described

above. It specifies which effects must be preserved by the compiler (program transformer). E.g.,

when the program p to be transformed is a method body, then the observable set contains only

the location which refers to the result value of the method and implicitly, all heap locations.

If the effect on these locations produced by the transformed program is indistinguishable

from the respective effect of the original program, then the program transformer is considered

correct. In case of the loop invariant rule, the loop body is transformed independently in the

second branch. It would not be enough to just use the original context instead, we must demand

that all effects on local variables used by the code following the loop statement as well as the

loop guard variable are preserved.

4.4 Optimization

The previously introduced program transformation technique generates a program that consists

only of simple statements. With the help of the used variable set, we avoid generating unneces-

sary statements, so the program is optimized to a certain level. An optimization can be made to

interleave partial evaluation actions with symbolic execution in the first phase.

4.4.1 Sequentialized Normal Form of Updates

Updates reflect the state of program execution. In particular, the update in a sequential block

records the evaluation of the locations in that sequential block. We can involve updates in

the second phase of program generation, which leads to further optimization opportunities. As

defined in Definition 5, updates in normal form are in the form of static single assignment (SSA).

It is easy to maintain normal form of updates in a sequential block when applying the extended

sequent calculus rules of Figure 4.2. This can be used for further optimization of the generated

program.

59

Take the assignment rule for example: after each forward rule application, we do an update

simplification step to maintain the normal form of the update for that sequential block; when

a statement is synthesized by applying the rule backwards, we use the update instead of the

executed assignment statement, to obtain the value of the location to be assigned; then we

generate the assignment statement with that value.

Example 9. Consider the following program:

i = j + 1;

j = i;

i = j + 1;

After executing the first two statements and update simplification, we obtain the normal form

update U
nf

2 = {i := j + 1kj := j + 1}. Doing the same with the third statement results in

U
nf

3 = {j := j+ 1ki := j+ 2}, which implies that in the final state i has value j+ 2 and j has

value j+ 1.

Let i be the only observable location, for which a program is now synthesized bottom-up, starting

with the third statement. The rules in Figure 4.2 would allow to generate the statement i= j+ 1;.

But, reading the value of location i from U
nf

3 as sketched above, the statement i= j+ 2; is

generated. This reflects the current value of j along the sequential block and saves an assignment.

A first attempt to formalize our ideas is the following assignment rule:

Γ=)U
nf

1 [! « !]@(obs, use)�,∆

Γ=)U nf [l= r;! « l= r1;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U nf [l= r;! « !]@(obs, use)�,∆ otherwise

!

(with U nf

1 = {. . .kl := r1} being the normal form of U nf {l := r})

However, this rule is not sound. If we continue Example 9 with synthesizing the first two

assignments, we obtain j= j+ 1;i= j+ 2; by using the new rule, which is clearly incorrect,

because i has final value j+3 instead of j+2. The problem is that the values of locations in the

normal form update are independently synthesized from each other and do not reflect how one

statement is affected by the execution of previous statements in sequential execution. To ensure

correct usage of updates in program generation, we introduce the concept of a sequentialized

normal form (SNF) of an update. Intuitively, it is the update of the normal form in which every

involved assignment statement is independent of each other.

Definition 21 (Elementary update independence). An elementary update l1 := exp1 is indepen-

dent from another elementary update l2 := exp2, if l1 does not occur in exp2 and l2 does not occur

in exp1.

60

Definition 22 (Sequentialized normal form update). An update is in sequentialized normal form,

denoted byU snf , if it has the shape of a sequence of two parallel updates {ua
1
k . . .kua

m
}{u1k . . .kun},

m� 0, n� 0.

{u1k . . .kun} is the core update, denoted by U snf c , where each ui is an elementary update of the

form li := expi, and all ui, u j (i 6= j) are independent and have no conflict.

{ua
1
k . . .kua

m
} is the auxiliary update, denoted by U snf a , where (i) each ua

i
is of the form lk := l

(k � 0); (ii) l is a program variable; (iii) lk is a fresh program variable not occurring anywhere

else in U snf a and not occurring in the location set of the core update lk /2 {li|0 i  n}; (iv) there

is no conflict between ua
i

and ua
j

for all i 6= j.

Any normal form update whose elementary updates are independent is also an SNF update

that has only a core part.

Example 10 (SNF update). For the following updates,

• {i0 := iki1 := i}{i := i0+ 1kj := i1} is in sequentialized normal form.

• {i0 := jki1 := i}{i := i0+1kj := i1} and {i0 := i+1ki1 := i}{i := i0+1kj := i1} are

not in sequentialized normal form: i0 := j has different base variables on the left and right,

while i0 := i+ 1 has a complex term on the right, both contradicting (i).

• {i0 := iki1 := i}{i := i0 + 1kj := i} is not in sequentialized normal form, because i :=

i0+ 1 and j := i are not independent.

To compute the SNF of an update, in addition to the rules given in Figure 2.7 we need two

more rules shown in Figure 4.9.

(associativity) {u1}{u2}{u3}† {u1}({u2}{u3})

(introducing auxiliary) {u}† {x0 := x}({x := x0}{u}), where x0 /2 pv

Figure 4.9: Rules for computing SNF updates.

Lemma 10. The associativity rule and introducing auxiliary rule are sound.

Proof. We use the update simplification rules defined in Figure 2.7 to prove these two rules.

Associativity

The left hand side:

{u1}{u2}{u3}

† {u1k{u1}u2}{u3}

† {u1k{u1}u2k{u1k{u1}u2}u3}

The right hand side:

61

{u1}({u2}{u3})

† {u1}{u2k{u2}u3}

† {u1k{u1}(u2k{u2}u3)}

† {u1k{u1}u2k{u1}{u2}u3}

† {u1k{u1}u2k{u1k{u1}u2}u3}

So, {u1}{u2}{u3}= {u1}({u2}{u3}). We have proved the associativity rule.

Introducing auxiliary

The right hand side:

{x0 := x}({x := x0}{u})

† {x0 := x}{x := x0}{u} (associativity)

† {x0 := xk{x0 := x}x := x0}{u}

† {x0 := xkx := x}{u}

† {x := x}{u} (since x0 /2 pv)

† {u}

So the introducing auxiliary rule is proven.

We can maintain the SNF of an update on a sequential block as follows: after executing

a program statement, apply the associativity rule and compute the core update; if the newly

added elementary update l := r is not independent from some update in the core, then apply

introducing auxiliary rule to introduce {l0 := l}, then compute the new auxiliary update and

core update.

4.4.2 Sequent Calculus Rules Involving Updates

With the help of the SNF of an update, a sound assignment rule can be given as follows:

assignment

Γ=)U
snf

1 [! « !]@(obs, use)�,∆

Γ=)U snf[l= r;! « l= r1;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U snf[l= r;! « !]@(obs, use)�,∆ otherwise

!

(where U snf

1 =U
snf a

1 {. . .kl := r1} is the SNF ofU snf{l := r})

62

Whenever the core update is empty, the following auxAssignment rule is used, which means the

auxiliary assignments are always generated in the beginning of a sequential block.

auxAssignment

Γ=)U
snf a

1 [! « !]@(obs, use)�,∆

Γ=)U snf a[! « Tl l

0 = l;!]@(obs, use� {l0}[{l})�,∆ if l0 2 use

Γ=)U snf a[! « !]@(obs, use)�,∆ otherwise

!

(where U snf a = {u} and U
snf a

1 = {ukl0 := l} being the auxiliary updates)

Most of the other rules are obtained by replacing U with U snf . Some are shown in Fig-

ure 4.10.

Example 11. We demonstrate that the program from Example 9 is now handled correctly. After

executing the first two statements and simplifying the update, we get the normal form update

U
nf

2 = {i := j+ 1kj := j+ 1}. Here a dependency issue occurs, so we introduce the auxiliary

update {j0 := j} and simplify to the sequentialized normal form update U
snf

2 = {j0 := j}{i :=

j0 + 1kj := j0 + 1}. Continuing with the third statement and performing update simplification

results in the SNF update U
snf

3 = {j0 := j}{j := j0+1ki := j0+2}. By applying the rules above,

we synthesize the program int j0= j;i= j0+2;, which still saves one assignment and is sound.

Remark. Remember that the program is synthesized within a sequential block first and then con-

structed. The SNF updates used in the above rules are the SNF updates in the current sequential

block. A program execution path may contain several sequential blocks. We do keep the SNF update

for each sequential block without simplifying them further into a bigger SNF update for the entire

execution path. For example in Figure 2.11, the execution path from node n0 to n4 involves 3 se-

quential blocks bl0, bl1 and bl4. When we synthesize the program in bl4, more precisely, we should

write U
snf

0 U
snf

2 U
snf

4 to represent the update used in the rules. However, we just care about the SNF

update of bl4 when generating the program for bl4, so in the above rules, U snf refers to U
snf

4 and

the other SNF updates are omitted.

Theorem 3. The extended sequent calculus rules involving updates are sound.

Proof. Follows from the soundness of the extended sequent calculus rules (Theorem 1), the

update simplification rules (Figure 2.7) and Lemma 10.

Now we revisit Example 7 and show how to generate a more optimized program.

Example 12. Given observable locations obs={x}, specialize the following SiJa program by the

approach involving updates in the program generation phase.

63

emptyBox
Γ=)U snf @(obs, _)�,∆

Γ=)U snf[_ « _]@(obs, obs)�,∆

assignment

Γ=)U
snf

1 [! « !]@(obs, use)�,∆
✓
Γ=)U snf[l= r;! « l= r1;!]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U snf[l= r;! « !]@(obs, use)�,∆ otherwise

◆

(where U snf

1 =U
snf a

1 {. . .kl := r1} is the SNF ofU snf{l := r})

auxAssignment

Γ=)U
snf a

1 [! « !]@(obs, use)�,∆
✓
Γ=)U snf a[! « Tl l

0 = l;!]@(obs, use� {l0}[{l})�,∆ if l0 2 use

Γ=)U snf a[! « !]@(obs, use)�,∆ otherwise

◆

(where U snf a = {u} and U
snf a

1 = {ukl0 := l} being the auxiliary updates)

ifElse

Γ,U snfb=)U snf[p;! « p;!]@(obs, usep;!)�,∆

Γ,U snf¬b=)U snf[q;! « q;!]@(obs, useq;!)�,∆

Γ=)U snf[if (b) {p} else {q} ! «

if (b) {p;!} else {q;!}]@(obs, usep;! [useq;! [{b})�,∆

(with b boolean variable)

loopUnwind

Γ=)U snf[if (b) {p;while (b) {p}} ! «

if (b) {p;while (b) {p}} !]@(obs, use)�,∆

Γ=)U snf[while(b) {p} ! « if (b) {p;while(b) {p}} !]@(obs, use)�,∆

loopInvariant

Γ=)U snf inv,∆

Γ,U snfVmod(b^ inv) =)U snfVmod

[p « p]@(use1 [{b}, use2)inv,∆

Γ,U snfVmod(¬b^ inv) =)U snfVmod[! « !]@(obs, use1)�,∆

Γ=)U snf[while(b){p}! « while(b){p}!]@(obs, use1 [use2 [{b})�,∆

methodContractC=(pre,post,mod)

Γ=)U snf{prm1 := v1k . . .kprmn := vn}pre,∆

Γ=)U snf{prm1 := v1k . . .kprmn := vn}Vmod

(post! {r := res}[! « !]@(obs, use)�),∆

Γ=)U snf[r= m(v1, . . . ,vn); ! « r= m(v1, . . . ,vn);!]@(obs, use)�,∆

(Contract C is correct)

Figure 4.10: A collection of sequent calculus rules for program transformation using SNF update.

64

y = y + z;

if (b) {

y = z++;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

In the first phase, we do symbolic execution using the extended sequent calculus rules involv-

ing updates given in Figure 4.10. We ignore the postcondition � and unnecessary formulas Γ

and ∆. To ease the presentation, we do not mention the update simplification step all the time,

but keep in mind that updates within a sequential block are always simplified after each rule

application. Also, we just show the sequents computed after sequent calculus rule application

and update simplification, but hide the intermediate ones before simplifying the updates. As

usual, spi denotes the program to be generated, and usei denotes the used variable set.

