
1

Program Transformations for Asynchronous and
Batched Query Submission

Karthik Ramachandra, Mahendra Chavan, Ravindra Guravannavar, S Sudarshan

Abstract—The performance of database/Web-service backed applications can be significantly improved by asynchronous submission

of queries/requests well ahead of the point where the results are needed, so that results are likely to have been fetched already when

they are actually needed. However, manually writing applications to exploit asynchronous query submission is tedious and error-prone.

In this paper we address the issue of automatically transforming a program written assuming synchronous query submission, to one

that exploits asynchronous query submission. Our program transformation method is based on data flow analysis and is framed as a

set of transformation rules. Our rules can handle query executions within loops, unlike some of the earlier work in this area. We also

present a novel approach that, at runtime, can combine multiple asynchronous requests into batches, thereby achieving the benefits of

batching in addition to that of asynchronous submission. We have built a tool that implements our transformation techniques on Java

programs that use JDBC calls; our tool can be extended to handle Web service calls. We have carried out a detailed experimental study

on several real-life applications, which shows the effectiveness of the proposed rewrite techniques, both in terms of their applicability

and the performance gains achieved.

Index Terms—Query Optimization, Program Analysis, Program Transformation

✦

1 INTRODUCTION

In many applications calls made to execute database queries

or to invoke Web services are often the main causes of latency.

Asynchronous or non-blocking calls allow applications to

reduce such latency by overlapping CPU operations with

network or disk IO requests, and by overlapping local and

remote computation. Consider the program fragment shown in

Example 1. In the example, it is easy to see that by making a

non-blocking call to the database we can overlap the execution

of method foo() with the execution of the query, and thereby

reduce latency.

Many applications are however not designed to exploit

the full potential of non-blocking calls. Manual rewrite of

such applications although possible, is time consuming and

error prone. Further, opportunities for asynchronous query

submission are often not very explicit in the code. For instance,

consider the program fragment shown in Example 2. In the

program, the result of the query, assigned to the variable part-

Count, is needed by the statement that immediately follows

the statement executing the query. For the code in the given

form there would be no gain in replacing the blocking query

execution call by a non-blocking call, as the execution will

have to block on a fetchResult call immediately after making

the submitQuery call. It is however possible to transform

the given loop, as shown in Example 3, and thereby enable

• Karthik Ramachandra, IIT Bombay.

E-mail: karthiksr@cse.iitb.ac.in
• Mahendra Chavan, IIT Bombay (current affiliation: SAP, Pune)

E-mail: mahendra.chavan@sap.com

• Ravindra Guravannavar, IIT Hyderabad (current: independent consultant)

E-mail: ravig@acm.org
• S Sudarshan, IIT Bombay

E-mail: sudarsha@cse.iitb.ac.in

Example 1 A simple opportunity for asynchronous query

submission

r = executeQuery(query1);

s = foo(); // Some computation not dependent on r

bar(r, s); // Computation dependent on r and s

Code with Asynchronous Query Submission

handle = submitQuery(query1); // Non-blocking query submit

s = foo();

r = fetchResult(handle); // Blocking call to fetch query result

bar(r, s);

Example 2 Hidden opportunity for asynchronous query sub-

mission

qt = dbCon.prepare(“select count(partkey) (s0)

from part where p category=?”);

while(!categoryList.isEmpty()) { (s1)

category = categoryList.removeFirst(); (s2)

qt.bind(1, category); (s3)

partCount = executeQuery(qt); (s4)

sum += partCount; (s5)

}

asynchronous query submission.

The rewritten program in Example 3 contains two loops;

the first loop submits queries in a non-blocking mode and the

second loop uses a blocking call to fetch the results and then

executes the statements that depend on the query results.

The original program is likely to be slow since it makes

multiple synchronous requests to the database, each of which

2

Example 3 Loop Transformation to Enable Asynchronous

Query Submission

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

int handle[MAX SIZE], n=0;

while(!categoryList.isEmpty()) {
category = categoryList.removeFirst();

qt.bind(1, category);

handle[n++] = submitQuery(qt);

}
for(int i = 0; i < n; i++) {

partCount = fetchResult(handle[i]);

sum += partCount;

}

incurs network round trip delays, as well as delays in the

database. In contrast, the rewritten program allows the network

round trips to be overlapped. It also allows the database to bet-

ter use its resources (multiple CPUs and disks) to process mul-

tiple asynchronously submitted queries. Asynchronous calls

have been long employed to make concurrent use of different

system components, like CPU and disk.

In this paper our focus is on automated rewriting of applica-

tion programs so as to submit multiple queries asynchronously,

as illustrated in Example 3. In general, automatically trans-

forming a given loop so as to make asynchronous query

submissions is a non-trivial task, and we address the problem

in this paper.

The most closely related prior work to our paper is that

of Guravannavar and Sudarshan [1], who describe how to

rewrite loops in database applications to replace multiple

executions of a query in a loop by a single execution of a

set-oriented (batched) form of the query. Batching can provide

significant benefits because it reduces the delay due to multiple

synchronous round trips to the database, and because it allows

more efficient query processing techniques to be used at the

database. Our program transformation techniques are based on

the techniques described by Guravannavar and Sudarshan [1],

but unlike their work, we show how to exploit asynchronous

query submission, instead of batching.

Although batching reduces round-trip delays and allows

efficient set-oriented execution of queries, it does not overlap

client computation with that of the server, as the client

completely blocks after submitting the batch. Batching also

results in a delayed response time, since the initial results from

a loop appear only after the complete execution of the batch.

Also, batching may not be applicable altogether when there is

no efficient set-oriented interface for the request invoked, as

is the case for many Web services.

As compared to batching, asynchronous submission of

queries can allow overlap of client computation with com-

putation at the server; it can also allow initial results to be

processed early, instead of waiting for an entire batch to be

processed at the database, which can lead to better response

times for initial results. Further, asynchronous submission is

applicable to Web Services that do not support set-oriented

access. On the other hand pure asynchronous submission

can lead to higher network overheads, and extra cost at the

database, as compared to batching. We present a technique

which we call asynchronous batching, which combines the

benefits of asynchronous submission and batching.

The following are the key contributions of this paper:

1) We show (in Section 3) how a basic set of program

transformations, such as loop fission, enable complex

programs to be rewritten to make use of asynchronous

query submission. Although loop fission is a well known

transformation in compiler optimizations and batching, to

the best of our knowledge no prior work shows its use

for asynchronous submission of database queries.

2) Section 4 describes the design of our implementation. We

first describe (in Section 4.1) the design challenges of

such a program transformation tool. Since programmers

may need to debug a rewritten version of their program,

we present several techniques to make the rewritten

program more readable.

We then describe (in Section 4.2) the design of a frame-

work that supports asynchronous query submission. Our

framework provides a common API that can be config-

ured to use either asynchronous submission or batching,

or a combination of both.

3) In Section 5 we present extensions of the basic techniques

described above. Specifically, we present (in Section 5.1)

a modification of the code generated by the loop fission

transformation that optimizes for response time by allow-

ing early generation of initial results.

We also present (in Section 5.2) asynchronous batching,

a novel technique that combines the benefits of asyn-

chronous query submission and batching by combining,

at run time, multiple pending asynchronous requests into

one or more batched requests.

4) These techniques have been incorporated into the

DBridge holistic optimization tool [2], [3] to optimize

Java programs that use JDBC.

We present (in Section 6) a detailed experimental study

of the proposed transformations on several real world

applications. The experimental study shows significant

performance gains due to our techniques.

This article is an extended version of our earlier conference

paper [4]. Contribution 3, which is entirely novel, along with

the related performance study in Section 6.3, are the key

additions made in this journal version.

