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Abstracti

A theory of partia/ Correctneuaf)TOOj8ia ~O?mUhIied
in Scott’8 10P”coj computable junctions. Thi8 theory af-
10WSmechanical conduction O! uerijication condition
8olely on the baai8 oj a denototional language definition.
Eztemionally the8e condition the re8ulting prooj8, and
the required program augmentation are 8imilar to tho8e
oj Ho are i+tyleprooj8; conventional input, output, and in-
variant a8sertion8 in a jir8t order as$ertion language are
required. The theory applieo t o almoet any 8equentiaJlan-
guage dejined by a continuation 8emantic8; jor ezample,
there are no re8triction8 on o(ia8ing or 8ide-efleci8.
A8pect8 oj %totic 8emantic8”, 8uch 08 type and declara-
tion con8traint8, which are eZpre88edin the denohrtionol
definition are validated u part O! the verification condr’-
tion generation proce88.

1. Introduction

Most existing program verification systems are
based on some variant of Hoare’s weak logic of pro-
grams [F167, H069]. The prevailing paradigm is to use
a set of proof rules to construct “verification condhions”
for a given program, Validity of these conditions im-
plies partial correctness of the program. An “invariant
assertions” has to be associated with each loop in the
program; it provides an induction hypothesis to prove
properties of this loop.
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An advantage of this method is its simplicity: to
express the intention of a loop in an invariant in terms
of program variables is easier for programmers than
any other known method of performing induction proofs
(short of automatic synthesis of invariants or induction
hypotheses). Furthermore, a simple algorithm to con-
struct verification conditions from a set of proof rules
has been well known for quite some time [IL75].

Most existing implementations of Hoare’s logic im-
pose some restrictions on the programming language; for
example aliasing and side-effects are often disallowed,
This in itself is not serious, It is serious, however, that
these restrictions are usually not expressed in the formal
system itself, but rather as “English” comments, More
generally, most systems of proof rules completely ignore
questions of static semantics. Ligler [Li75] coined the
term “surface properties” to characterize those aspects
of semantics captured by proof rules. However, these are
not principal limitations as is shown in [OC78, SC78].

It has been argued repeatedly that a set of proof
rules defines the semantics of a language. However, thh
is only true if rigorous soundness and consistency of
proofs for these rules are given. One way to prove con-
sistency of proof rules is to provide a model, for example
a denotational or operational semantics of the language
to be defined (complementary definition [D076, HL74]).

In this paper we present a theory that enables the
construction of verification conditions for a program
augmented with input, output, and invariant assertions
based solely on a denotational definition of the lan-
guage in question. The assertion language can be any
first-order language that contains certain “primitive’
functions and predicates (see section 4.3). Necessary
theorem proving is done within this logical language.
Thus, a verification condition generator based on our
theory exhibits a user interface similar to that of most
ruIe based systems.

The class of languages to which our theory ap-
plies is virtually unrestricted; we merely require simple
restrictions on the definitional language (see section
3); in particular, there are no limitations as to alias-
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ing or side-effects. If the static semantics, i.e. type
and declaration constraints, are part of the denota-
tional definition, these constraints will be automatically
validated during verification condition generation; no
additional “English” restrictions are necessary.

Since the process of verification condition genera-
tion is completely described within Scott’s functional
formalism it is possible to combine proofs using fixed
point induction and proofs using invariant.

The relation between Hoare’s logic and denota-
tional semantics has been investigated in several pre-
vious works [C177, MS76, Mi77]. It has been shown how
to express predicate transformers in Scott’s framework
and how to prove consistency between a set of proof
rules and a denotational definition,

In thh paper we introduce the notion of “related”
language definitions. Two definitions are related if they
describe the same language from a “different point of
view.” We show that a continuation semantics and an
equivalent predicate transformer semantics are related
in thh sense.