The first active statement is an assignment, we apply the assignment rule. After the application

of the ifElse rule, the result is the symbolic execution tree shown in Figure 4.11. Here, U snf

1

denotes the sequentialized normal formed update {y := y+ z}. Note that in the path condition,

now we only have b (or ¬b) instead ofU snf

1 b (orU snf

1 ¬b). It is the result of update simplification

after applying the ifElse rule.

b=)U
snf

1 [y= z++; . . . « sp2]@({x}, use2) ¬b=)U
snf

1 [z= 1; . . . « sp3]@({x}, use3)

=) {y := y+ z}[if(b){. . .}else{. . .} « sp1]@({x}, use1)

=) [y= y+ z; . . . « sp0]@({x}, use0)

Figure 4.11: Symbolic execution tree until conditional.

Now the symbolic execution tree splits into 2 branches.

We symbolically execute the then branch first. The complex statement y= z++; is decom-

posed into 3 simple statements using the postInc rule. After the application of the assignment

rule on t= z;, the resulting update is {t := z}. It is an SNF update that only contains the core

part. Then we apply the assignment rule on z= z+ 1;. The update we get before simplifica-

tion is {t := z}{z := z+ 1}. To simplify this update, we first transform it into parallel form

{t := zkz := z+ 1} using the rules given in Figure 2.7. Notice that z, on the left hand side

of z := z+ 1, occurs on the right hand side of t := z, so the elementary updates t := z and

z := z+ 1 are not independent. To obtain an SNF update, we use the introducing auxiliary rule

65

defined in Figure 4.9. So the update is rewritten as {z0 := z}({z := z0}{t := zkz := z+ 1}),

where z0 is a fresh variable and the auxiliary update {z0 := z} is introduced. After simplifying

the core part, we finally get the SNF update {z0 := z}{t := z0kz := z0+ 1}. From now on,

after a few steps application of assignment rule followed by the emptyBox rule, the symbolic

execution tree in this sequential block is shown in Figure 4.12.

¬b=)U
snf

1 {z
0 := z}{t := z0kz := z0+ 1ky := z0kx := z0+ 1}@({x}, _)

b=)U
snf

1 {z
0 := z}{t := z0kz := z0+ 1ky := z0kx := z0+ 1}[« sp8]@({x}, use8)

b=)U
snf

1 {z
0 := z}{t := z0kz := z0+ 1ky := z0}[x= z; « sp7]@({x}, use7)

b=)U
snf

1 {z
0 := z}{t := z0kz := z0+ 1}[y= t; . . . « sp6]@({x}, use6)

b=)U
snf

1 {t := z}[z= z+ 1; y= t; . . . « sp5]@({x}, use5)

b=)U
snf

1 [int t= z; z= z+ 1; y= t; . . . « sp4]@({x}, use4)

b=)U
snf

1 [y= z++; . . . « sp2]@({x}, use2)

Figure 4.12: Symbolic execution tree of then branch.

Now we start generating the program for this sequential block. By applying the emptyBox

rule in the other direction, we get sp8 as _ and use8={x}. In the next step, since x 2 use8,

the assignment x= z0+ 1; is generated according to the assignment rule involving SNF update.

The used variable set is updated by removing x but adding z0. So we have sp7: x= z0+ 1;

and use7={z0}. The application of 4 more assignment rules generates no more new statement.

Now the core update is empty and we can generate the auxiliary assignment according to the

auxAssignment rule. In the end, we get for this sequential branch sp2 : int z0 = z;x= z0+ 1;

and use2={z}.

Analogous to this, we can generate the program for the else branch. After the first phase of

symbolic execution while maintaining the SNF update, Figure 4.13 shows the resulting symbolic

execution tree.

¬b=)U
snf

1 {y
0 := y}{z := 1ky := y0+ 1kx := y0+ 3}@({x}, _)

¬b=)U
snf

1 {y
0 := y}{z := 1ky := y0+ 1kx := y0+ 3}[« sp12]@({x}, use12)

¬b=)U
snf

1 {y
0 := y}{z := 1kx := y0+ 1ky := y0+ 1}[x= y+ 2; « sp11]@({x}, use11)

¬b=)U
snf

1 {z := 1kx := y+ 1}[y= x; . . . « sp10]@({x}, use10)

¬b=)U
snf

1 {z := 1}[x= y+ z; . . . « sp9]@({x}, use9)

¬b=)U
snf

1 [z= 1; . . . « sp3]@({x}, use3)

Figure 4.13: Symbolic execution tree of else branch.

66

In the second phase, the program is synthesized after applying a sequence of assignment

rules and a final auxAssignment rule. The result program for this sequential block is

int y0 = y;x= y0+ 2;, and use3={y}.

Now the programs for both sequential blocks are synthesized. We can generate the whole

program by applying the ifElse rule and assignment rule. The specialized program is shown in

Figure 4.14.

y = y + z;

if (b) {

int z0 = z;

x = z0 + 1;

}

else {

int y0 = y;

x = y0 + 3;

}

Figure 4.14: The generated program for Example 12.

Compared to the specialization results from Example 7 and 8, we get a more optimized pro-

gram by involving SNF updates during the generation phase. The specialized program intro-

duces auxiliary variables and is not necessarily containing only simple statements (although

there are only simple statements in this example). This is more like a real-world program

compared to the programs only containing simple statements.

For easier reference of these program transformation approaches, we call the normal approach

PTr; the approach interleaving partial evaluation actions PTr+PE; and the approach involving

SNF updates PTr+ SNF. Obviously, we can also interleave partial evaluation actions during

symbolic execution phase, as well as involving SNF updates during generation phase, denoted

as PTr+PE+ SNF. This will achieve the most optimization.

We show the application of the program transformation and optimization techniques intro-

duced before on some larger examples.

Example 13. Specialize the following SiJa program using PTr+PE+ SNF.

67

public class OnLineShopping {

boolean cpn;

public int read() { /* read price of item */ }

public int sum(int n) {

int i = 1;

int count = n;

int tot = 0;

while(i <= count) {

int m = read();

if(i >=3 && cpn) {

tot = tot + m * 9 / 10;

i++; }

else {

tot = tot + m;

i++; }

}

return tot;

}

}

Our purpose is to specialize the sum() method which consists of non-trivial constructs such as

attributes, a conditional, loop, and method call. We ignore the postcondition � and unneces-

sary formulas Γ and ∆. To ease the presentation, we do not mention partial evaluation and the

update simplification steps all the time, but keep in mind that after each rule application the

partial evaluation actions are performed and the updates within a sequential block are always

simplified. Also, we just show the final sequents computed after sequent calculus rule applica-

tion, partial evaluation and update simplification, but hide the intermediate results. As usual,

spi denotes the program to be generated, and usei denotes the used variable set. The symbolic

execution rules used here are the rules involving SNF updates that are defined in Figure 4.10.

The return value tot is the only observable location, i.e., obs = {tot}. The first phase starts

symbolically executing method sum(). The first statements of the method declare and initialize

variables. These statements are executed similar to assignments. Altogether the assignment rule

is applied three times, we end up with

=) {i := 1kcount := nktot := 0}[while(i<= n) . . . « sp3]@({tot}, use3)

=) {i := 1kcount := n}[tot= 0; while(i<= n) . . . « sp2]@({tot}, use2)

=) {i := 1}[count= n; . . . « sp1]@({tot}, use1)

=) [i= 1; . . . « sp0]@({tot}, use0)

68

We use U snf

1 to denote the SNF update computed in this sequential block: U snf

1 = {i :=

1kcount := nktot := 0}.

The next statement to be symbolically executed is the while loop computing the total sum.

Instead of immediately applying the loop invariant rule, we unwind the loop once using the

loopUnwind rule. Partial evaluation allows to simplify the guard i<= n and i>= 3 && cpn

of the introduced conditional to 1<= n and 1>= 3 && cpn by applying constant propagation.

Furthermore, the then branch is eliminated because the guard 1>= 3 && cpn can be evaluated

to false. The result is as follows:

=)U
snf

1 [if(1<= n){int m= read();tot= m;i= 2;while . . .} « sp3]@({tot}, use3)

=)U
snf

1 [if(1<= n){. . .tot= 0+ m;i= 2;while . . .} « sp3]@({tot}, use3)

=)U
snf

1 [if(1<= n){. . .if(1>= 3 && cpn) . . . ;i= 1+ 1;while . . .} « sp3]@({tot}, use3)

=)U
snf

1 [if(i<= n){. . .if(i>= 3 && cpn) . . . ;i++;while . . .} « sp3]@({tot}, use3)

=)U
snf

1 [while(i<= n) . . . « sp3]@({tot}, use3)

Application of the ifElse rule creates two branches. The else branch contains no program so

it is synthesized right away by applying the emptyBox rule. We symbolically execute the then

branch by applying the assignment rule three times until we reach the while loop again. We use

U
snf

2 to denote the SNF update for the sequential block in the then branch until the while loop.

U
snf

2 = {m := res1ktot := res1ki := 2}. Here, in the update we use res1 to denote the return

value of read(). We decide to unwind the loop a second time. The symbolic execution follows

then the same pattern as before until we reach the loop for a third time. Figure. 4.15(a) shows

the relevant part of the symbolic execution tree of the second loop unwinding.

Instead of unwinding the loop once more, we apply the loopInvariant rule with true as the

invariant. The rule creates three new goals. The goal for the init branch is not of importance

for the specialization itself, hence, we ignore it in the following. The anonymizing update Vmod

is also ignored.

The used variables set use of the preserves branch depends on the instantiation of the use set

in the use case branch. To resolve the dependency we continue with the latter. In this case, the

use case branch contains no program, so it is trivially synthesized by applying the emptyBox

rule which results in _ as the specialized program and the only element tot in obs becomes

the use set. Based on this, the use set of the preserves branch is the union of {tot} and

the locations used in the loop guard: {tot,i}. The program in the preserves branch is then

symbolically executed by applying suitable rules until it is empty. This process is similar to that

when executing the program in the then branch of the conditional generated by loopUnwind.

U
snf

3 denotes the SNF update {m := res2ktot := tot+ res2ki := 3}. U snf

4 denotes the SNF

update {m := res3}. The symbolic execution tree resulting from the application of the loop

invariant rule is shown in Figure. 4.15(b).

69

2

n
=)
U

sn
f

1
U

sn
f

2
{m

:=
r
e
s
2
k
t
o
t

:=
t
o
t
+
r
e
s
2
k
i

:=
3
}[

w
h
i
l
e
(i
<
=
n
)
..

.
«

sp
6
]@
({
t
o
t
},

u
se

6
)

..
.

1

n
=)
U

sn
f

1
U

sn
f

2
[
i
f
(i
<
=
n
)
..

.;
w
h
i
l
e

..
.
«

sp
5
]@
({
t
o
t
},

u
se

5
)

1

n
=)
U

sn
f

1
{m

:=
r
e
s
1
k
t
o
t

:=
r
e
s
1
k
i

:=
2
}[

w
h
i
l
e
(i
<
=
n
)
..

.
«

sp
5
]@
({
t
o
t
},

u
se

5
)

..
.

¬
(1

n
)
=)
U

sn
f

1
[
«

_
]@
({
t
o
t
},
{t
o
t
})

1

n
=)
U

sn
f

1
[
i
n
t
m
=
r
e
a
d
()

;.
..
«

sp
4
]@
({
t
o
t
},

u
se

4
)

=)
U

sn
f

1
[
i
f
(1
<
=
n
){
i
n
t
m
=
r
e
a
d
()

;t
o
t
=
m
;i
=
i
+
1
;w
h
i
l
e

..
.}
«

sp
3
]@
({
t
o
t
},

u
se

3
)

(a
)
Sp

e
ci
a
liz
a
ti
o
n
o
f
th
e
w
h
i
l
e
lo
o
p
vi
a
u
n
w
in
d
in
g

..
.
=)
U

sn
f

1
..

