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Program transformations are frequently performed by optimizing compilers, and the correctness of 

applying them usually depends on data flow information. For language-to-same-language transfor- 

mations, it is shown how a denotational setting can be useful for validating such program transfor- 

mations. 

Strong equivalence is obtained for transformations that exploit information from a class of forward 

data flow analyses, whereas only weak equivalence is obtained for transformations that exploit 

information from a class of backward data flow analyses. To obtain strong equivalence, both the 

original and the transformed program must be data flow analysed, but consideration of a transfor- 

mation-exploiting liveness of variables indicates that a more satisfactory approach may be possible. 

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and 

Theory-semantics; D.3.4 [Programming Languages]: Processors-compilers, interpreters, opti- 

mization, translator writing systems, compiler generators; F.3.1 [Logics and Meanings of Pro- 

grams]: Specifying and Verifying and Reasoning about Programs-mechanical uerification; F.3.2 

[Logics and Meanings of Programs]: Semantics of Programming Languages-denotational se- 

mantics 

General Terms: Languages, Theory 
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1. INTRODUCTION 

In this paper we consider a class of program transformations, where a program 
is transformed into another in the same language (language-to-same-language 
transformations or source-to-source transformations). Such transformations are 
useful for “high-level optimization” in optimizing compilers (see e.g., [6]). The 
meaning of the transformed program must equal that of the original one. The 
two programs may differ in other respects, such as running time, but this will 
not be considered here, although it is generally such differences that motivate 
program transformations. The correctness of transforming a program may depend 
on data flow information. Even though this is frequently the case in practice, the 
literature contains, to our knowledge, no satisfactory framework for proving the 
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360 l F. Nielson 

correctness of such transformations. Here we address this problem in a denota- 
tional setting. 

To give examples of program transformations, consider the following fragment 
of a program 

..-y:=2--. (nays)... n:=y+(l+l)..-(noxs).-.x:=0.-- 

One transformation is to replace x := y + (1 + 1) by x := y + 2. It is easy to 

validate this transformation because the meaning of x := y + (1 + 1) equals that 
of x := y + 2, so no data flow information is needed. Another transformation is 
to replace x := y + (1 + 1) by x := 4 (constant folding [l]). This transformation 
is valid because the value of y immediately before x := y + (1 + 1) is always 2, as 

can be determined by the forward data flow analysis called constant propagation 
[I]. It is not so easy to validate this transformation because the meanings of 
x := y + (1 + 1) and x := 4 are not identical. A third transformation is to eliminate 
x := y + (1 + 1) or (for technical reasons) replace it with a dummy statement. 
This transformation is valid because the value of x is not used until after x is 
assigned the value 0, as can be determined by the backward data flow analysis 

called live variables analysis [l]. The meanings of x := y + (1 + 1) and a dummy 
statement are different, so this transformation is also not easy to validate. 

Transformations that do not exploit data flow information (as replacing 
x := y + (1 + 1) by x := y + 2) are considered in [5]. We consider transformations 
that exploit a class of forward data flow information (Section 3) and a class of 
backward data flow information (Section 4). In order to factor out the details of 
actual data flow analyses, we mostly consider abstract formulations of data flow 
information. In [9], it is shown how the ideas of [2] can be used to relate a large 
class of forward data flow analyses to the formulation used here. We sketch how 
a similar connection may be possible for backward data flow analyses. The 
framework for validating program transformations is compared to that of [4] and 
is claimed to be better. Section 5 contains the conclusions. 

2. PRELIMINARIES 

In defining semantic equations we use the notation of [7] and [ 111, but the 
domains are cpo’s (as in [8]), rather than complete lattices. Below we explain 
some fundamental notions and nonstandard notation (>, ==, -t>, -c>). 

A partially ordered set (S, C) is a set S with partial order E (i.e., c is a reflexive, 
antisymmetric, and transitive relation on S). For S’ C S, there may exist a 
(necessarily unique) least upper bound US’ in S such that Vs E S: (s a US’ M 
Vs’ E S’: s 2 s’). When S’ = (sl, szJ, one often writes s1 u s2 instead of US’. A 
nonempty subset S’ C S is a chain if S ’ is countable and sl, s2 E S’ + (sl c s2 
V s2 c sl). An element s E S is maximal if Vs’ E S: (s’ 2 s + s’ = s), and it is 
least if Vs ’ E S: s ’ 2 s. A partially ordered set is a cpo if it has a least element 
(I) and any chain has a least upper bound. The word domain is used for cpo’s, 
and elements of some domain S are denoted s, s ‘, sl, and so on. A domain is flat 
if any chain contains at most two elements, and it is of finite height if any chain 
is finite. 

Domains N, Q, and 7’ are flat domains of natural numbers, quotations, and 
truth values. From domains Si, . . . , S, one can construct the separated sum 
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s1+ **- + S,. This is a domain with a new least element and injection functions 
in Si, enquiry functions E Si, and projection functions 1 Si. The Cartesian product 
Sl x **a x S, is a domain with selection functions 3-i. The domain S* of lists is 
(( )]+s+(sxs)+.... Function # yields the length of a list, function ti 

removes the first i elements, and 8 concatenates lists. By P(S) is meant the 
power set of S with set inclusion as partial order. Sometimes a set is regarded as 
a partially ordered set whose partial order is equality. 

All functions are assumed to be total. For partially ordered sets S and S’, the 
set of (total) functions from S to S’ is denoted S - t > S’. A function f E S - 
t > S’ is continuous if f (U S”) = U (f(s) ] s E S”) holds for any chain 5”’ G S 
whose least upper bound exists. The set of continuous functions from S to S’ is 
denoted by S - c > S ‘. ,A function f E S - t > S’ is additive (a complete-Ll- 
morphism) if f (U S”) = U( f (s) 1 s E Sv) f or any subset 5’” C S whose least upper 
bound exists. Both S - t > S’ and S - c > S’ are partially ordered by fi c fi H 
Vs E S: fi(s) !Z f&). If S’ is a domain, the same holds for S - t > S’ and S - c 
> S’. 

An element s E S is a fixed point of f E S - t > S if f(s) = s. When S is 
partially ordered, s is the least fixed point provided it is a fixed point and s’ = 
f (s’) + s’ 7 s. If S is a domain and f E S - c > S, the least fixed point always 
exists and is given by FIX(f) = U( f “(I) ] n L 0). We frequently write LJXO f”(l) 
instead of U( f”(l) ] n I 0). 

For any domain S, we use the symbol == as a continuous equality predicate 
(S x S - c > T), whereas = is reserved for true equality. So (true == I) will be 
I, whereas (true = I) is false. When S is of finite height, it is assumed that s1 
== s2 is I if one of sl, s2 is nonmaximal, and equals s1 = s2 otherwise. We write 
>> for the continuous extension of > (the predicate “greater than or equal to” on 
the integers). The conditional t + sl, s2 is sl, s2 or I, depending on whether t is 
true, false, or 1. By f [y/x] is meant Xz.z == x + y, f (2). 