In the next section we will introduce some nota-
tions and summarize the theoretical foundations. In
section 3 we introduce the notion of “related” language
definitions. It is shown that under certain conditions
a predicate transformer semantics can be constructed
from a continuation semantics by simple textual sub-
stitution, In section 4 we introduce the assert state-
ment. It is shown bow a predicate transformer seman-
tics can be used to gerwate verification conditions for
programs augmented with sufficiently many assertions.
Finally, in section 5 we discuss some issues relevant to
the application of our theory. These include a worked
example, some hints on a possible implementation, and

the treatment of jumps, procedures and functions, and

nondeterminism. The appendix contains the continua-
tion semantics of a simple example language that will
be used in examples throughout the paper.

2. Notations, Definitions

We assume that the reader is familiar with Scott-

[

Strachey semantics MS76, SS71, St77, Te76] and the

underlying theory SC72]. In our notation we follow

that of Stoy and Tennent [St77, Te76].
A domain D is a complete partial order (cpo)

[P178], ordered with respect to C withthe least element
-L. If D1 and D2 are two dom~ns, then D1 + D2 and
D1 X D2 denote the separated sum, and product spaces
respectively; these domains are ordered in the usual way.
If z E D1 + D2 then z I Di denotes the projection of z
on Di; it is defined to be ~ if z is not in the component
Di. Conversely, if z E Di then z I D1 + D2 is the im-
bedding of z in D1 + Dz. For Z1 E Dl, 22 E Da the

pair (ZI, 22) is an element of DI x Da. If z C Di X Da
then xi denotes to the i-th component of z.

D* denotes the domain of finite lists over D. The
notation (zl, ..., ZJ refers to a list with the elements
21, ..., Zn, We write () for the empty list and use & for
concatenation.

If S is a set, SL with ~ ~ s E S is a flat domain,
For a flat domain D we write proper(D) for the set of
proper elements (# ~) of D. T = {tt, jf}L is the
domain of truthvalues, If Z1 c T and Z2, 23 E D then
the conditional if Z1 then 22 else 23 is a term in D, If
Z1 = ~ then the value of the conditional is ~.

If D1 and D2 are two domains then D1 * D2 is
the domain of continuous functions from DI to D2. If
T is a term in D2 and z E D1 then Xz,T is a term
in D1+D2.1fj CD1+D2 and zCD1 then
j z c Da is the result of applying j to z. Function
application associates to the left. Alternatively we use
the symbol “;” to denote function application; it has
lower precedence than juxtaposition and associates to
the right. For example z y; u U;w z means z V(UU(Wz)).

A function ~ is called strict if ~~ = J_.
For arbitrary j the function strict j = A z.if z ==

1 then ~ else j z is strict and continuous (see e.g,
[st77]).

For j C D1 - Da, ZI E Da, and X2 E DI
the term j [zl/z2] denotes the function A y.if y =
22 then Z1 else j y. Z1 and 22 may be lists in which
case j [zl /22] denotes a simultaneous redefinition of j;
if 22 is a list whose elements are not distinct or if Z1 and
22 are of different length we define j[zl/z2] = ~.

If j E D ~ D then jiz j E D denotes the least
fixed point of j. Continuity of j guarantees the exisb
ence of a least fixed point. The property

If ~z Q z then jiz j ~ z. (1)

will be relevant later,
In addition to the truthvalues T = {tt, /f}A the

two element cpo T2 of truthvalues with

T2 = {trwe, jaise} with true ~ jalse

will be of particular importance. T2 has the nice
property that for tl and t2 in T2 the implication t, 3 t2
is true if and only if t2 ~ tl.

A predicate over D is an element p E D + T2.
That is, all predicates we consider will be continuous.

This restriction is not a severe one because if D is a
flat domain any strict function on D is continuous and
any function defined on the proper elements of D can
be extended to a strict function on D. By the ordering
of T2 we have Vz.p(z) 2 q(z) iff q ~ p.

A set S is directed if every finite subset has an upper
bound in S, For a directed set S its least upper bound
is written as u S. A function j is inciusive [MS76] it
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for any directed set $ = {Zi}

f(u{zi}) G U{/zi}.

Inclusive predicates are admissible for fixed point induc-
tion.