The rest of the paper is organized as follows. The model

of asynchronous submission used in this paper is described

in Section 2. Sections 3 through 6 describe our key contribu-

tions, as outlined above. Related work is described in Sec-

tion 7. We discuss possible extensions of our techniques

in Section 8 and conclude in Section 9.

2 ASYNCHRONOUS EXECUTION MODEL

We use the following model in this paper for coordinating

asynchronous calls. The calling program explicitly polls the

status of the asynchronous call it has made. When the results of

the call are strictly necessary to make any further computation,

3

the calling program blocks until the results are available.

Example 1 of Section 1 shows a program using this model

to coordinate the asynchronous query execution. We now

formally define the semantics of the methods we use.

• executeQuery: Submits a query to the database system for

execution, and returns the results. The call blocks until

the query execution completes.

• submitQuery: Submits a query to the database system for

execution, but the call returns immediately with a handle

(without waiting for the query execution to finish).

• fetchResult: Given a handle to an already issued query

execution request, this method returns the results of the

query. If the query execution is in progress, this call

blocks until the query execution completes.

More details regarding the design of these methods are given in

Section 4. It is possible to extend our approach to make use of

other models of asynchronous execution, but such extensions

are not part of this paper.

3 BASIC TRANSFORMATIONS

Guravannavar and Sudarshan [1] present a set of program

transformation rules to rewrite program loops so as to enable

batched bindings for queries. In this section, we show how

some of these transformation rules can be extended for asyn-

chronous query submission. We then present a novel statement

reordering algorithm, in the next section, which significantly

improves the applicability of the transformation rules.

The program transformation rules we present, like the

equivalence rules of relational algebra, allow us to repeatedly

refine a given program. Applying a rule to a program involves

substituting a program fragment that matches the antecedent

(LHS) of the rule with the program fragment instantiated by

the consequent (RHS) of the rule. Some rules facilitate the

application of other rules and together achieve the goal of

replacing a blocking query execution statement with a non-

blocking statement. Applying any rule results in an equivalent

program and hence the rule application process can be stopped

at any time. We omit a formal proof of correctness for our

transformation rules, and refer the interested reader to [5].

Each program transformation rule has not only a syntactic

pattern to match, but also certain pre-conditions to be satisfied.

The pre-conditions make use of the inter-statement data de-

pendencies obtained by static analysis of the program. Before

presenting the formal transformation rules, we briefly describe

the data dependence graph, which captures the various types

of inter-statement data dependencies.

3.1 Data Dependence Graph

Inter-statement dependencies are best represented in the form

of a data dependence graph [6] or its variant called the

program dependence graph [7]. The Data Dependence Graph

(DDG) of a program is a directed multi-graph in which

program statements are nodes, and the edges represent data

dependencies between the statements. The data dependence

graph for the program of Example 2 is shown in Figure 1.

The types of data dependence edges are explained below.

s5:sum += partCount

s4:partCount=executeQuery(qt)

s3:qt.bind(1,category)

s2:category=categoryList.removeFirst()

s1:while(!categoryList.isEmpty())

s0:qt=dbCon.prepare(...)

LFD LODLAD

FD LAD

FD LAD

FD

FD

FD LAD

AD LFD

Fig. 1. Data Dependence Graph for Example 2

• A flow-dependence edge (
FD
−−→) exists from statement

(node) sa to statement sb if sa writes a location that sb
may read, and sb follows sa in the forward control-flow.

For example, in Figure 1, a flow-dependence edge exists

from node s2 to node s3 because statement s2 writes

category and statement s3 reads it.

• An anti-dependence edge (
AD
−−→) exists from statement

sa to statement sb if sa reads a location that sb may

write, and sb follows sa in the forward control flow.

For example, in Figure 1, an anti-dependence edge exists

from node s1 to node s2 because statement s1 reads

categoryList and statement s3 writes it.

• An output-dependence edge (
OD
−−→) exists from statement

sa to sb if both sa and sb may write to the same location,

and sb follows sa in the forward control flow.

• A loop-carried flow-dependence edge (
LFDL−−−−→) exists

from sa to sb if sa writes a value in some iteration of

a loop L and sb may read the value in a later iteration.

For example, in Figure 1, a loop-carried flow-dependence

edge exists from node s2 to node s1 because statement

s2 writes categoryList and statement s1 reads it in a

subsequent iteration. Similarly, there are loop carried

counter parts of anti and output dependencies, which are

denoted by (
LADL−−−−→) and (

LODL−−−−→) respectively.

• External data dependencies: Program statements may

have dependencies not only through program variables

but also through the database and other external resources

like files. For example, we have s1
FD
−−→ s2 if s1 writes

a value to the database, which s2 may read subse-

quently. Though standard data flow analysis performed by

compilers considers only dependencies through program

variables, it is not hard to extend the techniques to

consider external dependencies, at least in a conservative

manner. For instance, we could model the entire database

(or file system) as a single program variable and thereby

assume every query/read operation on a database/file to

be conflicting with an update/write of the database/file. In

practice, it is possible to perform a more accurate analysis

on the external writes and reads.

4

Rule A Basic Equivalence Rule for Loop Fission

while p loop
ss1; s: v = executeQuery(q); ss2;

end loop;

such that:

(a) No loop-carried flow dependencies (i.e., LFD edges, external or
otherwise) cross the points before and after the query execution
statement s.

(b) No loop-carried external anti or output dependencies cross the
points before and after s.

m
Table(T) t;
int loopkey = 0;
while p loop

Record(T) r; ss′1;
r.handle = submitQuery(q); r.key=loopkey++;
t.addRecord(r);

end loop;
for each r in t order by t.key loop

ssr; v = fetchResult(r.handle); ss2;
end loop;
delete t;

where the schema T and statement sequences ss′1, ssr are constructed
as follows.
Let SV (split variables) be the set of variables which are written in
ss1 and read in ss2.

1) Table t and record r have attributes corresponding to each
variable in SV and a key.

2) ss′1 is the same as ss1 but with additional assignment statements
to attributes of r. Each write to a split variable v is followed by
an assignment statement r.v = v;. If the write is conditional,
then the newly added statement is also conditional on the same
guard variable.

3) ssr is a statement sequence assigning attributes of r to cor-
responding variables. Each assignment in ssr is conditional;
the assignment is made only if the attribute of r is non-null
(assigned).

Note: The names of variables/fields for the table(T), record(r), and

loopkey have to be chosen so as to avoid any name conflict with

existing program variables.

3.2 Basic Loop Fission Transformation

Consider the program fragment shown in Example 2 and its

rewritten form shown in Example 3. The key transformation,

to enable such a program rewriting is loop fission (or loop

distribution) [8]. Guravannavar and Sudarshan [1] make use

of loop fission to replace iterative query executions with a

batched (or set-oriented) query execution. In this section, we

show how the program transformation rules proposed in [1]

can be extended to make use of asynchronous calls.

A formal specification of the transformation is given as Rule

A. The LHS of the rule is a generic while loop containing

a blocking query execution statement s. ss1 and ss2 are se-

quences of statements, which respectively precede and succeed

the query execution statement in the loop body. The LHS of

the rule then lists two pre-conditions, which are necessary for

the rule to be applicable. The RHS of the rule contains two

loops, the first one making asynchronous query submissions

and the second one performing a blocking fetch followed by

execution of statements that process the query results.

Example 4 An example where loop fission is not directly

applicable due to loop-carried dependencies

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

category = readInputCategory();

while(category != null) {
qt.bind(1, category); (s1)

partCount = executeQuery(qt); (s2)

sum += partCount; (s3)

category = getParentCategory(category); (s4)

}

Example 5 After reordering the statements in Example 4

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

category = readInputCategory();

while(category != null) {
temp category = category;

category = getParentCategory(category);

qt.bind(1, temp category);

partCount = executeQuery(qt);

sum += partCount;

}

Note that any number of query execution statements within

a loop can be replaced by non-blocking calls by repeatedly

applying the loop fission transformation. Although we present

the loop fission transformation rule w.r.t. a while loop, variants

of the same transformation rule can be used to split set iteration

loops (such as the second loop in the RHS of the Rule A).

