
Program Transformation for Non-interference
Verification on Programs with Pointers

Mounir Assaf1, Julien Signoles1, Frédéric Tronel2, and Éric Totel2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

2 Supelec, CIDre, Rennes France
firstname.lastname@supelec.fr

Abstract. Novel approaches for dynamic information flow monitoring are
promising since they enable permissive (accepting a large subset of executions)
yet sound (rejecting all unsecure executions) enforcement of non-interference. In
this paper, we present a dynamic information flow monitor for a language sup-
porting pointers. Our flow-sensitive monitor relies on prior static analysis in order
to soundly enforce non-interference. We also propose a program transformation
that preserves the behavior of initial programs and soundly inlines our security
monitor. This program transformation enables both dynamic and static verifica-
tion of non-interference.

1 Introduction

Information security is usually enforced through access control security policies. Those
security policies, implemented at the OS level, can authorize or deny information flows
at a coarse-grained subject/object level. Information flow control (IFC) mechanisms,
occuring at the application level, offer more granularity to enforce precise flow policies.

The seminal work in IFC has been initiated by Denning and Denning [1]. They pro-
posed a static analysis to verify that information is propagated inside programs securely
with respect to a flow policy. For instance, a simple flow policy disallows leakage of se-
cret variables into public ones, hence ensuring confidentiality. This notion has been
generalized by Goguen and Meseguer [2] as non-interference. Non-interference, pre-
cisely its termination-insensitive formulation (TINI), has been widely adopted in IFC
as a security policy [3,4,5]. Informally, it states that, when changing only secret inputs,
terminating executions of a program must deliver the same public outputs.

Volpano et al. [3] formalize a Denning-style static analysis as a type system for a
simple imperative language. Volpano’s work provides the first soundness proof stating
that a typable program is secure with respect to TINI. However, Volpano’s type system
lacks flow-sensitivity since security labels associated to variables are not allowed to
change during analysis. For example, the program public = secret; public = 0 is secure
because the final content of variable public is overridden. Still, this program is not
typable by Volpano’s type system because of flow-insensitivity.

Hunt and Sands [6] extend Volpano’s type system with flow-sensitivity, hence per-
mitting security labels to change in order to reflect the precise security level of their

L.J. Janczewski, H.B. Wolfe, and S. Shenoi (Eds.): SEC 2013, IFIP AICT 405, pp. 231–244, 2013.
c© IFIP International Federation for Information Processing 2013

232 M. Assaf et al.

contents. Introducing flow-sensitivity to security type systems contributes to more per-
missive security analyses. Hunt and Sands prove the soundness of their type system
with respect to TINI, while typing a larger subset of secure programs in comparison
with Volpano’s type system.

Dynamic monitoring of information flows is also known to provide more permis-
siveness [7,5] (accepting a large subset of executions). Unlike static analyses which
enforce TINI for all possible execution paths, dynamic monitoring ensures that a sin-
gle execution path is secure. However, permissiveness through the combination of both
dynamic monitoring and flow-sensitivity requires careful examination. Indeed, Russo
and Sabelfeld [5] prove that flow-sensitivity in purely dynamic IFC introduces covert
channels leaking information. The main idea behind this result is that a purely dynamic
monitor ignores non-executed conditional branches, missing at the same time informa-
tion flows they produce. Therefore, a flow-sensitive dynamic monitor must rely on static
analyses for sound (rejecting all unsecure executions) IFC.

Contributions. In this paper, we investigate permissive yet sound flow-sensitive IFC
for programs handling pointers. Our contributions are:

• We formalize a hybrid information flow monitor for an imperative language with
pointers and aliasing, by relying on a semantics built upon the Clight [8] semantics.
This semantics is especially used in the CompCert [9] provably correct compiler.
We prove the soundness of our monitor with respect to TINI.

• We also propose a sound program transformation which inlines our information
flow monitor. For languages that are compiled directly into native machine code
as it is the case for the C language, inlining is necessary to ensure fine-grained
information flow monitoring. To our knowledge, our program transformation is the
first proven sound inlining approach for dynamic monitors handling pointers.

• Assuming the implementation of security labels and their join operator, TINI can
be enforced by running the self-monitoring transformed program. This dynamic
approach has the advantage of being permissive since it soundly monitors a single
execution path, ignoring possible unsecure paths that are not executed. The pro-
gram transformation T also enables the verification of TINI by static analysis for
free. Such a static approach computes an over-approximation of the transformed
program semantics, enforcing TINI for all execution paths.

Outline. Section 2 introduces information flow background. Section 3 formalizes our
information flow monitor for a simple imperative language handling pointers and alias-
ing. Section 4 defines a program transformation inlining our information flow monitor.
We discuss related work in Section 5 and future work in Section 6.

2 Background

Non-interference. Our attacker model assumes that attackers know the source code
of analyzed programs. It also supposes that attackers can only modify public inputs
and read public outputs. A program is non-interferent if two terminating executions
which differ only on secret inputs deliver the same public outputs. This notion of non-
interference [2] formalizes independence of public outputs from secret inputs.