3. Related denotational definitions

To be able to talk about language definitions as ob-
jects let us introduce the following notation. A denota-
tional semantics Q is a collection of domains and func-
tions. Domains are defined from a set of primitive
domains {Bi} by product, sum, function domain con-
struction, and recursion, Functions on these domains
are defined in typed A-calculus from a fixed set of primi-
tive functions {ii}. To emphasize this dependence we
write Q = Q(131,..., B~, ~i, tJ., tJ.

Primitive domains and functions are those not fur-
ther defined in a language definition. For example,
the flat integer cpo NL and addition on ZVl or the
domain A of answers are considered primitive in most
definitions. But one may also consider more complex
domains and functions as primitive, For example, the
semantics of a language could be described relative to a
set of elementary statements with a fixed but not further
defined meaning.

Given a definition Q = Q(BI,.. .j~n, fl,... ,fm)

we will now investigate properties of a definition ~ =
Q(Jjl,,,,, An, jl,..,, ]m) that has primitive domains

and functionz altered but is otherwise identical to 42.
We show that’ under certain conditions Q and d are
related in a meaningful manner.

The reason for studying related definitions is that
they express the semantics of a language from a
different point of view, for example a definition which
distinguishes different error situations and its related
definition that maps all errors into the undefined ele-
ment ~. We will show later that for most continuation
semantics one can define a related definition which is a
predicate transformer semantics.

3.1. Relating domains

Let Q = Q(B1,..; jBnjjl}...ljm) and then ~ =
Q(&,,. o,&jl,.. o, ~m) then ~ consists of the same
definitional clauses as Q with some primitive functions
and domains replaced. Thus, transformations back and
forth between Q and 4 are simple textual substitutions.
For each domain D of Q there is a corresponding domain
fi of ~. For each term t c D of Q there is a correspond-
ing term i E D of l?.

Let domains lh,..., Bn and &,..., & be related
by inclusive binary relations REI C Bi X pi. we extend

R to all domains of Q by defining relations ~D C D X ~

according to

kD(Z, f) ijj Z = i

for a primitive D that is not a parameter

RD$+~,(Z,4) ijj RD,(z I DI, ~ I ~1) A

RD,(z I Dz, A I b2)

RD, XD,(Z, f) iff RD,(Z;, ~1) A %J,(Z21 *2)

RD,+~,(j, j) ijj A{R~,(tg, ji) i Rih(9, j)}.

Note, if Di is defined recursively, then so is RDi. h
this case RD, iz defined to be the least fixed point satis-
fying the above definition, Unfortunately, the set con-
structor used in thh definition is not continuous, not
even monotonic, Therefore, the existence of a least fixed
point iz not guaranteed. To prove its existence we have
to resort to the theory of inclusive predicates [MS76,
Re74]. A detailed analysis is beyond the scope of this
paper but corollary 5.1 in [Re74j applies to our situa-
tion and can be used to show that RD is in fact well
defined for any D. We will omit domain subscripts if
they can be inferred from the context.

Observe, that for domains D independent o! the
parameters Bi we have D = b as well as %D(~, ~) ~
d=d.

Definition: Given RB, as above we say two
definitions ,Q ~ Q(~I,..., B~, fl,..., j~) and ~ =
Q@l , ...,Bn,llv*”.# jm) are related if for all ji the
relation RD(ji, ji) holds for the appropriate D (i.e. ]i C

D).

Note tha} in general suitable ~i need not exist for
given Q, Bil Bit and ht~

3.2. Properties of related deflrdtions

Th~orem: Let Q = Q~Bl,..., BtL, jI, j~), j~) and 4 =
Q(B1,..,, fin, jl,..., fm) be two related definitions. For

an arbitrary term t c D of Q ad the corresponding

term ~c D of k the relation R~(t, i) holds,

Proof: The proof proceeds by induction on the structure
of t.
a) Primitive functions: R(ji, ~i) holds W the definition

of related semantics.
b) Application: assume inductively ~(g, j) and ~(% *),

then R(g z, g ~) follows by definition of R.
c) Fixed points: J?(L, 1); if R(g, j) and R(z, i) part (b)

yields R(g z, j i). Since R is inclusive it is admis-
sible for fixed point induction which yields

