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1.0 INTRODUCTION

i.i General

VSAERO is a computer program for calculating the subsonic

AEROdynamic characteristics of arbitrary configurations having

Vortex Separation and strong Vortex/Surface interaction. This

document describes the theory and numerical procedures used for

the method. An earlier report (I) describes the input and use of

the computer program.

1.2

The initial objectives of the new program were to analyze

general wing configurations with multiple part-span, high-lift

devices and to give special attention to edge-vortex separations

and to close vortex/surface interactions. Later objectives

brought in the modeling of fuselage and canard surfaces leading

to the present capability for arbitrary configurations including

complete aircraft.

1.3

At the beginning of the program development there was only

one clear cut choice for approaching the solution to the above

nonlinear problem. This was an iterative viscous/potential flow

calculation using a potential flow panel method coupled with

integral boundary layer methods, with wake-shape iteration calcu-

lations included in the potential flow analysis. No other ap-

proach appeared to offer the feasibility of achieving the above

objectives. Finite difference field methods, for example,

treating more general flow equations, could not be developed

within a reasonable time scale for application to the complex

geometry of multiple part-span, high-lift devices. In the mean-

time, the surface integral approach of the panel method offered a

powerful and practical engineering tool which had the capability

to represent the complex geometries involved in the objectives.

Furthermore, the low computing time of the panel method was an

attractive feature in view of the complex iterative loops made

necessary by the nonlinear effects of viscosity and wake loca-

tion.

In the chosen strategy for the development of the VSAERO

program the capabilities of two earlier programs were combined:

(i) VIP3D (2) offered a viscous/potential flow iterative method

for transport wings with full-span, high-lift devices; and (ii)

QVORT, a quadrilateral-vortex panel method (3) and (4), offered

an iterative wake relaxation procedure. Neither method had a

completely satisfactory singularity model or geometry package for

the new objectives. Accordingly, in the development of VSAERO

these features were given prime consideration.

1



Various singularity models were investigated for the new

rogram including symmetrical singularities (5), high-order

ormulations and numerical integration. Finally, a low-order

formulation based on internal Dirichlet boundary conditions was

chosen. This formulation is described in Section 2. The numeri-

cal procedure for the method, which employs quadrilateral panels

of constant doublet and source distributions, is described in

Section 3. The description includes details of the extended

geometry package for the VSAERO program. Correlation studies are

examined in Section 4; these include a number of basic test cases

involving exact, nominally exact and also experimental data.

2



2.0 FORMULATION

2.1 Flow Equation

In order to obtain a solution to the flow problem the sur-

face of the configuration is assumed to be at rest in a moving

airstream. Regions of the flow field that are dominated by

viscous and rotational effects are assumed to be confined to thin

surface boundary layers and wakes. The rest of the flow field is

assumed to be inviscid, irrotational and also incompressible.

Figure 1 shows a streamwise section taken through a wing and

its wake. The section indicates the surface, S, of the wing, the

surface (upper and lower) of the wake, W, and an outer surface,

S_, which encloses the complete flow problem at infinity. The

total surface, S + W, divides space into two regions: the exter-

nal region which contains the flow field of interest and the

inner region which contains a fictitious flow. Velocity poten-

tial fields, _ and _i, are assumed to exist satisfying Laplace's

equation in the flow field and in the inner region, respectively;
i.e.,

V25 = 0 in the flow field

and

V2_ i = 0 in the inner region.

Next, apply Green's Theorem to the inner and outer regions

and combine the resulting expression (see Lamb (6)). This yields

the following expression for the velocity potential, Cp, anywhere

in the two regions, expressed in terms of surface integrals of

the velocity potential and its normal derivative over the bound-

ary surface:

_W_S

n • (V# - V#i)dS

S_W_S

(i)

where r is the distance from the point, P, to the element, dS, on

the surface and n is the unit normal vector to the surface

pointing into the fluid.

The first integral in Eq. (i) represents the disturbance

potential from a surface distribution of doublets with density (¢

- ¢i ) per unit area and the second integral represents the con-

tribution from a surface distribution of sources with density

-n.(V¢ - V# i) per unit area. The singularities, therefore, rep-

resent the jump in conditions across the boundary; the doublet
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density represents the local jump in potential and the source

density represents the local jump in the normal component of

velocity.

Examine Eq. (I) separately over the three surfaces, S, W,

S_, as indicated in Figure I.

The surface at infinity, S_, can be regarded as a large

sphere centered on P. The local conditions at that boundary

consist only of the uniform onset velocity, V , the disturbance

at that distance due to the configuration having essentially

disappeared. The surface integrals in Eq. (i) taken over S_ then

reduce to ¢_p; i.e., the velocity potential at point, P, due to
the onset flow.

The upper and lower wake surfaces, W, are assumed to be

infinitesimally close to each other for the present problem;

i.e., thin wakes. (A simplified thick wake representation is

described in References 7 and 8.) In this case the corresponding

upper and lower elements can be combined and the ¢i term for this

part of the integral disappears. Furthermore, if we neglect

entrainment into the wake surface, then the jump in normal

velocity component, n • (re U - VCL), is zero and so the source

term in Eq. (I) disappears for the wake contribution. (Note that

entrainment modeling _Q/_ be included given a distribution of

the entrainment normal velocity.)

With the above conditions, Eq. (i) becomes:

S

S

n • (V¢ - V¢i)dS

W

- _L ) n • V (1) dW + _

P (2)

The normal, n, on surface, W, points upwards in this case.

If the point, P, lies on the surface, S, then the integral

becomes singular on S. To evaluate the local contribution the

point, P, is excluded from the integral by a local spherical

deformation of the surface centered on P. For a smooth surface

the local deformation is a hemisphere and the local contribution

obtained in the limit as the sphere radius goes to zero is



%(¢-¢i)p, which is half the local jump in potential across the

surface at P. Note that the first potential in the expression is

on the side of the surface on which p lies, or, more con-

veniently, the sign can be changed for the point on the other

side. For example, if P is on the iIiH_ide surface of S, then Eq.

(2) becomes:

/f_P - 4_ (_ - ¢i ) n • V( )dS - %(¢ - ¢i) p

S-P

i//4_ r

S

n • (re - V¢ i)dS

w

(3)

2.2 Boundary Conditions

A solution to Eq. (3) must satisfy a number of known bound-

ary conditions which can be imposed--or in the case of the wake--

implied at the outset. On the surface, S, the external Neumann

boundary condition must be satisfied.

n- V¢ ffi-V N - n • V S on S (4)

where V N is the resultant normal component of velocity relative

to the surface. V N is zero for the case of a solid boundary with

no transpiration; non-zero values are used to model boundary

layer displacement effect, entrainment and also inflow/outflow

for engine inlet/exhaust modeling. V s is the local velocity of

the surface; this may be composed of several parts due to body

rotation (e.g., pitch oscillation (9), or helicopter blade rota-

tion (10)), arbitrary motion (Ii), body growth (12), etc. For

the present problem the surface of the configuration is assumed

steady in a body-fixed coordinate system and so V s is zero.

Hence,

n • V¢ = -V on S (5)
N

The wake surface, W, cannot support a load and so the doub-

let distribution, CU - eL' on W must satisfy a zero-force condi-
tion.



Consider an element, dW, of the wake surface with local unit

normal, n. The local vorticity vector associated with the doub-

let distribution, CU - @L' has the density

y = -n x V (¢u - ¢L ) (6)

The elementary force exerted on the element, dW, in the

presence of the local mean velocity, V, is (from the Kutta-
Joukowski Law):

6F = pV x ydW

where p is the local density.

it follows that

And since the force must be zero,

V x 7=0.

Substitute for y from Eq. (6):

and expand

V x {n x _ (@U- @L )} = 0

n V • V( Cu - @L ) - V • nV(@ U - @L ) = O.
(7)

Equation (7) is satisfied when V • n = 0; i.e., the surface,

W, it aligned with the local flow direction, and V • V(@ U - @L) =

0. In the latter case, the gradient of the doublet distribution

in the direction of the local mean flow is zero; in other words,

the wake doublet distribution is constant along mean streamlines

in the wake surface. The doublet value on each streamline is,

therefore, determined by the condition at the point where the

streamline "leaves" the surface, S. Clearly, at the outset of

the problem with both the doublet distribution and wake location

unknown, an iterative approach is necessary to obtain a solution.

When a converged solution is obtained the upstream edge of the

wake, W--and hence the trailing edge of the surface, S--carries

no load and so the Kutta trailing-edge condition will be satis-

fied. At the outset, therefore, the Kutta condition is im_

simply by shedding the trailing-edge potential jump (@u - @.) as

escribeda constant down each "streamwise" line on an initially _r

wake surface. An explicit Kutta condition in which the doublet

gradients on the upper and lower surfaces at the trailing edge

are equated to cancel has been used on occasion, but in the

formulations described below, this does not appear to be neces-

sary.

7



2.3 Choice of Singularity Mode]

In principle, a given flow field can be constructed from an

infinite number of combinations of doublet and source distribu-

tions on the surface, S, each combination producing a different

flow in the inside region. In practice, however, there may be

only a small number of singularity combinations which are suit-

able as a basis for a well behaved numerical model; i.e., one

that is accurate, convenient to use and robust (insensitive to

user abuse).

A unique combination of singularities can be obtained in Eq.