3. PROGRAM TRANSFORMATIONS AND FORWARD DATA FLOW 
ANALYSES 

In this section we show how to validate program transformations that exploit 
information from a class of data flow analyses. First, we define a toy language. 
Then we give an abstract way of specifying forward data flow information by 
means of a collecting semantics. Finally, we consider program transformations. 

Toy Language 

The toy language consists of commands (syntactic category Cmd) and expressions 
(Exp). It is convenient to let Syn be the union of Cmd and Exp. The syntax of 
commands and expressions is 

cmd :: = cmdl; cmdz 1 ide := exp 1 IF exp THEN cmdl ELSE cmdz FI 
1 WHILE exp DO cmd OD 1 WRITE exp 1 READ ide 

ew :: = expl ope exp, 1 ide 1 bas 

We do not specify the syntax of identifiers (Ide), basic values (Bas), and operators 
(Ope). The semantics is given by Tables I and II, and is explained below. Table 
II defines some domains and auxiliary functions as well as an associative 
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Table I. Semantic Function 

TESyn-c>G 

T[[ cmd,; cm&II = T[[ cmch 11 *[I cmdt 11 
T[[ ide := exp JJ = T[[ exp ]] +assign[[ ide]] 

T [ [ IF exp THEN cmd, ELSE cmdz FI] ] = 

T[[ expll *cond(T[[ mdll, Z’[[ cm&II) 
!f[[ WHILE exp DO cmd OD]] = 

FIX(Xg. T[[ exp]] *cond(T[[ cmd]] *g, Xsta.sta inR) ) 

T[[ WRITE exp]] = T[[ exp]] *write 

T[[ READ ide]] = read * assign[[ ide]] 

TH em 0~s ewzll = TN exr41* TN expdl * apply[[ well 
T[[ ide]] = content[[ ide]] 

T[[ bas]] = push[[ bas]] 

combinator (*) used for sequencing. The semantic functions 0 for operators and 
B for basic values have been left unspecified, just as the corresponding syntactic 

categories. Table I defines a single semantic function T that ascribes meaning to 
both commands and expressions. It simplifies some notation to be used later in 
that only one semantic function is used. The semantic function is in direct style 
because continuations are not needed for the development. 

A state (element of Sta) consists of an environment, current input and output, 
and a stack of temporary results. The presence of the stack of temporary results 
(stack of witnessed values [7]) indicates that the semantics is a store semantics 
[7, 111. The stack is used to hold the values of subexpressions during the 
evaluation of expressions. The functions apply[ [Opel], content[ [ide]], and as- 
sign[[ide]] illustrate how this is done. As an example, consider the definition of 

apply[[ope]]. The function Vapply[[ope]] E Sta - c > T verifies whether the 
argument state is of a special form. Only if this is the case, will the state be 
transformed as described by Bapply[[ope]] E Sta - c > Sta (B for “body”). The 
definitions of read, write, and push[ [bas]] are similar, and the reader should have 
little trouble in supplying the definitions (they are along the lines of [7]). 

Example. Consider the program WRITE 2 + 3. Define the states 

sta = (env, ( >, ( ), ( )) 
sta’ = (env, ( ), (5inVal), ( )) 

where, for instance, env = Aide. “nil”inVa1. We then have 

T[[2 + 3]](sta) = (env, ( ), ( ), (5inVal)) inR 

so that 

T[[WRITE 2 + 311 (sta) = sta’inR 

The notion of a store semantics was defined in [7] as a more implementation- 
oriented semantics than the more usual standard semantics [7, 111. In the store 
semantics there is virtually no difference between the behavior of commands and 
expressions, and this is convenient when defining the collecting semantics below 
(as is further discussed in [9]). In the standard semantics, commands and 
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Table II. Store Semantics 

- 363 

Domains 

G=Sta-c>R 

R = Sta + { “error”1 

Sta = Env x Inp x Out x Tern states 

Env = Ide - c > Val environments 

Inp = Val* inputs 
Out = Val* outputs 

Tern = Val* temporary result stacks 

Val= T+N+ . . . + {“nil”) values 

Combinator 

*EGxG-c>G 

g, *g2 = Xsta.gr(sta) E Sta + g&,(sta) ] Sta), g,(sta) 

Functions 

cond E G x G - c > G 

cond&, g2) = Xsta.Vcond(sta) -+ (Scond(sta) + g,, gz)(Bcond(sta)), 
“error” inR 

Vcond(env, inp, out, tern) = #tern >> 1 + tern Ll E T, false 

Bcond(env, inp, out, tern) = (env, inp, out, tern tl) 

Scond(env, inp, out, tern) = tern Ll ] ‘I’ 

wdyII well E G 
apply[[ ope]] = Xsta.Vapply[[ ope]] (sta) + Bapply[[ ope]] (sta) inR, 

“error” inR 

Vapply[[ ope]] (env, inp, out, tern) = #tern > 2 
Bapply[[ ope]] (env, inp, out, tern) = (env, inp, out, ( 0[[ ope]] 

Gem 12, tern 11) ) Wemt2)) 

assign[[ ide]] E G 

assign[[ ide]] = hsta.Vassign[[ ide]] (sta) + Bassign[[ ide]] (sta) inR, 
“error” inR 

Vassign[[ ide ]] (env, inp, out, tern) = #tern > 1 
Bassign[[ ide]] (env, inp, out, tern) = (env[tem Jl/ide], 

inp, out, tern tl) 

content [ [ ide]] E G 

content[[ ide]] = Xsta.Vcontent[[ ide]] (sta) -+ Bcontent[[ ide]](sta) inR, 
“error” inR 

Vcontent[[ ide]] (env, inp, out, tern) = true 

Bcontent[[ ide]] (env, inp, out, tern) = (env, inp, out, 
(env[[ ide]] ) stem) 

push[[ has]] E G, read E G, write E G are defined similarly 

expressions behave rather differently because there is no stack of temporary 
results. (See, e.g., an arbitrary semantics in [ 111 for an example.) It is well known 
how to transform a standard semantics into a store semantics [7], and this is 
why we have chosen the store semantics as our starting place. 

Finally, the following lemma is needed in later proofs. It says that the iterates 
in a WHILE loop either give no information or give full information. 
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LEMMA 1. Let g[gJ = T[[expJJ * cond(T[[cmd]J *g, Xstasta inR).’ Then 
(Xg.g[g])“l sta is either I or T[[ WHILE exp DO cmd OD]] sta. 