Rule A makes an improvement of the fundamental nature

to the loop fission transformation proposed in [1]. Rule A

significantly relaxes the pre-conditions (see Rule 2 in [1]).

For instance, Rule A allows loop-carried output dependencies

to cross the split boundaries of the loop. This rule can

also be applied to perform batching, thereby increasing its

applicability. In general, our transformations are such that

the resulting program can be used either for batching or

for asynchronous submission, and this choice can be made

at runtime. Our transformations in fact blur the distinction

between batching and asynchronous submission, and can be

used to achieve the best of both, as described in Section 5.2.

Note that adding split variables introduces an additional

overhead as compared to the original program, primarily in

terms of the space required to store the contexts of each

iteration of the loop. However, for loops that involve data

access from a database/web service, the overheads of data

access are typically higher than the overheads due to split

variables. Approaches to minimize memory overheads are

discussed briefly in Section 8.

Applicability

The pre-condition that no loop-carried flow dependencies cross

the point of split can limit the applicability of Rule A in

several practical cases. Consider the program in Example 4.

5

Rule B Converting control-dependencies to flow-dependencies

if (p) { ss1 } else { ss2 }
m

boolean cv = p;

ss

where ss[i] = (cv == true)?ss1[i], 1 ≤ i ≤ |ss1| and

ss[k + j] = (cv == false)?ss2[j], 1 ≤ j ≤ |ss2|, k = |ss1|

We cannot directly split the loop so as to make the query

execution statement (s2) non-blocking, because there are loop-

carried flow-dependencies from statement s4 to s1 and to the

loop predicate, which violate pre-condition (a) of Rule A.

Statement s4, which appears after s1, writes a value and

statement s1 reads it in a subsequent iteration. Such cases

are very common in practice (e.g., in most while loops the

last statement affects the loop predicate, introducing a loop-

carried flow dependency).

However, in many cases it is possible to reorder the state-

ments within a loop so as to make loop fission possible,

without affecting the correctness of the program. For example,

the statements within the loop of Example 4, if reordered as

shown in Example 5, permit loop fission. Note that in the

transformed program of Example 5 there are no loop-carried

flow dependencies, which prohibit the application of Rule A to

split the loop at the query execution statement. An algorithm

for statement reordering to enable loop fission, along with a

sufficient condition for the applicability of the loop fission

transformation are given in [4].

Further, Rule A is also not directly applicable when the

query execution statement lies inside a compound statement

such as an if-then-else block. We now present additional trans-

formation rules which can be used to address this restriction.

3.3 Control Dependencies

We handle control dependencies using the approach of [1].

Consider the initial program shown in Example 6. The query

execution statement appears in a conditional block. This

prohibits direct application of Rule A to split the loop at

the program point immediately following the query execution

statement.

Conditional branching (if-then-else) and while loops lead

to control dependencies. If the predicate evaluated at a con-

ditional branching statement s1 determines whether or not

control reaches statement s2, then s2 is said to be control

dependent on s1. During loop split, it may be necessary to

convert the control dependencies into flow dependencies [8],

by introducing boolean variables and guard statements. We

define a transformation rule to perform this conversion.

The formal specification of the transformation, called Rule 4

in [1] is shown as Rule B in this paper. An if-then-else block is

transformed into an assignment of the value of the predicate p

to a boolean variable cv, followed by a sequence of statements

guarded by the value (or the negation) of boolean variable

cv. In Example 6, we apply Rule B and introduce a boolean

variable c to remember the result of the predicate evaluation,

Example 6 Transforming Control-Dependencies to Flow-

Dependencies

Initial Program

for (i=0; i < n; i++) {
v = foo(i);

if (v == 0) {
v = executeQuery(q);

log(v);

}
print(v);

}

After applying Rule B

for (i = 0; i < n; i++) {
v = foo(i);

boolean c = (v == 0);

c==true? v = executeQuery(q);

c==true? log(v);

print(v);

}

and then convert the statements inside the conditional block

into guarded statements. We can then apply Rule A and split

the loop as described earlier.

Note that Exceptions thrown during query execution in the

original program will now be thrown as part of the asyn-

chronous submission (submitQuery API). Our implementation

catches these exceptions, and re-throws them at the corre-

sponding fetchResult invocation. Control transfer statements

such as break, continue, and return also lead to control

dependencies. These statements lead to additional edges in

the control flow graph, and with these additional edges, our

transformation rules can be applied as described. Details are

fairly straight-forward and hence omitted.

3.4 Nested Loops

A query execution statement may be present in an inner loop

that is nested within an outer loop. In such a case, it may be

possible to split both the inner and the outer loops, thereby

increasing the number of asynchronous query submissions

before a blocking fetch is issued. To achieve this, we first split

the inner loop and then the outer loop. Such a transformation

is illustrated in Example 7. Note that the temporary table

introduced during the inner loop’s fission becomes a nested

table for the temporary table introduced during the outer loop’s

fission. As the idea is straight-forward, we omit a formal

specification of this rule.

4 SYSTEM DESIGN AND IMPLEMENTATION

The techniques we propose can be used with any language and

data access API. We have implemented these ideas and incor-

porated them into the DBridge holistic optimization tool [2],

[3]. A system that can support asynchronous query submission

would include two main components (i) a source-to-source

6

Example 7 Dealing with nested loops

while(pred1) {
while(pred2) {

x = executeQuery(q); process(x);

}
}

After Transformation

Table t1 = new Table();

while(pred1){
Table t2 = new Table(); Record r1 = new Record();

while(pred2){
Record r2 = new Record();

r2.handle = submitQuery(q);

t2.addRecord(r2);

}
r1.child = t2; t1.addRecord(r1);

}
for each r1 in t1 {

for each r2 in r1.child {
x = fetchResult(r2.handle); process(x);

}
}

Code (Jimple)
Intermediate

Source Java
File

Dataflow
Analysis

Def−Use

Information

DDG

Construction

Dependence
Graph

Apply Async

Trans Rules

Modified
Jimple CodeDecompile

File

Target Java

Parsing and
Conversion to
Interm Rep

Fig. 2. Program Transformation Phases

program transformer, and (ii) a runtime asynchronous sub-

mission framework. The runtime infrastructure also supports

asynchronous batching, a technique that supports batching

of asynchronous requests, described in Section 5.2. We now

describe each of these components in detail.

4.1 Program Transformer

Our rewrite rules can conceptually be used with any language.

We chose Java as the target language and JDBC as the interface

for database access. To implement the rules we need to

perform data flow analysis of the given program and build

the data dependence graph. We used the SOOT optimization

framework [9]. SOOT uses an intermediate code representation

called Jimple and provides dependency information on Jimple

statements. Our implementation transforms the Jimple code

using the dependence information. Finally, the Jimple code is

translated back into a Java program.

The important phases in the program transformation process

are shown in Figure 2. The main task of our program trans-

formation tool appears in the Apply Async Trans Rules phase.

The program transformation rules are applied in an iterative

manner, updating the data flow information each time the code

changes. The rule application process stops when all query

execution statements (or the user specified ones) which do not

lie on a true-dependence cycle, are converted to asynchronous

calls.

Our tool has been implemented with the following design

goals.

1) Readability of the transformed code

2) Robustness for variations in intermediate code

3) Extensibility

Since our program transformations are source-to-source,

maintaining readability of the transformed code is important.