(3) in a number of ways. One way is to specify one of the

singularity distributions and to solve for the other using

boundary conditions only on one side of the boundary. There are

several examples of this: in the source-only formulation (13)

the doublet distribution is set to zero; in the doublet-only

formulation, e.g., (3) and (4), the source distribution is set to

zero; in program VIP3D (2), the doublet distribution (or vortici-

ty) is specified and the method solves for the source distribu-

tion; the reverse of the latter has also been used, i.e., speci-

fying the source distribution--usually related to the thickness

distribution--and solving for the doublet or vorticity distribu-

tion.

Another way of achieving a unique combination of singulari-

ties is to apply certain constraining relationships on the singu-

larity distributions. The "symmetrical singularity method" (5)

is one example of this and was examined briefly at the start of

the VSAERO program development.

One characteristic that separates "good" singularity models

from "bad"ones from the numerical point of view is that the flow

field generated in the inner region by a "good" model is rather

benign and related to the boundary. This is usually not the case

for a "bad" model. In other words, when passing through the

boundary, S, the jump from the internal flow to the external flow

should be small--thus requiring a minimum of perturbation from

the singularities (Eq. (3)). "Bad" singularity methods were

observed to have very large internal cross flow between the upper

and lower surfaces of wings and required high panel densities in

order to achieve acceptable accuracy in the flow solutions. This

resulted in a push towards high-order formulation which, for

subsonic flows at least, proved quite unnecessary.

One way of achieving "good" characteristics is to treat the

internal flow directly in Eq. (3). This is, in fact, another way

of obtaining a unique singularity distribution--in this case by

specifying boundary conditions on both sides of the surface, S.

Earlier methods (14), (15) specified the _L_ on the inside

surface of S. Alternatively, the inner velocity potential, ¢i ,

can be specified directly in Eq. (3). This is referred to as an

internal Dirichlet boundary condition. Three possible internal

flows were examined for the VSAERO program, Figure 2 . Two of
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these are described below, the third one, in which the internal

flow was aligned with the wing chord line (e.g., ¢i = -xV_ cos _ )

was examined in a two-dimensional pilot program only. Although

this worked very well, the formulation was not as convenient as

the other two. Even so, it would be a useful member in a pos-

sible general scheme in which the user could select a suitable

internal flow for each component in a complicated configuration.

(i) Zero Flow Inside

Consider first the interior stagnation condition which was

implied by earlier doublet-only codes (e.g., References 3 and 4)

and which used the exterior Neumann boundary condition, V • n =

0. For the present formulation, set ¢ = constant = 0, say in

Eq. (3), givlng i

= _ i //¢ - • V( )ds -_p 0 4z

S-P

I ll! n .
V#dS

4_ JJ r

S

W

(8)

The doublet distribution is now the total velocity potential

at the surface and the source distribution is now the total

normal velocity of the fluid at the surface, S. This must

satisfy the external Neumann boundary condition (Eq. 5); i.e.,

n • V¢ = -V N

This term can be used directly in the second integral of Eq. (8).

For the solid boundary problem, i.e., zero transpiration, VN

is zero and the source term disappears leaving

4---_ ¢ n • V )dS -

S-P

½¢p

W

(¢U - eL ) n •

I0

V(1)dW + _op = 0 (9)



This is by far the simplest formulation for the lifting case

with no transpiration. It is, in fact, even simpler than the

original zero-lift source method based on the external Neumann

boundary condition (13). In a low-order formulation (i.e., con-

stant doublets on flat panels) the method has some minor problems

associated with numerical differencing for velocities and with

the effect of panel arrangement on accuracy (16). These problems

can be alleviated by separating ¢ into a known part and an un-

known part--the latter being as small as possible.

The most convenient breakdown is to use the onset flow

potential as the known part; i.e., ¢ = _ + ¢. The known part,

¢_, and its velocity field, V_, are used directly in the formula-

tion. The solution for ¢ and the subsequent numerical differen-

tiation for surface velocity are then less prone to numerical

error.

For the general case with transpiration, inlet flows, jets

and unsteady conditions, the source term must be present and so

the advantage of the doublet-only formulation diminishes. In the

meantime an alternative "zero internal perturbation" formulation

had become popular in other methods and is considered below.

(ii) Internal Flow Equal to the Onset Flow

The internal Dirichlet boundary condition, ¢i = _, was used

earlier by Johnson and Rubbert (17) and also Bristow and Grose

(18) in high-order formulations. With ¢. = _ and %p = _, Eq.
(3) becomes: i

S-P W

//- r " " (V# - V#_)dS = 0

S

(I0)

where _, the perturbation potential on the exterior surface, is

now the doublet density; i.e.,

The source distribution in this formulation is

(ii)

4_ = - n • (V¢ - V_oo)

ii



Expanding this expression and substituting for n • V¢ from the

external Neumann boundary condition in Eq. (5):

4zg = V N n • V o

The source distribution is therefore established at the outset.

Again, for solid boundary conditions, VN is zero; for the

more general case here, V N may have two parts representing (i)

boundary layer displacement effect using the transpiration

technique (2), and (ii) inflow/outflow for engine inlet/exhaust

modeling.

Thus,

4_
=-u (Vas 6*) + VNORM - n • Ve

(12)

The boundary layer term is set to zero for the first poten-

tial flow solution; on subsequent iterations it is updated by

coupled boundary layer calculations. The VN__ term has a posi-
. U _Vl

tive value for outflow and negative for infI_w.

Compared with the zero internal flow formulation (Eq. 9),

the present formulation (Eq. (i0) is more forgiving for "bad"

panel arrangements (e.g., Reference 16) and is the current formu-

lation in the VSAERO program. The reason for its better behavior

probably arises from the smaller jump in the flow condition from

the inner to the outer flow; i.e., the singularity strengths are

smaller. However, there are situations where this is not the

case; e.g., a wing at large angle of attack or a powered nacelle

in zero onset flow. In other words, it may be desirable to

provide a capability that allows the internal flows to be speci-

fied independently of the onset flow so that they can comply more

closely with the shape of each component.

Once the doublet solution is known, then Eq. (3) can be

applied to determine the velocity potential field, the gradient

of which gives the velocity field. For the present formulation,

Eq. (3) becomes:

ff ÷ff 
S S

W

V(!)dw + ¢_
r p

(13)
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Where the doublet, _, and source, o, are taken from Eqs.

(ii) and (12), respectively and _w = Cu - eL is the wake doublet

distribution. The factor, K, has different values depending on

the location of the point, P; if P lies off the surface, then K =

0; if P lies on a smooth part of the surface, then K = 2z if P is

on the outside, and K = -2_ if P is on the inside; if P is at a

crease in the surface, then K takes the value of the appropriate

solid angle contained at the crease. In each case when P is on

the surface, then the surface integral terms in Eq. (13) exclude
P.

If the potential field has been computed at a mesh of points

then the velocity field can be generated using local numerical

differentiation; i.e.,

Vp = - VCp (14)

Alternatively, the velocity field can be obtained by taking

the gradient of Eq. (13) directly with respect to the coordinates

of point P, thus forming the source and doublet velocity kernels.

(Thls is the present approach in VSAERO.)

ff
S S

1

V (r)dS

f/ i- _w V(n • V(?))dW + Voo

W

(15)

(The kernels will be developed further in Section 3.) The off-

body velocity field is used in the wake-relaxation cycle, in off-

body streamline calculations and for general flow-field informa-

tion.

The discussion so far has been concerned with thick con-

figurations having a distinct internal volume enclosed by the

surface, S. If par£s of the configuration are extremely thin

(e.g., thickness/chord ratio < 1%, say) or are wing-like and

remote from the area of interest, then these parts may be repre-

sented by open surfaces. When the upper and lower parts of the

su@face are brought together, the corresponding upper and lower

elements can be combined and Eq. (2) becomes

13



S S

n .(re U - V#L)dS

W

If the normal velocity is _ through the sheet then
the term n • (V_U - V_L) = 0 and the source term disappears.
(This is _ot a necessary step; the source term could be left in
the equation for simple modeling of thickness effects.) Removing
the source term does not preclude the use of non-zero normal

velocity at the surface; the only restriction is that the normal

velocity be 9_II]IQ_ through the surface. Equation (16) can
then be written:

Y //_p = _n • V (r)dS + _W n " V (r)dW + _p

s w

(17)

where _ -
1

4_ (¢u -eL ) is the jump in total potential across the

sheet.

In order to satisfy the external Neumann boundary condition

(Eq. (5)) the velocity expression is required. Hence, taking the

gradient of Eq. (17) with respect to the coordinates of P,

S

//_wV<"" V(1))dW + v_

w

(18)

And, applying the boundary condition, n p • Vp = V N from Eq. (5),
then p

14



S

W

(19)

This is the basic equation for the unknown doublet distribu-

tion on thin surfaces (referred to as Neumann surfaces in VSAERO

in accordance with their primary boundary condition). Again, the

velocity kernels will be developed further in Section 3.

In the VSAERO program, thin and thick components may exist

simultaneously in a configuration.

15



3.0 NUMERICAL PROCEDURE

The treatment of a given flow problem can be broken down

into a number of distinct steps, each step having a certain

function. These steps are shown in the VSAERO program outlined

in Figure 3. The first step is to define the surface geometry of

the configuration and to form the panel model. A m_i_ix of

influence coefficients is then formed; this represents a set of

simultaneous linear algebraic equations resulting from a discre-

tization of the flow equations in Section 2.0. The __Q_ion to

these equations provides the surface doublet distribution from

which the surface velocities and, hence, surface streamlines,

pressures and body forces and moments can be _la/_. With the

surface singularity distributions known, the -W_ calcula-

tion can proceed, using computed off-body velocities. The new

wake shape must then be repanelled and the matrix of influence

coefficients modified for the next pass through the wake-shape

iteration loop.