PROOF. It suffices to show that Vsta: [( Xg.g[g])“l sta # I + Vg,: ( Xg.g[g])“gO 
sta = (Xg.g[g])“l sta]. This is because (Xg.g[g])“+‘l = (Xg.g[g])“gO when go = 
g[l]. The proof is by induction on n and, since the case n = 0 is obvious, consider 
the inductive step. It is easy to see that ( Xg.g[g])“+lgo sta independently of go is 
I, “error” inR, sta’ inR, or ( Ag.g[g])“go sta” where sta’ and sta” are independent 
of go. In the first three cases the result is immediate and in the last case it follows 
by the induction hypothesis. Cl 

Collecting Semantics 

We now define a collecting semantics [9] that gives an abstract way of specifying 
(some types of) forward data flow information. Like the store semantics, the 
collecting semantics executes the program for one particular initial state (e.g., 
sta = (Xide.“nil” inVa1, inp, ( ), ( )) f or some input inp E Inp). Instead of 
specifying the result of this execution, the purpose of the collecting semantics is 
to associate with each program point the set of states in which control can be 
when that point is reached. The data flow information specified by the collecting 
semantics is in a rather abstract form that is suitable for the subsequent 
development. In practice, more approximate data flow analyses will be used (to 
assure computability), and [9] uses the ideas of [2] to relate approximate analyses 
to the collecting semantics. This is done by formulating an induced semantics 
(specified by a pair of adjoined [Z] or semiadjoined [9] functions) that executes 
the program on an (approximate) description of a set of states. The data flow 
analysis “constant propagation” can be specified this way. 

We identify a program with a parse tree. The usual way to address nodes in 
such a tree is by lists of integers called occurrences. In our formulation this 
means a member of Occ = N*. The root has occurrence ( ) and the ith son 
(counting from the left) of a node with occurrence occ has occurrence occ§( i). 
We then represent a program point by a tuple (occ, q ) E Pla = Occ X Q. The 
tuple (occ, “L”) represents the point immediately before the syntactic construct 
pointed to by occ. Similarly, (occ, “R”) represents the point immediately after. 
This is illustrated in Figure 1. Note that Pla contains elements that cannot 
reasonably be viewed as representing program points: only the maximal elements 
(in the sense of Section 2) can be viewed in this way. This is just a facet of the 
common situation in denotational semantics that domains intuitively contain 
too many elements. 

The occurrence associated with a node in a parse tree is not part of the node 
itself, so to be able to “mention” program points in the semantic equations we 
supply the semantic function with an occurrence as an additional parameter. 
Furthermore, the semantic equations are augmented with functions like at- 
tach(occ, “Y) that are to associate information with the program points men- 
tioned. Table III sketches the result of performing these changes, 

1 For typographical reasons, we write g[g] instead of gi, so g[g] E C for any fixed g E G. 
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i 
occ 

0 
/’ ‘\\ 

1 

occ 4~ i) 

Figure 1. 

Table III. Modified Semantic Function 

TESyn-c>Occ-c>G 

T [ [ IF exp THEN cmd, ELSE cmd2 FI]] occ = 

attach (occ, “L”) * 

2’11 expll owl(l) * 
cond(T[[ cmdl]] occ§(Z) *attach (occ, “R”) 

, T[[ cmdp]] occs(3) *attach (occ, “R”)) 

T [ [ WHILE exp DO cmd OD]] occ = 

attach (occ, “L”) * 

FIX(Xg.T[[ exp]] occ§(l) * 
cond(T[[ cmd]] occ5(2) *g 

, attach (occ, “R”))) 

T [ [ exp, ope expz]] occ = 

attach (occ, “I,“) * 

TH expIll occ§(l) * 
TI[ expdl occU3) * 

wM[ well * 
attach (occ, “R”) 

remaining clauses changed similarly to the one for exp, ope, expz, 

The collecting semantics is specified by Tables III and IV. (It is similar to the 
one in [9], except that continuations have been removed.) Domain A = 
Pla - c > P(Sta) is used to associate each program point with the set of those 
states that control can be in when that point is reached. The associative 
combinator * is continuous in its right argument (but not the left [9]), so FIX 
(in Table III) is applied to continuous functions only. To distinguish between 
the collecting semantics and the store semantics, we use suffixes co1 and sto, so, 
for example, Tcol is the semantic function of the collecting semantics. 
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Table IV. Collectine Semantics 

Domains 

G=Sta-t>(RxA) 

R = Sta + (“error”) 

A = Pla - c > P(Sta) 

Occ = N* occurrences 
Pla = Occ x Q places 

remaining domains as in Table II. 

Combinator 

.EGxG-t>G (continuous in second argument) 

gl *gz = Xsta.(g,(sta) Ll E Sta+g&,(sta) 411 Sta) Jl,g,(sta)& 

[g&a) 41 E Sta-+g,(g,(sta) Al I Sta)J2,11 Uglbta) 42) 

Functions 

attach E Pla - c > G 

attach (pla) = Xsta.(sta inR, I[[sta]/pla]) 

condEGxG-c>G 

cond (gl, g2) = Xsta.Vcond(sta) + 

(Scond(sta) + g,, gz) (Bcond(sta)), 

(“error” inR, I) 

Vcond, Scond, Bcond as in Table II. 

wM[ Opel1 E G 
apply[I opelI = Xsta.(Vapply[[ opelI Ma) -+ (Bapply[[ opell Ma)) in& 

“error” inR 

,I> 
Vapply[ [ ope]], Bapply[ [ ope]] as in Table II. 

assign[[ ide]], content[ [ ide]], push[[ has]], read, write are defined similarly to apply[ [ ope]] . 

Example. Considering the program WRITE 2 + 3, we may identify the follow- 
ing program points which “arise” in its collecting semantics: 

plal = (( ), “F) 

pla, = ((l), “L”) 1 

pla3 = (( 1, l), “r) 

pla, = (( 1, l), “R”) 

pla5 = (( 1, 2), “V) 

pla, = (( 1, 2), “F’) 

pla7 = ((l), “R”) 

Plas = (( ), “R”) 
‘I ” v -+- v 

WRITE 2 + 3 

The plentitude of program points is due to the very systematic nature in which 
the attach functions have been placed; this is technically convenient for the 
development, but would be remedied in practical applications. 
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Turning to the collecting semantics, we have 

Tcol[[ WRITE 2 + 3]]( )&a = (sta’inR, a) 

where sta’ is as in the previous example, and, for example: 

a(pla,) = {sta) 

&W = I(env, ( >, ( >, (2inVal)J 

aW4 = ((env, ( ), ( ), (5inVal)l 

a(pla,) = {sta’) 

Note that a(pla7) is not equal to a(plas), even though pla7 is “very close” to pla8. 
We return to this below. 

The collecting semantics cannot be proved correct with respect to the store 
semantics because two programs that look different (and to which different data 
flow information pertains) may have the same meaning in the store semantics. 
A partial relationship between the collecting semantics and the store semantics 
is given by the following property, which says, intuitively, that the store semantics 
is embedded in the collecting semantics. 

PROPERTY Ca. L.-et syn E Syn, occ E Occ be maximal and sta E Sta. Then 
Tcol[[syn]] occ sta Jl = Tsto[[syn]] sta. 

PROOF OF PROPERTY Ca. By straightforward structural induction, and is 
omitted. q 

Program Transformations 

We now consider how to validate program transformations such as the one 
mentioned in the Introduction when x := y + (1 + 1) was replaced by x := 4. This 
is achieved by Theorem 1 below. To specify program transformations we need 
some operations upon parse trees. Rather than giving formal definitions using 
concepts from tree replacement systems [lo], we give informal explanations. Let 
“occ points into syn” mean that there is a node in syn that has occurrence occ 
and is of syntactic category Cmd or Exp. In that case, “syn at occ” denotes the 
subtree of syn with that node as the root. Let occ point into syn and suppose syn 
at occ and syn’ belong to the same syntactic category. Then syn [occ c syn’] 
denotes the parse tree that is syn with syn at occ replaced by syn’. 