Program Transformation for Non-interference Verification on Programs with Pointers 233

Information flows. Explicit and implicit flows [1] are generally taken into account when
enforcing TINI. Explicit flows are produced from any source variable y assigned to a
destination variable x. Implicit flows are produced whenever an affectation occurs in
conditional branches. For instance, the following program i f (secret) x = 1 else skip
generates an implicit flow from secret to x, whatever the executed branch is. Even if x is
not assigned, an attacker could learn that secret is false if x is different from 1. As one
generally enforces a sound approximation of TINI, we suppose that assignments inside
conditionals always produce implicit flows from the guards to assigned variables.

Additional information flows arise in the presence of pointers. Consider for exam-
ple, the program i f (secret) {x = &a} else {x = &b} print ∗ x. An attacker, knowing
the initial values of a and b, may learn information about the value of variable secret
whenever ∗x is output : there is an information flow from secret to ∗x. There are actu-
ally two different kinds of information flows involved in this case. The first one is an
implicit flow from secret to x because of assignments inside a conditional depending
on secret. The second one, due to pointer aliasing and dereferencing, is from x to ∗x.
Thus, by transitivity, there is an information flow from secret to x.

Similarly, the program i f (secret) {x = &a} else {x = &b} ∗ x = 1 exposes pointer-
induced flows from secret to variables a and b. An attacker having access to either
variables a or b after the assignment ∗x = 1, may learn information about variable
secret. It is worth noting that even if a (resp. b) is not assigned by instruction ∗x = 1,
an information flow from secret to a (resp. b) is still produced. In fact, this pointer-
induced information flow involves all variables that could have been written by ∗x = 1
(here, both variables a and b).

As we are aiming at enforcing TINI, we ignore in this paper all covert channels due
to diverging runs and timing channels. Hence, a program like while (secret) skip; could
leak information about variable secret. Yet, this is acceptable since even in the presence
of outputs, Askarov et al. [4] have proved that an attacker could not know the secret in
polynomial time in the size of the secret.

3 Information Flow Monitoring Semantics

Language overview. Figure 1 presents the abstract syntax of our language. It is a sim-
ple imperative language handling basic types (κ) like integers and pointers (ptr(τ)). It
handles aliasing but no pointer arithmetics: binary operators do not take pointers as ar-
guments. The semantics of this language is inspired by the Clight semantics [8]. Clight
is formalized in the context of the CompCert verified compiler for C programs [9].

A simplified version of the Clight big-step operational semantics considers an en-
vironment E and a memory M. E : Var ⇀ Loc maps variables to statically allocated
locations. M : Loc ⇀ V maps locations to values of type τ. The evaluation of an in-
struction c in an environment E and a memory M, denoted by E � c,M ⇒ M′, results
in a new memory M′. Expressions can be evaluated as either left-values or right-values
depending on the position in which they occur. Only expressions having the form id or
∗a can occur in l-value positions such as the left-hand side of assignments, whereas any
expression can occur in right-value position.

As illustrated by Figure 2, l-value evaluation of expression a1 in environment E and
memory M (E � a1,M ⇐ l) provides the location l where a1 is stored, whereas r-value

234 M. Assaf et al.

Types: τ ::= κ | ptr(τ)
Expressions: a ::= n | id | uop a | a1 bop a2

| ∗a | &a

Instructions: c ::= skip | a1 = a2 | c1; c2

| i f (a) c1 else c2 | while (a) c

Declarations: dcl ::= (τ id)∗

Programs: P ::= dcl; c

Fig. 1. Abstract syntax of our language

(Assign)

E � a1,M ⇐ l
E � a2,M ⇒ v
M′ = M[l �→ v]

E � a1 = a2,M ⇒ M′

Fig. 2. Assignment semantics in
Clight

evaluation of a2 (E � a2,M ⇒ v) provides the value v of expression a2. The assignment
rule then maps the value v to the location l in the new memory M′.

In order to extend Clight’s three judgment rules with the information flow monitor
semantics, we consider a lattice S= (SC,
) where public ∈ SC is the minimal element
of S. We note � the associated join operator. We also consider a new kind of memory
Γ : Loc ⇀ S, which maps locations to security labels. Informally, security memory Γ
tracks the security level of locations content through tainting. For example, an assign-
ment x = y+ z generates an information flow from y and z to x. Thus, Γ maps to E(x)
(i.e. the location associated to x) the security label Γ(E(y))�Γ(E(z)).

Expressions. Both Clight’s r-value and l-value evaluations of expressions are extended
to support the propagation of security labels, as illustrated in Figure 3: the evaluation of
expressions yields both a value v ∈ V and a security label s ∈ S. If the pair (l,sl) is the
result of l-value evaluation of expression a, then the security label sl captures pointer-
induced flows produced by possible dereferences occurring in a, whereas sr = Γ(l)
captures explicit flows produced by reading the value M(l) of a. Therefore, the r-value
evaluation of a produces a value v = M(l) and a security label s = sl � sr taking into
account both explicit and pointer-induced flows through the join operator (rule RV).
Note that the semantics of Clight expressions can be obtained from Figure 3 by ignoring
all the monitor related operations.