The surface flow solution can be passed to the boun_j_y

calculation. The computed boundary layer displacement

growth rate is passed back to the matrix procedure where the

right-hand side terms of the equation are modified for the next

pass in the viscous/potential flow iteration loop, Figure 3.

Finally, when both iteration loops have been completed, 9_

for velocity and streamline paths are processed.

The flow chart showing the relationships of subroutines

which perform the above steps is given in Appendix A. Details of

the steps are described in the following Subsections.

3.1 Geometrical Description

The surface geometry of the configuration to be analyzed is

described in a global _oordinate _ystem (G.C.S.) which is a body-

fixed frame of reference, Figure 4. The configuration is divided

into a number of parts for convenience, Figure 5. The functions

and use of these parts are described in detail in the Program

User's Manual (i). Briefly, the two major parts are the (solid)

SURFACE and the (flexible) WAKE. On a complicated configuration

there may be several surfaces and several wakes. The surface and

wake are further subdivided as described below.

3.1.1 Patch

Each surface is represented by a set of quadrilateral PANELS

which are assembled into a regular array of rows and columns

within PATCHES, Figure 6. Patches are grouped together under two

headings (Figure 5), COMPONENTS and ASSEMBLIES for user con-

venience (I).
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Figure 5. Configuration Hierarchy.
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Each patch has a user-supplied IDENT parameter. IDENT=I and

2 identify patches on wings and fuselages, respectively; the main

difference at this time is the printout of computed

characteristics (see Subsection 3.4). Both of the above IDENT

values are associated with thick surfaces and use the internal

Dirichlet boundary condition. Patches with IDENT=3 are asso-

ciated with thin (i.e., open) surfaces on which only the Neumann

boundary condition is used. Again, the main difference as far as

the user is concerned is a different printout of computed charac-

teristics, in this case, pressure and velocity information is

provided on both sides of these surfaces.

A patch is basically a four-sided shape when its surface is

developed; i.e., "opened out". Because the initial objectives

were directed towards wing surfaces, the terms "chordwise" and

"spanwise" were adopted to describe the two directions across the

patch, Figure 6. These terms are still used within the patch

even when the patch has a more arbitrary orientation, e.g., on a

fuselage.

The order of the sides of a patch must proceed in the anti-

clockwise direction when viewed from the flow field, Figure 6.

This is important as it affects the direction of the computed

surface normal vector which must point into the external flow

field (Subsection 3.1.2).

Patch geometry is defined using a set of "chordwise" lines

called SECTIONS. The set of sections distributed in the "span-

wise" direction across the patch define its surface, Figure 7.

The points that are input to describe a section geometry are

referred to as BASIC POINTS and are not necessarily panel corner

points. From these points the program generates by interpola-

tions a set of TEMPORARY CHORDWISE POINTS using information

provided by the user on NODE CARDS (i). The actual panel corner

points are obtained by interpolation along spanwise lines; these

lines pass through a corresponding temporary chordwise point on

each section. The interpolation scheme used in both directions

uses a biquadratic equation and is described in Appendix B. The

interpolation scheme is part of an automatic paneling procedure,

use of which is optional: the user has the choice to input the

actual panel corner points if he wants to. A number of input

options are provided in the program to help the user generate the

panel model (i).

3.1.2 Panel Geometry

The four corner points, R i, i=1,4, defining a quadrilateral

panel are in the same sequence as the corners of the parent

patch, Figure 8. Two diagonal vectors are constructed from these

points:
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Figure 7. Sections Defining Patch Surface.
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Figure 8. Panel Geometry.
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D 1 = R 3 - R 1

D 2 = R 4 - R 2

The vector product of these diagonals produces a vector

normal to the mean plane of the quadrilateral; i.e.,

n = D 1 x D2/ID 1 x D2 1

The order of the sides, therefore, is important to ensure

that the unit normal is always directed outwards from the surface

into the flow field. The modulus of the diagonal vector product

also provides the area of the quadrilateral projected onto the

mean plane:

AREA = ID 1 x D 2 I/2

The center point is defined as the mean of the four corner

points:

4

Rc 4 R. a_

i=1

This point is also used as the panel's control point where

the boundary conditions are satisfied (see Subsection 3.2).

Two unit tangent vectors, £, m, are constructed, which,

together with n form a right-handed orthogonal unit vector system

for local coordinates, Figure 8. The origin of this system is

the center point, R c.

Tangent vector, m, is directed from R c to the mid-point of

side 3 of the quadrilateral:

m = {(R 3 + R4)/2 - Rc}/i (R 3 + R4)/2 - Rcl

Thus m lies in the mean plane of the quadrilateral even if

the corner points are not co-planar.

The tangent vector, £, is constructed orthogonal to m and n:

_, :i× n

The four corner points are projected onto the mean plane and

expressed in terms of the local coordinate system. For example,

the first point becomes

E 1 = R 1 - R c

24



which has components, E_I, Enl, in the £ and m directions,
respectively, where

= E • £ ; E = E • m
E_ I i _i i

The vertical offset, E 1 • n, is the projection distance of

the corner points from the mean plane and is a measure of the

skew of the quadrilateral. On a skewed quadrilateral the four

corner points are equidistant from the mean plane, two being

above and two below. The magnitude of this offset should be kept

small in relation to the size of the panel to avoid large holes

in the singularity panel representation of the surface. The

projected (flat) panel is used in the evaluation of influence

coefficients (Subsection 3.2).

Finally, the half median lengths, SMP, SMQ, are evaluated

for the quadrilateral. These are (Figure 8)

SMP = I(R2 + R3)/2 - Rcl

SMQ = I(R 3 + R4)/2 - Rcl

These are the half-lengths of the diagonals of the paral-

lelogram which is always formed when the mid-points of the

adjacent sides of a quadrilateral are joined (even if the lat-

ter's corner points are not co-planar); the parallelogram lies in

the mean plane of the quadrilateral and its area is half that of

the projected quadrilateral.

Within each patch, the regular arrangement of panels causes

the adjacent side mid-points of neighboring panels to coincide

exactly. This allows the SMP and SMQ lengths of panels to be

linked, respectively, in the chordwise and spanwise direction

over the patch and thereby provides a close approximation to

surface distances between panel centers. This feature is useful

in the evaluation of the perturbation velocities (i.e., the

derivative of _ with respect to surface distance, see Subsection
3.4).

Finally, the quantity (SMP + SMQ) is used as the average

"size" of the panel when expressing the distance of a point from

the panel in terms of panel size.

3.1.3 Panel Neighbors

In order that a reasonable two-way differentiation of the

surface doublet distribution can be performed (see Subsection

3.4), it is important to locate quickly for each panel the set of

four neighboring panels and their orientation. Each panel,

therefore, keeps an array of four neighboring panels, NABORi,

25



i=1,4 (in the same sequence as its sides), together with the

adjacent side numbers of those panels, NABSIDi, i=i,4, Figure 9.

Clearly, within the regular grid system of a patch, locating
neighbors is easy; even so, the neighbor information is still
stored to form a consistent system and to avoid repetitive calcu-
lations. Also, this allows neighbor relationships to be broken
between pairs of panels, when, for example, a wake is shed from
their common edge. This prevents a doublet gradient being
evaluated across a line where there is an actual jump in poten-
tial (see Subsection 3.4).

Across the joints between patches panel neighbors are not
immediately available; for example, one panel may be neighbor to
several smaller panels on an adjoining patch. In order to locate
these neighbors an automatic procedure has been installed in the
code which scans patch sid_ panels in a search for possible

neighbors. In this search only patches within the same assembly

are considered. "Undesirable" neighbors are quickly eliminated

on the basis of relative geometry during the assembly of a short

list of possible neighbors for each side panel. From this list

of candidates one PREFERRED NEIGHBOR is selected. At this time,

preference is given to the panel whose control point lies closest

to a normal plane constructed on the side panel, Figure i0. This

plane contains the side panel's control point, unit normal vector

and the side mid-point at the patch edge.

3 .i .4 Wakes

A wake consists of a number of quadrilateral wake panels

which are assembled in streamwise columns. Each column is as-

sociated with an upper and a lower wake shedding panel with

subscripts, KWPU, KWPL, respectively, Figure ii. The common edge

of these two panels is the upstream edge of the wake column, the

VSAERO program coding allows any panel edge in the configuration

to shed a wake (1)--it is up to the user to specify a wake model

that is physically realistic.

The streamwise edges of each column are identified as WAKE

LINES, Figure 12. These lines are specified by the user to

describe the initial wake; the user may describe the line geo-

metry in as much detail as he likes (i). The program inter-

rogates each line in relation to a system of vertical WAKE-GRID

PLANES, Figure ii. The user specifies the location of these

planes in accordance with the anticipated track of the wake;

because the wake lines are represented by straight line segments

between the wake-grid planes, regions where the wake lines are

highly curved require an increased density of wake-grid planes.