We also need some notation to state properties of the collecting semantics. Let 
“pla is a descendant of occ” mean that plaJ1 equals occ$occ’ for some maximal 
occ’ and that plaJ2 E (“L”, “,“I. This means that the program point pla is in 
the subprogram pointed to by occ. Define the additive function “filter” from 
P(Sta + (“error”]) to P(Sta) by 

filter(R) = ((r 1 Sta) 1 r E R A (r E Sta) = true) 
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cc Cb Cc Cb (not needed 1 

Figure 2. plal = (occ, “r), plaz = (occ§(l), “L”), plaa = 

(occ§(l), “I?‘), pla4 = (occ$(2), “Ln), plas = (occf(2), “I?), 

plas = (occ, “R”). 

The purpose is to single out exactly those results (in the set R) that give rise to 
an actual computation in the remainder of the program. Furthermore, abbreviate 

condtrue = hsta.( Vcond(sta) ---* 
Scond(sta) -+ (Bcond(sta))inR, “error”inR 

, “error”inR 
,J-) 

condfalse = Xsta.( Vcond(sta) + 
Scond(sta) + “error”inR, (Bcond(sta))inR 

, “error”inR 
,J-) 

The proof of Theorem 1 uses properties Ca, Cb, Cc, and Cd. Property Cb 
relates data flow information for program points on each side of a syntactic 
subphrase. Property Cc relates adjacent program points (e.g., (occ, “L”) and 
(occ§( l), “L,“) which often denote the same program point). It is stated by cases 
of the syntactic construct. For the construct cmdi; cmdz, the properties Cb and 
Cc are sketched in Figure 2 (arrows correspond to places and rectangles to 
syntactic constructs). Property Cd is used in the proof of properties Cb and Cc. 
Among other things it says that subphrases can only supply data flow information 
for program points contained in them. 

PROPERTY Cb. Let syn E Syn, occ E Occ be maximal, sta E Sta and occ’ E Occ 
point into syn and abbreviate a-co1 = TcoZ[[syn]] occ staJ2. Then, a-col(occ§occ’, 
“R “) = 

filter (Tcol[[ syn at occ’]] <> stu’s1I s&z’ E u-col(occ§occ’, “L”)] 

Given that Ca holds, one may reformulate property Cb as stating 

a-col(occ§occ’, “R”) = 
filter(Tsto[[syn at occ’]](sta’) ] sta’ E u-col(occ$occ’, “r)) 

PROPERTY Cc. Let syn E Syn, occ E Occ be maximal, sta E Sta and occ’ E Occ 
point into syn and abbreviate a-co1 = TcoZ[[ syn]] occ staJ2. 
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If syn at occ’ is expl ope exp2 
then a-col(occ~occ’~(1), “~5”) = u-CO~(OCC~OCC’, “L”) 

a-col(occ30cc’~(3), “Id”) = a-col(occ~occ’§(l), “R”) 
If syn it occ’ is IF exp THEN cmdl ELSE cmd2 FI 
then a-col(occ~occ’~(1), “L”) = u-col(occ~occ’, “L”) 

a-col(occ~occ’3(2), “L”) = filter (condtrue(sta’)Jl ] 
sta’ E a-col(occQocc’~(1), “,“)I 

a-col(occ~0cc’J(3), “P) = filter (condfalse(sta’)Jl ] 
sta’ E a-col(occ~0cc’~(1), “R”)) 

If syn at occ’ is WHILE exp DO cmd OD 
then a-col(occ~occ’~(1), “~5”) = u-coI(occ~occ’, “L”) U 

a-col(occ~occ’9(2), “R”) 
a-col(occQocc’~(2), “L”) = filter (condtrue(sta’)Jl ] 

sta’ E a-col(occ~0cc’~(1), “R”)) 

For the remaining constructs there are properties “similar” to the one for expl ope 

ew2. 

PROPERTY Cd. Let syn E Syn, occ E Occ be maximal, sta E Sta and pla E Plu. 
Then 

(i) Tcol[[ syn]] occ sta 42 pla # 0 w pla is a descendant of occ 
(ii) Tcol[[ syn]] occ sta 42 (occ, “L”) = (staj 
(iii) Tcol[[ syn]] occ sta l2 (occ, “R “) = filter (Tcol[[ syn]] occ sta Ll) 

It is possible to prove property Cd first and then Cb, Cc in either order, but it is 
easier to prove the three properties together. 

Proof of Cb, Cc, and Cd. The proof is by structural induction, and we omit 
the suffix col. It is convenient to be able to view the semantic functions in the 
collecting semantics as operating upon elements of R = Sta + (“error”), rather 
than just elements of Sta. To facilitate this, define the combinator 

AEGXR-t>RxA 

g A r = r E Sta + g(r 1 Sta), (r, I). 

Then g(sta) = g A (sta inR) and (gl *g2) A r = (g2 A (g, A r 11) 41, g2 A (gi A r 
J 1) 42 Ll gl A r J2), as well as cond( gl, g2) A r J2 = gl A (condtrue A r 11) 42 U 
g2 A (condfalse A r 4 1) J2. 

For the structural induction, we only consider the case where syn is WHILE 
exp DO cmd OD. Abbreviate 

g[g] = T[[ exp]] occ§(l) *cond(T[[ cmd]] occ§(2) *g, attach (occ, “R”)) 

corresponding to the body used in the fixed point (in the semantics of WHILE), 

iter = T[[ exp]] occf(1) * condtrue: T[[ cmd]] occ§(2) 

corresponding to executions where the expression evaluates to true, 

iter*’ = Xsta.( sta inR, I) 
iter*‘“+‘) = iter * iter*” = iter*” * iter (by * associative) 
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Furthermore, let 

gl = Xsta.T[[ exp]] occ§(l) sta 
g, = Xsta.T[[ cmd]] occp(2) A (condtrue A (T[[ exp]] occ§(l) sta 11) 41) 

so that iter = g, u g,. 
Our first task is to show Cd. For this, let pla be different from (occ, “R”), and 

calculate 

(Xg.g[gl)“+’ I (sta) J2 (pla) =g,(sta) J2 (pla) ug*(sta) 12 (pla) 
u (Xg.g[g])“l A (iter(sta) 51) J2(pla) 

Induction on n may be used to show that this may be rewritten to 

(XL4d)“+‘l Ma) J2 (da) 
= U&O Ll:==, gi A (iter*“(sta) 11) J2(pIa) 

Hence, 

T[ [ WHILE exp DO cmd OD]] occ sta J,2(pla) 
= attach(occ, “~5”) sta J2(pla) 

u Ll:==, g, A (iter*“(sta) 11) J2(pla) 
u U~Cp=, g, A (iter*“(sta) 11) J2(pla) 

Then, Cd(i) and Cd(ii) are immediate. For Cd(iii), we have (the steps are justified 
below): 

T[ [ WHILE exp DO cmd OD]] occ sta 42 (occ, “R”) 
= Ll;==, (( Xg.g[g])” I (sta) 42 (occ, “R”)) 
= Uz=, filter ](Xg.g[g])” I (sta) Ll) 
= filter { T[[ WHILE exp DO cmd OD]] occ sta Ll) 

The second steps follows because 

Vsta: [( Xg.g[g])” I sta J2 (occ, “R) = filter (( Xg.g[g])” I sta Ll))] 

as can be shown by induction on n. The third step follows because filter(1-l)) = 
0 and (Xg.g[g])” I sta 11 is I or T[ [ WHILE exp DO cmd OD]] occ Sta 41. The 
latter result follows from Lemma 1 and property Ca. 