.U
sn

f

4
{t
o
t

:=
t
o
t
+
m
k
i

:=
i
+
1
}[
«

sp
1
2
]@
({
t
o
t
,i
},

u
se

1
2
)

..
.

..
.
=)
U

sn
f

1
..

.U
sn

f

4
{t
o
t

:=
t
o
t
+
m
}[

i
+
+

;
«

sp
1
1
]@
({
t
o
t
,i
},

u
se

1
1
)

..
.,
c
p
n
=)
U

sn
f

1
..

.U
sn

f

4
[

..
.
«

sp
9
]@
({
t
o
t
,i
},

u
se

9
)

..
.,
¬
c
p
n
=)
U

sn
f

1
..

.U
sn

f

4
[

..
.
«

sp
1
0
]@
({
t
o
t
,i
},

u
se

1
0
)

i

n
=)
U

sn
f

1
U

sn
f

2
U

sn
f

3
{m

:=
r
e
s
3
}[

i
f
(c
p
n
)
..

.
«

sp
8
]@
({
t
o
t
,i
},

u
se

8
)

¬
(i

n
)
=)
[
«

_
]@
({
t
o
t
},
{t
o
t
})

i

n
=)
U

sn
f

1
U

sn
f

2
U

sn
f

3
[
i
n
t

..
.
«

sp
7
]@
({
t
o
t
,i
},

u
se

7
)

2

n
=)
U

sn
f

1
U

sn
f

2
U

sn
f

3
[
w
h
i
l
e
(i
<
=
n
)
..

.
«

sp
6
]@
({
t
o
t
},

u
se

6
)

(b
)
Sp

e
ci
a
liz
a
ti
o
n
o
f
th
e
w
h
i
l
e
-lo

o
p
u
si
n
g
th
e
lo
o
p
in
va
ri
a
n
t
ru
le

Figure 4.15: Specialization of the while-loop by different means.

70

After symbolic execution we enter the second phase of our approach in which the specialized

program is generated. Recall that when applying the loopInvariant rule, the procedure of syn-

thesizing the loop starts with the use case branch. In our example, we have already performed

this step and could already determine the instantiation of the observable location set obs of the

preserves branch.

We show how the loop body is synthesized in the preserves branch: applying the emptyBox

rule instantiates the placeholders sp12 and use12 with _ and {tot,i}. Going backwards, the

assignment rule tells us how to derive the instantiations for sp11: i= i+ 1; and use11 =

{tot,i}. The instantiations for sp10 and use10 can be derived as tot= tot+ m;i= i+ 1;

and {tot,i}. Before we can continue, the instantiations of sp9 and use9 need to be deter-

mined. Similar to the derivation of sp10 and use10, applying the assignment rule a few times, we

get sp9: tot= tot+ m ⇤ 9/10;i= i+ 1; and use9={tot,i}. We have now reached the node

where the ifElse rule was previously applied. This rule allows us to derive sp8 as

if (cpn) { tot = tot + m * 9 / 10;

i = i + 1; }

else { tot = tot + m;

i = i + 1; }

and use8 = {tot,i,cpn}.

Applying suitable rules, we end up with the specialized program sp6 as

while (i<=n) {

int m = read();

if (cpn) {

tot = tot + m * 9 / 10;

i = i + 1;

}

else {

tot = tot + m;

i = i + 1;

}

}

and the used variable set use6 = {tot,i,cpn}.

Following the symbolic execution tree backwards and applying the corresponding rules, we

finally synthesize the specialized program for sum() as shown in Figure 4.16.

71

public int sum(int n) {

int i;

int tot;

tot = 0;

if (1 <= n) {

tot = read();

if (2 <= n) {

tot = tot + read();

i = 3;

while(i <= n) {

int m = read();

if (cpn) {

tot = tot + m * 9 / 10;

i = i + 1;

} else {

tot = tot + m;

i = i + 1;

}

}

}

}

return tot;

}

Figure 4.16: The result of program transformation.

4.5 Implementation and Evaluation

We have a prototype implementation of the program transformation framework introduced in

this chapter. It is named PE-KeY, which is an extension based on KeY including the following

efforts:

• An information collector along with the symbolic execution of the source Java program. It

keeps track of the observable variables and constructs the working stack that is used in the

synthesize phase.

• An integrated partial evaluator which performs some simple partial evaluation operations

such as constant propagation and dead code elimination. It is used in the symbolic execu-

tion phase.

• The extended calculus rules that are used to generate programs in the second phase. KeY’s

sequent calculus has around 1200 rules of which around 100-150 rules are used for sym-

72

bolic execution of programs. Around half of them have been implemented in the current

version of PE-KeY, but a considerable effort is required to get a complete coverage.

• An update analyzer used to extract symbolic values of program variables from preceding

updates to achieve a higher degree of specialization.

The current version of PE-KeY supports basic Java features such as assignment, comparison,

conditional, loop, method call inlining, integer arithmetics. Array data structure and field ac-

cess are also supported to some extent. Multi-threading and floating point arithmetics are not

supported due to limitations of KeY.

We have tried PE-KeY with a set of example programs. Although in an early stage, the exam-

ples indicate the potential of PE-KeY once full Java is supported. For instance, the (simplified)

formula

i> j! [if(i>j) max = i; else max = j;]POST

leads to the following specialization of the conditional statement:

max= i;

because of the precondition i> j and thanks to the integrated first-order reasoning mechanism

in PE-KeY. Here, POST is an unspecified predicate which can neither be proven nor disproved.

For the same reason,

i
.
= 5! [i++;]POST

results in the specialized statement i= 6.

In fact, the program can be specialized according to the given specification from a general

implementation. Figure 4.17 shows a fragment of a bank account implementation. A bank

account includes the current available balance and the credit line (normally fixed) that can

be used when the balance is negative. Cash withdraw can be done by calling the withdraw

method. If the withdraw amount does not exceed the available balance, the customer will get

the cash without any extra service fee; if the available balance is less than the amount to be

withdrawn, the customer will use the credit line to cover the difference with 5 extra cost; if the

withdrawn amount could not be covered by both the available balance and the credit line, the

withdraw does not succeed. In every case, the information of the new available balance will be

printed (returned). This is a general implementation of the cash withdrawal process, but some

banks (or ATMs) only allow cash withdrawal when the balance is above 0. In this case, the

precondition of the withdraw method is restricted to withdrawAmt <= availableBal. Then,

with help of PE-KeY, the implementation of method withdraw is specialized to:

return availableBal� withdrawAmt;

73

public class BankAccount {

int availableBal;

int creditLn;

BankAccount(int availableBal, int creditLn) {

this.availableBal = availableBal;

this.creditLn = creditLn;

}

public int withdraw(int withdrawAmt) {

if (withdrawAmt <= availableBal) {

availableBal = availableBal - withdrawAmt;

return availableBal;

} else {

if(withdrawAmt - availableBal <= creditLn) {

availableBal = availableBal - withdrawAmt - 5;

return availableBal;

} else {

return availableBal;

}

}

}

...

}

Figure 4.17: Code fragment of bank account.

74

We applied our prototype partial evaluator also on some examples stemming from the JSpec

test suite [SLC03]. One of them is concerned with the computation of the power of an arithmetic

expression, as shown in Figure 4.18.

class Power extends Object{

int exp;

Binary op;

int neutral;

Power(int exp, Binary op,

int neutral) {

super();

this.exp = exp;

this.op = op;

this.neutral = neutral;

}

int raise(int base) {

int res = neutral;

for (int i=0; i<exp; i++) {

res = op.eval(base, res);

}

return res;

}

}

class Binary extends Object {

Binary() { super(); }

int eval(int x, int y) {

return this.eval(x, y);

}

}

class Add extends Binary {

Add() { super(); }

int eval(int x, int y) {

return x+y;

}

}

class Mult extends Binary {

Mult() { super(); }

int eval(int x, int y) {

return x*y;

}

}

Figure 4.18: Source code of the Power example as found in the JSpec suite.

The interesting part is that the arithmetic expression is represented as an abstract syntax tree

(AST) structure. The abstract class Binary is the superclass of the two concrete binary operators

Add and Mult (the strategies). The Power class can be used to apply a Binary operator op and

a neutral value for y times to a base value x, as illustrated by the following expression:

power= new Power(y,new op(),neutral).raise(x)

The actual computation for concrete values is performed on the AST representation. To be more

precise, the task was to specialize the program

power= new Power(y,new Mult(),1).raise(x);

The ac under the assumption that the value of y is constant and equal to 16.

As input formula for PE-KeY we use:

y
.
= 16!

[power= new Power(y,new Mult(),1).raise(x); « spres]@(obs, use)POST

75

PE-KeY then executes the program symbolically and extracts the specialized program spres as

power= (. . . ((x ⇤ x) ⇤ x) ⇤ ...) ⇤ x; (or power= x16). The achieved result is a simple int-typed

expression without the intermediate creation of the abstract syntax tree and should provide a

significantly better performance than executing the original program.

76

5 Information Flow Security

5.1 Introduction

Information flows more freely in modern society. For instance, internet can deliver your infor-

mation anywhere in the world, to any place whether you intend to or not. The preservation of

confidentiality becomes a growing concern. The confidentiality of information refers to secrets,

or privacy when it is personal information.

Since nowadays software is used in many places moving information, it is important to pre-

serve the confidentiality on the program level. Information enters a program on sources and exits

on sinks. When a program runs, if an output in a sink depends on an input in a source, then there

is an information flow from that source to that sink. If this flow of information is undesired, then

an information leak has occurred. The traditional approaches of preserving confidential data by

using access control do not apply here, because access control only checks restrictions on the

release of information, but not its propagation. Information flow control [Den82] tracks the

flow of information in programs. Since each program is written in a programming language

with rigorous semantics, we can apply language-based techniques to analyze information flow

occurring in a program, to enforce that the program satisfies a security policy of interest [SM03].

A security policy places restrictions on the permitted dependencies between sources and sinks.

To specify the allowed dependencies, the sources and sinks are labeled with (partially) ordered

confidentiality levels [Den76]. The most common example of the confidentiality level is Low

(public) and High (secret). These are considered to be part of a security lattice, ordered as

{(Low, Low), (Low, High), (High, High)}. If an output on a Low sink depends on input

from a High source, an information leak occurs.

The baseline for the security policies is the notion of non-interference [Coh77, GM82]. Non-

interference states that any two runs of a program with the same Low inputs will produce the

same Low outputs, regardless of what High inputs are. In other words, an observer can derive

the information from the High variables by using only the information from the Low variables.

Figure 5.1 illustrates the non-interference policy.

Example 14. Let l1 be a Low variable and h1,h2 be High variables in a program.

• l1 = h1;

This program violates the non-interference policy because l1 is assigned the value of h1.

• l1 = h1� h2;

The non-interference policy is violated although l1 can not learn the values of h1 or h2, but

the difference of them is leaked.

77

ProgramInput Output

High

Low

High

Low

Figure 5.1: Non-interference.

In the above example, the (partial) information from the value of the High variables flows

directly to the Low variables (explicit flow). It is also possible that information flows indirectly

from High to Low variables (implicit flow), as shown in the following example:

Example 15. Let l1,l2 be Low variables and h1,h2 be High variables in a program.

• if(h1 > 0) {l1 = 1; } else {l1 = 0; }

The value of l1 leaks the information of whether h1 is greater than 0.

• l1 = 0;l2 = 0; if(h1 > h2) {l1 = 1; } else {l2 = 1; }

Partial information on the comparison of h1 and h2 is leaked by observing either l1 or l2 has

been set to 1.

In Examples 14 and 15, High variables appear in the program by assigning to Low variables

explicitly or determining the values of Low variables implicitly. However, such a use of High

variables does not necessarily entail an information leak, as shown in Example 16.

Example 16. Let l1,l2 be Low variables and h1,h2 be High variables in a program.