Wake panels are contained between adjacent wake-grid planes

and adjacent wake lines. The wake panel geometry is evaluated in

the same way as the surface panels (Subsection 3.1.2) except that

the mean plane is constrained to lie in the upstream edge (i.e.,
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Figure 9. Panel Neighbor Information.
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Figure i0. Panel Neighbors Across Patch Edges.
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side 4) and to contain the mid-point of the downstream edge (side

2). In that way the projected wake panels are cleanly attached

to the surface separation line even when the panels are skewed.

The wake geometry supplied by the user is used only for the

initial solution. The program includes an iteration cycle in

which the straight wake-line segments (i.e., panel edges 1 and 3)

are aligned with the computed flow direction (see Subsection

3.5).

3.2 Matrix of Influence Coefficients

Equation (i0) in Section 2.0 is a Fredholm integral equation

of the second kind for the unknown velocity potential distribu-

tion over the body surface. A velocity potential distribution

which satisfies Eq.. (i0) at every point of the body surface

provides an exact solution for the inviscid, incompressible po-

tential flow about the configuration surface through Eq. (13).

In order to obtain a numerical solution the equation is satisfied

only at a finite number of points on the surface; i.e., at one

point (the control point) on each panel. Also, the doublet and

source singularity distributions are assumed to be constant on

each panel and the surface integrals in Eq. (i0) are performed in

closed form over each panel. These integrals, therefore, provide

the influence coefficients per unit singularity strength for each

panel. The total surface integrals then become summations over

all panels and Eq. (10) is transformed into a set of simultaneous

linear algebraic equations for the doublet strength on each

panel.

N s Nw N
S

K=I L=I K=I

oK BjK = 0; J=l, NS

(20)

where _ and _ are given by Eqs. (ii) and (12), respectively, and

C = -2_.
JJ

Ns and N w are the number of surface and wake panels, respec-

tively. The quantities, BjK and CjK, are the perturbation

velocity potential influence coefficients for the constant source

and doublet distributions, respectively, on panel K acting on the

control point of panel J; i.e., from Eq. (i0).
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/ 1BjK = r dS

Pane i K

and

cjK // n dS c21 
Panel K

where n z n K is a constant for a flat panel, K, and r is the

length of the vector from the surface elements, dS, of panel K to

the control point of panel J. The gradient is taken with respect

to the surface point.

Equation (20) is applied to all panels, J, that occur on

"Dirichlet" patches (IDENT=I or 2); i.e., on patches that are

part of a "thick" boundary enclosing an inner volume. If the

control point, J, is on a panel on a "Neumann" patch (IDENT=3),

i.e., part of an open surface, then a discretized form of Eq.
(19) is used.

N N
S W

(_K EjK) + (PW EjL)

K=I L=I

N
S

+ _ oK DjK + nj • V - VNj

K=I

= 0 (22)

Dj = n • Vwhere K
J OJK

and E = n • V (23)

JK J _JK

are, respectively, the normal velocity influence coefficients for

the source and doublet distributions on panel K acting at the
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control point of panel J. The velocity vector influence coeffi-
cients for the source and doublet are, respectively,

VCjK = - // VJ (!)dSr

Panel K

and V_j K =- // Vj(n K • V(_))dS (24)

Panel K

with the gradients, Vj, being taken with respect to the coordi-

nates of point J.

Note that in generating Eq. (19) for Neumann patches, the

source terms disappeared with the assumption of no jump in normal

velocity through the surface. However, for the general problem

involving a combination of thin and thick components the source

term has been left in Eq. (22) to supply the contribution from

source panels on thick boundaries.

The influence coefficients for the velocity potential and

velocity are developed separately below. In each case the coef-

ficient is determined completely b_ the geometric details of
panel K and the coordinates of the J control point.

3.2.1 Velocity Potential Influence Coefficient

3.2.1.1 Doublet Contribution

Consider the doublet velocity potential influence coeffi-

cient from Eq. (21). After evaluating the gradient, this becomes

.f n • rCjK = r_ dS (25)

Panel K
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The integral is evaluated by considering each side of the

(projected) panel in turn, each side having a pair of semi-

infinite strips of opposing singularity strength equal to half

the panel value, Figure 13. The strips lie in the mean plane of

the panel and are aligned with the panel's £ axis. With the

convention adopted for the panel sides (i.e., the side order is

anticlockwise when viewed from the flow field) the singularity

strength is given a positive sign to the left of the side and a

negative sign to the right when looking in the direction of the

side, Figure 13. When all four sides of the panel (or for any

clof_ polygon, in fact) have been treated in this way then the

contributions from all the overlapping strips cancel outside the

panel and reinforce for unit singularity value over the panel.

Consider the contribution from one side. The kernel can be

simplified by combining corresponding pairs of positive and nega-

tive elements, d_, dy, located at equal distance, _, from a point

(x,y) on the side (Figure 14); i.e.,

n • r n • ri _ 2 d_ dy
CjK =½ I r 3 r 3

Y=Ya _=0 1 2

(26)

where

r = R(_) + _
1

r = R(n) - _
2

R(n) = a- ns

n = (y - ya )/ _Yb - Ya )

where Ya, Yb are the beginning and end of the projection of the

side on the m axis and a is the position vector of the jth

control point relative to the start of this side (Figure 14).

The final expression for the doublet velocity potential

contribution from side i of the panel is (using variables which

closely follow the computer coding):

-i

CjK" =tan {RNUM/DNOM} (27)
1
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where

RNUM = SM * PN * (B * PA - A * PB)

DNOM = PA * PB + PN 2 * A * B * SM 2

PN = PJK " nK

PJK = Rcj

A = lai

- Rc K

B = Ibl

PA = PN z * SL + A1 * AM (= a • {£ x (a x s)})

PB = PN 2 * SL + A1 * BM = PA - A1 * SM

SM = s • m

SL = s • £

AM = a - m

BM = b • m

A1

b

= AM * SL - AL * SM (= n • (s × a))

is the position vector of the jth control point

relative to the end of this side, Figure 14 (i.e., b =
a- s)

The subscript, i, has been omitted from the above variables; a, b

and s are constructed for each side in turn, noting that a =
1

bi_ 1 •

There is a limiting condition as PN--the projected height of

control point J from the mean plane of panel K--goes to zero:

I = ±_ within the strip (DNOM<0)

Lim (CjK .) ±_ on the edge of the strip (DNOM=0)

PN+0 + l 0 outside the strip (DNOM>0)

The positive sign occurs for points to the right of the side

and negative to the left. If PN ÷ 0-, all the above signs on

are reversed.

The total velocity potential influence coefficient for the

unit doublet on the panel is the sum for all four sides, from Eq.
(27).
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CjK = _ CjK i

i=l

(28)

The four arc-tangent functions in this summation can be

combined into a single arc tangent; however, extreme care is

required to ensure the resultant angle is in the correct quadrant

in the range, ± 2_.

For plane of symmetry and/or ground effect problems the

contribution to CjK from image panels (having the same singulari-

ty strength as the real panel) is evaluated simply by repeating

the calculation for the _ panel influencing the images of

control point J. This is possible because the geometrical rela-

tionship between the image of panel K and the point J is identi-

cal to that of the actual panel K and image of point J (Figure

15). Hence, for a symmetrical problem in ground effect there

would be four contributions for each panel, Figure 15. This

treatment is more convenient than considering the image panels

directly. The vertical plane of symmetry is the y = 0 plane in

the G.C.S., while the ground plane is the z = 0 plane. Thus, for

ground effect problems the configuration height and orientation

above the ground require care during input (i).

The above expression for CjK is used when panel J is close

to panel K. When panel J is remote from panel K, i.e., in the

far field, then a far-field formula is used under the assumption

n • r

that the quantity, 3 , in Eq. (25) is essentially constant

r

over the panel. Then r = PJK and

PNjK * AREA K
(29)

CjK =

PJK

where

PN

n K

JK
• n= PJK K

= the unit normal to panel K

AREA K = the area of panel K (see Subsection 3.1.2)

PJK = IPjKI, is the distance between the control points, K
and J

Equation (29) is the contribution from a point doublet at

MQ"-sRc_)Kwith orientation n K and is used when PJK > RFF * (SMP +The quantity, (SMP + SMQ)K, is the "size" of panel K (see

Subsection 3.1.2) and RFF is the user-defined, far-field radius

factor which has a default value of 5 in the program. This value
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was established following initial test cases on a wing and on a

wing-body configuration. Use of the expression gives a signifi-

cant reduction in computing time; however, a user may use the

near-field equation (Eq. (25)) throughout the configuration if he

wishes simply by giving a very large value for RFF in the input

file (i).

3.2.1.2 Source Contribution

The velocity potential influence coefficient for a unit

uniform source distribution on the panel, K, is, from Eq. (21),

B
JK //i= r dS

Pane i K

The integral is treated for each side of the panel as in the case

of the doublet. Thus, for one side

Yb

BjKi = ½ _ rl r2 1

Y=Ya _=0

where r I, r 2, Ya' Yb are defined under Eq. (26).
This becomes:

where

BjK ' = A1 * GL - PN * CjK '
1 1

A + B + s 1GL = _ LOG I_ + B - s
S

(30)

and s = Isl

AI, PN, C jK i, A and B are defined in Eq. (27). (Note that a

second LOG term arises in the above integral but its total con-

tribution from all sides of a closed polygon cancels exactly.)

4O



Again, the total source velocity potential influence coeffi-
cient is obtained by summing the contribution from all four sides
of the panel; i.e.,

4

= _ (31)BjK BjK i

i=l

Symmetry and/or ground-effect treatment is the same as that

described for the doublet contribution.