The proof of Cb is by cases of occ’. If occ’ = ( ), the result follows by Cd 
because T[[ syn]] OCC” sta Ll is independent of OCC”. If occ’ = (l)§occ” or occ’ 
= (2)~occ”, the result follows by the hypotheses of the structural induction, the 
above expression for T[[ WHILE exp DO cmd OD]] occ sta J2(pla), and the 
additivity of filter. 

The proof of Cc is also by cases of occ ‘, and suppose first that occ ’ = ( ). The 
first result then follows from 

;~[~;~:~$$4 31) J2 (occ§(l>, “F’:) = (St4 
sta 11) J2 (occ§(l), L ), = filter (iter*‘“+‘)sta Ll) 

dg,a(iter*“(sta) 11) J2 (occ$(2), “I?“) 

Next consider the second result, and let 

r, = T[[exp]] occ$ (1) A (iter’“(sta) 41) Ll 

abbreviate the state resulting from the n + 1st evaluation of the expression (when 
the loop is entered with sta). Then the set of states possible after evaluation of 
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the expression naturally is 

T[[WHILE exp DO cmd OD]] occ sta I2 (occf(l), “R”) 

= G filter (m) 
n=O 

and the set of states possible before the body of the loop is 

T[[WHILE exp DO cmd OD]] occ sta 42 (occ§(2), “L”) 

= “iO filter (condtrue A F, Ll) 

The result then follows by the additivity of the filter. 
If occ’ = (1) §occc or occ’ = (2) §occn, the proof is by cases of syn at occ’. In 

all cases the result follows from the induction hypothesis and additivity (i.e., x = 
H(y) follows because H is additive). Cl 

Using properties Ca, Cb, Cc, and Cd, we can prove the following replacement 
theorem. As was said previously, applications of this theorem will in practice use 
an approximate data flow analysis and descriptions of sets of states [2,9], rather 
than the collecting semantics and a single initial state. 

THEOREM 1. (“Forward m replacement theorem). Consider some program syn E 
Syn and occurrence occ that points into syn. Let sta E Sta be an initial state and 
let a-co1 = I col[[syn]] ( ) sta 42 be the result of data flow analyzing syn. If 

- syn ’ is of the same category as syn at occ, and 
- syn’ behaves the same as syn at occ on each state (sta’) possible before syn at 

occ (sta’ E a-co1 (occ, “L”)) 
then syn [occ t syn ‘1 behaves the same as syn on the initial state (sta). 

PROOF. Let P(occ’) be 

Vsta’ E a-co1 (occ ‘, “L”): 
Tsto[[syn at occ’]] (sta’) 

= Tsto[[syn[occ t syn’] at occ’]] (sta’) 

The theorem assumes P(occ), and by property Cd the result follows from 
P(( )). The proof amounts to showing P(occ’$(i)) + P(occ’) by cases of syn at 
occ’ for (occ’ 3 (i) a prefix of occ). We only consider the case where syn at occ’ 
is WHILE exp DO cmd OD. Then, i = 1 or i = 2 and syn[occ t syn’] at occ’ is 
WHILE exp’ DO cmd’ OD. We have both P(occ’§(l)) and P(occ’§(Z)): 
P(occ’ Q (i)) is by assumption and P(occ’ 0 (3 - i)) follows, since syn at occ’ $ (3 
- i) equals syn[occ +- syn’] at occ’$(3 - i). 

To show P(occ’), let 

g-sto[ g] = Z’sto[ [exp]] * cond(Tsto[ [cmd]] * g, Xsta.sta inR) 
g’-sto[g] = Tsto[[exp’]] * cond(Tsto[[cmd’]] * g, Xsta.stu inR) 

abbreviate the bodies used in the fixed points. 
We first show 

sta E a-co1 (0cc’Q (l), “L”) j 
(Xg.g-sto[g])” I sta = (Xg.g’-sto[g])” I sta 
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The proof is by induction on n, and since the result is trivial for n = 0, consider 
the case n + 1. The plan of the proof is to monitor one iteration of both programs 
and show that either the computations terminate with the same result or they 
lead to more iterations starting in equal states (and then the inductive hypothesis 
applies). 

Let us begin by choosing sta E a-co1 (occ’O(l), “L”) so Tsto [[exp]] (sta) = 
Tsto [[exp’]] (sta) by P(occ’§( 1)). If the common value is I or “error” inR, the 
result is immediate, so assume it is sta’ inR. Then sta’ E a-col(occ’§ (l), “JZ”) 
follows by properties Ca and Cb. Unless Vcond(sta’) = true and Scond(sta’) E 
{true,false), the result is immediate. If Vcond(sta’) = true and Scond(sta’) = 
false, then (P&g-sto[ g])n+l I sta = (Bcond(sta’)) inR = (Xg.g’-sto[g])“+’ I sta. 

If Vcond(sta’) = true = Scond(sta’), then Bcond(sta’) = condtrue(sta’) 41 ] Sta 
is in a-col(occ’$ (2), “L”) by property Cc. Then, Tsto [[cmd]] (Bcond(sta’)) = 
Tsto [[cmd’]] (Bcond(sta’)) by P(occ’$(2)). Again, the result is immediate 
unless the common value is sta” inR. From properties Ca, Cb, and Cc we have 
staN E a-co1 (occ’s (l), “L”), so (Xgg-sto[g])“+l I sta = (Xgg-sto[g])” I sta” = 
(Xg.g’-sto[ 21)” I Stan = (Xg.g ‘-sto[ g])“+’ I sta follows by the induction hypoth- 
esis. 

We now show P(occ’). Let sta E a-col(occ ‘,“L”)sothatstaEa-col(occ’$(l), 
“~5”) by property Cc. The above result then gives Tsto [[WHILE exp DO cmd 
OD]] (sta) = LIZ=~ (Xg.g-sto[g])” I (sta) = LiZGo (Xg.g’-sto[g])” I (sta) = Tsto 
[[WHILE exp’ DO cmd’ OD]] (sta). Cl 

Theorem 1 can be compared with the results achieved in [4], where forward 
(and backward, See Section 4) “data flow information” is exploited to guarantee 
that transformations preserve the partial correctness of programs with respect to 
input and output assertions. In [4], the semantics is not considered explicitly, 
but is merely assumed to be such that some constructed verification formulas are 
“sound.” Theorem 1 expresses strong equivalence with respect to a store semantics 
(which can easily be converted to a standard semantics). For the method of [4] 
to be applicable, any loop of a program must be augmented with relevant “data 
flow information” (to be proved correct by theorem-proving methods). In the 
present approach, data flow analysis is used to “automatically” compute (approx- 
imations to) the required information. 