The security label associated to the r-value of a defines the label associated to the
l-value of ∗a (rule LVMEM), hence taking into account the pointer-induced information
flow from a to ∗a. R-values of constants are labeled as public because attackers are
supposed to know the source code. Since the locations of variables are at known offsets
from the base pointer, we associate public to the l-values of variables (rule LVID). The
label of the l-value of a defines the label associated to the r-value of &a (rule RVREF).
The security label associated to the r-value of a is propagated to the r-value of uop a
(rule RVUOP). Likewise, the security label associated to the r-value of a1 bop a2 takes
into account both a1 and a2 r-values security labels through the join operator.

Figure 4 illustrates an example of the r-value evaluation of ∗x. Supposing that x is
stored at location lx and points to a variable a stored at location la, the r-value evalua-
tion of ∗x takes into account both pointer-induced and explicit flows since both sx (the
security label of x) and sa (the security label of a) affect the resulting security label s.

Program Transformation for Non-interference Verification on Programs with Pointers 235

LVID
E(id) = l

E � id,M,Γ ⇐ l, public
LVMEM

E � a,M,Γ ⇒ ptr(l),s

E � ∗a,M,Γ ⇐ l,s

RVCONST E � n,M,Γ ⇒ n, public
RV

E � a,M,Γ ⇐ l,sl M(l) = v
sr = Γ(l) s = sl � sr

E � a,M,Γ ⇒ v,s

RVREF
E � a,M,Γ ⇐ l,s

E � &a,M,Γ ⇒ ptr(l),s
RVUOP

E � a,M,Γ ⇒ v,s uop v = v′

E � uop a,M,Γ ⇒ v′,s

RVBOP
E � a1,M,Γ ⇒ v1,s1 E � a2,M,Γ ⇒ v2,s2 v1 bop v2 = v s1 � s2 = s

E � a1 bop a2,M,Γ ⇒ v,s

Fig. 3. Information flow monitor big-step semantics of expressions

RV

LVMEM

RV

LVID
E(x) = lx

E � x,M,Γ ⇐ lx, public
M(lx) = ptr(la)

Γ(lx) = sx sx = public� sx

E � x,M,Γ ⇒ ptr(la),sx

E � ∗x,M,Γ ⇐ la,sx M(la) = v Γ(la) = sa s = sa � sx

E � ∗x,M,Γ ⇒ v,s

Fig. 4. An example of expression ∗x evaluation

One consequence of rules LVID and RVREF is that addresses of variables are labeled
as public. Thus, they can be accessed by attackers and used to bypass security measures
such as ASLR (Address Space Layout Randomization). In fact, this kind of information
leaks is out of scope for our analysis since addresses of variables are not secret inputs
of programs. Furthermore, mapping any security label s other than public to the l-value
of variables id would taint all data accessed through dereferences of id, causing a label
creep problem [10].

Instructions. The semantics of instructions is presented in Figure 5. It is a combination
of dynamic monitoring and static analysis through the use of SP(c), the set of locations
that may have been written by instruction c of program P. The statically computed set
SP(c) is fed to the semantics whenever a call to the update operator occurs. We also
introduce a new meta-variable pc to capture implicit flows. pc can be viewed as the
security label of the program counter. Each time a program enters a conditional, pc
is updated with the guard security label in order to reflect generated implicit flows.
Therefore, evaluation of instructions occurs in a memory Γ, an execution context pc in
addition to a memory M and an environment E . It produces new memories Γ′ and M′.

For assignment a1 = a2 (rule Assign), the join of three security labels are mapped
to the location of a1. First, s1 takes into account pointer-induced flows from the l-

236 M. Assaf et al.

(Assign)

E � a1,M,Γ ⇐ l1,s1 E � a2,M,Γ ⇒ v2,s2
s = s1 � s2 � pc s′ = s1 � pc M′ = M[l1 �→ v2]

Γ′′ = Γ[l1 �→ s] Γ′ = update(a1 = a2,s
′,Γ′′)

E � a1 = a2,M,Γ, pc ⇒ M′,Γ′ (Comp)

E � c1,M,Γ, pc ⇒ M1,Γ1
E � c2,M1,Γ1, pc ⇒ M2,Γ2

E � c1;c2,M,Γ, pc ⇒ M2,Γ2

(I ftt)

E � a,M,Γ ⇒ v,s istrue(v)
pc′ = s� pc E � c1,M,Γ, pc′ ⇒ M1,Γ1

Γ′
1 = update(c2, pc′,Γ1)

E � i f (a) c1 else c2,M,Γ, pc ⇒ M1,Γ′
1
(Wf f)

E � a,M,Γ ⇒ v,s is f alse(v)
pc′ = s� pc Γ′ = update(c, pc′,Γ)
E � while (a) c,M,Γ, pc ⇒ M,Γ′

(I f f f)

E � a,M,Γ ⇒ v,s is f alse(v)
pc′ = s� pc E � c2,M,Γ, pc′ ⇒ M2,Γ2

Γ′
2 = update(c1, pc′,Γ2)