The expression for B_K for points that are in the far field

from panel K is, using a slmilar approach to that for the doublet

(Eq. (29)),

AREA K

BjK - PJK
(32)

With the above expressions for CjK, BjK substituted in Eq.

(20), the zero internal perturbation formulation is similar to

that given by Morino (19), who applied Green's Theorem directly

to the external flow.

3.2.2 Velocity Vector Influence Coefficients

3.2.2.1 Doublet Contribution

The velocity induced at control point, J, by a constant

doublet distribution of unit value on panel K is, from Eq. (24),

// iV]_ =- Vj (n " V(r))dS (33)
JK

Pane i K

The kernel is one of the terms resulting from the expansion

of a triple vector product. Hence, V can be written

UJK

Panel K

But, Vj • V(_)_ = 0.

{(n x Vj) x V(I) + nVj
• V(1)} dS

r
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Hence,

or

Thus,

Pane i K

(n x Vj) x V(1)dS

£ i

UjK .Jr
by Stokes' Theorem.

i-

__ r _3dr

V_jK = _/ r

(34)

(35)

The integral can be performed along the straight line of

each side of the panel, Figure 16. Hence, the contribution from

side i is

V = a x b * (A + B), (A * B - a • b)
I_jK " a x b • a x b A * B

1

This expression is singular when the point, P, is in line

with the side (a x b = 0). However,

a x b • a x b = (A * B - a • b)(A * B + a • b).

And so an alternative expression is

V

_JK.
l

= a x b * (A + B) (36)
A * B * (A * B + a • b)

This becomes singular only when the point, P, lies on the

side. The singularity is avoided by applying a finite-core model

on the vortex line. (The core radius can be set by the user

(i).)

The total velocity coefficient induced by the unit doublet

on the panel is the sum of Eq. (36) over all four sides.
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V_j K = _ V
_JK

i=l 1

(37)

For points in the far-field, the integrand in Eq. (33) is

treated directly as a point doublet; i.e.,

or

V = - Vj(n K V(1)) AREA
_JK r K

V = - AREA * Vj {nK " r__ /
_JK K r 3

Thus,

2 5

V = AREA K * {3 * PNjK * PJK PJK nK}/PJK (38)
lajK

The above variables are defined in Eq. (29).

Cases with a vertical plane of symmetry and/or ground effect

are treated as before by evaluating the influence of the _9__

panel at each im___ point rather than vice versa. With this

approach the velocity vector contribution must have its component

nor_l_l to the symmetry plane reversed in sign in order to obtain

the actual contribution from the i_ panel acting on the real

control point.

The normal velocity influence coefficient, EjK, in Eq. (23)
can now be evaluated; i.e.,

EjK = nj • V
_JK

Where the velocity influence, V_j K, is taken from either Eq. (37)

or Eq. (38) depending on the distance of the point, J, from panel

K.

3.2.2.2 Source Contribution

The velocity induced at control point, J, by a constant

source distribution on panel K is, from Eq. (24),

// iVoj K = - Vj (?)dS

Pane i K
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and taking the gradient with respect to the coordinates of point

J, this becomes

v// rr
Pane i K

(39)

The integral is treated for each side of the panel as in the

case for the velocity potential evaluation. From side i, the
contribution is

VOjK ' = GL * (SM * £ - SL * m) + CjK ° n

1 1

(4O)

Where GL is defined under Eq. (30), and SM, SL and CjK i are

defined under Eq. (27). The total for the panel is the sum over

all four sides.

4

VOjK = _ V_jK" (41)

i=l 1

For points in the far field, the panel's source distribu-

tion is concentrated in a single source at the panel center. In

this case the source velocity coefficient becomes (from Eq. (39))

AREAK * PJK

V°jK = 3 (42)

PJK

The above variables are defined in Eq. (29).

Cases with a vertical plane of symmetry and/or ground effect

are treated as before by evaluating the influence of the £eal

panel at each im_i.q_ point rather than vice versa. With this

approach the velocity vector contribution must have its component

to the symmetry plane _ in sign in order to obtain

the actual contribution from the ima_g_ panel acting on the real

control point.

Finally, the normal velocity influence coefficient for the

source term in Eq. (23) can be evaluated; i.e.,

DjK = nj • VajK

The source velocity coefficient, Vo , is taken from either

JK

Eq. (41) or Eq. (42), depending on the distance of point J from

panel K.
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3.2.3 Matrix Assembly

The matrix equations, Eq. (20) and (22), can now be formed

by assembling the singularity influence coefficients for all the

surface and wake panels in the configuration acting at the con-

trol point of each surface panel in turn. In the VSAERO program

the surface and wake contributions are computed separately: the

surface matrix of influence coefficients, once computed, remains

fixed throughout the treatment of a configuration while the wake

contribution varies with each wake-shape iteration. The wake

contribution is, in fact, recomputed and combined with the wake-

shedding panel influence coefficients after each wake-shape cal-

culation.

Consider the wake influence in Eq. (20); i.e.,

NW

_W CjL

L=I

Now from the boundary condition imposed on the wake (Eq.

(7)) the value for _W is constant down each wake column and has

the value of the 3ump in total potential at the start of the

column (from Eq. (I0)); i.e., for the Mth column,

_WM -- CKWPU M - CKWPL M

(43)

is constant down the column; KWPUM, KWPL M are the upper and

lower surface panels shedding the M th wake column (Subsection

3.1.4).

Thus,

E E

_W M _KWPU M _KWPL M + _ _
KWPU M KWPL M
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And the wake influence contribution can be written

NW NWCOL

_ _W CjL = _ IPHCjM * (_KWPUM

L=I M=I

- UKWPL M)

+ PHCjM * (_

KWPU M

(44)

where

NWP M

PHCjM = _ CjL

L=I

NWCOL = Total number of wake columns

and

NWP M = Number of wake panels on the M th column

The result of the summation of the doublet influence coeffi-

cient down a column, i.e., PHCjM, is therefore added to and

subtracted from the associated upper and lower wake shedding

panel influences (KWPUM, KWP[M) , respectively.

It is tempting to discard the last term of Eq. (44) because

the quantity (_ - _ ) vanishes in the limit as the

KWPU M KWPL M

upper and lower control points on the wake-shedding panels ap-

proach the trailing edge in high density paneling. However, with

practical panel densities, this quantity will rarely be zero and,

in _act, Youngren et al. (20) noticed that a serious error in

circulation results if the term is omitted for thick trailing

edges. The term is, in fact, readily evaluated and is combined

with the source terms to form the known "right-hand side" of the

equations.
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3.3 Matrix Solver

With the matrix of influence coefficients formed, the solu-

tion routine can proceed. VSAERO employs either a direct or an

iterative matrix solver depending on the number of unknowns

(i.e., number of panels). The direct solver is Purcell's vector

method (21) and is used when the number of panels is less than

320. When the number of unknowns is greater than 320, then a

"blocked controlled successive under- or over-relaxation" (22)

technique is used based on the Gauss-Seidel iterative technique.

The iterative technique proceeds by forming inverses of

smaller submatrices centered around the diagonal and by multi-

plying the residual error vector with the stored inverse of each

submatrix. The submatrix blocks are formed automatically within

the code on the basis of complete columns of panels. An option

is provided for the user to specify his own blocks when the

arrangement of patches and panels becomes difficult in awkward

geometrical situations. Placing two strongly interacting panels

in an order which prevents their inclusion in the same block can

lead to poor convergence and sometimes divergence in the blocked

Gauss-Seidel routine.

3.4 On-Body Analysis

The matrix solver provides the doublet (i.e., the perturba-

tion velocity potential) value for each surface panel in the

configuration. These values and the source values are now as-

sociated with the panel center points in the evaluation of the

velocity on each panel.

The local velocity is:

V= - V_

or

V = V + v (45)

The perturbation velocity, v, is evaluated in the panel's

local coordinate system; i.e.,

v = VL£ + VMm + VNn (46)

The normal component is obtained directly from the source

form, Eq. (12); i.e.,

VN = 4_ (47)

The tangential components, VL, VM, are evaluated from the

gradient of _, assuming a quadratic doublet distribution over

three panels in two directions in turn, Figure 17. Thus, when

evaluating the velocity on, say, panel K, the four immediate

neighboring panels, NI, N2, N3, N4, are assembled together with
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the neighboring _ides of those panels, NSI, NS2, NS3, NS4. This

information is obtained directly from stored neighbor information

((NABOR(I,K), NABSID(I,K), I=1,4), K=I,NS), see Subsection 3.1.3.

Surface distances are constructed using the SMP, SMQ information

for each panel (Subsection 3.1.3), noting that the distance from

the center of panel K to the midpoint of either side 1 or side 3

is SMQ K and, similarly, the distance to the midpoint of either

side 2 or side 4 is SMPK. The additional distance from the

midpoint of a side of panel K to the midpoint of the neighboring

panel of that side depends on the NABSID value. For example, the

additional distance to the neighbor, NI, from side 1 of panel K

is SMQNI if NABSID(I,K) is 1 or 3 and is SMPNI if NABSID(I,K) is

2 or 4; the former is always the case when the neighbor is in the

same patch as panel K (Figure 17) and the latter will occur when

the neighbor is on a different patch with a different orienta-

tion.