HU(gnl), u(j”~)) = R(j~z g, j~z j).

d) X-abstraction: Let t(z) be a term with free variable
z. Given any function g such that R(g, j), then
by induction hypothesis we have R(t(g), i(~)), Since
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this is true for arbitrary g, we have

and thus J2(Xz.t, h z..i).
e) Conditionals: immediate since RT has to be the iden-

tity relation. Obviously, T cannot be replaced by
another domain since then conditionals are not well
defined. u

3.3. Predicate transformer semantics

Throughout the rest of this paper we only consider
continuation semantics [sw74] Qc = Q(A, ji,..., jm)

with answer domain A, A continuation is a mapping
from stores (S) to answers (A), i.e, C = S + A. The
meaning of a statement is described by its effect on
the continuation that applies after the statement (tail
function [Ma71]).

Let q c A + T2 be a predicate on answers. We
define ~A ~ A X T2 as )?A(u, b) s b = qa. We

will show below that given suitable functions ~i the
related definition Qq = Q(T2, ~1,..., ~,,J is a predicate
transformer semantics.

First let us consider selection of suitable functions
~i. In practice the following rules suffice: if u E A is
a constant take & = q(a); ifj ED+ Atakej=
X z.q(j z); if d E Z) for a D independent of A take d =
d.

If the language includes nondeterminism described
by power domains [P176, Sm78] the situation is slightly
more complicated. For example, in [Te77] Tennent
uses the domain of continuations C = S + P(A).
Alternatives are described by 61 I 02 = ku.(?lo l.J 82U.
For a given q E A + T2 we define q* E P(A) -b T2
according to

CI”(P)= A{qa Ia EP}.

It follows that “/” and “U” are related functions, i.e.
R(’’l”, au”).

Our theory is applicable to any language definition
Qc for which Q~ can be constructed.

Let us now argue why Qg is a predicate transformer
semantic? for the language defined by Qc. Given a pro-
gram El, its meaning is determined by the term dP,e =
S [EI]PoOO (assuming the semantics given in the appen-
dix). Here 80 and POare the initial continuation and en-
vironment respectively. Starting program 0 with store
u we get the answer #prCu.

Suppose we are given a predicate q on answers
which we want to be true after program execution, i.e.
we want q(OP,~u) to hold. Now by the the definition of
RA we have ~(dpreu) = ~p,etf. Since S is independent
of A the relation RS is the identity, thus u = & and

dopr.u) = ~pr.~. Consequently, ~~,c is a precondition
of e; i.e. if 8P,, holds for the initial store a and if pro-
gram 0 terminates then q holds for the final answer of
e, But 6P,, is just the result of computing ~[e~jo~o
in Qq. Note, if 0 does not terminate its answer will
be ~, But unless q = X z.fahe monotonicity of q re-
quires q J- = ~, i.e. q holds for the final answer of a

nonterminating program. Thus, we cannot reason about
termination within Q~.

In general, continuations of Qq are predicates on
stores that guarantee q for the final answer, Thus,
~ [e]~ is a p~edicate transformer that maps ~ into
4P,, = ~ [e]@ such that if ~ after e guarantees q then
so does jPrC before e.

This notion of predicate transformer is diflerent
from Dijkstra’s weakest liberal preconditions [Di76],
For example, wfp([goto m], P) cannot be defined mean-
ingfully, In our method the use of a fixed exit condition
q allows to define predicate transformers for jumps and
error exits. Given the predicate q, correct label bindings
can be computed for every environment; thus, the term
~ [goto m]~t? = j[rn] correctly describes the precondi-
tion for the goto statement.

4. Program Proofs

In this section we introduce an assert statement in
the programming language and show how it can be used
together with the predicate transformer semantics con-
structed above to generate verification conditions. We
do this for the language given in the appendix; domains
used in this section refer to those of this definition.
Constructions similar to those presented for our example
language are immediate for many other languages.