4. PROGRAM TRANSFORMATIONS AND BACKWARD DATA FLOW 
ANALYSES 

In this section we show how to validate program transformations that exploit 
information from a class of backward data flow analyses. An example is the 
transformation mentioned in the introduction where x := y + (1 + 1) was replaced 
by a dummy statement. The intention is to specify the backward data flow 
information in an abstract way (using a so-called future semantics) similar to 
the collecting semantics of the previous section. It is possible to relate data flow 
analyses like “live variables analysis” [ 1] and “states that do not lead to an error” 
[3] to the future semantics, and the replacement theorem guarantees weak 
equivalence. Strong equivalence can be obtained by applying the replacement 
theorem twice (also by data flow analyzing the transformed program). In a special 
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Table V. Future Semantics 
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Domains 

G=C-c>(CxA) 

C=Sta-c>R 

R = Out + {“error”] 

A=Pla-c>C 

remaining domains as in Tables II and IV. 

Combinator 

~EGxG-c>G 

g1 *gz = xc. (&&5?c 11) 11, gdgz c 11) 12 Ll g2 c J2) 
Functions 

attach E Pla - c > G 

attach(pla) = Xc. (c,l[c/pla]) 

cond E G x G - c > G 

cond(gi, g2) = Xc. (cond’(gi c 41, gz c 411, gl c 42 U gs c 4 2) 
where cond’ E C x C - c > C 

is cond’(ci, cg) = hsta. Vcond(sta) + 

(Scond(sta) ---f ci, c2) (Bcond(sta)), 

“error” inR 

and Vcond, Scond, Bcond, are as in Table II. 

apply [lope 11 E G 
apply Hope II = Xc. (apply-stollope II@ c, 1 ) 

where 8 E G-&o x C - c > C 

is g-sto 8 c = Xsta.g-sto(sta) E Sta + c(g-sto(sta) 1 Sta), 

“error” inR 

assign[[ide I], content[[ide I], push[[bas I], read, write are defined similarly to apply[[ope I]. 

case we are able to obtain strong equivalence even when only the original program 
is data flow analyzed. 

Future Semantics 

The purpose of the future semantics is to associate each program point with the 
meaning of the remainder of the program. The dynamic effect of the remainder of 
the program can be given by a continuation [ll], so we shall associate a continu- 
ation with each program point. The continuations to be used are those that would 
naturally be used in a continuation-style store semantics (e.g., members of C = 
Sta - c) (Out+{ “error”]) and the obvious “final” (or initial [ll]) continuation is 
Xsta.sta J3 in (Out+{ “error” 1)). 

The future semantics is given by Tables III and V. Domain C = Sta -c) R is 
the domain of continuations. As in the previous section, domain A = Pla -c) C 
is used to associate each program point with the desired information (here a 
continuation). We use the suffix fut for the future semantics. 

Example. Define the continuations 

c = Xsta. staJ3in. . . 

c’ = Xsta. (staJ3)§(5inVal)in.. 

For the program WRITE 2 + 3, we then get 

Tfut[[WRITE 2 + 3]]( ) c = (c’, a) 
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Fc Fb 

Figure 3. plal = (occ, “V), plaz = (occ§(l), “L”), plaa = (occJ(l), 

“W), pla4 = (occ~(Z), “L”), pla5 = (OCCQS), “R”), pla6 = (occ, 
“R”). 

where, for example, 

a(plal) = c’ 
a(pla7) = Xsta. (staJ3)Q (staJ4Jl)in.. 
dPh3) = c 

The first component of the semantic function (i.e., Xc.Tfut[[syn]]occ c 51) is 
an ordinary continuation-style store semantics. The store semantics of Section 
3 is a version of this with the continuations removed. This is formally expressed 
by the following property (an analogue of Ca): 

PROPERTY Fa. Let syn E Syn, occ E Occ be maximal and c E C. Then 
Tfut[[syn]] occ c J,l = Tsto[[syn]] @ c. 

PROOF OF Fa. By (an omitted) structural induction using the auxiliary func- 
tions cond’ and @ that satisfy cond’(g,-sto @ c, g,-sto @ c) = (cond-sto(gi-sto, 
gz-sto)) @ c and (g,-sto * g,-sto) @ c = g,-sto G3 ( gz-sto G3 c). Cl 

The second component of the semantic function applied to some continuation 
(i.e., Tfut [ [syn]] occ c 12) maps a program point to the continuation correspond- 
ing to the remainder of the program. This gives an abstract way of specifying 
backward data flow information that is similar to the collecting semantics. To 
obtain a replacement theorem, we need to state some properties (Fb, Fc, and Fd) 
of the future semantics. These properties correspond closely to Cb, Cc, and Cd 
of Section 3, except that intuitively information now flows from right to left 
rather than left to right. In particular, in Figure 3 it is shown that the purpose 
of Fb and Fc closely mirror Figure 2. 

PROPERTY Fb. Let syn E Syn, occ E Occ by maximal, c E C and occ’ E Occ 
point into syn and abbreviate a-fut = Tfut[[syn]] occ c 42. Then a-fut(occ§occ’, 
“L”) = Tfut[[syn at occ’]] ( ) (a-fut(occ§occ’, “R”))Jl. 

PROPERTY Fc. Let syn E Syn, occ E Occ be maximal, c E C and occ ’ E Occ 
point into syn and abbreviate a-fut = Tfut[[syn]] occ c J2. If syn at occ’ is WHILE 
exp DO cmd OD, then a-fut (occ~occ’ 5 (2), “R “) = a-fut(occ§occ’, “L”), and 
a-fut(occ§occ’§(l),“R”) =cond’ (afut(occ§occ’Q(2), “L”),unda-fut(occ§occ’, 
“R “) ) . 
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For the remaining constructs, there are more or less similar properties. 

PROPERTY Fd. Let syn E Syn, occ E Occ be maximal, c E C and pla E Pla. 
Then 

(i) Tfut[[syn]] occ c J2 pla# I *pla is a descendant of occ 

(ii) Tfut[[syn]] occ c 42(occ, “R”) = c 
(iii) Tfut[[syn]] occ c 42(occ, “L”) = Tfut[[syn]] occ c 41. 

PROOF OF Fb, Fc, and Fd. By an omitted structural induction. q 

Using properties Fa, Fb, Fc, and Fd we can prove the following replacement 
theorem, which expresses weak equivalence. The statement of the theorem makes 
use of the phrase “syn’ followed by c’ “, which means Tsto[[syn’]] @ c’. 