Consider the regular case where the neighboring panels are

available and are on the same patch as panel K. Then the deriva-

tive of the quadratic fit to the doublet distribution in the SMQ

direction on panel K can be written

DELQ = (DA * SB - DB * SA)/(SB - SA) (48)

where

SA = - (SMQ K + SMQNI)

SB = SMQ K + SMQN3

DA = (_NI - _K )/SA

DB = (_N3 - _K )/SB

A similar expression based on SMP rather than SMQ and using

neighbors, N4 , N2, instead of NI, N3, gives the gradient DELP in

the SMP direction.

DELQ and DELP provide the total gradient of _ and, hence, by

resolving into the £ and m directions, the perturbation tangen-

tial velocity components (Eq. (46)) can be written

VL = -4z * (SMP * DELP - TM * DELQ)/TL

and

VM = -4z * DELQ (49)

The vector, TL, TM, with modulus, SMP, is the center of side

2 relative to the panel center expressed in the local coordinate

system of panel K.
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The complete set of panel neighbors is not always available

for the above derivative operation. Neighbor relationships are

cancelled by the program across each wake shedding line to pre-

vent a gradient being evaluated across a potential jump. The

program also terminates neighbor relationships between panels

when one has a normal velocity specified and the other has the

default zero normal velocity. In addition, the user can prevent

neighbor relationships being formed across a patch edge simply by

setting different ASSEMBLY numbers for the two patches and,

finally, the user can actually terminate neighbor relationships

on a panel-by-panel basis in the input. This is applied wherever

there is a potential jump (e.g., where a wake surface butts up to

the fuselage side) or where there is a shape discontinuity in the

flow properties (e.g., a sharp edge) or where there is a large

mismatch in panel density from one patch to another.

When a panel neighbor is unavailable on one or more sides of

a panel, then the doublet gradient routine locates the neighbor

of the neighbor on the opposite side to complete a set of three.

For example, if neighbor N2 is not available, Figure 18, the

neighbor on the opposite side is N4 with adjacent side NS4.

Going to the far side of panel N4, i.e., away from panel K, the

neighboring panel is NABOR(MS4,N4) with adjacent side

NABSID(MS4,N4), where

MS4 = NS4 ± 2; i< MS4k< 4

If this panel is available then the set of three is com-

plete, the gradient now being taken at the beginning rather than

the middle of the quadratic. If the panel is not available then

the program uses simple differencing based on two doublet values.

(If no panel neighbors are available, then the program cannot

evaluate the tangential perturbation velocity for the panel K.)

With the local velocity known, the pressure coefficient is

evaluated on panel K:

2CpK= 1 - V K
(50)

The force coefficient for a configuration or for parts of a

configuration are obtained by summing panel contributions. The

contribution from panel K is (Figure 19)

AF K

q_ - CPK * AREAK * BK + CfK * AREAk * tk
(51)

where

qoo is the reference dynamic pressure

CP K is the pressure coefficient evaluated at the panel

center, Eq. (50)
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AREA K is the panel area projected onto the panel's mean

plane

n
K

tK

Cf K

is the unit vector normal to the panel's mean plane

is the unit vector parallel to the panel's mean plane

and in the direction of the local (external)

velocity; i.e., t = V /IV i
K K K

is the local skin friction coefficient

The force vector for a patch is then

K 2

Fp . AF K

K=K 1

(52)

where KI, K_ are the first and last panel subscripts in the
patch. The force coefficient vector is

K2 AF K

C F = Fp/q_ SRE F = _ _ /SREF

P K=K 1

(53)

where S is the reference area specified by the user.
REF

The components of the force coefficient vector are printed

out in both wind axes, C L, CD, CS, and body axes, Cx, Cy, C z,

(i.e., the global coordinate system), Figure 20.

For symmetrical configurations the total force vector is

doubled prior to printout. This means that the printed side

force value, i.e., the component normal to the plane of symmetry,

is actually twice the side force on one side of the configuration

rather than being cancelled to zero for the total configuration.

The skin friction coefficient, CfK, in Eq. (51) is zero for

the first time through the potential flow calculation. During

the viscous/potential flow iteration cycle the Cf values are

computed along the surface streamlines passing tSrough user-

specified points. The program then sets the local Cf value on

each panel crossed by a streamline. Panels not crossed by

streamlines have Cf values set by interpolation through local

panels that have been set, provided these are in the same patch.

Patches having no streamlines crossing them are left with zero Cf

values on their panels; consequently, it is up to the user to
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adequately cover the regions of interest with streamline requests

(i). If a patch is folded (i.e., a wing) and/or there is a

dividing stream surface approaching the patch, then streamlines

should be requested on both sides of the attachment line.

The contribution to the moment coefficient vector from the

K th panel is:

AC t

M K q_ • SRE F • L (54)

where R K is the position vector of the control point on the

panel, K, relative to the moment reference point; L=SSPAN, the

reference semispan for the x and z components of moment (rolling

and yawing moments); and L=CBAR (the reference chord) for the y

component of the moment (pitching moment). CBAR and SSPAN are

specified by the user (i).

The summation is carried out on the basis of patches, com-

ponents and assemblies. Summation of the forces and moments

acting on user-specified sets of panels can also be obtained.

Patches with IDENT=I have an additional output of local

force and moment contribution from the summation down each patch.

This is useful for "folded" patches representing wing-type sur-

faces.

Patches with IDENT=3 include both upper and lower surface

velocity and pressure output. On these patches the doublet

gradient (Eq. (49)) provides the jump in tangential velocity

component between the upper and lower surfaces. The program

first computes the mg_]/l velocity (i.e., excluding the local

panel's contribution) at the panel's center then adds to this one

half of the tangential velocity jump for the upper surface and

similarly subtracts for the lower surface.
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3.5 Wake-Shape Calculation

With the panel singularity values known, the velocity vector

can be computed at any point in the flow field using the panel

velocity influence coefficients and summing over all surface and

wake panels (Eq. (18)). In the wake-shape calculation procedure

the velocity vector is computed at each wake panel corner point

and each "streamwise" edge; i.e., sides 1 and 3 of a panel,

Figure ii, is aligned with the average of its two end velocities.

The wake shape calculation is performed in a marching pro-

cedure, starting at an upstream station and progressing through

the set of vertical wake-grid planes, Figure ii. In each wake-

grid plane the full set of (streamwise) wake lines intersecting

that plane is first assembled and the full set of velocities

computed at that station. In assembling the set of wake lines

for treatment, certain lines can be left out, e.g., lines on

wakes identified as rigid by the user (i); individual lines that

have been identified as rigid, for example, the line where the

wing wake butts up to the fuselage side; and lines that are

coincident with other lines that are already in the set.

The step from one wake-grid plane to the next is performed

for all lines before another set of velocities is computed.

Thus, for a given set of points, RWi,M; i=l, NL M, in the M th

wake-grid plane, the set of points in the next wake-grid plane
is:

j J

RWi,M+ 1 = RWi, M

J J

+ Vi * DX/IVx I; i=l, NL M
l

(55)

th

where NL_ is the _umber of wake lines being moved in the M

wake-@_ia plane; V_ is the mean velocity across the interval for

the i TM line in th_ jL** predictor/corrector cycle.

(vJ Jl 1i = i,M + Vi,M+I /2 (56)

J is the total number of predictor/corrector cycles in use (de-

fault is 2).

o J j-i

V is set of Vi,M, and V
j-I l,m+l I,M+I

RW i,M+l •

is computed at the point,

In each predictor/corrector cycle the complete set of points

in each wake-grid plane are moved and the current movement vector

j j-i

d =RW -RW
1 I,M I,M
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is applied to all the points downstream on each line, before the

next set of velocities is computed. A limiting movement can be

applied as a damper in difficult situations.

When all the wake-grid planes have been processed, the wake

panel parameters are reformed using the new corner points. The

modified set of influence coefficients can then be computed for

the next solution.

3.6 BQundary Layer Analysis

The solution from the on-body analysis (Subsection 3.4) can

be transferred to the boundary layer analysis. Two integral

boundary layer analyses are provided in the VSAERO program: the

first method, which is described in Reference 23, provides the

boundary layer characteristics along computed (external) surface

streamlines. The location of a point (panel) on each streamline

is provided by the user who is, therefore, responsible for en-

suring that a family of streamlines adequately covers the regions

of interest. The method, which is applicable for wings and

bodies, includes the effects of surface curvature and streamline

convergence/divergence under the assumption of local axisymmetric

flow. The surface streamline tracking procedure is described in

(8) and (24) and is based on a second-order surface stream

function formulation. The streamline boundary layer calculation

can be expected to break down in regions of large cross flow.

However, the procedure has given surprisingly good guidance for

the onset of separation for a wide range of practical problems.

The second method, which is installed in the VSAERO program

and which is described in Reference 2, includes a cross-flow

model. This method is an infinite swept wing code and is applied

in a strip-by-strip basis across wing surfaces, with the user

specifying which strips are to be analyzed.

The boundary layer module is fully coupled with the VSAERO

inviscid code in an outer viscous/potential iteration loop,

Figure 3. In further iterations, the displacement effect of the

boundary layer is modelled in the potential flow calculation

using the source transpiration technique; i.e., the boundary

layer displacement term appears in the external Neumann boundary

condition equation as a local non-zero normal velocity component

(Eq. (12)), and is thereby related directly to source singulari-

ties in this formulation. The boundary layer calculation also

provides a separation point on each streamline, thereby defining

a boundary of separation for a family of streamlines. The cri-

terion for separation is currently a vanishingly small skin

friction coefficient (in the direction of the external stream-

line).
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3.7 Off-BQ_y Analyses

When the iterative loops for the effects of wake shape and

boundary layer are complete, the VSAERO program offers options

for field velocity surveys and off-body streamline tracking.