E � i f (a) c1 else c2,M,Γ, pc ⇒ M2,Γ′
2
(Wtt)

E � a,M,Γ ⇒ v,s istrue(v)
pc′ = s� pc

E � c,M,Γ, pc′ ⇒ M′,Γ′
E � while (a) c,M′,Γ′, pc ⇒ M′′,Γ′′

E � while (a) c,M,Γ, pc ⇒ M′′,Γ′′

(Skip) E � skip,M,Γ, pc ⇒ M,Γ update(c,s,Γ) �
{

Γ(l) ∀l �∈ SP(c)

Γ(l)� s ∀l ∈ SP(c)

Fig. 5. Information flow monitor big-step semantics of instructions

value of a1. Second, s2 considers explicit flows from the r-value of a2. Third, pc cap-
tures the implicit flows generated by conditionals. Additionally, assignments generate
pointer-induced flows from the l-value of a1 to the set of possibly written locations.
Consequently, the update operator propagates the union of pc and s1 to Sp(a1 = a2).
Assuming that x points to a variable a stored at location la, Figure 6 illustrates the eval-
uation of instruction ∗x = 1. The security label sx (resp. pc) affects the security label
of variable a in order to take into account pointer-induced flows (resp. implicit flows).
Finally, the update operator propagates the security label s′ to the set SP(∗x = 1) to
capture pointer-induced flows due to the assignment ∗x = 1.

(Assign)

E � ∗x,M,Γ ⇐ la,sx E � 1,M,Γ ⇒ 1, public s = sx � public� pc
s′ = sx � pc M′ = M[la �→ 1] Γ′′ = Γ[la �→ s] Γ′ = update(∗x = 1,s′,Γ′′)

E � ∗x = 1,M,Γ, pc ⇒ M′,Γ′

Fig. 6. An example of instruction ∗x = 1 evaluation

For conditionals (rules I ftt and I f f f), a new context of execution pc′ takes into ac-
count implicit flows generated by the conditional guard a. When a is evaluated to true
(rule I ftt , the other one is symmetrical), the resulting security memory takes into ac-
count the implicit flows induced by both the executed branch c1 and the non-executed
one c2. Implicit flows in c1 are computed by the evaluation of c1 in pc′, whereas the
update operator handles the ones from c2 by propagating pc′ to the set SP(c2). Rules
Wtt and Wf f are similar to conditional rules. Finally, a sequence of instructions c1;c2 is
executed in the same execution context (rule Comp).

Program Transformation for Non-interference Verification on Programs with Pointers 237

Soundness. In order to formalize TINI, Definition 1 introduces an equivalence relation
for memories: two memories M1 and M2 are s-equivalent if they are equal for the set of
locations l whose label Γ(l) is at most s.

Definition 1 (Equivalence relation ∼s
Γ). For all Γ, s ∈ S, M1, M2,

M1 and M2 are s-equivalent (M1 ∼s
Γ M2) if and only if

∀l ∈ Loc,Γ(l)
 s =⇒ M1(l) = M2(l).

Non-interference, by Definition 2, ensures that an attacker knowing only inputs and
outputs up to a security level s cannot gain any knowledge of inputs whose security
levels are strictly higher than s.

Definition 2 (Termination-insensitive non-interference).
For all c,E,Γ,M1,M′

1,M2,M′
2,s, pc ∈ S, such that

E � c,M1,Γ, pc ⇒ M′
1,Γ′

1 and E � c,M2,Γ, pc ⇒ M′
2,Γ′

2,

M1 ∼s
Γ M2 =⇒ Γ′

2 = Γ′
1 = Γ′ and M′

1 ∼s
Γ′ M′

2.

This definition of non-interference is termination-insensitive since it ignores behaviors
of diverging runs, including information leaks due to the attacker ability to observe
(non-)termination of programs. Definition 2 is equivalent to the definitions of TINI in
the literature [3,4,6,11]. Moreover, our definition of non-interference is equivalent to
what Askarov et al. [4] call batch job TINI, since attackers are not allowed to know
intermediate results of computation through outputs.

Theorem 1 (Soundness). The information flow-extended semantics is sound with re-
spect to termination-insensitive non-interference as defined in 2.

Theorem 1 proves that our monitor semantics is sound with respect to TINI. The proof,
by induction on instructions evaluation ⇒, relies on the fact that both l-value and r-
value evaluations of expressions in s-equivalent memories yield the same result for
expressions whose label is below s. This theorem also proves that attackers cannot learn
information by observing the behavior of our monitor since it ensures that both output
security memories are equal. Full details of our proofs can be found in the technical
report [12].

4 Program Transformation

This section presents an inlining approach for our monitoring semantics as a program
transformation. This approach has the benefits of enabling both static and dynamic anal-
ysis since both analyses can be considered depending on the required level of confi-
dence. The former would focus on soundness by ensuring that all execution paths of
the analysed program are secure. The latter would emphasize on permissiveness by
enforcing non-interference for the execution path of a single run.