• l1 = h1;l1 = 1;

No information is leaked because after termination the value of l1 is set to 1 although it was

assigned to h1 in the intermediate state.

• l1 = 0;l2 = 0; if(h1 > h2) {l1 = 1; } else {l1 = 1; }

The non-interference policy is valid because the value of l1 is set to 1 no matter which value

of h1 and h2 is greater. In fact, this program is equivalent to: l1 = 0;l2 = 0;l1 = 1;.

The condition of non-interference requires Low outputs to be independent of High inputs.

Devising an enforcement mechanism for this condition which is sound and permissive is an on-

going challenge. In practice, this condition is not always necessary. Many programs actually

78

intend to leak some information about the High variables. Take the bank account for exam-

ple. When a user logs in to an online banking session or an ATM machine, after a failure

attempt, the correct password must not be displayed directly to the user. However, the cor-

rectness of the password can always be derived when the system allows you to log in or not,

hence this partial information is allowed to leak. This leads to the notion of information de-

classification [SS05] that certain parts of High variables can be declassified. For example, the

variable correctPassword should not flow into a Low variable, but the result of the operation

correctPassword == providedPassword is allowed to flow, thus declassified to Low.

In information flow control, a security policy is accompanied by a permissive enforcement

mechanism, proven sound with respect to the given security policy. On running a program, if

the enforcement reports a positive result, then the soundness proof implies that the program

satisfies the policy. Several approaches to enforce the security policies rely on the semantics of

the language constructs.

One way is to use static analysis that analyzes the program before executing it. These often

take the form of a security type system [VIS96, HS06] which, by tracking the confidentiality level

of information contained in variables and program context, (over-)approximates information

flows occurring in (an over-approximation of) the control flow paths the program can take. It

is possible to guarantee the nonexistence of leaky control flow paths. One advantage of static

enforcement is that the policy is enforced before running the program. It thus avoids the runtime

overhead. Another is the ability to reason about all control flow paths. It can ensure that Low

outputs observers cannot learn about High inputs by inferring which control flow path was not

taken. Since analysis is performed before the program is run, the enforcement has no access to

runtime information. A static enforcement cannot permissively enforce programs using highly

dynamic language constructs, because a large control flow branching occurs at these control

points and the coarse approximations have to be made.

Another way to enforce security policies is using dynamic analysis, or more precisely security

monitors [Vol99, AS09] in this setting. At run time, input data is labeled with the confidential-

ity level that propagates through the channels. When the monitor detects an output of data

containing a High label on a Low sink, the monitor prevents the leak by blocking the program.

Although this blocking of the program can also leak information, an advantage of dynamic

analysis is the ability to treat highly dynamic language constructs in a permissive manner. The

dynamic enforcement has runtime overhead, and cannot guarantee the absence of leaks for the

control flow paths that are not taken.

Research of information flow control addresses many other aspects of security policies and

enforcement. The reader is referred to [SM03] for a detailed survey.

79

5.2 Enforcing Information Flow Security by Program Transformation

In this section, we show how to apply our program transformation framework to enforce infor-

mation flow security for SiJa programs. We concentrate on the non-interference policy.

Recall the weak bisimulation modality [p « q]@(obs, use) defined in Section 4.2. In a

program specialization setting, as discussed in Chapter 4, q is the same programming language

as p, and obs are normally the return variables and the variables used in the postcondition.

Running program q is equivalent to running program p except that q is more optimized.

In fact, q can also be viewed as a dependency flow of obs. This is because the extended

sequent calculus rules for the weak bisimulation modality (involving updates or not) only allow

to generate statements that will interfere with the evaluation of the obs variables in the final

state. For instance, the assignment rule will only generate an assignment in which the assigned

location belongs to use, so this assignment has an interference with obs (see Definition 19).

This observation gives us the opportunity to apply our program transformation approaches to a

information flow security setting.

Instead of generating a meaningful program q that is equivalent to p in a real program exe-

cution by fixing obs as its return variables, we can choose obs freely and generate a dependency

flow q of obs, which may not be as meaningful as the original program p. This will not affect the

soundness of our program transformation framework, because obs is not required to be fixed as

the return variables in the related definitions and proofs. So the generated program q is also

weakly bisimilar to p with respect to an arbitrary choice of obs. We can choose obs as the

variables with confidentiality level Low. By doing this, after program transformation, we get a

dependency flow q of Low variables. If q does not contain High variables, the non-interference

policy is enforced. If High variables occur in q, there is possibly an information leak. This is

formalized in Lemma 11.

Lemma 11. Given SiJa programs p, q, a set of High variables H and a set of Low variables L such

that p⇡L q. If for all h 2 H, h /2 pv(q), then the non-interference policy for program p is enforced.

Example 17. Let l1,l2 be Low variables and h1,h2 be High variables. Consider the following SiJa

programs:

(i) l1 = h1;l1 = 1;

Fixing obs as {l1}, program transformation results in: l1 = 1;. According to Lemma 11,

non-interference is enforced.

(ii) l1 = h1� h2;

Fixing obs as {l1}, program transformation ends with the same program. Non-interference

cannot be determined by Lemma 11. By inspecting the generated program, we find an explicit

information leak.

80

(iii) l1 = 0;l2 = 0; if(h1 > h2) {l1 = 1; } else {l2 = 1; }

Fixing obs as {l1,l2}, the specialized program is: if(h1 > h2) {l1 = 1; } else {l2 = 1; }.

Non-interference cannot be determined by Lemma 11. By inspecting the generated program,

we find an implicit information leak.

(iv) l1 = 0;l2 = 0; if(h1 > h2) {l1 = 1; } else {l1 = 1; }

Fixing obs as {l1,l2}, the specialized program is: l2 = 0;if(h1 > h2) {l1 = 1; } else {l1 = 1; }.

Non-interference cannot be determined by Lemma 11. By inspecting the generated program,

non-interference is enforced.

The above example shows the application of program transformation to enforce non-

interference policy. The first example can be determined directly by Lemma 11. In the other

examples, the information leak has to be checked by other enforcement approaches on the gen-

erated program. The generated program is optimized with respect to the Low variables, so it is

easier to check. In fact, Lemma 11 gives no conclusion when some High variables occur in the

generated program.

If we can give a suitable notion of explicit flow and implicit flow, then Lemma 11 can be

strengthened. A first attempt is the following definition:

Definition 23 (Explicit and implicit flow — first attempt). Given SiJa programs p, q, a set of High

variables H and a set of Low variables L such that p⇡L q.

• If there exists h 2 H and some non-boolean expression exp of program q such that h 2 pv(exp),

then there is an explicit flow in program p.

• If there exists h 2 H and some boolean expression expB of program q such that h 2 pv(expB),

then there is an implicit flow in program p.

By this definition, we can conclude that in Example 17, the second program has an explicit

information flow leak, and the third program has an implicit information flow leak.

However, Definition 23 is not accurate enough.

Example 18. Let l be Low and h be High. Consider the non-interference policy of a SiJa program:

t = h;

h = l;

l = t;

t = l;

l = h;

h = t;

This program swaps the values of l and h twice. In the end, l is assigned its original value

and cannot learn any information of h, so the non-interference policy is enforced. However,

81

fixing obs as {l}, if we do program transformation using the normal approach PTr introduced in

Section 4.2, the resulting program is: h= l;l= h;, which has an explicit information leak. So

the above definition is not valid if we generate a program using PTr approach. We redo program

transformation involving partial evaluation actions and SNF updates (PTr+PE+ SNF). This

time we end up with program: l0 = l;l= l0; that leaks no information.

In order to generate a program for the purpose of information flow security enforcement, it

is better to use the most optimized approach PTr+PE+ SNF introduced in Section 4.4. This

is because PTr+PE+ SNF takes into account the SNF update in a sequential block to gener-

ate the statements with up-to-date information without showing the intermediate assignments.

Intermediate assignments are exactly the reason why Definition 23 would fail.

Based on this observation, on the second try, we give a more precise definition of explicit and

implicit flow:

Definition 24 (Explicit and implicit flow – second attempt). Given SiJa programs p, the set of

High variables H and the set of Low variables L; program q is generated by PTr+PE+ SNF

approach, and p⇡L q.

• If there exists h 2 H and some non-boolean expression exp of program q such that h 2 pv(exp),

then there is an explicit flow in program p.

• If there exists h 2 H and some boolean expression expB of program q such that h 2 pv(expB),

then there is an implicit flow in program p.

This definition is based on PTr+PE+ SNF approach thus the update in a sequential block

helps to generate a more optimized program. However, so far we have not simplified the differ-

ent SNF updates for different sequential blocks along an execution path and made use of this for

program generation, but the non-interference policy is enforced in all execution paths as stud-

ied in the static enforcement approaches. This results in the inaccuracy of Definition 24. And

the issue is, as in Definition 23, the generated intermediate assignments, this time in different

sequential blocks.

Example 19. Let l1,l2 be Low and h be High. Consider the non-interference policy for SiJa pro-

gram:

h = l1 + l2;

if (h > 0) {

l1 = h + 1;

} else {

l2 = h + 2;

}

82

Fixing obs as {l1,l2}, PTr+PE+ SNF will generate an almost identical program without

much specialization. According to Definition 24, it has both an explicit and implicit information

flow leak. However, after the real execution of this program, either l1 is set to l1+ l2+ 1,

or l2 is set to l1+ l2+ 2 depending on the comparison of l1 and l2. In either case, this

program is secure. The reason is already discussed above. To avoid this issue, one possible way

is to simplify the different SNF updates for different sequential blocks along an execution path,

which will lead to another category of sequent calculus rules. This is not a trivial extension.

So far we are focusing on the generated program to find a suitable notion of information leak.

In fact, along with program generation, we also obtain the used variable set, denoted as use0

here. When program generation is finished, according to Lemma 4 and Definition 19, use0 are

the observable locations in the initial state and each variable that belongs to use0 will interfere

with obs in the final state. In other words, in the information flow security setting, every input

variable that belongs to use0 will interfere with output Low variables. According to the definition

of non-interference, we only need to guarantee that High variables do not occur in use0. If so,

the non-interference policy can be enforced. Then we have the following theorem.

Theorem 4 (Non-interference Enforcement). Given a SiJa program p, a set of High variables H

and a set of Low variables L; program q and used variable set use0 is generated, and p ⇡L q. The

non-interference policy is enforced if for all h 2 H, h /2 use0.

Proof. Direct result of Lemma 4, Def. 19 and the notion of non-interference.

We show that now Example 19 works properly. After program transformation, we achieve the

used variable set as {l1,l2}. Since no High variables are involved, the non-interference policy is

enforced. By inspecting the final used variable set use0, we can check information flow security

quickly. If no High variables occur in use0, then non-interference policy is enforced; otherwise,

we can also use other existing approaches to check the generated program, which is still better

than checking the original program.

Example 20. Let l be Low variables and h be High variables in a program. We discuss whether the

standard security policy, as stated in the introduction, holds for some example programs:

(i) h= 0;l= h;

Fixing obs as {l}, program transformation results in: use0 = {;}. According to Theorem 4,

non-interference is enforced.

(ii) l= h;l= l� h;

Fixing obs as {l}, program transformation by PTr+PE+ SNF approach results in: use0 =

{;};. According to Theorem 4, non-interference is enforced.

(iii) if(h> 0) {h= l;l= h; }

Fixing obs as {l}, program transformation by PTr+PE+ SNF approach results in: use0 =

83

{h} and program: if(h> 0) {l= l; }. Non-interference cannot be determined by Theorem 4.

By inspecting the generated program, non-interference is enforced.

(iv) if(h> 0) {l= 1; } else {l= 2; } l= 0;

Fixing obs as {l}, program transformation by PTr+PE+ SNF approach results in: use0 =

{h} and program: if(h> 0) {l= 0; } else {l= 0; }. Non-interference cannot be determined

by Theorem 4. By inspecting the generated program, non-interference is enforced.