These options, which are discussed separately below, both use the

off-body velocity calculation, Eq. (18), based on a summation of

the contributions from all surface and wake panels added to the

onset flow.

3.7.1 Velocity Survey

Off-body velocity calculations are performed at user selec-

ted points. Normally, the points are assembled along straight

scan lines. These lines in turn may be assembled in planes and

the planes in volumes. The shape of the scan volume is deter-

mined by the parameter, MOLD. Two options are currently avail-

able (i).

MOLD=I Allows a single point, points along a straight

line, straight lines within a parallelogram or

within a parallelepiped.

MOLD=2 Allows points along radial lines in a cylindrical

volume.

A number of scan boxes can be specified, one after the

other. A MOLD=0 value terminates the off-body velocity scan.

The location of scan lines within the scan boxes can be

controlled in the input. The default option is equal spacing

generated along the sides of the box. The location of points

along a scan line can be controlled also in the input, but again,

the default option is equal spacing.

If a scan line intersects the surface of the configuration,

an intersection routine locates the points of entry and exit

through the surface paneling. The scan line points nearest to

each intersection are then moved to coincide with the surface.

Points falling within the configuration volume are identified by

the routine to avoid unnecessary velocity computations. These

points are flagged in the printout. The input parameter, MEET,

controls the calls to the intersection routine: MEET=0 (default)

makes the routine active, while MEET=I switches it off; clearly,

if the selected velocity scan volume is known to be outside the

configuration volume, then there is no need for the program to

compute where the scan lines intersect the configuration surface.

The velocity routine, VEL, computes the velocity vector at

each point by summing the contributions from all surface panels,

wake panels, image panels (if present), onset flow, etc. The
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routine includes near-field procedures for dealing with points

that are close to the surface panels or wake panels. The near-

field routine involves a lot of extra computation; if, therefore,

it is known that a scan box is well clear of the configuration

surface and wake then it is worthwhile turning off the near-field

routine to avoid unnecessary computation. This is controlled by

the input parameter, NEAR; NEAR=0 (default) keeps the near-field

routine active while NEAR=I switches it off.

3.7.2 Off-Body Streamline Procedure

The numerical procedure for calculating streamline paths is

based on finite intervals, with a mean velocity vector being

calculated in the middle of each interval, Figure 21. The

velocity calculation point, RP, is obtained by extrapolation from

the two previous intervals on the basis of constant rate of

change in the velocity vector direction; i.e.,

RP = R + .5 s t (57)
n n

where R n is the previous point calculated on the streamline, s_

is the present interval length, and t is a projected tangen_

vector.

)( >t = \{ n Sn-I kn_ - t + (58)s + s 1 n-2 tn-I
n-2 n-I

Vn- 1

where tn_ 1 - ]Vn_ll etc. V' n-i

middle of the previous interval.

is the velocity calculated in the

RP does not necessarily lie on the streamline path. The

calculated velocity, V n, at RP, is used to evaluate the next

point on the streamline; i.e.,

s n V n

Rn+ 1 = R n + i Vn} (59)

An automatic procedure is included in the routine which

changes the interval length, s n, in accordance with the change in

tangent direction. If a large change in direction is calculated,

the value of sn is decreased and the calculation is repeated

until the change in direction is within a specified amount. If

the change in direction is smaller than a certain amount, then

the interval length for the next step is increased.
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4.0 DISCUSSION OF RESULTS

Correlation studies discussed below include exact and nomi-

nally exact solutions of a number of basic test cases, some of

which had proved difficult for earlier low-order panel methods.

In addition, some comparisons are made between calculated and

experimental data.

4.1 _¢e_RL_Kia_

Figure 22 shows the chordwise pressure distribution at _ =
0.549 on a thin, swept wing at 5° incidence. The wing has a mid-

chord sweep of 30 °, aspect ratio 6, taper ratio 1/3, and a NACA

0002 section. A nominally exact datum solution (25) for the case

was computed by Roberts' third-order method using a 39

(chordwise) by 13 (spanwise) set of panels. The present calcula-

tions, based on the ¢i = 0 formulation, use i0 spanwise panels

with both 80 and 20 chordwise panels on a "cosine" spacing,

giving increased panel density towards leading and trailing

edges. Roberts' datum paneling is heavily weighted towards the

leading edge: he has, in fact, 4 more panels ahead of the most

forward panels in the present 80 cosine spacing case.

The comparison in Figure 22 indicates that the low- and

high-order methods give essentially the same solution where the

control point density is the same. The present calculations

using 20 panels chordwise deviate from the datum solution near

the leading and trailing edges where the control point densities

are different. Good agreement is restored in those regions by

the 80-panel case which, at the trailing edge at least, has a

similar panel density to the datum case. (Note: not all the 80-

panel pressure values are plotted in the central region of the

chord in Figure 22.)

4.2 Wing with Strake

The fact that surface velocities are obtained by numerical

differentiation in the present method might lead to inaccuracies

in awkward situations. So far, no serious trouble has been

experienced. Any problem that might arise with the derivative

scheme (e.g., in a region of mismatched paneling) can usually be

alleviated by cutting panel neighbor relationships at that sta-

tion , thus forcing a forward or backward differencing (Subsec-

tion 3.4). One situation that could be difficult and which has

caused a problem for other methods is the evaluation of the

spanwise velocity component, Vy, in the neighborhood of the kink

on a wing with strake. In the case considered in Reference 25,

the leading-edge kink occurs at 25% of the semispan and the

leading-edge sweep is 75 ° inboard and 35 ° outboard. The trail-

ing-edge sweep is 9°. Again, the wing section is a NACA 0002 and

incidence 5 °.
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butions on a Thin Swept Wing. NACA 0002 Section;

= 5° .
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The chordwise distribution of Vy is plotted in Figure 23 at

stations n = .219 and .280; i.e., just inboard and just outboard

of the kink, respectively.

Two higher-order datum solutions are plotted (25) from

Roberts' third-order method and from Johnson and Rubbert's (17)

second-order method. These datum solutions agree on the outboard

distribution but disagree by a small amount on the inboard cut.

The disagreement might be caused by the different ways the inter-

polation is set up across the kink.

The present calculations are in close agreement with the

datum solutions and favor the second-order solution near the

upstream part of the inboard cut. The case was run as part of a

"shakedown" exercise of the code and used 946 panels in a 44

(chordwise) by 20 (spanwise) array with 66 panels on the tip-edge

surface. The chordwise paneling was on a "sine" distribution

with density increasing towards the leading edge. Such a high

number of panels was probably not needed for this case, but the

calculation took approximately 2½ minutes on a CDC 7600.

4.3

In the past, low-order solutions for internal flows have

suffered badly from "leakage" problems in between control points.

The present code was, therefore, applied to two nacelle cases.

The first of these is a simple through-flow nacelle formed by

rotating a NACA 0010 about the nacelle axis such that the minimum

area is one fourth of the inlet and exit areas, Figure 24. This

example, taken from Reference 18, shows how the earlier, first

generation, low-order analysis, because of the leakage, cannot

match the internal flow calculated by the higher-order methods.

However, the low-order, VSAERO solution (with the internal poten-

tial set to zero) is in close agreement with the high-order

solutions and evidently does not have this leakage problem.

The second nacelle case considered is also an open nacelle,

but with an exit diameter 0.3 of the chord. The nacelle surface

is generated by a NACA 0005 section tilted leading edge out by 5 °

from the x-axis.

Two higher-order datum solutions (25) are shown in Figure

25. for the chordwise pressure distribution. These are due to

Hess and also Roberts.

Roberts' solution shows a slightly lower pressure inside the

duct compared with Hess's solution. The present calculations,

based on the %i = ¢_ formulation, use I0 panel intervals around

half the circumference and with two chordwise distributions, 26

cosine and 48 sine, around the complete section. Both results

are in very close agreement with the datum solutions with a

tendency for slightly lower pressure inside the duct compared

with Hess's solution. This could be caused by the slightly
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smaller duct cross-section area generated by the present i0 flat
panel representation. Again, there is no leakage problem with
this formulation.

4.4 Wing-Flap Cases

Cases with slotted flaps have proven troublesome for some

earlier, low-order panel methods, especially those using a speci-

fied doublet or vorticity singularity distribution and employing

"Kutta points" where tangential flow is specified just downstream

of the trailing edges (e.g., (23)). In closely interacting

multi-element configurations the interference of the downstream

element acting on the "Kutta point" of the upstream element can

result in a circulation error; in addition, the solution can be

sensitive to the _ of the prescribed loading distribution on

the upstream element--this is quite different from that on the

regular single-element wing section.

Two wing-flap cases are considered below for the VSAERO

program. The first case is one of the exact two-dimensional,

two-element cases provided by Williams (26). Figure 26 shows the

close agreement between the VSAERO calculations and the exact

solution for configuration B on both the main element, Figure

26(a) and the flap, Figure 26(b). Part of the high aspect ratio

aneling in the VSAERO calculation is shown in Figure 26(c), and

as ii0 panels chordwise on the main and 60 on the flap.