4.1. The Assert Statement

Let II, . . . . In be identifiers and let P by a con-
tinuous predicate on values P c V + T2 an assertion
C Asrt is a term of the form F’(II,,.,, Z,J.

We add a new statement of the form
assert P(Z1,, ,., 1.) to our programming language.
Inserting arbitrary assertions in a program will not
change its semantics, thus we define

S[assert P(Z1 ,..., zn)]pe=e,

Intuitively, an assertion serves the same purpose as
in Hoare’s logic. Formally, the assert statement is a

means to associate a continuation with a particular point
of the program. In analogy to & defining the meaning of
expressions we define a function 4 defining the meaning

152



of assertions:

~i5A8rt+U+$+T2

AuF’(ll,..., IJ1=l=

h7.P(u(p[l~] \ L),.,. ,u(puln] IL)).

Note, that the assertion denotes an element of S -+
T2, i.e. a continuation in Q~, while P is a predicate on
values,

The predicate q E A + T2 is not an assertion in
the above sense; it plays a special role since it is used to
construct Q* It is usually not meaningful to talk about
values of program variables in q because variables do
no longer exist once a program terminated. However,
depending on the domain A, q may assert properties of
an output file or it may assert that certain errors do
not occur during program execution. For example, the
predicate q = kz.z # inualidindex cannot in general
be stated as a predicate on stores,

4,2. Generating Verification Conditions

Subsequently, we only consider a particular predi-
cate transformer semantics Q9; since all terms refer to
Q~ rather than Qc we omit all primes.

The problem of generating verification conditions
for a program e is to derive a set of conditions Vi and
a predicate r on stores (precondition) such that

vi, ,.., Vn l-- s~ejpoooG r. (2)

If we are able to prove all Vi then this guarantees
the usual partial correctness statement if r holds for
the initial state and if e terminates, then q is true for
the final answer, i.e.

Vf7.ru 3 s[ejpodo~.

Formulas of the form (2) can be systematically
derived by symbolic execution of meaning functions fol-
lowing the structure of the input program. We present
several typical cases.

The semantics of the assert statement
S [assert P(ll,..., IJ]PO = 8 gives rise to

e gAIP(Il, ““.’~n)no 1-

S [assert P(I1, . . ., IJ]P4 L AIPU1,..o,l?w. (3)

One important point about this otherwise trivial rule
is that the precondition 4[P(11,.,., ln)]p is a constant
not dependhg on 0.

Given a simple statement like an assignment, one
can evaluate the meaning function, i.e. derive a formula

+ s[e]po = r.

For a sequence of statements t31; ez we get

vi, ,,., VmES[f12]pi?~r1

Vn+l,.,., Vm ~ S[el]prl ~ r

and by monotonicity

VI, . . ..vm+s[el. e2]p0Gr.

Loops in the program are defined through terms of
the form ~iz N1.T(@). If T(8) is evaluated (for a symbolic
i?) using the above rules a formula of the form

VI(6),..,, Vn(4) 1- T(d) ~ r

is derived. If the code inside the loop is augmented
with sufficiently many assertions the predicate r will be
a constant not dependhg on 4. Since we did not make
any assumption about 0 the above formula holds for any
0, in particular it holds for r:

Vi(r),..., Vn(r) ~ T(r) ~ r.

By (1) from section 2 this implies

Vi(r),,,., Vm(r) ~ fix NY(O) ~ r

which again is a formula of the form (2) giving
verification conditions for a loop,

4.3. Proving verification conditions

Verification conditions generated by our method are
of the form T1 ~ T2 where terms Ti are constructed
from conditionals, redefinition (z [ti/v]), predicates and
functions occuring in assertions, and primitive functions
on values used in the language definition. We assume
that the chosen assertion language is strong enough
to express all verification conditions constructed in the
above way, Ignoring the special case of the initial con-
tinuation 00 each verification condition can be written
in the form

kr.P(ucYl, . . . . ~~n) ~ k.~(U&&l . . . /Ua~)

where P and Q are strict predicates over V and all at
are distinct locations (6 L.), 1 < k < n + 1, n < m.