Example 20 shows that Theorem 4 is still not precise enough to classify non-interference

policies for some cases. For (iii), l is assigned to itself in the then branch. If we ignore this

self-assignment, the final result is unchanged. For (iv), we have the identical program l= 0; in

both the then and else branches. In this case, the conditional does not affect the result, so it

can be safely ignored.

To achieve a more precise result, we need some extended sequent rules tailored to information

flow analysis, as shown in Figure 5.2:

assignNotSelf

Γ=)U
snf

1 [! « !]@(obs, use)�,∆
✓
Γ=)U snf[l= r;! « l= r1;!]@(obs, use� {l}[{r})�,∆ if l 2 use ^ r1 6= l

Γ=)U snf[l= r;! « !]@(obs, use)�,∆ otherwise

◆

(where U snf

1 =U
snf a
1 {. . .kl := r1} is the SNF of U snf{l := r})

ifElseUnify

Γ,U snfb=)U snf[p;! « p;!]@(obs, usep;!)�,∆

Γ,U snf¬b=)U snf[q;! « q;!]@(obs, useq;!)�,∆

Γ=)U snf[if (b) {p} else {q};! « p;!]@(obs, usep;!)�,∆

(with b boolean variable, p;! ⇡obs q;!, and usep;! = useq;!)

loopInvNoBody
Γ=)U snf inv,∆

Γ,U snfVmod(b^ inv) =)U snfVmod

[p « p]@(use1 [{b}, use2)inv,∆

Γ,U snfVmod(¬b^ inv) =)U snfVmod[! « !]@(obs, use1)�,∆
✓
Γ=)U snf[while(b){p}! « !]@(obs, use1)�,∆ if use1 = ;

Γ=)U snf[while(b){p}! « while(b){p}!]@(obs, use1 [use2 [{b})�,∆ otherwise

◆

Figure 5.2: Some extended sequent calculus rules tailored to information flow analysis.

The assignNotSelf rule avoids the generation of self assignments l= l;. The ifElseUnify rule

checks whether the then branch and else branch have the same effect, if so, we do not generate

a conditional block. The loopInvNoBody rule avoids the generation of a loop body, if the used

variable set obtained in the continuation of the loop is ;. Because in this case, the loop does not

affect the values of the observable locations at all.

84

Now programs (iii) and (iv) in Example 20 can be classified properly. For (iii), according to

assignNotSelf, we do not generate any program in the then branch, then apply ifElseUnify rule

(both branches are empty), we obtain the empty program, with used variable set use = {l}.

According to Theorem 4, non-interference is enforced. For (iv), we generate the program l= 0;

and use = ;, non-interference is enforced.

Example 21. Consider the following program with loop invariant l> 0 and post condition l
.
= 2.

Let l be Low and h be High.

l = 1;

while (h > 0) {

l ++;

h --;

}

if (l > 0) {

l = 2;

}

After symbolic execution of the loop we have three branches. In the branch that continues after the

loop, we encounter a conditional. With the loop invariant we can infer that the guard holds, so we

only execute the then branch with l= 2;. Every open goal is closeable, so the program is proven. We

start to analyze information flow security with obs = {l}. In the first step, the statement l= 2; is

generated empty used variable set. According to loopInvNoBody, we do not generate loop body code.

Continuing with l= 1;, we obtain the program l= 2; and an empty used variable set. According

to Theorem 4, non-interference is enforced.

Remark. We can perform the program transformation without suitable loop invariants (just use

true), as discussed previously (e.g, in Section 4.2). This achieves a higher degree of automation,

which is desirable in the context of program specialization. However, proper loop invariants will

increase the precision of the information flow analysis. Without the loop invariant l> 0 in Exam-

ple 21, we have to generate the conditional as well as the loop body, and then we cannot classify

this program.

Because the program transformation process employs first-order reasoning and partial evalu-

ation in the symbolic execution phase, as well as using updates during program generation, we

achieve a more precise information flow analysis than security type systems.

85

6 Deductive Compilation

6.1 Introduction

Can you trust your compiler? In general, compilers should preserve the semantical behavior of

the source program and compiled program (bytecode). Complicated symbolic transformations

are performed during compilation, especially for the case of optimizing compilers. Compilers

may be buggy, resulting in a crash at compile-time, or even introducing errors to the correct

source program. Those errors introduced by compilers are notoriously difficult to expose and

track down. Nowadays, most effort of formal verification of programs is applied to the source

code level. However, a buggy compiler may invalidate the correctness properties that have been

formally verified for source code. We also need to guarantee the correctness of bytecode. The

widely used technique used for this purpose is compiler verification, that proves the correctness

of compilers.

Compiler verification has been a research topic for more than 40 years [MP67, MW72]. Since

then, many proofs have been conducted, ranging from single-pass compilers for toy languages

to sophisticated code optimizations [Dav03]. Recently, the CompCert project [Ler06, Ler09a,

Ler09b] has been the most successful story in compiler verification. In that project, a complete

compilation tool chain has been verified from a subset of C source code to PowerPC assem-

bly language in Coq. CompCert focuses on low-level details and language features such as

memory layout, register allocation and instruction selection. As part of the Verisoft project, a

nonoptimizing compiler from C0, a subset of C, directly to DLX assembly has been verified in

Isabelle/HOL [Lei08]. Like CompCert, it focuses on low-level details and proves a weak simu-

lation theorem for sequential executions. The paper [Loc10] presents a rigorous formalization

(in the proof assistant Isabelle/HOL) of concurrent Java source and byte code together with an

executable compiler and its correctness proof.

Previous works have shown that compiler verification is an expensive task. In this chapter, we

present our approach to guarantee the correctness of bytecode. Instead of verifying a compiler,

we generate bytecode step by step using the program transformation techniques introduced in

Chapter 4. The soundness of the extended sequent calculus rules entails the correctness of the

generated program. No further verification of bytecode is needed.

6.2 Sequent Calculus for Bytecode Generation

The weak bisimulation modality [p « q]@(obs, use) defined in Section 4.2 is the core concept

for program transformation and information flow security. For both scenarios, q is the program

87

in the same language as p. In fact, it is not necessary to restrict p and q to the same programming

language. Choosing different languages for p and q will result in other applications of program

transformation. For instance, fixing p as the Java language and q as the C language will result

in a Java-to-C translator. To ensure the soundness of this translation, the correctness of the

corresponding weak bisimulation modalities and accompanied extended sequent calculus rules

need to be proven. Here we focus on the transformation from Java source code (or SiJa to be

precise) to Java bytecode, which works as a Java (SiJa) compiler. The soundness of compilation

is entailed by the sound bisimulation modality and sequent calculus rules.

We target the version of Java bytecode that can be executed by a Java Virtual Machine

(JVM) [LY97]. The Java Virtual Machine is a conventional stack-based abstract machine. Most

instructions pop their arguments off the stack, and push back their results on the stack. A set

of registers (also called local variables) is provided. They can be accessed via a load instruction

that pushes the value of a given register on the stack, and a store instruction that stores the

top of the stack in the given register. Most Java compilers use registers to store the values of

source-level local variables and method parameters, and the stack to hold temporary results

during evaluation of expressions. Both the stack and the registers are preserved across method

calls. Control is handled by a variety of branch instructions: unconditional branch (goto), con-

ditional branches (e.g., ifeq), and multiway branches (corresponding to switch). In the JVM,

most instructions are typed. For instance, the iadd instruction (integer addition) requires that

the stack initially contains at least two elements and that these two elements are of type int; it

then pushes back a result of type int. Table 6.1 shows some commonly used instructions with

descriptions, a complete list can be found in [LY97].

Example 22. Consider the following Java bytecode:

• iload_0 istore_1

Reads the value of variable 0 and stores it to variable 1.

• iload_0 iload_1 iadd

Adds the int values of variables 0 and 1.

• iload_0 iload_1 if_icmplt lbelse

iload_0 istore_2 goto lbelse

lbelse: iload_1 istore_2

Compares the values of variable 0 and variable 1, if variable 0 is less than variable 1, then

goto label lbelse and write the value of variable 1 to variable 2; otherwise continue and set

variable 2 with the value of variable 0. This program computes the max of 2 variables.

Now we define the bisimulation modality for different programming languages. In Sec-

tion 4.1, we have defined observable equivalence, observable locations, and weak bisimulation

88

Mnemonic Other bytes Description

iload 1:index load an int value from a local variable #index
iload_0 load an int value from local variable 0
istore 1:index store an int value into variable #index
istore_0 store an int value into variable 0
iconst_0 load the int value 0 onto the stack
aload 1:index load a reference onto the stack from a local variable #index
aload_0 load a reference onto the stack from local variable 0
astore 1:index store a reference into a local variable #index
astore_0 store a reference into local variable 0
bipush 1:byte push a byte onto the stack as an integer value

getfield
2: index1,

index2

get a field value of an object objectref, where the field is identified by field
reference in the constant pool index

putfield
2: indexbyte1,

indexbyte2

set field to value in an object objectref, where the field is identified by a
field reference index in constant pool

iadd add two ints
isub subtract two ints
imul multiply two ints
idiv divide two ints
iinc 2: index, const increment local variable #index by signed byte const

ifeq
2: branchbyte1,

branchbyte2
if value is 0, branch to instruction at branchoffset

ifne
2: branchbyte1,

branchbyte2
if value is not 0, branch to instruction at branchoffset

ifge
2: branchbyte1,

branchbyte2
if value is no less than 0, branch to instruction at branchoffset

ifgt
2: branchbyte1,

branchbyte2
if value is greater than 0, branch to instruction at branchoffset

ifle
2: branchbyte1,

branchbyte2
if value is no greater than 0, branch to instruction at branchoffset

iflt
2: branchbyte1,

branchbyte2
if value is less than 0, branch to instruction at branchoffset

ifnull
2: branchbyte1,

branchbyte2
if value is null, branch to instruction at branchoffset

ifnonnull
2: branchbyte1,

branchbyte2
if value is not null, branch to instruction at branchoffset

if_icmpeq
2: branchbyte1,

branchbyte2
if ints are equal, branch to instruction at branchoffset

if_icmpne
2: branchbyte1,

branchbyte2
if ints are not equal, branch to instruction at branchoffset

if_icmpge
2: branchbyte1,

branchbyte2
if value1 is no less than value2, branch to instruction at branchoffset

if_icmpgt
2: branchbyte1,

branchbyte2
if value1 is greater than value2, branch to instruction at branchoffset

if_icmple
2: branchbyte1,

branchbyte2
if value1 is no greater than value2, branch to instruction at branchoffset

if_icmplt
2: branchbyte1,

branchbyte2
if value1 is less than value2, branch to instruction at branchoffset

goto
2: branchbyte1,

branchbyte2

goes to another instruction at branchoffset (signed short constructed from
unsigned bytes branchbyte1 « 8 + branchbyte2)

return return void from method
ireturn return an integer from a method

Table 6.1: A collection of Java bytecode instructions.

89

for programs (Definitions 13-17). All the definitions there are on the semantic level. The seman-

tics of Java bytecode is normally defined as an operational semantics in the form of an abstract

machine (JVM). We ignore the technical details here, but show the relation of the semantics of

a SiJa program and the semantics of Java bytecode. For the formal definition of Java bytecode

semantics, readers can refer to e.g., [LY97, FM03].

Since the JVM is a stack-based abstract machine, execution of Java bytecode is a sequence of

stack operations on the JVM. A state in Java bytecode is defined as a snapshot of the status of

the registers (variables) and the stack. We define a mapping function ⇠ that relates the universe

of SiJa source code and Java bytecode.

Definition 25 (Mapping function). For a SiJa program, St is the set of statements, S is a set of

states, PV is a set of program variables. And for Java bytecode, Inst is the set of instructions, SB

is a set of states, PV is a set of variables. A mapping function ⇠ maps:

(i) every pv 2 PV to a distinct pvB 2 PVB. ⇠(pv) = pvB.

(ii) every s 2 S to an sB 2 SB. ⇠(s) = sB.

(iii) every st 2 St to a sequence of instructions: inst1 . . .instn where for 0  i  n

insti 2 Inst and ⇠(st) = inst1 · · ·instn.