The second wing-flap case involves a part-span flap. The

inset in Figure 27 shows a general view of a wing-flap configura-

tion at 16 ° incidence. The wake shape is shown after one itera-

tion cycle. The wing has an aspect ratio of 6 and the basic

section is a NACA 0012. The 30% chord Fowler flap is deflected

30 ° and the flap cutout extends to _ = .59 on the semispan. The

surfaces of the wing tip edge, the flap edge and the end of the

cove are covered with panels.

Vortex separations were prescribed along the wing tip edge

and the flap edge. The present calculations of surface pressures

are compared with experimental data (27) at two stations in

Figure 27. A section through the flap at _ = .33 is shown in

Figure 27(a) and one just outboard of the flap edge at n = .6 in

Figure 27(b).

Boundary layer calculations have not been included in this

calculation yet, and so the agreement between the results at this

incidence (16 °) is probably too close. The lower peak suction in

the flap data, Figure 27(a), may be caused by interference from a

nearby flap support wake.
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4.5

The case of 4:1 spheroid at 5 ° angle of attack was run to

test the prediction accuracy of body cases. Figure 28 shows the

very good agreement between the VSAERO prediction and the exact

(non-lifting) solution. The calculation has i0 panels around the

half-body and 20 longitudinally, with the case being run with the

vertical plane of symmetry. Small discrepancies in the Cp ~ Z

plot are probably partly due to the control points being on the

inscribed polygon (i.e., a plot of Cp ~ G would look better, but

the Cp ~ Z plot is more practical for the general case.

4.6 Wing-Body Cases

Concave corners have posed a problem to some low-order

methods in the past, making it necessary to use high panel densi-

ties. Also, such a region might cause a numerical differentia-

tion scheme to misbehave. Two wing-body cases are considered

here. Figure 29(a) shows a longitudinal cut through a pressure

distribution on a wing-body case from Reference 28 for e = 4° .

The cut passes just above the wing-body junction. The present

calculations compare well with other solutions and are in good

agreement with experimental results.

A spanwise cut through the present calculations at X/L = .48

is shown in Figure 29(b) together with the surface geometry

shape. The pressure distribution passes smoothly from the body

surface onto the wing surface even though relatively large panels

are present on the fuselage side (only 6 around the half sec-

tion).

In this calculation the wing and body form one complete

volume in which _ = _.
1

The second wing-body case is the Swearingen Metroliner wind

tunnel model. Figure 30 shows the VSAERO paneling and it will be

noticed that there has been no treatment of the intersection

region; i.e., the wing and fuselage panel models are from

_ wing-alone and body-alone runs. This is not a recom-

mended practice; however, it is interesting to observe that--at

least in the present configuration--the results are good and

compare very well with experimental data right into the junction

region. (Note that the doublet gradient procedure has not used

panel information that falls inside the fuselage or wing.)

Comparisons between experimental (29) and calculated pres-

sure distributions are made in Figure 31, 32 and 33 at two span-

wise stations, y = 9.0 (y/b/2 = .22) and y = 18.0 (y/b/2 = .43).

The location of the body side is at y = 5.0 (y/b/2 = .12). The

calculations include one wake relaxation iteration. Superimposed

on each plot is the geometry of the local cross section.
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Figure 31 shows the comparisons at _ = 0°. The experimental
results at the inboard station indicate a small separation zone
near the trailing edge and show slightly lower Cp values near the
leading edge compared with the calculated data. The latter does
not include a viscous/potential iteration for this case. The
outboard station shows a much closer agreement between the re-
sults (Figure 31(b)).

Figure 32 shows the comparisons at _ = 12 °. The results are
in remarkably good agreement except for the separated zone near
the trailing edge, which has grown to approximately 20% of the
chord.

Figure 33 shows the comparison at _ = 16 °. The calculations
include one viscous potential iteration and the figure indicates
the calculated location of separation which is in reasonable
agreement with experimental data. Figure 34 shows the calculated
surface streamlines and separation zone on the wing for this
case.
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5.0 CONCLUSIONS

The formulation of the VSAERO program is described and a

number of basic test cases examined. The panel method module of

the program, based on simple quadrilateral panels with constant

doublet and source, has produced results of comparable accuracy

to those from higher-order methods given the same density of

control points. The calculated results compare very well with

exact, nominally exact and also experimental data cases. Prob-

lems associated with earlier low-order panel methods do not

appear with the present formulation based on internal Dirichlet

boundary conditions. Moreover, the low computing cost of the

simple panel method makes it practical for applications to non-

linear problems requiring iterative solutions, e.g., for wake-

shape and surface boundary layer effects.
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APPENDIX A

SUBROUTINE FLOW CHART
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ITR=0

CALL VSAERO

POTENTIAL
FLOW

PROGRAM

I NO

CALL BLCTRL

BOUNDARY_
LAYER

PROGRAMS/

Figure A-I.
Flow Chart of Main Program (Deck MVP);

The Viscous/Potential Iteration Loop.
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(See

p. 48)
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M ATRIX
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Figure A-2. Flow Chart of Subroutine VSAERO in Potential Flow.
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Figure A-2. Continued.
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DOUBLET VALUES
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PRESSURE, FORCES j I
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Figure A-2. Continued.
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LOCK VALUE_
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ELOCITY SCAN /
VSCAN

, /LOCATE PANEL h

INTSCT_--/_NTERSECTED )
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Figure A-2. Continued.
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=0?

YES

YES

YES

(See p. 91)

_ VNORM I

VSET

Figure A-2. Concluded.
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YES
IBL

_L_RIPWISE BOUNDARY

YER CALCULATION (2)_

_0

YES

_/ST_INE BOUNDARY)_INTGRL _I_LAYER CALCULATION (23)

I P

To

Figure A-3. Flow Chart for Major Subroutines in the

Boundary Layer Analysis (Subroutine BLCTRL).
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APPENDIX B

BIQUADRATIC INTERPOLATION
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The biquadratic interpolation scheme described below is

applied in a number of routines in the VSAERO code. Its simple

multiplier form is very convenient to use and yet it is a "con-

strained" cubic; i.e., it cannot oscillate wildly. Experience

with the routine over a number of years in the code has shown it

to be a reliable method.

Given a set of position vectors, Pn, n=l,2 ..., N, defining

a smooth space curve, additional values are interpolated in, say,

the interval between Pn and Pn+l , Figure B-I. The integrated

contour length, sn, to each polnt from the beginning of the

curve, i.e., from PI' is generated first. For convenience the

straight segment length is used across each interval; i.e., s =

fPn+l - Pn [' but arc lengths could easily be substituted, n

Next, two quadratic curves, ql _,e I ) passing through points
n

Pn-Y Pn' Pn+l' and q2(e,e 2 ) passing through points Pn' Pn+l'
n

and Pn+2' are formed, Figure B-I.

The normalized interpolation parameter, _, ranges from 0 to

1 in the n th interval, and has value

where

1 at Pn.l and _2 at Pn+2 '
n n

Sin (Sn-I
- Sn)/(Sn+ 1 - Sn) ; and

_2
n

= (Sn+ 2 - sn)/(sn+ 1 - sn).

th
In the n interval, a linear combination

defines the biquadratic interpolation curve.
of q i and q2

P(e) = _q2(e,e2 ) + (i- _)ql(a,e I )
n n

The biquadratic is, therefore, a cubic, but it is constrained to

lie between the two quadratic curves. Clearly, the value of

for a point distance, s, from the start of the curve (but located

in the n th interval) is

a = s/(Sn+ 1 - Sn)

97



The form of the interpolation curve can be expressed in
terms of biquadratic multipliers, GI, G2, applied to the four
local position vectors:

P(e) = Pn-i Gl(e'el ) + Pn G2(e'_l ' _2 )
n n n

+ Pn+l G2(I - _, 1 - e2n, 1 - el )
n

+ Pn+2 GI(I - e, 1 -_2 )"
n

The forms of GI, G2 are:

Gl(a,b) = a(l - a)2/{b(l - b)}

G2(a,b,c) = (i - a){i - a(l - a)/b - a2/c}

These multipliers, based on the linear combination of two

quadratics, give continuous slope and a piecewise linear--but not

necessarily continuous--variation of second derivative across

each interval.

The G multipliers can be differentiated to give the tangent

vector:

t(_) = Pn-i HI(_'_I ) + Pn H2(_'_I ' _2 n)
n n

- Pn+l H2(I - e, 1 - _2 ' 1 - _i )
n n

)
Pn+2 HI(I- _, 1- e2n

where the tangent multipliers are:

Hl(a,b) = (I - 4a + 3a')/{b(l - b)}

_{2(a,b,c) = (4a - 3a 2 - l)/b + (3a 2 - 2a)/c - 1

ds

Note: this is not a unit vector: It(_) I - d_"
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The G multipliers can also be integrated to give the area

under the curve between the n th and the (n+l) th points:

A n = Pn-i Fl(al n) + Pn F2(eln'_2n )

ds

, 1 - e 2 ) + Pn+2 FI(I - _2n)_-_
+ Pn+l F2(I - e2n n

where the integral multipliers are:

Fl(b) = I/{12b(l - b)}

F2(b,c) = {1 - (i/b + 1/c)/6}/2

ds is constant over the interval.
This assumes that the value of _-_

In this case, therefore, it would be an advantage to use the arc

length intervals rather than straight line intervals when calcu-

lating surface distances.

The F multipliers are for possible future use in the inte-

gration of surface pressures to obtain forces and moments.
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