Informally, the program transformation maps a shadow variable —a security label—
to each variable of Var(P), the set of variables of the initial program P. Inlining our

238 M. Assaf et al.

monitor then consists of propagating those security labels with respect to the monitor
semantics. For this reason, types of our language are extended with a type τs represent-
ing security labels. Expressions are extended with security labels denoted s and a join
operator � on security labels. The range of memories M is also extended to V∪S.

In order to handle pointers, we introduce in Definitions 3 and 4 the depth D(id) of a
variable id and a bijection Λ(id,k), with k ∈ [0,D(id)]. D(id) is the number of derefer-
ences such that ∗D(id)id yields a basic type κ, whereas Λ maps each initial variable id
to D(id) different shadow variables. Basically, ∗kΛ(id,k) is the security label of ∗kid.

Definition 3 (Depth D(x) of variable x).

Let τx be the type of variable x ∈Var(P). D(x) = D(τ) =

{
0 if τ = κ
1+D(τ′) if τ = ptr(τ′)

Definition 4 (Bijection Λ).
Λ : {(x,k) : x ∈ Var(P) and k ∈ [0,D(x)]} → Var′ such that Var′ ⊂ Var \Var(P) is a
bijection mapping to each initial variable x exactly D(x) shadow variables, denoted
Λ(x,k), such that Λ(x,k) has a type ptr(k)(τs).

We extend Λ to all l-value expressions (Λ(∗rx,k) � ∗rΛ(x,k+ r)) such that Λ(∗kid,0)
is equal to ∗kΛ(id,k). Hence Λ(∗kid,0) also captures the security label of ∗kid.

Our program transformation, denoted T , maintains a pointer-related invariant in or-
der to correctly handle aliasing. Essentially, if x points to an integer variable a, shadow
variable Λ(x,1) also points to Λ(a,0). This way, whenever we read (or write) the same
integer through ∗x or a, we also read (or write) the same security label through either
∗Λ(x,1) or Λ(a,0). Listings 1 and 2 illustrate an example of our program transforma-
tion. Instruction 3 in Listing 1 is transformed into instructions 3, 4, 5 and 6 in Listing 2.
Instructions 3, 5 and 6 of the transformed program reproduce the semantics of Assign
rules as defined in the monitoring semantics (Figure 5), whereas instruction 4 main-
tains the aliasing invariant. Thanks to instructions 4 and 9 of the transformed program,
instruction 13 updates the correct security label during execution.

Listing 1. The initial program.

1 / / SP(c3)=SP(c5)={E(x)}
2 i f (s e c r e t)
3 x = &a ;
4 e l s e
5 x = &b ;
6 / / SP(c7)={E(a),E(b)}
7 ∗x = 1

Listing 2. The transformed
program.

1 pc′=pc�Λ(secret,0);
2 i f (s e c r e t) {
3 Λ(x,0) = public;
4 Λ(x,1) = &Λ(a,0);
5 Λ(x,0) = Λ(x,0)� pc′;
6 x = &a ;
7 } e l s e {

8 Λ(x,0) = public;
9 Λ(x,1) = &Λ(b,0);

10 Λ(x,0) = Λ(x,0)� pc′;
11 x = &b ;
12 }
13 ∗Λ(x,1) = Λ(x,0)� public;
14 Λ(a,0) = Λ(x,0)� pc;
15 Λ(b,0) = Λ(x,0)� pc;
16 ∗x = 1

As in Definition 5, two expressions are aliased in memory M if their l-value evalua-
tion yields the same location. Hence, the aliasing invariant, stated as Lemma 1, ensures
that two l-value expressions are aliased iff their shadow variables are aliased.

Definition 5 (Aliasing equivalence relation ∼M
lval).

For all a1,a2 ∈ Exp, for all E,M such that E � a1,M ⇐ l1 and E � a2,M ⇐ l2.

a1 ∼M
lval a2 ⇐⇒ l1 = l2

Program Transformation for Non-interference Verification on Programs with Pointers 239

Lemma 1 (Aliasing invariant).
For all E,c,M,M′,Γ,Γ′, pc, pc such that E � T [c, pc],M,Γ, pc ⇒ M′,Γ′.

Let the predicate Ω(M)� ∀x,y ∈Var(P), for all r ∈ [0,D(y)],

x ∼M
lval ∗ry

⇐⇒ ∀k ∈ [0,D(x)] ,Λ(x,k) ∼M
lval Λ(∗ry,k)

Then Ω(M) =⇒ Ω(M′).

Transformation T relies on Definition 6 of operators LL, LR and L which express se-
curity labels of expressions in terms of shadow variables. They respectively capture the
label of the l-value of a, the label of the r-value of a, and Γ(la), where la is the location
of a. They accurately reproduce the monitoring semantics for expressions as defined in
Figure 3.

Definition 6 (Operators LL, LR and L).