⇠�1 is the inverse of ⇠.

Figure 6.1 shows some SiJa statements and Java bytecode related by the mapping function ⇠.

We also maintain a program counter pc (initially 0) to indicate the label of bytecode instructions,

and pci has the value of pc+ i.

SiJa statement Java bytecode

l=r
iload_⇠(r)
istore_⇠(l)

p1;p2
⇠(p1)
⇠(p2)

if(b) {p} else {q}

iload_⇠(b)
ifeq pc1

⇠(p)
goto pc2

pc1: ⇠(q)
pc2: _

while(b) {p}

pc1: iload_⇠(b)
ifeq pc2

⇠(p)
goto pc1
pc2: _

Figure 6.1:Mapping of SiJa programs to Java bytecode.

90

As a property of the mapping function ⇠, the following lemma gives the relation of the se-

mantics of SiJa programs to the semantics of Java bytecode. We assume the Java bytecode is

evaluated by a evaluation function valB, logic structure DB and a state s. The actual representa-

tion of DB is not of importance.

Lemma 12. Given the evaluation function val, the first-order structure D and a state s 2 S of SiJa

program p, and the corresponding evaluation function valB and logic structure DB of Java bytecode

q. If ⇠(p) = q, then valD,s(p) = valBDB ,⇠(s)(q).

Lemma 12 shows that to evaluate the Java bytecode, we can evaluate its ⇠�1-mapped SiJa

program. This gives us an opportunity to define the weak bisimulation modality for a SiJa

program and Java bytecode by adding a mapping function ⇠ to Definitions. 13-17 in Section 4.1.

For example, the definition of weak bisimulation for SiJa program and Java bytecode is given

below. The other definitions are analogous.

Definition 26 (Weak bisimulation for SiJa program and Java bytecode). Let p1,p2 be two SiJa

programs, q is Java bytecode, and ⇠ is a mapping function such that ⇠(p2) = q. Assume obs and

obs0 are observable locations, and ⇡ is a weak bisimulation relation for states. Then ⇡ is a weak

bisimulation for a SiJa program p1 and Java bytecode q, written p1 ⇡obs q, if for the sequence of

state transitions:

s1

p1
�! s0

1
⌘ s0

1

sSt01
�! s1

1

sSt11
�! . . .

sStn�1
1
�! sn

1

sStn1
�! sn+1

1 , with s1 = s0
1
, s0

1
= sn+1

1 ,

s2

p2
�! s0

2
⌘ s0

2

sSt02
�! s1

2

sSt12
�! . . .

sStm�1
2
�! sm

1

sStm2
�! sm+1

2 , with s2 = s0
2
, s0

2
= sm+1

2 ,

(i) s0
2
⇡obs s0

1
; (ii) for each state si

1
there exists a state s

j

2 such that si
1
⇡obs0 s

j

2 for some obs0; (iii)

for each state s
j

2 there exists a state si
1

such that s
j

2 ⇡obs0 si
1

for some obs0, where 0  i  n and

0 j  m.

The weak bisimulation modality for a SiJa program and Java bytecode can be defined similarly

to that for SiJa programs only (Definition 18 and 20).

Definition 27 (Weak bisimulation modality for SiJa program and Java bytecode—syntax). The

bisimulation modality [p « q]@(obs, use) is a modal operator providing compartments for a SiJa

program p, Java bytecode q and location sets obs and use. We extend our definition of formulas:

Let � be a SiJa-DL formula and p a SiJa program, q Java bytecode and obs, use two location

sets such that pv(�) ✓ obs where pv(�) is the set of all program variables occurring in �, then

[p « q]@(obs, use)� is also a SiJa-DL formula.

The used program variable set usedVar(s,p, obs) is defined similarly as in Definition 19. We

formalize the semantics of the weak bisimulation modality for a SiJa program and Java bytecode:

Definition 28 (Weak bisimulation modality for a SiJa program and Java bytecode—semantics).

With p,p1 SiJa-programs, q a Java bytecode program, D, s,� , and obs, use are as before, ⇠ is a

mapping function and ⇠(p2) = q. Let valD,s,�([p « q]@(obs, use)�) = tt if and only if

91

1. valD,s,�([p]�) = tt

2. use◆ usedVar(s,q, obs)

3. for all s0 ⇡use s we have valD,s(p)⇡obs valD,s0(p1) = valBDB ,⇠(s0)(q)

The sequent calculus rules for Java bytecode generation can be defined based on the weak

bisimulation modality for a SiJa program and Java bytecode. The starting point is the rules

defined in Figure 4.2 that are used in the PTr method of program transformation. In most

cases, by changing the generated SiJa program part to its ⇠-mapped Java bytecode in the rules

presented there, we obtain the rules for bytecode generation, shown in Figure 6.2. The symbol

! represents the generated Java bytecode for SiJa program ! and ⇠ is the mapping function,

and we need to update the program counter after the application of the ifElse and loopInvariant

rules to obtain a correct compilation result.

Lemma 13. The extended sequent calculus rules given in Figure 6.2 are sound.

The soundness of this lemma is entailed by Lemma 1, Definition 25 and Lemma 12.

Remark. By introducing a mapping function ⇠, we avoid to the semantics of Java bytecode directly

but relate it to the semantics of SiJa programs, which results in a better integration of the new

weak bisimulation modality with the ones introduced before. In fact, ⇠ can also be viewed as the

compilation function since it maps the source code to the bytecode. However, instead of operating

on the original source program like a normal compiler would do, ⇠ is applied on the generated

source code and the bytecode is generated based on that already specialized code. So it works as an

optimizing compiler.

6.3 Example

We demonstrate our approach of bytecode generation on an example. The method to be com-

piled is shown in Figure 6.3.

This program could possibly be used in an online store. It calculates the total amount the

customer has to pay if buying i items at an item price of 20 EUR. The total sum is stored in both

tot and atot. If the customer can provide a coupon (cpn), then a reduction of 50 EUR will be

applied. Finally, the total cost is returned as tot.

We begin with symbolic execution of our example program. The first statements are simple

variable declarations and initializations that are treated similar to assignments. The first steps

until reaching the loop are shown below:

=) {tot := 0katot := 0}[while(i> 0) . . . « bc2]@({tot}, use2)

=) {tot := 0}[atot= 0; . . . « bc1]@({tot}, use1)

=) [tot= 0; . . . « bc0]@({tot}, use0)

92

emptyBox
Γ=)U@(obs, _)�,∆

Γ=)U [_ « _]@(obs, obs)�,∆

assignment
Γ=)U {l := r}[! « !]@(obs, use)�,∆0

BBB@
Γ=)U [l= r;! «

iload_⇠(r)
istore_⇠(l)
!

]@(obs, use� {l}[{r})�,∆ if l 2 use

Γ=)U [l= r;! « !]@(obs, use)�,∆ otherwise

1
CCCA

ifElse
Γ,U b=)U [p;! « p;!]@(obs, usep;!)�,∆

Γ,U¬b=)U [q;! « q;!]@(obs, useq;!)�,∆

Γ=)U [if (b) {p} else {q};! «

iload_⇠(b)
ifeq pc1

p;!

goto pc2

pc1 : q;!

pc2 : _

]@(obs, usep;! [useq;! [{b})�,∆

(after rule application: pc= pc+ 2)

loopUnwind

Γ=)U [if (b) {p;while (b) {p}} ! «

if (b) {p;while (b) {p}} !]@(obs, use)�,∆

Γ=)U [while(b) {p} ! « if (b) {p;while(b) {p}} !]@(obs, use)�,∆

loopInvariant
Γ=)U inv,∆

Γ,UVmod(b^ inv) =)UVmod[p « p]@(use1 [{b}, use2)inv,∆

Γ,UVmod(¬b^ inv) =)UVmod[! « !]@(obs, use1)�,∆

Γ=)U [while(b){p}! «

pc1 : iload_⇠(b)
ifeq pc2

!

goto pc1

pc2 : _

]@(obs, use1 [use2 [{b})�,∆

(after rule application: pc= pc+ 2)

Figure 6.2: A collection of sequent calculus rules for generating Java bytecode.

93

int tot = 0;

int atot = 0;

int i;

boolean cpn;

while (i > 0) {

tot = tot + 20;

atot = tot;

i = i - 1;

}

if (cpn) {

tot = tot - 50;

if (tot < 0) {

tot = 0;

}

}

return tot;

Figure 6.3: Program to be compiled into bytecode.

Notice that obs is instantiated with {tot}. And as usual, we ignore the postcondition � and

unnecessary formulas Γ and ∆. We use bci to denote the bytecode to be generated, and usei to

denote the used variable set.

Applying the loop invariant rule creates two new goals (we ignore the init branch). The rule

application and the resulting goals are shown below.

U1Va(inv^ (i > 0)) =)U1Va[tot= tot+ 20; . . . « bc4]@({tot}[use3 [{i}, use4)

U1Va(inv^¬(i > 0)) =)U1Va[if(cpn) . . . « bc3]@({tot}, use3)

=) {tot := 0katot := 0}[while(i> 0){tot= tot+ 20; . . .}if(cpn) . . . « bc2]@({tot}, use2)

As the used variable set use4 in the preserves branch depends on the instantiation of the

used variable set use3 of the use case branch, we continue with the use case branch. During

symbolic execution of the use case branch, two conditional statements have to be executed

until reaching the end of the method. The resulting symbolic execution tree is shown below,

where updates U1 = {tot := 0katot := 0}, U2 = {tot := tot� 50}, and path condition

Γ1 =U1Va(inv^¬(i > 0)).

94

. . . [« bc9]@({tot}, use9)

Γ1,cpn,U1VaU2(tot< 0) =)U1VaU2{tot := 0}[« bc10]@({tot}, use10)

Γ1,cpn,U1VaU2(tot< 0) =)U1VaU2[tot= 0; « bc8]@({tot}, use8)

Γ1,cpn=)U1Va{tot := tot� 50}[if(tot< 0) . . . « bc7]@({tot}, use7)

. . . [« bc6]@({tot}, use6) Γ1,cpn=)U1Va[tot= tot� 50; . . . « bc5]@({tot}, use5)

U1Va(inv^¬(i > 0)) =)U1Va[if(cpn) . . . « bc3]@({tot}, use3)

Java bytecode is to be synthesized after symbolic execution. Starting with the application of

the emptyBox rule, bc10 and use10 are instantiated as _ and {tot}.

Going backwards we can now derive the instantiations for bc8: iconst_0 istore_1 (assum-

ing ⇠(tot) = 1 for variable tot), and use8 = {tot} according to assignment rule. The previous

rule application was executing a conditional statement. Before we can continue, we have first

to derive the instantiations for the other premise. By similar steps as before, we end up with

bc9 = _ and use9 = {tot}. Having now determined all required instantiations, we can continue

with the compilation of the conditional statement. As a result we derive for the used variable

set use7 = {tot} and bc7 :

iload_1

ifle 1

iconst_0

istore_1

1:

ireturn

Applying the remaining rules, we end up with instantiations for bc3 and use3 representing the

bytecode compilation for the remaining program following the loop and the set of variables used

in it.

Assume now that we can derive that cpn is FALSE, i.e., that the customer does not possess a

coupon. Partial evaluation allows the translation of both conditional statements to be omitted.

This results in faster symbolic execution (as shown below) and in an optimized version of the

compiled program. In this case, bc3 = _, use3 = {tot,cpn}.

Γ1,¬cpn=)U1Va[« bc6]@({tot}, use6)

U1Va(inv^¬(i > 0)) =)U1Va[if(cpn) . . . « bc3]@({tot}, use3)

95

After synthesizing the use case branch, we turn towards the preserves branch, as the required

instantiation for use3 is now known as {tot,cpn}. The symbolic execution tree of the loop body

looks like:

U1Va(inv^ (i > 0)) =)U1Va{. . .ki := i� 1}[« bc13]@({tot,cpn,i}, use13)

U1Va(inv^ (i > 0)) =)U1Va{. . .katot := tot}[i= i� 1; « bc12]@({tot,cpn,i}, use12)

U1Va(inv^ (i > 0)) =)U1Va{tot := tot+ 20}[atot= tot; . . . « bc11]@({tot,cpn,i}, use11)

U1Va(inv^ (i > 0)) =)U1Va[tot= tot+ 20; . . . « bc4]@({tot,cpn,i}, use4)

Synthesis of the bytecode follows the same pattern as described for the use case branch.