We achieve this goal through several measures. (a) The

transformed code mostly uses standard JDBC calls and very

few calls to our custom runtime library. This is achieved by

providing a set of JDBC wrapper classes. The JDBC wrapper

classes and our custom runtime library hide the complexity of

asynchronous calls. (b) When we apply Rule B followed by

Rule A to split a loop, the resulting code will have many

guarded statements. This leads to a very different control

structure as compared to the original program. We therefore

introduce a pass where such guarded statements are grouped

back in each of the two generated loops, so that the resulting

code resembles the original code.

The intermediate code has the advantage of being simple

and suitable for data-flow analysis, but it makes the task of

recognizing desired program patterns difficult. Each high-level

language construct translates to several instructions in the

intermediate representation. We have designed our program

transformation tool for robust matching of desired program

fragments. The tool can handle several variations in the

intermediate (Jimple) code.

One of our design goals has been extensibility. Each of

the transformation rules has been coded as a separate class.

Application of any transformation rule independently must

preserve the correctness of the program. Such a design makes

it easy to add new program transformation rules.

4.2 Runtime Asynchronous Submission Framework

The runtime library works as a layer between the actual

data access API (such as JDBC) and the application code.

It provides asynchronous submission methods in addition to

wrapping the underlying API. Features such thread manage-

ment and cache management are handled by this library.

The transformed programs in our implementation use the

Executor framework of the java.util.concurrent package for

thread scheduling and management [10].

Figure 3 shows the behaviour of the asynchronous submis-

sion API. The first loop in the transformed program submits

the query to a queue in every iteration. The stmt.addBatch(ctx)

invocation is a non blocking query submission, with the same

semantics as the submitQuery API described in Section 2.

This queue is monitored by a thread pool which manages a

configurable number of threads. The requests are picked up by

7

Fig. 3. Asynchronous query submission API

free threads which maintain open connections to the database.

The individual threads execute the query in a synchronous

manner i.e., the thread blocks till the query results are returned.

The results are then placed in a cache keyed by the loop

context(ctx).

The second loop accesses the results corresponding to the

loop context using the stmt.getResultSet(ctx) which has the

same semantics as the fetchResult API described in Section 2.

Subsequently, it executes statements that depend on the query

results. The LoopContextTable ensures the following: (i) it

preserves the order of execution between the two loops and

(ii) for each iteration of the first loop, it captures the values

of all variables updated, and restores those values in the

corresponding iteration of the second loop.

5 EXTENSIONS AND OPTIMIZATIONS

We now describe two extensions to our basic technique of

asynchronous query submission. These extensions can signif-

icantly improve performance as shown by our experiments.

5.1 Overlapping the Generation and Consumption
of Asynchronous Requests

Consider the basic loop fission transformation Rule A. On

applying this rule, a loop will result in two loops, the first that

generates asynchronous requests (hereafter referred to as the

producer loop), and the second that processes, or consumes

results (hereafter referred to as the consumer loop).

According to Rule A, the processing of query results (the

consumer loop) starts only after all asynchronous submis-

sions are completed (i.e, after the producer loop completes).

Although this transformation significantly reduces the total

execution time, it results in a situation where results start

appearing much later than in the original program. In other

words, for a loop of n iterations, the time to k-th response

(1 ≤ k ≤ n) for small k is more as compared to the original

program, even though the time may be less for larger k. This

could be a limitation for applications that need to show some

results early, or that only fetch the first few results and discard

the rest.

This limitation can be overcome by overlapping the con-

sumption of query results with the submission of requests. The

transformation Rule A can be extended to run the producer

loop (the loop that makes asynchronous submissions) as a

separate thread. That is, the main program spawns a thread to

execute the producer loop, and continues onto the consumer

loop immediately. Since the loop context table (Table t in

Rule A) may be empty when the consumer loop starts, and

may get more tuples as the consumer loop progresses, we

implement the loop context table as a blocking (producer-

consumer) queue. The producer thread submits requests onto

this queue, which are picked up by the consumer loop.

Note that this transformation is safe, and does not lead to

race conditions since there are no data dependences between

the producer and consumer loop other than through the loop

context table. This is because the values of all variables

updated in the producer loop are captured, and restored in

the consumer loop via the loop context table. The blocking

queue implementation of the loop context table avoids race

conditions on the table. The details of this extension are

straightforward and hence a formal specification is omitted.

We evaluate the benefits of this extension and show the results

in Section 6.3.

5.2 Asynchronous Submission of Batched queries

As mentioned earlier, the transformation rules proposed in this

paper can be used for either batching or asynchronous sub-

mission. However, there are key differences in the approaches

due to which their performance characteristics vary. In this

section we compare the relative benefits and drawbacks of

batching and asynchronous query submission, and propose a

new strategy that can combine the benefits of both strategies.

5.2.1 Asynchronous Submission vs. Batching

The following are some of the drawbacks of batching as

compared to asynchronous submission:

• Although batching reduces round-trip delays and allows

efficient set-oriented execution of queries, it does not

overlap client computation with that of the server, as the

client blocks after submitting the batch.

• Although batching reduces the overall execution time of

the program, for initial results it typically results in a

worse response time, since the result of the first query is

available only when the result set of the large batch is

returned.

• Since batching retrieves the results for the whole loop at

once, it may significantly increase the memory require-

ment at the client.

• Batching may not be applicable when there is no (effi-

cient) set-oriented interface for the request invoked.

The asynchronous query submission technique presented in

Section 3 avoids the problems mentioned above for batching,

but has a few drawbacks of its own, as compared to batching:

• Asynchronous query submission does not reduce the

number of network round trips but only overlaps them.

This may increase network congestion.

• The database still receives individual queries and hence

this may result in a lot of random IO at the database.

8

• As a result of the above, whenever batching is applicable,

and the number of iterations of the loop is large, batching

leads to much better performance improvements (in terms

of total execution time) than asynchronous submission.

More details are described in our experiments in Section 6.3.

We now describe how to combine both these approaches.

5.2.2 Asynchronous Batching: Best of Both Worlds

Batching and Asynchronous submission can be seen as two

ends of a spectrum. Batching, at one end, combines all requests

into one big request with no overlapping execution, where

as asynchronous submission retains individual requests as is,

while completely overlapping their execution. Clearly, there

is a range of possibilities between these two, that can be

achieved by asynchronous submission of multiple, smaller

batches of queries. This approach, which we call asynchronous

batching, retains the advantages of batching and asynchronous

submission, while avoiding their drawbacks.

Consider the example in Figure 3. As mentioned earlier,

the first loop in this program submits a query to a queue in

each iteration. This request queue is monitored by a thread

pool. In pure asynchronous submission, each free thread picks

up an individual request from the queue. In contrast, with

asynchronous batching, the thread can observe the whole

queue, and pick up one, or more, or all requests from the

queue. If a thread picks up a single request, it executes the

query as described earlier. However. if a thread picks up

more than one request, it performs a query rewrite as done

in batching, and executes those requests as a batch. Once the

result of the batch arrives, it is split into multiple result sets

corresponding to each individual query, which are then placed

in the cache.

Asynchronous batching aims to achieve the best of batching

and asynchronous submission, since it has the following

characteristics.

• Like batching, it reduces network round trips, since

multiple requests may be batched together.

• Like asynchronous submission, it overlaps client compu-

tation with that of the server, since batches are submitted

asynchronously.

• Like batching, it reduces random IO at the database, due

to use of set oriented plans.

• Although the total execution time of this approach might

be comparable to that of batching, this approach results

in a much better latency comparable to asynchronous

submission, since the results of queries become available

much earlier than in batching.

• Memory requirements do not grow as much as with pure

batching, since we deal with smaller batches.