LR(n)� public LR(uop a)� LR(a) LR(&a)� LL(a)

LR(a1 bop a2)� LR(a1)�LR(a2) LR(a)� LL(a)�L(a) L(a)� Λ(a,0)

LL(id)� public LL(∗a)� LR(a)

The l-values of a variable id is associated with the security label public (rule LVID),
so does LL(id). LL(∗a), the security label associated to the l-value ∗a, is defined as
LR(a), the security label associated to the r-value of a (rule LVMEM). As for r-values
(rule RVCONST), the security label of constant integers LR(n) is defined as public. The
security label of r-values expressions LR(a) is defined as the join of their l-value label
LL(a) and the label of their content L(a) (rule RV) in order to take into account both
pointer-induced and explicit flows. LR(&a), the label of r-value expressions &a is de-
fined as LL(a), the label of the l-value a (rule RVREF). LR(uop a) and LR(a1 bop a2) are
respectively defined according to rules RVUOP and RVBOP. Finally, the label L(a) asso-
ciated to the content of a is defined as Λ(a,0), which represents Γ(la) in the monitoring
semantics. Figure 7 illustrates the computation of the label associated to a r-value ∗x.
Intuitively, for the transformation to be correct, we must ensure that the evaluation of
Λ(x,0) and ∗Λ(x,1) in M respectively results in sx = Γ(lx) and sa = Γ(la).

LR(∗x) = LL(∗x)�L(∗x) = LR(x)�Λ(∗x,0) = LL(x)�L(x)�∗Λ(x,1)
= public�Λ(x,0)�∗Λ(x,1)

Fig. 7. An example of security label computation by both semantics and transformation T

We present the program transformation rules in Figure 8. For brevity, ck;∀k ∈ [0,n]
denotes the sequence of instructions c0;c1; . . .cn. Since the transformation T must main-
tain the execution context and must propagate it to all possibly written locations in non-
executed branches, it creates for each conditional and loop a new shadow variable of

240 M. Assaf et al.

type τs, denoted pc′. Variable pc′ captures the new execution context pc′ defined in the
semantics. The transformation then parameterizes the branches with the new shadow
variable pc′. It also uses the inverse of environment E , denoted E−1, in order to find
the set of variables corresponding to the locations l ∈ SP(c). Then it propagates the ex-
ecution context pc′ to all the corresponding shadow variables. This way, the program
transformation reproduces the semantics of the update operator for conditionals and
loops. Note that E−1 is well defined since each location has only one corresponding
declared variable. We are confident that even for further extensions including dynami-
cally allocated locations, we should be able to find a corresponding shadow expression
if there is an expression pointing to that location.

T [skip, pc] �→ skip T [c1; c2, pc] �→ T [c1, pc]; T [c2, pc]

T [a1 = a2, pc] �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λ(a1,0) = LL(a1)�LR(a2)� pc;

Λ(a1,k) = Λ(a2,k);∀k ∈ [1,D(a1)]

Λ(E−1(l),0) = Λ(E−1(l),0)�LL(a1)� pc;∀l ∈ SP(a1 = a2)

a1 = a2;

T [i f (a) c1 else c2, pc] �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pc′ = LR(a)� pc;

i f (a) {
T [c1, pc′]
Λ(E−1(l),0) = Λ(E−1(l),0)� pc′;∀l ∈ SP(c2)

} else {
T [c2, pc′];
Λ(E−1(l),0) = Λ(E−1(l),0)� pc′;∀l ∈ SP(c1)

}

T [while (a) c, pc] �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

while (a) {
pc′ = LR(a)� pc;

T [c, pc′];
}
pc′ = LR(a)� pc;

Λ(E−1(l),0) = Λ(E−1(l),0)� pc′;∀l ∈ SP(c)

Fig. 8. Program transformation semantics

For assignments a1 = a2, the program transformation propagates three security labels
to the shadow expression of a1 according the monitor semantics. Since assignments
create new aliasing relations, transformation T also generates D(a1) assignments to
maintain the aliasing invariant stated in Lemma 1. Finally, T uses E−1 and Λ to find
shadow variables corresponding to locations in SP(c) and taints them with the security
label LL(a1)� pc.

The transformed program T (P) is behaviourally equivalent to the initial program
P. Let E|var(P) (resp. M|Loc(P) and Γ|Loc(P)) be the restriction of environment E (resp.

Program Transformation for Non-interference Verification on Programs with Pointers 241

of memory M and Γ) to the set Var(P) of initial variables (resp. to the set Loc(P)
of initial locations). More precisely, Theorem 2 states that for any terminating run,
executions of P and T (P) in equal input memories for initial locations Loc(P) result
in equal memories for those same locations. The proof by induction on instructions
evaluation relies on the fact that program transformation T introduces only assignments
handling shadow variables. Hence, those additional assignments do not modify neither
values nor security labels associated to the set Loc(P) of initial locations.

Theorem 2 (Initial semantics preservation). For all c,E,M,Γ, pc, pc such that:
E|Var(P) � c,M|Loc(P),Γ|Loc(P), pc ⇒ M1,Γ1 and E � T [c, pc],M,Γ, pc ⇒ M2,Γ2.

Then, M2|Loc(P) = M1 and Γ2|Loc(P) = Γ1.