By properties of T2 verification conditions of the
above form can be proven by showing

V~.Q(~(.Yk, . . . . cram) 2 P(ucYl, . . . . %)

or, after substituting zi for ~~i

vZi.Q(Zkj.. .,zm) ~ P(ZIJ. ..jZn).

Note, that we have to quantify over the domain V
(including ~). This poses a slight problem since it rules
out the use of a conventional theorem prover for first
order logic. For example, axioms such as z # z + 1 do
not hold in V = N_l . A possible solution is to require
a theorem prover w-hlch
of sets. But we can also
quantification over V is

operates on domains instead
argue that those cases where
different from quantification
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over proper elements of V result from erroneous pro-
grams (e.g. accessing uninitialized variables).

This rather informal argument can be made more
precise as follows. Suppose we change the definition Q
to a new definition ~ by adding the clause

$[assert P(ll,..., lJj@ =

Arr.8trict(Acl. . . Cn.hr) C(p[zl])” “ ‘ a(p[ln]).

The meaning of a program ~ is the same in Q and
~ only if identifiers in assertions in e are declared and
initialized.

To generate verification conditions for e in ~ we
have to use the rule

k7.8trict(hl,., 6n.0u) U(p[ll]).. .a(puInJ)

G JUW1, ,,, ,Zn)np

1- $[assert Z’(11, .,., ZJ]PO G AIP(I1,..., I?J]P.

Thus, whenever our original method generates a
verification condition of the form

Ao.P(crrYl, . . . , cran) Q Xo.Q(acr~, . . . ,aam) (4)

then the corresponding condition generated in 4 is

hJ.8tri@ ~k. . . tm.p(ual, . . . . ~~n))(@, Q, (~~m)

~ kr.Q(aak, . . . ,CMKm) (5).

We noted above that condition (4) is equivalent to

V~i E V.Q(Zk ,.. ,,zm)2P(zl,..., zJ

It is easy to see that condition (5) is equivalent to

VZi ~ proper(V) .Q(zk, . . . . Zm) ~ P(z1, . . . . Zm).

Thus, we can conclude that it suffices to prove
verification conditions for proper values only provided
the program does not accessundeclared or uninitialised
variables in assertions - first order theorem proving is
applicable,

5. Application

5.1. Example

The following simple example uses the language
defined in the appendix. We assume a predicate trans-
former semantics with q = X a.true. Thus, if the pro-
gram aborts with some runtime error it will be partially
correct. A meaningful exit condition is provided by the
assertion placed at the end of the program. a and b are
two arbitrary integer constants.

begin

new z; new y; z + a;

while O<(z —z-l)do

begin new z = y;

z+z+b;

assert P(z, ~);

en~

assert R(y)

end

Let us call this program pgm with statement part
8trnt8.With 60 = Xa.true and initial store 60 the 5nal
answer of pgm is given by

s~grnjJ_&Xro

= P[new z; new y]l(Ap.C[8tmt8] pOO)UOo

(Since there are no labels 3 and j both evaluate to the
empty list.) Abbreviating x = Ap.C[8trnt8jp80 we have

D[new z; new yj~xuo

= D[new zj-l; (@D[new yjJ-X)ao

= Dlnew yJl(l[aJz])xai

= X(L [%/~] [%JY])U2

where al = uo [O/CYOO]and uz = al [O/aoJ. We write
CYOfor the Q such that ua = unused. Thus, tYUO# %
follows immediately.

Po = l[a~,/z] [%t/v] is the environment in
which we have to evaluate the statement part 8trnts of
the outer block. The final answer is given as

C[8tmt8]pO@O@

= (S[2 ~ a]po; $Uwhiie,.. ]po; $Uassert It(y)] poOO)uz

= [S~while . . .]po; $[assert R@)]po(?o)cr2[a/gJo[z]]

Let ~a = aa [a/po[zj] = uz [a/~J and

r = A[assert R(y)]po = kr.R(craO,),

With the trivial verification condition 00 = kr.true ~ q
we get

(S[while . . .]$o; S[assert R(g)] poOo)aa

G ($[while . . . ]po r)a3

= jiz(xo$t[o < (z+ z – l)]po;

COn(f(SubO@]pOO,r))aa.