The key challenge in engineering such a system is to

identify the sweet spot in the spectrum between batching and

asynchronous submission. This primarily involves deciding the

size of each batch and the number of threads to use, which

would result in the best performance. This decision cannot

be made statically during program transformation, since it

depends on runtime factors such as (i) the number of iterations

in the loop, (ii) the query processing time and the size of its

results, (iii) the capacity and load on the client machine and

the database server, (iv) network bandwidth availability.

Asynchronous batching is a completely runtime decision;

the program transformation is performed in accordance with

the rewrite rules in this paper, and requires no additional

rewriting. The runtime library makes decisions on asyn-

chronous calls vs. partial batching in a dynamic fashion. We

now discuss strategies to tune parameters for asynchronous

batching.

5.2.3 Adaptive tuning of batch size

The runtime library is extended to allow a thread to pick

up one or more requests from the queue. However the key

problem is the following: given a queue of n requests, how

many requests should a free thread pick up? Note that the only

information available for a thread is the current state of the

queue. We now propose strategies to automatically vary the

batch size at runtime. Assuming that the number of threads T

available on the client is fixed, these strategies are affected by

the following metrics:

1) The request arrival rate: This is the rate at which the

program submits requests onto the queue. In our example

of Figure 3, the first loop submits one request per

iteration. Arrival rate essentially captures the time taken

between consecutive submissions.

2) The request processing rate: This is the rate at which

requests in the queue are processed. Processing a request

includes the query processing time at the database and

the network round trip time.

The request arrival rate would be higher than the requests

processing rate if any of the following are true: (a) the

producer loop has no expensive operations, (b) network round

trips are very expensive, (c) query processing time is high.

We now propose three possible strategies for asynchronous

batching.

One-or-all Strategy: This is a simple strategy to combine

asynchronous submission and batching. Given a queue with n

requests, the One-or-all strategy for a free thread is as follows:

If n = 1, then pick up the request from the queue, and execute

it as an individual request. If n > 1, pick up all the n requests

in the queue and batch them. In other words, (i) insert the

parameters of the n requests into a temporary parameter table,

(ii) rewrite the query using the technique given in [1], (iii)

execute this rewritten query. If n = 0, wait for new requests.

In this strategy, a free thread will always clear the queue by

picking up all pending requests from the queue.

Lower Threshold Strategy: The One-or-all strategy can

be improved based on an observation regarding batching.

Batching results in 3 network round trips, one each for (a)

inserting parameters into a temporary table, (b) executing the

batched query, and (c) clearing the temporary table. In fact

each thread incurs another round trip while batching for the

first time in order to create the temporary table. This means

that the time taken to process one batch is roughly equivalent

to the time taken to process at least three individual requests

9

sequentially, since there are 3 network round trips and 3

queries being executed for every batch. We verified this in

our experiments, and found that very small batches perform

poorly as compared to asynchronous submission.

Therefore, we use the following strategy. We define a

batching threshold bt ≥ 3. If n > bt, then pick up all the n

requests in the queue and batch them. If 1 ≤ n ≤ bt, then pick

up one request from the queue, and execute it as an individual

request. If n = 0, wait for new requests. Observe that in this

strategy, a free thread does not necessarily clear the queue.

Consider the situation where the request arrival rate is

higher than the request processing rate. In this setting, the first

few (about T) requests would be sent as individual requests

asynchronously. Since the queue builds up much faster than it

is consumed, after the first few iterations, the requests would

be submitted in batches with increasing sizes.

On the other hand, consider the case where the request

processing rate is higher than the rate of arrival of requests

onto the queue. In this situation, the queue would not grow in

size since the requests keep getting consumed at a higher rate,

and hence n would remain below (or close to) the batching

threshold. This implies that most requests would be sent

individually, mimicking the behaviour of asynchronous query

submission.

Thus we can see that the lower threshold strategy is actually

quite adaptive. Batch sizes vary in accordance with the queue

size, which in turn depends upon the arrival rate of requests,

the rate at which requests get processed, and the number of

threads working concurrently on processing requests.

Growing upper-threshold based Strategy: Although the

above approach improves response time and adapts the batch

size according to the queue size, in situations where the arrival

rate of requests is high, it may lead to a situation where a single

large batch is submitted while the remaining threads are idle.

This could lead to a slower response time for initial results,

since the database would take a longer time to process a large

batch, and higher memory consumption due to a large request

queue, although the larger batch size may reduce overall work

at the database server, and reduce the time to process all

requests.

For applications that need better response times for initial

results, we use an upper-threshold strategy. We use a growing

upper threshold that bounds the maximum batch size. This

upper threshold is not a constant but is initially small, so

that batch sizes are small initially, but grows as more requests

are submitted, so that response times for later results are not

unduly affected due to very small batch sizes.

The growing upper-threshold strategy works as follows. If

the number of requests in the queue is less than the current

upper threshold, all requests in the queue are added to a single

batch. However, if the number of requests in the queue is

more than the current upper threshold, the batch size that

is generated is equal to the current threshold; however, for

future batches, the upper threshold is increased; in our current

implementation of the growing upper-threshold strategy, we

double the upper threshold whenever a batch of size equal to

the current upper threshold is created.

Note that the upper threshold strategy is orthogonal to the

lower-threshold strategy, and each may be used with or without

the other.

6 EXPERIMENTAL RESULTS

We have conducted a detailed experimental evaluation of our

techniques using the DBridge tool. In Section 6.1, we present

our experiments on asynchronous query submission and its

benefits. Next, in Section 6.3, we compare basic asynchronous

submission with the extensions and optimizations described in

Section 5, and discuss the results.

6.1 Asynchronous query submission

For evaluating the applicability and benefits of the proposed

transformations, we consider four Java applications: two pub-

licly available benchmarks (which were also considered by

Manjhi et al. [11]) and two other real-world applications we

encountered. Our current implementation does not support all

the transformation rules presented in this paper, and does not

support exception handling code. Hence, in some cases part

of the rewriting was performed manually in accordance with

the transformation rules.

We performed the experiments with two widely used

database systems - a commercial system we call SYS1, and

PostgreSQL. The SYS1 database server was running on a 64

bit dual-core machine with 4 GB of RAM, and PostgreSQL

was running on a machine with two Xeon 3 GHz processors

and 4 GB of RAM. Since disk IO is an important param-

eter that affects the performance of applications, we report

the results for both warm cache and cold cache. The Java

applications were run from a remote machine connected to

the database servers over a 100 Mbps LAN. The applications

used JDBC API for database connectivity. The cache of results

was maintained using the ehcache library [12].

Experiment 1: Auction Application: We consider a bench-

mark application called RUBiS [13] that represents a real

world auction system modeled after ebay.com. The application

has a loop that iterates over a collection of comments, and

for each comment loads the information about the author of

the comment. The comments table had close to 600,000 rows,

and the users table had 1 million rows. First, we consider

the impact of our transformations as we vary the number of

loop iterations (by choosing user ids with appropriate number

of associated comments), fixing the number of threads at 10.

Figure 4 shows the performance of this program before and

after the transformations with warm and cold caches in log

scale. The y-axis denotes the end to end time taken for the

loop to execute, which includes the application time and the

query execution time.

For a small number of iterations, the transformed program

is slower than the original program. The overhead of thread

creation and scheduling overshoots the query execution time.

However, as the number of iterations increases, the benefits of

our transformations increase. For the case of 40,000 iterations,

we see an improvement of a factor of 8. Although it is

unrealistic to load 40,000 comments in a web application,

10

 0.01

 0.1

 1

 10

 100

 1000

4 40 400 4000 40000

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: SYS1
Threads: 10

46.4

5.9

50

9
5.1

0.8

6.7

0.9

Original Program (Cold Cache)
Transformed Program (Cold Cache)

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 4. Experiment 1 with varying number of iterations

 0

 10

 20

 30

 40

 50

1 2 5 10 20 30 40 50

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: SYS1
Cache: Warm
Iterations: 40K

Original Program
Transformed Program

Fig. 5. Experiment 1 with varying number of threads

we have performed this experiment to understand the extent

of improvement that could be gained by our transformations,

and to study the behaviour of our rewritten program, while

increasing the amount of data it handles.