The Java bytecode generated under the assumption that cpn = FALSE by our approach is in

Figure 6.4. Here, ⇠(tot) = 1 and ⇠(i) = 2 for variable tot and i.

iconst_0

istore_1

1:

iload_2

ifle 2

iload_1

bipush 20

iadd

istore_1

iinc 2, -1

goto 1

2:

iload_1

ireturn

Figure 6.4: Generated Java bytecode.

We can see that the resulting Java bytecode is sound and also more optimized than that

obtained by a normal line-by-line compiler. For instance, the bytecode for the statement

atot= tot is not generated because it will not affect the final result of the observable lo-

cations (return variable). And the bytecode for the conditional is ignored thanks to partial

evaluation.

If one is only interested in sound compilation, but not in functional verification, then the

trivial postcondition true is sufficient. As a consequence, it suffices to supply true as well for

the invariant of the loopInvariant rule and symbolic execution becomes fully automatic. The

resulting first-order proof obligations are no problem for state-of-art solvers.

96

7 Conclusion

7.1 Summary

In this thesis, we are concerned with the safety and security of programs. The problems ad-

dressed here are the correctness of SiJa (a subset of Java) source code and Java bytecode, and

the information flow security of SiJa programs. A lot of research has been made on these topics,

but almost all of them study each topic independently and no approach can handle all of these

aspects. We proposed a uniform framework that integrates the effort of proving correctness

and security into one process. The core concept for this uniform approach is sound program

transformation based on symbolic execution and deduction.

Symbolic execution is used to execute a source program symbolically, so that it reveals the

information on all program execution paths which can be used further for optimization and ver-

ification. We use the state-of-the-art Java verification system KeY to perform symbolic execution

of SiJa programs. The first-order reasoning capabilities of KeY analyzes variable dependencies,

aliasing, and eliminates infeasible execution paths. The symbolic execution tree (or: proof tree)

can be reduced further by interleaving partial evaluation with symbolic execution. This speeds

up the verification process for a SiJa program, as shown in Chapter 3.

Program transformation is performed based on the symbolic execution tree, which is achieved

as a side product of SiJa source code verification using KeY, or it can be built explicitly for

the purpose of program transformation which does not require strong loop invariants, post-

conditions, etc. The sequent calculus rules used to perform symbolic execution are extended

with bisimulation modalities. An extended sequent with bisimulation modalities has the form:

Γ =) U [p « q]@(obs, use)�,∆. It means at the current state, we get program p and q that

are bisilmilar with respect to the observable locations obs. On one hand, this extension does

not affect the normal symbolic execution, nor the verification result achieved with the normal

sequent calculus rules. On the other hand, the additional information, namely observable lo-

cations obs, used variables use and the program q generated-so-far, recorded in the extended

sequent, contributes to a sound program transformation by the step-wise inverse application

of the extended calculus rules. To be more precise, obs is the set of observable locations that

matters to the output of a program; the used variables set use tracks all the locations in the

current state that may affect the result of obs after program execution; program q accumulates

the program generated so far in a generalized sequential block, and it represents the program

obtained after the generation is done. The update U records the symbolic state resulting from

program execution along a certain path.

97

The program transformation process is a bottom-up traversal of the symbolic execution tree.

Starting with the nodes where the program is empty, it first synthesizes the program in each se-

quential block, and then builds a program in a generalized sequential block by combining sibling

blocks, until the whole program is generated. Our basic approach to program transformation,

called PTr, generates a program with the granularity of simple statements. The resulting pro-

gram is optimized up to a certain point considering that some assignments that are not relevant

to the final values of obs are not generated. Soundness of this approach, which is entailed by

the soundness of the extended sequent calculus rules, has been proven. This approach can be

optimized in two directions. The first direction, called PTr+PE, is to optimize the symbolic

execution tree, by interleaving partial evaluation and symbolic execution. The second direction,

called PTr+ SNF, is to take into account the updates in the generation phase and synthesizes

a program as optimal as possible in each sequential block. Combining these two directions,

PTr+PE+ SNF, we obtain the most optimized program transformation approach studied in

this thesis. Chapter 4 discussed the above program transformation approaches in detail and

showed their soundness.

An interesting observation about the extended sequent with bisimulation modalities Γ =)

U [p « q]@(obs, use)�,∆ is the following: obs can be chosen freely, as its choice will not affect

the soundness of the program transformation. Then we can include information flow security

of a SiJa source program into our picture by fixing obs as Low variables. By doing so, we can

generate a program that can be viewed as the dependency flow of Low variables. Intuitively,

if no High variables are present in the generated program, then the non-interference policy is

enforced; otherwise, we need to inspect the problem further with other techniques, as the gener-

ated program is an approximation of the “real” dependency flow of Low variables. Nevertheless,

we have shown that using PTr+PE+ SNF for program transformation gives a better result

than using PTr for analyzing information flow security. Another angle for non-interference pol-

icy enforcement is to inspect the used variable set use after program transformation. Since use

contains the locations that may affect the values of obs, when the program is fully generated,

use are indeed the input locations that may affect the output Low variables. So we can achieve a

strengthened statement: the non-interference policy is enforced if High variables do not appear

in use after program transformation is finished. This result is still approximate, but it provides

another angle to tackle information flow security problems, and it is more precise than the re-

sults achieved by many existing approaches, e.g., the ones based on type systems. Chapter 5

addressed this security aspect.

In the extended sequent with bisimulation modalities Γ =) U [p « q]@(obs, use)�,∆, the

languages of p and q are not necessarily the same. We can also generate Java bytecode q from

SiJa source code p using the extended sequent calculus rules. A mapping function from SiJa

source code to Java bytecode is introduced to integrate the bytecode smoothly into the calculus.

This generation works as a SiJa compiler, and, as a consequence of the soundness of the rules, it

98

is a verified optimizing compiler. It is an alternative way to obtain correct bytecode in addition

to bytecode verification or compiler verification which are normally very difficult. This idea has

been presented in Chapter 6.

To put everything together, we can guarantee safety and security of a SiJa program in one

process. Starting with a SiJa program annotated with proper JML specifications, we can verify

the correctness of source code by using KeY. After verification, if necessary, we can optimize

the program using the program transformation techniques introduced in Chapter 4. To enforce

the non-interference policy of SiJa source code, we fix obs as Low variables and do the analysis

described in Chapter 5. Java bytecode can be generated as shown in Chapter 6, which guaran-

tees correct bytecode. The total process contains four phases: one symbolic execution phase,

and three generation phases for different purposes. In fact, if we do not need to optimize the

program, after source code verification, we can ensure the bytecode correctness and enforce the

non-interference policy of the source code within one phase. In addition to normal program

generation for bytecode, we can maintain another obsi initialized with Low variables and usei

that is updated like the actual use (but without generating any program) along the generation.

In the end, we obtain a generated Java bytecode together with two used variable sets use and

usei. Now we can also enforce the non-interference policy by inspecting usei.

The outline of this thesis work can be summarized in Figure 7.1.

Γ=)U [p « q]@(obs, use)�,∆

source
code

correct
source code

correct
bytecode

secure
source code

optimized
source code

program verification
(symbolic execution
+ partial evaluation)

(Ch.3)

rule based
generation
q: bytecode

(Ch.6)

rule based
generation

obs: return
(Ch.4)

rule based
generation
obs: Low
(Ch.5)

deductive
compilation

program optimization

information flow
analysis

Figure 7.1: Software correctness and security: a uniform framework.

99

7.2 Future Work

Software verification, compiler verification and information flow security are active research

areas, and yet a lot of work needs to be done. In particular, to continue the work of this thesis,

we plan to investigate in the following aspects:

(i) Supporting more features of the Java language. So far we have considered SiJa, a subset

of Java without floating point and concurrency, in this thesis. Formal verification of Java

floating point and concurrency has always been a difficult, yet desirable goal. It is worth

to put more effort in this research area.

(ii) Further optimization. In our work, optimization is performed by using interleaving partial

evaluation and symbolic execution and involving updates in program generation. There

are other optimizations that can be made. For example, considering ranking function

may provide us with heuristics of treating a loop. We plan to seek further optimization

opportunities.

(iii) Enforcing more security policies. This thesis has presented an approach to enforce non-

interference policy for SiJa source code. Other security policies such as information de-

classification [SS05], information integrity [BRS10] and erasure [CM05] may also be

interesting. We plan to address other security policies within our framework in the fu-

ture.

(iv) Consolidate the implementation on Java bytecode. The implementation of the program

transformation approaches presented in this thesis is still in a prototypical phase. It can be

consolidated further, especially on the implementation of deductive compilation to gener-

ate Java bytecode.

(v) Application of our framework to other scenarios. The framework presented in this thesis

can be generally applied. For example, we can generate some intermediate languages that

can be used for other specific purposes. The soundness of the corresponding extended

sequent calculus rules entails the soundness of the program generation process.

100

Bibliography

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini.

Cost analysis of Java bytecode. In ESOP, pages 157–172, 2007.

[Abr96] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge

University Press, August 1996.

[AGZP10] Elvira Albert, Miguel Gomez-Zamalloa, and German Puebla. PET: a partial

evaluation-based test case generation tool for Java bytecode. In ACM SIGPLAN

WS on Partial Evaluation and Semantics-based Program Manipulation. ACM Press,

2010.

[AS09] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release poli-

cies for dynamic languages. In CSF, pages 43–59, 2009.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in

programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’88, pages 1–11, New York, NY, USA, 1988. ACM.

[Bau07] Marcus Baum. Debugging by visualizing of symbolic execution. Master’s thesis,

Dept. of Computer Science, Institute for Theoretical Computer Science, June 2007.

[BBC+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con

McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner. Thorough

static analysis of device drivers. In EuroSys, pages 73–85, 2006.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.

Leino. Boogie: A modular reusable verifier for object-oriented programs. In FMCO,

pages 364–387, 2005.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java Card programs.

In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security.

Revised Papers, Java Card 2000, International Workshop, Cannes, France, volume

2041 of LNCS, pages 6–24. Springer, 2001.

[BEL75] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SelectÑa formal system for

testing and debugging programs by symbolic execution. In Proceedings of the inter-

national conference on Reliable software, pages 234–245. ACM, 1975.

101

[BFL+11] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte,

and Herman Venter. Specification and verification: the Spec# experience. Commun.

ACM, 54(6), 2011.

[BHJ09] Richard Bubel, Reiner Hähnle, and Ran Ji. Interleaving symbolic execution and

partial evaluation. In Post Conf. Proc. FMCO2009, LNCS. Springer-Verlag, 2009.

[BHJ10] Richard Bubel, Reiner Hähnle, and Ran Ji. Program specialization via a software ver-

ification tool. In Bernhard Aichernig, Frank S. de Boer, and Marcello M. Bonsangue,

editors, Post Proc. of FMCO’10, LNCS. Springer, 2010.

[BHS06] Bernhard Beckert, Reiner Hähnle, and Peter Schmitt, editors. Verification of Object-

Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer, 2006.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter Schmitt, editors. Verification of Object-

Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

[BHW09] Richard Bubel, Reiner Hähnle, and Benjamin Weiss. Abstract interpretation of sym-

bolic execution with explicit state updates. In Frank de Boer, Marcello M. Bon-

sangue, and Eric Madelaine, editors, Post Conf. Proc. 6th Intl. Symposium on Formal

Methods for Components and Objects (FMCO), volume 5751 of LNCS, pages 247–277.

Springer, 2009.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming

system: an overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis

Lanet, and Traian Muntean, editors, Post Conference Proceedings of CASSIS: Construc-

tion and Analysis of Safe, Secure and Interoperable Smart devices, Marseille, volume

3362 of LNCS, pages 49–69. Springer, 2005.