To find an approximation for this fixed point we
symbolically evaluate it with continuation d. We first
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consider the loop body

$[body]po(f
= D[new z = y]po;

)@.Cuz+z+b; assert P(z, ~)]j8

=C[ztz+b; assert P(z, tdlJP14

= Au.(C~assert P(z, y)]p14)u[b + a(~l !z])/Pi [z]]

= k.(C[assert P(z, V)]glo)u[b + aaU1/aUl]

G AU.P(UUIUO,b + Oad

where we used pi = PoIPo!d/z] = Po[atd8]” The
last step generates the verification condition

So far we found that given 4 ~ p

& [os (Z t z — I)]po; cotad($ubodyllpoe, r)aa

G &IIO< (Z+ z – l)]Po;codp, On
= Aa.ifO < ua.o — 1

then P(urxoO— 1,b+ u%,)

else R(cm2uO).

Since 6 is not free in the right hand side we substitute
the right hand side for 6 in the verification condition
and the fixed point term and get

Xa.if O < au., — 1

,then P(aa#O — 1, b + ucta,)

else R(a%O)

G h7.P(Ua~0, b + aa~,)

* jiz(M.t[o < (z - z - l)JJPO;

cond(S Ubody]poU,rj)oa

~ AcM O < vaaO — 1

then P(mx~O-Lb+ u%)

else R(aauO).

Substituting a new variable z for u% and ti for

uaci verification condition and precondition can be
written as

Vz, y.P(z, y) 3

if O<z-lthen P(z-l, b+y)else R($d

and

if O<a-lthen P(a-l, b+ O)eise R(0)

respectively.
Assuming P(zI y) is the predicate u$b = z*b + y A

O<zand Q(y)=y= a*b then our technique requires

proving the first order verification condition

Vz, g.a$b = z*b+f/AO<z3

ifo <z-1

then a*b = (z–1)*b+b+f/AO<z-1

else a*b = y

and the precondhion

if O< a-1

thena’b=(a– l)*b+b+OAO<a–l

else a*b = O

~a~OVb=O.

5.2. Implementation

In principle an implementation of our theory
proceeds by symbolic evaluation of the X term denok
ing the meaning of a given program. The evaluator
will simplify thk term to a greater (wrt. ~) term; it
will generate a verification coadltion whenever an assert
statement is encountered.

Fixed points are evaluated by (possibly repeated)
substitution. If this process does not eliminate the fixed
point the program does not contain su5ciently many
assertions. Note that such an evaluator will not neces-
sarily require assertions for loops which are only ex-
ecuted a finite number of times; rather, repeated sub-
stitution will “unfold” those loops, Of course, an intel-
ligent evaluator may apply fixed point induction if sub-
stitution is not successful.

The evaluator characterized above will automati=
tally check ali context conditions, type and declara-
tion constraints that are part of the language definition;
no dhtinction between static and dynamic semantics is
necessary.

A simple-minded implementation will generate
several isomorphic instances of the same verification
condition. This is the case because the language
definition may ask for the evaluation of the same term
twice. Special provisions can detect this situation and
eliminate duplicate conditions.

A verification condition generator including the
above mentioned extensions as well as jumps and pro-
cedures (as described below) is being implemented at
Stanford. The rules and strategies presented so far do
not include an equivalent to the “frame rule” in Hoare’s
logic. In our implementation we are experimenting with
various techniques to achieve the effect of frame rules.

5.3. Labels and Jumps

Loops constructed with goto’s result in fixed points
over environments; they can be eliminated in the very
same way as fixed points over continuations. For ex-
ample, consider the program fragment

begin

el;
m:E12

end
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in the environment p and with continuation 8. The en-
vironment that has label m bound to the correct con-
tinuation is given by

ji~(k).p[cue2Djo/~]).