Next, we keep the number of iterations constant (at 40,000)

and vary the number of threads. The results of this experiment

are shown in Figure 5. The execution time (for both the warm

and cold cache) drops sharply as the number of threads is

increased, but gradually reaches a point where the addition of

threads does not improve the execution time. The results of

the above experiment on PostgreSQL follow the same pattern

as in the case of SYS1, and the results are given in [4].

Experiment 2: Bulletin Board Application: RUBBoS [13]

is a benchmark bulletin board-like system inspired by slash-

dot.org. For our experiments we consider the scenario of

listing the top stories of the day, along with details of the

users who posted them. Figure 6 shows the results of our

transformations with different number of iterations. Although

the transformed loop in the program takes slightly longer time

for small number of iterations, the benefits increase with the

number of iterations (note the log scale of y-axis).

Experiment 3: Category Traversal: This program, taken

from [1], finds the part with maximum size under a given

category (including all its sub-categories) by performing a DFS

of the category hierarchy. For each node (category) visited,

the program queries the item table. The TPC-H part table,

augmented with a new column category-id and populated with

10 million rows, was used as the item table. The category table

had 1000 rows - 900 leaf level, 90 middle level and 10 top level

categories (approximately). A clustering index was present on

the category-id column of the category table and a secondary

 0.001

 0.01

 0.1

 1

 10

6 60 600 6000

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: PostGreSQL
Cache: Warm
Threads: 10

3.6

0.8
0.5

0.2

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 6. Experiment 2 with varying number of iterations

 0.01

 0.1

 1

 10

 100

 1000

1 11 100

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)
Number of iterations

Database: SYS1
Threads: 10

190

6.3

29.3

5.5

1.2
0.7

0.12 0.13

Original Program (Cold Cache)
Transformed Program (Cold Cache)

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 7. Experiment 3 with varying iterations

index was present on the category-id column of the item table.

Figure 7 shows the performance of this loop in the program

before and after applying our transformation rules. As in

the earlier example, we first fix the number of threads and

vary the number of iterations. We perform this experiment

with ten threads, on a warm cache on SYS1. The results are

in accordance with our earlier experiments. In addition, we

observe that the number of threads is an important parameter

in such scenarios. This parameter is influenced by several

factors, such as the number of processor cores available for

the database server and the client, the load on the database

server, the amount of disk IO, CPU utilization etc.

When the program is run with a cold cache, the amount of

disk IO involved in running the queries is substantially higher

than with a warm cache. But the bottleneck of disk IO can

be reduced by issuing overlapping requests. Such overlapping

query submissions enable the database system to choose plan

strategies such as shared scan.

The effect of varying the number of threads shows similar

trends as that of Experiment 1, though the actual numbers

differ. The results can be found in [4]. In transforming this

program, the reordering algorithm was first applied and then

the loop was split using Rule A.

Experiment 4: Web service invocation: Although we pre-

sented our program transformation techniques in the context

of database queries, the techniques are more general in their

applicability, and can be used with requests such as Web

service calls. In this experiment, we consider an application

that fetches data about directors and their movies from Free-

base [14], a social database about entities, spanning millions

of topics in thousands of categories. It is an entity graph which

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 5 10 15 20 25

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: Freebase
Iterations: 240

Original Program
Transformed Program

Fig. 8. Experiment 4 with varying number of threads

Application # Servlets # Opp # Trans Applicability (%)

Auction 16 9 9 100

BulletinBoard 18 8 6 75

TABLE 1
Applicability of transformation rules

can be traversed using an API built using JSON over HTTP.

The client application, written in Java, retrieves the movie and

actor information for all actors associated with a director. Such

applications usually require the execution of a sequence of

queries from within a loop because (a) operations such as

joins are not possible directly, and (b) the Web service API

may not support set oriented queries.

Since our current implementation supports only JDBC API,

we manually applied the transformations to the code that

executes the Web service requests. The results of this ex-

periment are shown in Figure 8. As we vary the number of

threads, overlapping HTTP requests are made by the client

application which saves on network round-trip delays. Since

our experiment used the publicly available Freebase sandbox

over the Internet, the actual time taken can vary with network

load. However, we expect the relative improvement of the

transformed program to remain the same.

Time Taken for Program Transformation: Although the

time taken for program transformation is usually not a concern

(as it is a one-time activity), we note that, in our experiments

the transformation took very little time (less than a second) for

programs with about 1000 lines of code. Our implementation

only analyzes user code, and avoids analyzing system/third

party libraries. It can also be configured to run on specific

parts of the code rather than the entire codebase, while dealing

with large programs.

6.2 Applicability of Transformation Rules

In order to evaluate the applicability of our transformation

rules, we consider the two publicly available benchmark ap-

plications used above, the auction application and the bulletin

board application. For each of these, we have analyzed the

source code to find out (a) how many opportunities for

asynchronous submission of queries exist, and (b) how many

of those opportunities are exploited by our transformation

rules. The results of the analysis is presented in Table 1.

 0

 5

 10

 15

 20

 25

 30

4 40 400 4000 40000

T
im

e
 (

in
 s

e
c
)

Number of iterations

Database: SYS3

Cache: Cold

Original
Batch

Asynch
Asynch Batch

Fig. 9. Total execution time with no. of iterations

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700

B
a
tc

h
 s

iz
e
 (

lo
g
 s

c
a
le

)

No. of requests (38 batches; 645 asynch submissions)

Batch size

Fig. 10. Batch sizes during an execution

We consider all servlets that have SQL queries (# Servlets).

Among those, we consider all kinds of loop structures which

include a query execution statement in the loop body as

potential opportunities (# Opp). Such loops are an important

cause of performance issues in database applications, including

those that are backed by object relational mapping tools such

as Hibernate [15]. Among such potential opportunities, those

that satisfy the preconditions for our rules, are transformed (#

Trans).

We see that all such opportunities present in the auction

system indeed satisfy the preconditions and can be trans-

formed. Although our preconditions are more general than

those proposed in [1], the opportunities satisfied both. In

the bulletin board application a few of the loops performed

recursive method invocations which prevent them from being

transformed. Out of the programs seen earlier, the remaining

were too small for this analysis, and hence omitted.

6.3 Effect of Optimizations

We have performed experiments to compare the following

approaches: (i) Original: the original program (ii) Batch:

the program rewritten using query batching, (iii) Asynch: the

program rewritten according to our technique of asynchronous

submission, (iv) Asynch Batch: our technique of combining

batching and asynchronous submission (Section 5.2), using

the simple threshold based strategy (v) Asynch Overlap: asyn-

chronous submission with concurrent generation of requests

(Section 5.1), (vi) Asynch Batch Overlap: asynchronous batch-

ing with concurrent generation of requests, and (vii) Asynch

Batch Grow: asynchronous batching with concurrent genera-

tion of requests and the growing-upper-threshold strategy. Our

current implementation does not support the Async Overlap

12

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 40 400 4000 40000

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 s

e
c
)

Response number

30.8 at 40K

Original
Batching

Asynch
Asynch Batch

Asynch overlap
Asynch Batch overlap

Asynch Batch grow

Fig. 11. Time to k -th response (with 40000 iterations)

transformation, and hence we have rewritten the code manually

as described in Section 5.1.