THEOREM 2. (“Backward v replacement theorem). Consider some program syn 
E Syn and occurrence occ that points into syn. Let c E C be a “final n continuation 
and let a-fut = Tfut[[syn]]( ) c J2 be the result of data flow analyzing syn. If 

- syn’ is of the same syntactic category as syn at occ, and 
- the continuation c’ holding after syn at occ (c’ = a-fut (occ, “R “)) satisfies that 

syn’ followed by c’ is less defined than syn at occ followed by c’ 

then syn[occ t syn’] followed by c (the final continuation) is less defined than syn 
followed by c. 

PROOF. This proof follows the same overall plan as that of Theorem 1. Let 
P(occ’) mean that 

Tsto[[syn at occ’]] @ c’ =I Tsto[[syn [occ tsyn’]at occ’]] @ c’ where c’ = a-fut(occ’, 
‘W). 

The assumption is P(occ) and the result follows from P( ( )) by property Fd. The 
proof consists in showing P(occ’§(i)) + P(occ’) by cases of syn at occ’ (for 
occ’ 0 (i), a prefix of occ). We only consider the case where syn at occ’ is WHILE 
exp DO cmd OD. Then i E (1,2) and syn[occtsyn’] at occ’ is WHILE exp’ DO 
cmd’ OD, and we have both P(occ’§(l)) and P(occ’s(2)). 

Let 

g-sto[ g] = Tsto[ [ exp]] * cond( Tsto[ [ cmd]] * g, hsta.sta inR) 
g’-sto[g] = Tsto[[ exp’]] * cond(Tsto[[ cmd’]] * g, Xsta.sta inR) 

abbreviate the bodies used in the fixed points. 
We first show FIX(hg.g-sto[g]) @ c’ 2 (X&g’-sto[g])” I @ c’ for c’ = 

a-fut(occ’, “R”). The proof is by induction on n, and the result is easy for n = 
0, so consider n + 1. By Fa, Fb, and Fc we have 

a-fut(occ’$(2), “,“) = FIX(Xg.g-sto[g]) @ c’, so a-fut(occ’$(2), “V) = Tsto[[ cmd]] @ 
(FIX( X&g-sto[g]) @ c’) 2 Tsto[[ cmd’ ]] @ (( X&g’-sto[g])” I @ c’) by Fa, Fb, P(occ’$(B)) 
and @ continuous. 

I’roceeding in this way, a-fut(occ’§( l), “R”) 

= cond’(Tsto[[ cmd]] CB (FIX(Xg.g-sto[g]) CL3 c’), c’) 7 cond’(Tsto[[ cmd’]] 63 ((X&g’- 
sto[g])” I @ c’), c’) and Tsto[[ exp]] ~3 cond’(Tsto[[ cmd]] @ (FIX(Xg.g-sto[g]) G3 c’), c’) 
z Tsto[ [ exp’]] G3 cond’(Tsto[[ cmd’]] @ (( Xg.g’-sto[g])” I @ c’), c’) i.e., g-sto[FIX( Xg.g- 
sto[g])] a3 c’ 2 (Xg.g’-sto[g])“+’ I CD c’. 
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Then 

Tsto[[ WHILE exp DO cmd OD] ] 6B c’ = g-sto[FIX( hg.g-sto[g])] @ c’ a u:-,, (( X#.g’- 
sto[g])” I @ c’) = Tsto[[ WHILE exp’ DO cmd’ OD]] ~33 c’. IZI 

Even if we assume that (in the notation of the theorem) syn’ followed by c’ is 
equal to syn at occ followed by c ‘, we cannot obtain that syn[occ t syn’] followed 
by c is equal to syn followed by c. The following example shows that this must 
be so. Consider the program 

READ(x) ; WHILE x > 0 DO n := 0 - z OD ; WRITE(O) 

followed by the final continuation c = Xsta.staJ3inR that simply emits the output. 
The continuation c’ holding immediately before OD is 

Tsto[[WHILE z > 0 DO x := 0 - 2 OD ; WRITE(O)]] CB c 

so that x := 0 + x: followed by c ’ is equal to x := 0 - x followed by c ‘. But the 
above program always terminates, whereas the transformed program READ(x); 
WHILE x > 0 DO x := 0 + x OD; WRITE(O) loops on some inputs. Intuitively, 
this is because the continuation holding before OD is affected by the transfor- 
mation. So as in [4], only weak equivalence is obtained, but even then there are 
advantages of using the present approach. We consider that a formal (store) 
semantics and WHILE loops need not be augmented with assertions. 

By applying Theorem 2 twice, we can obtain strong equivalence. First apply it 
to syn and then to syn[occ t syn’], so that both syn and syn[occ c syn’] are 
data flow analyzed. Since syn = (syn[occ t syn’]) [occ c syn at occ] this gives 
conditions for when syn followed by some final continuation (c) equals syn[occ 
t syn’] followed by the same continuation. This is the desired result, since only 
the output of a program is important (i.e., c = Xsta.sta 43 inR), but it is slightly 
unsatisfactory that the transformed program also has to be data flow analyzed. 

Liveness Semantics 

Many backward data flow analyses can be related to the future semantics and 
viewed as approximating it. One example is the determination of states which do 
not lead to an error [3]. Consider some program (syn) and final continuation (c). 
If c’ is the continuation holding at some program point pla (c’ = Tfut[[syn ]J ( ) 
c 42 pla), then the set of states not leading to an error is (sta E Sta ] c’(sta) # 
“error” inRj. Another example is “live variables analysis” [l] that is a syntactic 
way of associating each program point with a set of live identifiers. Correctness 
of “live variables analysis” implies that if some identifier (ide) is deemed not be 
be live at some program point (pla), then the continuation holding there (c’ = 
Tfut[[syn ]] ( ) c J,2 pla) must produce the same output (c’ (stai) = c’ (stap)) for 
any two states differing only on that identifier (sta, J,l = staZ Jl[stai 
Jl[[ide]] / ide] and stai ii = staz Li for i # 1). 

By the above correctness condition for “live variables analysis,” we can validate 
program transformations exploiting liveness information. But both the original 
and the transformed program has to be data flow analyzed, contrary to what is 
done in practice. We therefore define a liveness semantics (suffix liv) that 
computes “live variables” and we sketch how to obtain strong equivalence when 
only the original program is data flow analyzed. The liveness semantics (Tables 
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Table VI. Liveness Semantics 

l 377 

Domains 
G=L-c>(LxA) 
L = P(ide) 
A=Pla-c>L 
remaining domains as in Tables II and IV. 

Combinator 
*EGxG-c>G 

g1 *g2 = Xl. (gl(g2 1 11) 11, g,(g2 1 11) 12 u g2 1 12) 
Functions 

attach E Pla - c > G 
attach(pla) = X1.( 1, I[l/pla]) 

cond E G x G - c > G 
condk,, gz) = gl u gz 

apdybwe 11 E G 
applykw 11 = X1.(1, I ) 

assign[ [ ide ]] E G 
assign[[ide ]] = X1.(1 - (ide], I ) 

content[[ide ]] E G 
content[[ide ]] = X1.(1 U {ide], I ) 

push[[bas I], read, write are defined similarly to apply[[ope I]. 