Generating verification conditions for C[e21@ and ob-
serving j[z] = p[zj if z # m we derive

v(jUmIl, P, O) t- cue2njd G whn, P, 0

If sufficiently many assertions are contained in ez, term
T will be independent of j[mj, i.e. T(j[rn], p, 0) =
T(p, 0), Therefore, we find

V(j[mj, p, fq~p[cue2jjd/t7t] ~ p[?’(p, 6)/m]

and, after substituting p[T(p, O)/m] for j,

V(T(p, 8), p, ~)~

p[CUe2Np[T(p} 6)/m] )~/m] L P[T(P, Win].

So, by (1) we conclude

V(T(p, 4), p, fl)~

jiz(hj,p[CuealjO/m]) G p[T(p, #)/m].

The same technique applies for several labels.

5.4. Procedures and Functions

The technique described so far is capable to deal
with procedures and functions without further exten-
sions.

First, consider a situation where a procedure is
declared without any assertions, In this case the
evaluator will bind the procedure name in the environ-
ment to a term denoting the proper procedure value,
Upon call to the procedure this symbolic procedure value
will be applied to a continuation; at this time verification
conditions can be generated for the body and the call.

Clearly, this technique is very inefficient if many
calls to the procedure occur. Also, it does not allow for
recursion, We can improve on this situation by merely
placing assert statements at the beginning and end of the
procedure body. In this case the evaluator can generate
verification conditions for the body (path from entry to
exit assertion) at the point of declaration.

6. Conclusions

We have presented a theory which allows reason-
ing about predicates, predicate transformers, assertions,
and inductive assertion proofs in the framework of
Scott’s logic of computable functions. Using this theory
Floyd-Hoare style verification is possible without proof
tules, thus eliminating restrictions on aliasing and side
effects and the need for consistency proofs.

The reader may argue that we have in effect given
a set of “proof rules” to generate verification conditions.
Yes, our theory may be looked at in this way. However,
our “rules” pertain to the A-calculus; they are not con-
trived for a particular programming language,

We were mainly concerned with the underlying
theory and merely sketched a possible implementation
of our theory. More experience with our prototype im-
plementation is required to learn how best to handle
some of the technical problems involved,
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9. Appendix: An example language

The following simple example language is used
throughout the paper to demonstrate our approach,
The language has beerrkept simple; for example static,
semantics are not described. There are no data types
and only simple control structures.

However, some unconventional features are in-
cluded in order to demonstrate the treatment of aliasing
and side effects:

— the declaration new 1 = J declares 1 to be an alias
for J;

— assignment is allowed as an expression to allow for
side effects.
The language contains an “assert statement”; its

sole purpose is to include predicates in the program text;
its execution has no effect.

The definition is written in the style of [Te77].
Details of the memory allocation are described axioma-
tically (for an a such that .,’, ); suitable continuous func-
tions for memory allocation can be found in [MS76].

9.1. Abstract syntax

AEDec — Declarations

E c Ezp — Expressions

r E Corn — Commands

e c Strn — Statements

1 ~ Jd — Identifiers

F 6 Con — Constant symbols

A ::= new 1 [ new Ii =12 IA1;Az

E ::= I := EIF(E1,..., En)l IIN

r ::=z:elrl; rzle

e 1:=.,—..— Elwhile Edo Ol

if E then 01 else e~ ] dummy I

goto I I assert P(ll,..., In) I

begin A; 1“end

9.2. Semantic Domains

f C V — Values

aeL— Locations

UEs= L + V + {unused} — Stores

A — Answers

d E C = S - A — Continuations

lc.cK=v+c — Expression continuations

xEx=fJ+c — Declaration continuations

peu = Id -t (L+ C)—Environments
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The domains A, L and V are left unspecified; both
are flat lattices.

9.3. Auxiliary functions

update cd = A@7[6/cY])

content cuc= k7.lc(@7

toad 6102= MM c then t?l else 42)

9.4. valuations

J4(scon+v”+v
D~12ec*U+X+C

&C Ezp+U-+K+C

CC Com+U+C+C

SGStm+U+C4C

JcCona+U-+C+C”

j E Com + Id’

N is not further defined here.
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