The experiments have been conducted on a widely used

commercial database system SYS3. The SYS3 database server

was running on a 64 bit 2.3 GHz quad-core machine with 4

GB of RAM. The Java applications were run from a remote 3.3

Ghz quad-core machine connected to the database servers over

a 100 MBps LAN. For approach (iv), we used a lower batching

threshold of 300 with 48 threads, and for approach (vii), we

used a doubling growth rate for the upper threshold. We again

consider the benchmark auction application RUBiS [13] and

the scenario described in Experiment 1 of Section 6.1.

6.3.1 Total execution time

First, we compare the total execution time of this program

according to the approaches (i) through (iv), since the opti-

mizations in (v), (vi) and (vii) have minimal impact on the

total execution time. The results of this experiment with cold

cache are shown in Figure 9. The x-axis shows the number of

iterations and the y-axis shows the total execution time.

It can be observed from Figure 9 that at smaller num-

ber of iterations, all approaches behave very similarly, and

differences can be observed at larger number of iterations.

Asynchronous submission (with 12 threads) gives about 50%

improvement, while batching leads to about 75% at 40000

iterations. Asynchronous batching, with 48 threads and a lower

batching threshold of 300 leads to about 70% improvement.

At 40000 iterations, we have recorded the behaviour of one

run of asynchronous batching, shown in Figure 10. The x-axis

shows the number of requests (either batched or individual),

and the y-axis shows the batch sizes in log scale. Overall, there

were 38 batch submissions and 645 asynchronous submissions,

and among the 38 batches, the average batch size was 1019.

Initially, many requests are sent individually since the lower

batching threshold was set to 300. But the queue builds

up quite fast and hence there are a few intermittent batch

submissions. As the execution progresses, there are more and

more batch submissions, and batch sizes also start growing.

Towards the end, there are batches of upto 10000 requests.

This behaviour is in accordance with our expectation as

described in Section 5.2.

6.3.2 Time to k-th response

Next, we compare the response time of the program according

to approaches (i) through (vii) described earlier. Here, by

response time we mean the duration between the start of the

program and the arrival (or the output) of the k-th response

from the program. In our auction system experiment, records

are printed when the information about the author of the com-

ment is retrieved. Therefore, the response time is measured at

the instant where the author information of the k-th comment

is output. We fix the number of iterations at 40000, and record

the time taken for the k-th response, with k varying from 1 to

40000. The results of this experiment are shown in Figure 11.

The x-axis shows the response number k, and the y-axis shows

time in seconds. For this experiment, the Async Batch Grow

approach used a lower batching threshold of 100, and an upper

threshold that doubles, initially set to 200.

The original program has the best response time initially.

However, the response time increases quite steeply with k, and

reaches about 31 seconds for the 40000th response. Batching,

in contrast, has a constant curve. This is because even the first

response is output only after (i) all parameters are added to the

parameter batch table, and (ii) the transformed (set oriented)

query is executed. Essentially, the time to k-th response in

batching is very close to the total execution time, since all the

results are returned together.

The Asynch approach starts off with a better (lower) re-

sponse time as compared to batching, but increases beyond

batching for larger values of k. Asynchronous batching initially

behaves like asynchronous submission, and slowly deviates

from it. At larger number of iterations, it behaves more like

batching. In other words, it always tends towards the better of

Asynch and Batch.

The Overlap versions of Asynch and Asynch Batch show

much better response times compared to the earlier ap-

proaches. The Async Batch Grow approach behaves the best

in balancing response time vs total execution time. It initially

shows response times similar to the original program, and does

even better than the asynch and Batch at larger iterations. At

k = 40000, it results in the response time comparable to Batch.

6.3.3 Discussion

In summary, our experimental study shows that batching and

asynchronous submission are beneficial techniques with differ-

ent trade offs, and the combined technique of asynchronous

batching with optimizations aims at balancing these trade

offs. Some of the trade offs are (a) total execution time

vs. time to k-th response, (b) reducing network round trips

(by batching multiple requests) vs. overlapping execution of

queries, (c) reducing memory consumption (by using iterative

query execution) vs. set oriented execution of the query.

These trade offs are essentially controlled by parameters

used in asynchronous batching, such as the batching threshold,

number of threads etc. Based on the use case, the parameters

have to be tuned in order to achieve desired behaviour. Our

contribution in this paper has been to expose these trade offs

to the developer, and allow manual tuning of such parameters.

We have also presented some initial approaches for automatic

13

tuning of parameters in Section 5.2.3, but we believe that there

is scope for more work in this area.

7 RELATED WORK

Most operating systems today allow applications to issue

asynchronous IO requests [16]. Asynchronous calls are also

used for data prefetch and overlapping operator execution

inside query execution engines [17], [18], [19]. Asynchronous

calls have also been used to hide memory access latency by

issuing prefetch requests [20]. Asynchronous calls are widely

used in the communication between the web browser and the

server using manually placed AJAX requests.

Yeung [21] proposes an approach to automatically optimize

distributed applications written using Java RMI based on

the concept of deferred execution, where remote calls are

delayed for as long as possible. However, this work does not

consider asynchronous calls and and query executions within

loops. Dasgupta et al. [22] and Chaudhuri et al. [23] propose

an architecture and techniques for a general static analysis

framework to analyze database application binaries that use

the ADO.NET API, with the goals of identifying security,

correctness and performance problems.

Many Prefetching techniques based on prediction and read

aheads based on data access patterns have been proposed [24],

[25]. There has been work on prediction based prefetching of

query results [26], by analyzing logs and trace files, but this

work does not consider asynchronous prefetching. There has

been very recent work by Cheung et al. [27] which considers

the use of various program analysis techniques to improve

database applications. Unlike the Sloth system [28] which

uses lazy evaluation, we use early evaluation (or asynchronous

prefetching), with the same goal of exposing query batching

opportunities in database applications.

Guravannavar and Sudarshan [1] consider rewriting loops

in database applications and stored procedures, to transform

iterative executions of queries into a single execution of a set-

oriented form of the query. We use a similar framework of

program transformation, but for asynchronous query submis-

sion. While our transformation rules are based on [1], we make

the following novel contributions. First, we show how the

transformation rules presented in [1] in the context of batching,

can be adapted for asynchronous query submission. Second,

we describe an extension to our transformation that enables

overlapping of generation and consumption of asynchronous

requests, thereby greatly improving the response time. Third,

we present a technique to combine batching and asynchronous

query submission into a common framework.

Manjhi et al. [29] consider prefetching of query results by

employing non-blocking database calls, made at the beginning

of a function. A blocking call is subsequently issued when

the results of the query are needed. However, they do not

describe details to automate this task. Ramachandra et al. [30]

propose a technique to insert prefetch requests for queries/web

services at the earliest possible point in the program across

procedure invocations. However, both [30] and [29] do not

consider loop transformations for queries within loops while

exploiting opportunities for prefetching, and this forms the

main focus of this paper.

8 EXTENSIONS

We now discuss some system design considerations and ex-

tensions of techniques described in this paper.

Ensuring transaction properties: In our implementation, we

have used one connection per thread in order to achieve

overlapping query execution. This is because in JDBC, (a)

a database connection allows only one open query at a

time, (b) there are no API methods that allow asynchronous

submission. ADO.NET provides asynchronous API (such as

the BeginExecuteReader and EndExecuteReader APIs), which

allow overlapping of query execution with local computation.

However, even these APIs do not support overlapping query

executions through a single connection.

In order to fully preserve transaction properties and achieve

true asynchronous submission, individual threads in the thread

pool should be part of a single shared transaction. Such an

infrastructure is not currently supported by any database ven-

dor to the best of our knowledge. Although databases support

distributed transactions (such as JDBC XA transactions), their

goal is to allow transactions across multiple data sources.

One way to implement this (if snapshot queries are sup-

ported) is to allow multiple connections to share a snapshot

point. Such a feature, if supported, would allow multiple

threads (with their own connections) to share and execute

transactions on the same snapshot. We believe that this would

be a minor change in databases that already support snapshot

isolation, and would be a useful feature to have. Such a built

in support would not only simplify application development,

but also lead to significant improvement in performance, as

compared to our current implementation.