[Boa06] The Inquiry Board. Ariane 5 flight 501 failure, report by the inquiry board, Paris, 19

July 2006.

[BP06] Bernhard Beckert and André Platzer. Dynamic logic with non-rigid functions: A basis

for object-oriented program verification. In U. Furbach and N. Shankar, editors, Proc.

Intl. Joint Conference on Automated Reasoning, Seattle, USA, volume 4130 of LNCS,

pages 266–280. Springer, 2006.

[BRL03] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented

approach. In Proc. Formal Methods Europe, Pisa, Italy, volume 2805 of LNCS, pages

422–439. Springer, 2003.

[BRS10] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying facets of informa-

tion integrity. In ICISS, pages 48–65, 2010.

102

[BS03] Egon Börger and Robert Stärk. Abstract State Machines: A Method for High-Level

System Design and Analysis. Springer, 2003.

[Bur74] Rod M. Burstall. Program proving as hand simulation with a little induction. In IFIP

Congress, pages 308–312, 1974.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Fourth ACM Symposium on Principles of Programming Language, Los Angeles, pages

238–252. ACM Press, New York, January 1977.

[CDH+11] Dave Clarke, Nikolay Diakov, Reiner Hähnle, Einar Broch Johnsen, Ina Schaefer, Jan

Schäfer, Rudi Schlatte, and Peter Y. H. Wong. Modeling spatial and temporal vari-

ability with the HATS abstract behavioral modeling language. In M. Bernardo and

V. Issarny, editors, Formal Methods for Eternal Networked Software Systems, volume

6659 of LNCS, pages 417–457. PUB-SV, 2011.

[CK05] David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Gilles

Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, edi-

tors, Post Conference Proceedings of CASSIS: Construction and Analysis of Safe, Secure

and Interoperable Smart devices, Marseille, volume 3362 of LNCS, pages 108–128.

Springer, 2005.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,

and Boris Yakobowski. Frama-c - a software analysis perspective. In SEFM, pages

233–247, 2012.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C

programs. In TACAS, pages 168–176, 2004.

[CM05] Stephen Chong and Andrew C. Myers. Language-based information erasure. In

CSFW, pages 241–254, 2005.

[Coh77] Ellis S. Cohen. Information transmission in computational systems. In SOSP, pages

133–139, 1977.

[CSH10] Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: Guessing formal

specifications using testing. In TAP, pages 6–21, 2010.

[Dav03] Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes,

28:2–2, November 2003.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM,

19(5):236–243, 1976.

103

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[Der] Nachum Dershowitz. Software horror stories. http://www.cs.tau.ac.il/

~nachumd/horror.html.

[dHT08] Jonathan de Halleux and Nikolai Tillmann. Parameterized unit testing with Pex. In

Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, Second International

Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings, volume 4966 of

LNCS, pages 171–181. Springer, 2008.

[Dij70] Edsger W. Dijkstra. Notes on Structured Programming. circulated privately, see

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF, April 1970.

[Dij86] Edsger W. Dijkstra. Visuals for BP’s Venture Research Conference. circulated

privately, see http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD963.PDF, June

1986.

[DLR06] Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: a k-bounded symbolic exe-

cution for checking strong heap properties of open systems. In Proc. 21st IEEE/ASM

Intl. Conference on Automated Software Engineering, Tokyo, Japan, pages 157–166.

IEEE Computer Society, 2006.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

TACAS, pages 337–340, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for

program checking. J. ACM, 52(3):365–473, 2005.

[EH07] Christian Engel and Reiner Hähnle. Generating unit tests from formal proofs. In

Bertrand Meyer and Yuri Gurevich, editors, Proc. Tests and Proofs (TAP), Zürich,

Switzerland, volume 4454 of LNCS. Springer, 2007.

[ERSW09] Christian Engel, Andreas Roth, Peter H. Schmitt, and Benjamin Weiß. Verification of

modifies clauses in dynamic logic with non-rigid functions. Technical Report 2009-9,

Department of Computer Science, University of Karlsruhe, 2009.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,

and Raymie Stata. Extended static checking for Java. In Proc. ACM SIGPLAN 2002

Conference on Programming Language Design and Implementation, Berlin, pages 234–

245. ACM Press, 2002.

[FM03] Stephen N. Freund and John C. Mitchell. A type system for the java bytecode lan-

guage and verifier. J. Autom. Reasoning, 30(3-4), 2003.

104

http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD963.PDF

[FM07] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-

form for deductive program verification. In Werner Damm and Holger Hermanns,

editors, Computer Aided Verification, 19th International Conference, Berlin, Germany,

volume 4590 of LNCS, pages 173–177. Springer, 2007.

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.

In Proc. 29th ACM Symposium on Principles of programming languages, pages 191–

202. ACM Press, 2002.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.

[HBBR10] Reiner Hähnle, Marcus Baum, Richard Bubel, and Marcel Rothe. A visual interactive

debugger based on symbolic execution. In ASE, pages 143–146, 2010.

[HHRS86] Reiner Hähnle, Maritta Heisel, Wolfgang Reif, and Werner Stephan. An interactive

verification system based on dynamic logic. In Jörg Siekmann, editor, Proc. 8th

Conference on Automated Deduction CADE, Oxford, volume 230 of LNCS, pages 306–

315. Springer, 1986.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software

verification with blast. In SPIN, pages 235–239, 2003.

[HKT00a] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[HKT00b] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundations of Com-

puting. MIT Press, October 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580, 583, October 1969.

[Hoa03] Tony Hoare. The verifying compiler: A grand challenge for computing research.

Journal of the ACM, 50(1):63–69, 2003.

[HRS87] Maritta Heisel, Wolfgang Reif, and Werner Stephan. Program verification by sym-

bolic execution and induction. In K. Morik, editor, Proc. 11th German Workshop on

Artifical Intelligence, volume 152 of Informatik Fachberichte. Springer, 1987.

[HS06] Sebastian Hunt and David Sands. On flow-sensitive security types. In POPL, pages

79–90, 2006.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol., 11(2):256–290, 2002.

105

[JB12] Ran Ji and Richard Bubel. Pe-key: A partial evaluator for java programs. In IFM,

pages 283–295, 2012.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic

program generation. Prentice-Hall, 1993.

[JHB13] Ran Ji, Reiner Hähnle, and Richard Bubel. Program transformation based on sym-

bolic execution and deduction. In SEFM, pages 289–304, 2013.

[JP08] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical Report

CW-520, Department of Computer Science, Katholieke Universiteit Leuven, August

2008.

[Kah87] Gilles Kahn. Natural semantics. In Proc. Symposium on Theoretical Aspects of Com-

puter Science (STACS), volume 247 of LNCS, pages 22–39. Springer, 1987.

[Kin76] James C. King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, July 1976.

[LBR03] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A

behavioral interface specification language for Java. Technical Report 98-06y, Iowa

State University, Department of Computer Science, 2003. Revised June 2004.

[Lei08] Dirk Leinenbach. Compiler Verification in the Context of Pervasive System Verification.

PhD thesis, Saarland University, Saarbr§cken, 2008.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a com-

piler with a proof assistant. In POPL, pages 42–54, 2006.

[Ler09a] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–

115, 2009.

[Ler09b] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reasoning,

43(4):363–446, 2009.

[Loc10] Andreas Lochbihler. Verifying a compiler for java threads. In ESOP, pages 427–447,

2010.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1997.

[MCDE02] Madanlal Musuvathi, Andy Chou, David L. Dill, and Dawson R. Engler. Model check-

ing system software with cmc. In ACM SIGOPS European Workshop, pages 219–222,

2002.

106

[Mey86] Bertrand Meyer. Design by contract. Technical Report TR-EI-12/CO, pages 1–50,

1986.

[Mey92] Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51,

October 1992.

[Mey00] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2000.

[Mos05] Wojciech Mostowski. Formalisation and verification of Java Card security properties

in dynamic logic. In Maura Cerioli, editor, Proc. Fundamental Approaches to Software

Engineering (FASE), Edinburgh, volume 3442 of LNCS, pages 357–371. Springer,

April 2005.

[MP67] John Mccarthy and James Painter. Correctness of a compiler for arithmetic expres-

sions. In Mathematical Aspects of Computer Science, volume 19 of Proc. of Symposia

in Applied Mathematics, pages 33–41. American Mathematical Society, 1967.

[MPH00] Jörg Meyer and Arnd Poetzsch-Heffter. An architecture for interactive program

provers. In TACAS, pages 63–77, 2000.

[MW72] Robin Milner and Richard Weyhrauch. Proving compiler correctness in a mecha-

nized logic. In Proc. 7th Annual Machine Intelligence Workshop, volume 7 of Machine

Intelligence, pages 51–72. Edinburgh University Press, 1972.

[Mye04] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, second edition, 2004.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60-61:17–139, 2004.

[Pra76] Vaughan R. Pratt. Semantical considerations on floyd-hoare logic. In FOCS, pages

109–121, 1976.

[PV04] Corina S. Pasareanu and Willem Visser. Verification of Java programs using symbolic

execution and invariant generation. In Susanne Graf and Laurent Mounier, editors,

Proc. Model Checking Software, 11th International SPIN Workshop, Barcelona, Spain,

volume 2989 of LNCS, pages 164–181. Springer, 2004.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, pages 55–74, 2002.

[Rüm06] Philipp Rümmer. Sequential, parallel, and quantified updates of first-order struc-

tures. In Miki Hermann and Andrei Voronkov, editors, Proc. Logic for Programming,

107

Artificial Intelligence and Reasoning, Phnom Penh, Cambodia, volume 4246 of LNCS,

pages 422–436. Springer, 2006.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant

computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, POPL ’88, pages 12–27, New York, NY, USA, 1988.

ACM.

[SC11] Amin Shali and William R. Cook. Hybrid partial evaluation. In OOPSLA, pages

375–390, 2011.

[SLC03] Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Automatic program special-

ization for Java. ACM Transactions on Programming Languages and Systems, 25,

2003.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series

in Computer Science, 2nd edition, 1992.

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In

CSFW, pages 255–269, 2005.

[Ste04] Kurt Stenzel. A formally verified calculus for full Java Card. In Charles Rattray, Savi

Maharaj, and Carron Shankland, editors, Proc. Algebraic Methodology and Software

Technology, AMAST 2004, Stirling, Scotland, UK, volume 3116 of Lecture Notes in

Computer Science, pages 491–505. Springer, 2004.

[VIS96] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for

secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

[Vol99] Dennis M. Volpano. Safety versus secrecy. In SAS, pages 303–311, 1999.

[Wei09] Benjamin Weiß. Predicate abstraction in a program logic calculus. In Michael

Leuschel and Heike Wehrheim, editors, Proc. 7th International Conference on inte-

grated Formal Methods (iFM 2009), volume 5423 of LNCS, pages 136–150. Springer,

2009.

[Wei11] Benjamin Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,

Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Technol-

ogy, 2011.

108

	Abstract
	Acknowledgment
	Introduction
	Overview: Software Correctness and Security
	Problems and Contributions
	Publications

	Background
	KeY and Symbolic Execution
	Programming Language
	Program Logic
	Sequent Calculus

	Partial Evaluation
	Partial Evaluation
	Interleaving Symbolic Execution and Partial Evaluation
	General Idea
	The Program Specialization Operator
	Specific Specialization Actions

	Example
	Evaluation

	Program Transformation
	Weak Bisimulation Relation of Programs
	The Weak Bisimulation Modality and Sequent Calculus Rules
	Soundness
	Optimization
	Sequentialized Normal Form of Updates
	Sequent Calculus Rules Involving Updates

	Implementation and Evaluation

	Information Flow Security
	Introduction
	Enforcing Information Flow Security by Program Transformation

	Deductive Compilation
	Introduction
	Sequent Calculus for Bytecode Generation
	Example

	Conclusion
	Summary
	Future Work

	Bibliography