Theorem 3 proves the soundness of the transformation T with respect to the moni-
tor semantics presented in Figure 5. Informally, the theorem supposes that values of
shadow variables (resp. execution context variable pc) are initialized according to the
initial security memory Γ (resp. execution context pc). Then after the execution of the
transformed instructions, it states that the values of shadow variables capture the exact
values of the output security memory.

Theorem 3 (Sound monitoring of information flows). Let c, for all E,M,Γ,M′,Γ′
such that E � T [c, pc],M,Γ, pc ⇒ M′,Γ′.

Let us define the predicate ϒ(E,M,Γ) � for all x ∈Var(P), for all k ∈ [0,D(x)],
E � ∗kx,M ⇐ lxk and Γ(lxk) = sxk =⇒ E � ∗kΛ(x,k),M ⇒ sxk.

The following result holds: ϒ(E,M,Γ) and E � pc,M ⇒ pc =⇒ ϒ(E,M′,Γ′).

As the program transformation is sound with respect to our information flow monitor
semantics, it is also sound wrt. TINI. Therefore, we can soundly reason about infor-
mation flows through security labels defined by this program transformation. To our
knowledge, that is the first proof of soundness for inlining information flow monitors
handling pointers with aliasing. The proof, by induction on instructions evaluation ⇒,
heavily relies on the aliasing invariant stated in Lemma 1.

TINI verification. Figure 9 shows that the program transformation T can be used to
verify TINI through both dynamic and static analysis. Assuming the implementation
of security labels and their join operator, running the self-monitoring program T (P)
enforces TINI dynamically —actually, this is a hybrid approach since the monitor relies
on a prior static analysis SP— for single execution paths. This dynamic approach has
the advantage of being permissive since it ignores possible unsecure paths that are not
executed. It also enables dynamic loading of security policies [13], taking into account
eventual updates. The transformation T also enables the verification of TINI by static
analysis: for instance, off-the-shelf abstract interpretation tools can compute an over-
approximation of T (P) semantics for all execution paths, without implementing new
abstract domains. While still being more permissive than traditional type systems, such
an approach freezes the enforced security policy. Yet, it enhances our confidence in the
analyzed program. It also completely lifts the burden of runtime overhead.

242 M. Assaf et al.

Program P Program T(P)

Static analysis SP

MonitoringStatic analysis

Transformation T

analysed
byan

al
ys

ed
by

Single execu-
tion paths

All execution paths

Fig. 9. Non-interference verification using the program transformation T

5 Related Work

Information flow monitors. Le Guernic et al. [7] formalize a sound flow-sensitive moni-
tor for a simple imperative language with outputs. Le Guernic’s monitor combines both
static and dynamic analysis in order to enforce TINI. It is based on edit automata [14],
which are monitors enforcing a security policy by modifying program actions, namely
changing secret outputs to default values in Le Guernic’s monitor. Extending our ap-
proach with outputs is straightforward. Le Guernic et al. suggest that their monitor can
be implemented as a program transformation or a virtual machine (VM).

Russo and Sabelfeld [5] parameterize their hybrid monitor for a simple imperative
language by different enforcement actions (default, failstop or suppress). They also
prove the necessity to rely on static analysis to soundly monitor information flows while
still being more permissive than Hunt-Sands-style [3] flow-sensitive type systems. Un-
like monitors based on Russo and Sabelfeld’s one, we use a big-step semantics. Hence,
we neither need to maintain a stack of security labels for execution contexts, nor insert
instructions to notify the monitor at the immediate postdominator of each conditional.

Moore and Chong [15] extend the VM-like monitor of Russo and Sabelfeld with
dynamically allocated references, allowing different sound memory abstractions. In our
semantics, we use the most precise instantiation of their memory abstraction where
each concrete location correspond to one abstract location. While it is undecidable in
the general case to determine which locations might be updated by an instruction, we
argue that, for the sake of permissiveness, it is necessary to be as precise as possible at
least for the set of finite statically allocated locations.

Austin and Flanagan [11] investigate a purely dynamic monitor for a λ-calculus lan-
guage with references. Their monitor supports a limited flow-sensitivity since it imple-
ments a conservative no-sensitive upgrade policy; the monitor stops the execution when
assigning a public variable in a secret context. Thus, their monitor is proven sound
without having to rely on static analyses. Austin and Flanagan [16] also enhance their
monitor by a permissive-upgrade approach; their monitor labels public data that is as-
signed in secret contexts as partially leaked, then soundly forbid branching on those
data. Our monitor is fully flow-sensitive, hence more permissive.

Program Transformation for Non-interference Verification on Programs with Pointers 243

Sound inlining. Chudnov and Naumann [17] design a sound monitor inlining approach
based on Russo and Sabelfeld’s monitor. As they aim at monitoring information flows
for Javascript, they argue that VM monitors are impractical because of just-in-time
compilation. Their language supports output instructions but no references. We also
believe that inlining is necessary when the language is compiled rather than interpreted.

Magazinius et al. [18] investigate sound inlining of security monitors for an imper-
ative language supporting dynamic code evaluation but no references. Their monitor
is purely dynamic since it uses a no-sensitive upgrade policy as in Austin and Flana-
gan [11]. Our program transformation approach can also be applied for such a policy in
order to soundly monitor information flows for richer languages, including pointers.