III and VI) operates in essentially the same way as the future semantics. The 
most interesting functions are assign[ [ide]] and content[ [ide]]. They simply 
correspond to the usual transfer functions [l] associated with the basic blocks of 
a program represented as a flowchart. So assign[ [ide]] records that ide has been 
killed and content[ [ide]] records that ide has now been generated. 

Example. For the program WRITE 2 + 3, we get 

Z’liv[[WRITE 2 + 3]] ( ) 1= (1, a) 

where, for example, a(plai) = a(pla7) = a(plas) = 1. 

Property La below expresses the connection between the store semantics and 
the first component of the liveness semantics. For this we need a predicate called 
Z-similar such that stai is l-similar to Stan if stai and staz differ only on identifiers 
not in the set 1 of live identifiers. Formally, 

stal = (env, , inp, out, tern) =9 
3 env,:[stas = (env*, inp, out, tern) A ide E 1 

+ envi[[ide ]] = envs[[ide ]] ] 

So, for example, the continuation Xsta.staJ3inR will give the same result on any 
two states that are l-similar for some 1 (e.g., I = 0). Furthermore, Ide-similarity 
means equality. 

Define syn, to be (ZZ, Zr)-related to syn2 where ri = Tsto[[syni ]] stai satisfies 
that if stai is Zl-similar to sta2 then rl = r2 or ri = sta( inR with sta; Zr-similar to 
stai. When synl = syn2, this means that the final values of variables in Zr only 
depend on the initial values of the variables in 11. 
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PROPERTY La. Let syn E Syn, occ E Occ be maximal, lr E L and 11 = 

Tliu[[syn ]] occ lr Ll. Then syn is (11, lr)-related to syn. 

PROOF OF La. By structural induction. Lemma 1 is used when syn is WHILE 
exp DO cmd OD. We omit the details. q 

We omit stating properties Lb, Lc, and Ld that are analogues of Fb, Fc, and 
Fd. Using the latter, we can prove the following replacement theorem, guaran- 
teeing “strong equivalence”, using only one data flow analysis. 

THEOREM 3. Consider some program syn E Syn and occurrence occ that points 
into syn. Let 1 E L be a set of live identifiers and let a-liu = Tliu[[syn ]] ( ) 1 J2 be 
the result of data flow analyzing syn. If 

syn ’ is 
1 forth 

of the same category as syn at occ, and 
e sets 11 and lr of live identifiers before and after syn at occ (11 = a-liv (occ, 

“L”) and lr = a-liu (occ, “R”)) that syn’ is (11, lr)-related to syn at occ then 
syn [occ t syn ‘1 is (Ide, 1 )-related to syn. 

PROOF. Similar to that of the previous theorems. For the WHILE case, Lemma 
1 is used. We omit the details. 0 

When syn[occtsyn’] is (Ide, l)-related to syn (for some 1, e.g., 1 = 0), we 
clearly have that syn[occtsyn’] followed by c = Xsta.sta.J3inR equals syn 
followed by c. Hence, the program transformation has not affected the overall 

meaning of the program. 
It is hoped that the above development can be generalized so that the liveness 

semantics is replaced by a more abstract formulation. The future semantics gives 
information about program points (the effect of the remainder of the program) 
and the liveness semantics also does so: If 1 is the set of identifers live at some 
program point, then any two l-similar states produce the same output. Addition- 
ally, the liveness semantics gives information about program pieces (the concept 
of ( 11, &)-related). Perhaps the future semantics should be augmented with 
(suitable generalizations of) such information. 

5. CONCLUSION 

It has been shown that it is possible to validate program transformations that 
exploit data flow information. The formulations of the data flow analyses were 
chosen on purpose to be rather abstract, so that the result would be applicable 
for a large class of data flow analyses. For the forward data flow analyses, a so- 
called collecting semantics was used and strong equivalence (Theorem 1) was 
obtained by data flow analyzing only the original program. For the backward 
data flow analyses, a so-called future semantics was defined, but only weak 
equivalence (Theorem 2) could be obtained, unless the transformed program was 
also data flow analyzed. It was possible to overcome this deficiency in a treatment 
of live variables analysis, but it remains to generalize the method to the general 
setting. 

To explain why Theorem 2 is weaker than Theorem 1, we introduce the 
following classification of data flow analyses. Call a data flow analysis first-order 
if the data flow properties describe sets of states, and call it second-order if this 
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is not so. (We shall not at this point be more precise about what a second-order 
property actually is.) Then, constant propagation is a first-order data flow 
analysis and live variables analysis is a second-order data flow analysis. Not all 
forward data flow analyses are first-order, for example, reaching definitions [l]. 
Neither are all backward data flow analyses second-order, for example, the 
detection of the set of states that do not lead to an error [3]. 

Theorem 1 is applicable to all first-order forward analyses because the collect- 
ing semantics intuitively is as precise as possible. It is not clear how to incorporate 
second-order forward analyses because it is not clear what to use instead of the 
collecting semantics. It would seem that Theorem 2 is applicable to both first- 
order and second-order backward analyses. Concerning first-order backward 
analyses, one may envisage a version of the collecting semantics (or, rather, its 
companion, the static semantics [9]) for backward analyses so that a theorem 
giving strong equivalence could be obtained. The difference between strong versus 
weak equivalence thus seems to be due to the first-order versus second-order 
distinction, because in the latter case the program transformation affects the 
abstract data flow information. 

REFERENCES 

1. AHO, A. V., AND ULLMAN, J. D. Principles of Compiler Design. Addison-Wesley, London, 1977. 

2. COUSOT, P., AND COUSOT, R. Systematic design of program analysis frameworks. In Proceedings 
6th ACM Symposium on Principles of Programming Languages (1979), ACM, New York, 269- 
282. 

3. COUSOT, P. Semantic foundations of program analysis. In Program Flow Analysis: Theory and 

Applications, S. S. Muchnick and N. D. Jones, Eds., Prentice-Hall, Englewood Cliffs, N.J., 1981, 
303-342. 

4. GERHART, S. L. Correctness-preserving program transformations. In Proceedings 2nd ACM 

Symposium on Principles of Programming Languages (1975), ACM, New York, 54-66. 

5. HUET, G., AND LANG, B. Proving and applying program transformations expressed with second- 
order patterns. Acta Inf. 11 (1978), 31-55. 

6. LOVEMAN, D. B. Program improvement by source-to-source transformations. J. ACM 24 (1977), 

121-145. 

7. MILNE, R., AND STRACHEY, C. A Theory of Programming Language Semantics. Chapman and 

Hall, London, 1976. 

8. MILNER, R. Program semantics and mechanized proof. In Foundations of Computer Science IZ, 

K. R. Apt and J. W. de Bakker, Eds., Mathematical Centre Tracts 82, Amsterdam, 1976,3-44. 

9. NIELSON, F. A denotational framework for data flow analysis. Acta Znf. 18 (1982), 265-287. 

10. ROSEN, B. K. Tree-manipulating systems and Church-Rosser theorems. J. ACM 20 (1973), 

160-187. 

11. STOY, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming Language 

Theory. MIT Press, Cambridge, Mass., 1977. 

Received June 1984; revised January 1985; accepted April 1985 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985. 