Rewriting loops containing update transactions needs to

consider dependencies between update statements and pro-

gram variables. A conservative approach is to assume that

update statements are dependent on other update or select

statements in a loop, and model them as data dependencies

which factor in to the preconditions for our transformation

rules. This can be improved by using more precise inter query

dependence analyses [31].

Minimizing memory overheads: If the number of loop

iterations is large, the transformed program may incur high

memory overhead, in order to store the handle and the state

associated with each iteration. Storing such state on disk

increases the IO cost. Our technique can be extended such

that, based on memory usage, the producer thread backs off

and waits while results are consumed and memory freed, and

then generates more requests.

9 CONCLUSION

We propose a program analysis and transformation based

approach to automatically rewrite database applications to

exploit the benefits of asynchronous query submission. The

techniques presented in this paper significantly increase the

applicability of known techniques to address this problem.

We also described a novel approach to combine asynchronous

submission with our earlier work on batching in order to

achieve a balance between the trade offs of batching and

asynchronous query submission.

14

Although our program transformations are presented in the

context of database queries, the techniques are general in their

applicability, and can be used in other contexts such as calls

to Web services, as shown by our experiments. We presented

a detailed experimental study, carried out on real-world and

publicly available benchmark applications. Our experimental

results show performance gains to the extent of 75% in several

cases. Finally, we identify some interesting directions along

which this work can be extended.

Acknowledgements: We thank Yatish Turakhia for his help

in the implementation of asynchronous batching in DBridge.

REFERENCES

[1] R. Guravannavar and S. Sudarshan, “Rewriting Procedures for Batched
Bindings,” in Intl. Conf. on Very Large Databases, 2008.

[2] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan,
“DBridge: A program rewrite tool for set-oriented query execution,”
in ICDE, 2011, pp. 1284–1287.

[3] K. Ramachandra, R. Guravannavar, and S. Sudarshan, “Program analysis
and transformation for holistic optimization of database applications,” in
ACM SIGPLAN SOAP 2012, 2012, pp. 39–44.

[4] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan,
“Program transformations for asynchronous query submission,” in ICDE,
2011, pp. 375–386.

[5] R. Guravannavar, “Optimization and evaluation of nested queries and
procedures,” Ph.D. Thesis, IIT Bombay, 2009.

[6] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. Program. Lang.

Syst., vol. 9, no. 3, pp. 319–349, 1987.
[8] K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary

Control Flow,” in Proceedings of Supercomputing, 1990.
[9] “Soot: A Java Optimization Framework

http://www.sable.mcgill.ca/soot.”
[10] “The Java executors framework.” [Online]. Available:

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
[11] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic,

“Holistic Query Transformations for Dynamic Web Applications,” in
Intl. Conf. on Data Engineering, 2009.

[12] “The ehcache Java caching library.” [Online]. Available:
http://ehcache.org/

[13] “ObjectWeb Consortium-JMOB (Java middleware open benchmarking).”
[Online]. Available: http://jmob.ow2.org/

[14] “The Freebase repository: http://www.freebase.com/.”
[15] “Hibernate OR Mapping tool.” [Online]. Available:

http://www.hibernate.org
[16] “Kernel Asynchronous I/O (AIO) Support for Linux

http://lse.sourceforge.net/io/aio.html.”
[17] G. Graefe, “Executing Nested Queries,” in 10th Conference on Database

Systems for Business, Technology and the Web, 2003.
[18] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi,

“Execution Strategies for SQL Subqueries,” in ACM SIGMOD, 2007.
[19] S. Iyengar, S. Sudarshan, S. Kumar, and R. Agrawal, “Exploiting

Asynchronous IO using the Asynchronous Iterator Model,” in Intl. Conf.

on Management of Data (COMAD), 2008.
[20] S. P. Vanderwiel and D. J. Lilja, “Data Prefetch Mechanisms,” ACM

Computing Surveys, vol. 32, no. 2, 2000.
[21] K. C. Yeung, “Dynamic Performance Optimisation of Distributed Java

Applications,” Ph.D. dissertation, Imperial College of Science, Technol-
ogy and Medicine, 2004.

[22] A. Dasgupta, V. Narasayya, and M. Syamala, “A static analysis frame-
work for database applications,” in ICDE ’09, 2009, pp. 1403–1414.

[23] S. Chaudhuri, V. Narasayya, and M. Syamala, “Bridging the applica-
tion and dbms divide using static analysis and dynamic profiling,” in
SIGMOD, 2009, pp. 1039–1042.

[24] P. A. Bernstein, S. Pal, and D. Shutt, “Context-based prefetch – an
optimization for implementing objects on relations,” The VLDB Journal,
vol. 9, no. 3, pp. 177–189, Dec. 2000.

[25] A. Bilgin, R. Chirkova, T. Salo, and M. Singh, “Deriving efficient
sql sequences via read-aheads,” in Data Warehousing and Knowledge

Discovery, ser. LNCS, 2004, vol. 3181.

[26] I. T. Bowman and K. Salem, “Semantic prefetching of correlated query
sequences,” in ICDE, 2007.

[27] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and A. C. Myers,
“Using program analysis to improve database applications,” IEEE Data
Eng. Bull., vol. 37, no. 1, pp. 48–59, 2014.

[28] A. Cheung, S. Madden, O. Arden, and A. C. Myers, “Sloth: Being lazy
is a virtue (when issuing database queries),” in SIGMOD, 2014.

[29] A. Manjhi, “Increasing the Scalability of Dynamic Web Applications,”
Ph.D. dissertation, Carnegie Mellon University, 2008.

[30] K. Ramachandra and S. Sudarshan, “Holistic optimization by prefetching
query results,” in ACM SIGMOD 2012, 2012, pp. 133–144.

[31] S. Parthasarathy, W. Li, M. Cierniak, and M. J. Zaki, “Compile-time
inter-query dependence analysis,” in IEEE Symp. on Parallel and Distr.

Processing, 1996.

Karthik Ramachandra is a PhD student in the
Computer Science department at IIT Bombay.
His research areas include query processing
and optimization and holistic optimization that
spans the boundary of databases and compil-
ers. Prior to this, he has had several years of
experience in software development at Thought-
Works Inc. He received his bachelors degree
in Information Science from the Visweswaraiah
Technological University, India.

Mahendra Chavan is presently working with
SAP Labs as a senior developer on database
products’ synergies. He has been working on
query optimization and query processing in
scale-out scenarios. Prior to joining SAP Labs
Pune, he was part of the holistic optimization
group at IIT Bombay during his masters degree.
He received his masters degree in Computer
Science from IIT Bombay and bachelor’s de-
gree in Computer Science from Pune Institute of
Computer Technology, Pune.

Ravindra Guravannavar received his MTech
and PhD in Computer Science from IIT Bombay,
and his bachelor’s degree in Computer Science
from Karanatak University, India. He was an
Assistant Professor in the Computer Science
and Engineering department at IIT Hyderabad.
He also has several years of experience in soft-
ware product development in the industry. His re-
search interests are in query processing and au-
tomated performance improvement of database
applications. He is a member of ACM.

S. Sudarshan received his B.Tech. from IIT
Madras, and his PhD from Univ. of Wisconsin,
Madison. He is a Professor in the Computer Sci-
ence and Engineering department at IIT Bom-
bay. His research areas include query process-
ing and optimization, holistic optimization, key-
word querying on semi-structured data, and test
data generation for SQL queries. He has au-
thored over 90 papers, and is a co-author of a
leading textbook, Database System Concepts,
currently in its 6th edition. He is a member of

ACM and IEEE.