6 Conclusion and Future Work

We have formalized a sound flow-sensitive information flow monitor handling point-
ers and aliasing. We have also inlined our monitor through a program transformation
proven sound with respect to our monitor semantics, hence with TINI. Our program
transformation enables permissive yet sound enforcement of TINI by both dynamic and
static analyses. Our monitor semantics ignores diverging runs since it is inspired by a
simple version of the Clight big-step semantics stripped of coinduction [8]. As pointed
by Le Guernic [7], this is not problematic when dealing with TINI because we ignore
non-termination covert channels.

As we aim to support a large subset of the C language, we plan on extending both
the semantics and the program transformation with richer C constructs. We are cur-
rently implementing our program transformation as a Frama-C plug-in, an open-source
tool for modular analysis of C programs [19]. Frama-C enables the design of powerful
analyses relying on the collaboration of off-the-shelf plug-ins. We are going to rely on
Value Analysis [20], an abstract interpretation plug-in of Frama-C, in order to compute
a correct approximation SP(c), of the set of locations that might be updated by an in-
struction c. Frama-C also supports ACSL [21], a formal specification language for C
programs. This language can allow us to handle declassification annotations.

Acknowledgement. We would like to thank Sébastien Bardin for his valuable
comments.

References

1. Denning, D., Denning, P.: Certification of Programs for Secure Information Flow. Commu-
nications of the ACM 20(7), 504–513 (1977)

2. Goguen, J., Meseguer, J.: Security Policies and Security Models. In: IEEE Symposium on
Research in Security and Privacy (1982)

3. Volpano, D., Irvine, C., Smith, G.: A Sound Type System for Secure Flow Analysis. Journal
in Computer Security 4(2-3), 167–187 (1996)

4. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-Insensitive Noninterference
Leaks More Than Just a Bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 333–348. Springer, Heidelberg (2008)

244 M. Assaf et al.

5. Russo, A., Sabelfeld, A.: Dynamic vs. Static Flow-Sensitive Security Analysis. In: Computer
Security Foundations Symposium, pp. 186–199. IEEE (2010)

6. Hunt, S., Sands, D.: On Flow-Sensitive Security Types. In: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol. 41,
pp. 79–90. ACM (2006)

7. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-Based Confidentiality
Monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89.
Springer, Heidelberg (2008)

8. Blazy, S., Leroy, X.: Mechanized Semantics for the Clight Subset of the C Language. Journal
of Automated Reasoning 43(3), 263–288 (2009)

9. Leroy, X.: Formal Verification of a Realistic Compiler. Communications of the ACM 52(7),
107–115 (2009)

10. Sabelfeld, A., Myers, A.: Language-Based Information-Flow Security. IEEE Journal on Se-
lected Areas in Communications 21(1), 5–19 (2003)

11. Austin, T., Flanagan, C.: Efficient Purely-Dynamic Information Flow Analysis. ACM Sig-
plan Notices 44(8), 20–31 (2009)

12. Assaf, M., Signoles, J., Tronel, F., Totel, E.: Program Transformation for Non-interference
Verification on Programs with Pointers. Research report RR-8284, INRIA (April 2013),
http://hal.inria.fr/hal-00814671

13. Chandra, D., Franz, M.: Fine-Grained Information Flow Analysis and Enforcement in a Java
Virtual Machine. In: Twenty-Third Annual Computer Security Applications Conference, AC-
SAC 2007, pp. 463–475. IEEE (2007)

14. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for Run-time
Security Policies. International Journal of Information Security 4(1), 2–16 (2005)

15. Moore, S., Chong, S.: Static Analysis for Efficient Hybrid Information-Flow Control. In:
2011 IEEE 24th Computer Security Foundations Symposium (CSF), pp. 146–160. IEEE
(2011)

16. Austin, T.H., Flanagan, C.: Permissive Dynamic Information Flow Analysis. In: PLAS 2010:
Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, pp. 1–12. ACM (2010)

17. Chudnov, A., Naumann, D.: Information Flow Monitor Inlining. In: 2010 23rd IEEE Com-
puter Security Foundations Symposium (CSF), pp. 200–214. IEEE (2010)

18. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly Inlining of Dynamic Security Monitors.
Computers & Security (2011)

19. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: A
Program Analysis Perspective. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

20. Cuoq, P., Prevosto, V., Yakobowski, B.: Frama-C’s Value Analysis Plug-in (September 2012),
http://frama-c.com/download/frama-c-value-analysis.pdf

21. Baudin, P., Filliâtre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language (September 2012),
http://frama-c.cea.fr/acsl.html

http://hal.inria.fr/hal-00814671
http://frama-c.com/download/frama-c-value-analysis.pdf
http://frama-c.cea.fr/acsl.html

	Program Transformation for Non-interference
Verification on Programs with Pointers
	1 Introduction
	2 Background
	3 Information Flow Monitoring Semantics
	4 Program Transformation
	5 Related Work
	6 Conclusion and Future Work
	References

