
Programmability and Performance of Parallel

ECS-Based Simulation of Multi-agent
Exploration Models

Alessandro Pellegrini and Francesco Quaglia

DIAG, Sapienza, University of Rome

Abstract. While the traditional objective of parallel/distributed simu-
lation techniques has been mainly in improving performance and making
very large models tractable, more recent research trends targeted com-
plementary aspects, such as the “ease of programming”. Along this line,
a recent proposal called Event and Cross State (ECS) synchronization,
stands as a solution allowing to break the traditional programming rules
proper of Parallel Discrete Event Simulation (PDES) systems, where the
application code processing a specific event is only allowed to access the
state (namely the memory image) of the target simulation object. In fact
with ECS, the programmer is allowed to write ANSI-C event-handlers ca-
pable of accessing (in either read or write mode) the state of whichever
simulation object included in the simulation model. Correct concurrent
execution of events, e.g., on top of multi-core machines, is guaranteed by
ECS with no intervention by the programmer, who is in practice exposed
to a sequential-style programming model where events are processed one
at a time, and have the ability to access the current memory image of
the whole simulation model, namely the collection of the states of any
involved object. This can strongly simplify the development of specific
models, e.g., by avoiding the need for passing state information across
concurrent objects in the form of events. In this article we investigate on
both programmability and performance aspects related to developing/-
supporting a multi-agent exploration model on top of the ROOT-Sim
PDES platform, which supports ECS.

1 Introduction

Timeliness in the delivery of simulation output is an increasingly relevant issue
to cope with, especially in contexts where simulation is exploited as a tool for
time-critical decision making. This happens in many fields, ranging from agent
based simulation of rescue scenarios [1] to simulation of on-line rescaling/recon-
figuration policies of systems deployed in, e.g., Cloud Computing environments
[2]. For the case of Discrete Event Simulation (DES) models, performance is-
sues have been traditionally targeted via the Parallel-DES (PDES) paradigm
[3], which has been based on the partitioning of the simulation model into dis-
tinct simulation objects (also known as Logical Processes - LPs) to be executed
concurrently, so as to allow the exploitation of (large scale) parallel platforms to
speedup model execution.

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 395–406, 2014.
c© Springer International Publishing Switzerland 2014



396 A. Pellegrini and F. Quaglia

The PDES paradigm laid its foundation on a programming model where the
states of the involved simulation objects are disjoint, and where memory access
operations (upon event processing) are confined within the state of the simulation
object dispatched for processing the event. This approach implicitly requires the
application programmers to shift from a sequential programming model where
the application is designed and coded to run serially (namely to process one event
at a time) and has the possibility to access any valid memory location upon the
execution of whichever event. In other words, parallelism is achieved by a-priori,
namely at code design/development time, forcing separation of the accesses to
slices of the simulation model state, each one representing an individual object.

In order to recover from the scenario where parallelism in the execution is
forced to be bound (in the programming model) to memory disjoint accesses to
an a-priori partitioned simulation model state, recent design/development trends
in PDES systems gave rise to the possibility of sharing state information across
the concurrent simulation objects (see, e.g., [4,5,6]). A very recent result in this
area is the Event and Cross State (ECS) synchronization protocol presented in
[7], which is based on a proper x86 64/Linux memory management architec-
ture and on user-transparent system-level events whose processing rules allow
to “transactify” the execution of any individual simulation event, even in case
it accesses (in either read or write mode) the state of multiple simulation ob-
jects. ECS is suited for simulations carried out on machines relying on multi-core
technology, which is a mainstream architectural support for parallelism. With
ECS we are exposed to a sequential-style programming/execution model based
on ANSI-C event-handlers, where any code block of a handler can access any
valid memory location within the simulation model state, and events are pro-
cessed by providing the illusion of a traditional sequential (timestamp ordered)
execution, where nothing can happen in memory except for read/write actions
related to a single event at a time. On the other hand, simulation events are
actually processed concurrently as in traditional PDES systems, thus allowing
the possibility to still exploit parallelism in the underlying architecture for per-
formance reasons. ECS has been integrated within the open source ROOT-Sim
simulation environment [8], in combination with the native ROOT-Sim support
for speculative (optimistic) processing.

In this article we investigate on the effects of ECS on programmability of a
multi-agent exploration scenario, as well as on the finally delivered performance
while executing the simulation model. We will show how ECS permits coding
the model very easily by allowing the combination of kind of active (agents)
and passive (regions) simulation objects. The region information can be directly
accessed in read/write mode by the agents simulation objects while processing
their events (e.g., an access-to-region event) which allows for avoiding (A) the
need for marshalling/unmarshalling region information and exchanging it in the
form of query/reply events and (B) the need for scheduling region update events
(e.g. command events) destined to be processed by passive region-objects. Fur-
ther, being the regions distinct (although passive) objects, they still allow for
concurrency in their accesses by the different agent objects. Overall, thanks to



Programmability and Performance of Parallel ECS-Based Simulation 397

ECS we can get both a reduction of the complexity of the coding process (e.g.
via the avoidance of query/reply events) and a transparent support for efficient
parallelization. To the best of our knowledge, this is the first study aimed at
assessing the effectiveness of techniques for transparent parallelization of multi-
agent models on multi-core machines via the provisioning of support for a truly
sequential-style programming model based on ANSI-C. Hence, as a matter of
fact, we also implicitly provide indications on how to exploit ECS as the sup-
port for coding different kinds of models entailing the need for representing both
spatial regions and active entities operating within the regions.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. In Section 3 we provide an overview of ECS. In Section 4 we dis-
cuss how to exploit ECS facilities for coding the multi-agent exploration model.
Experimental results are provided in Section 5.

2 Related Work

A few studies exist in the area of porting sequential agent-based simulators to
parallel platforms (see, e.g., [9]). However, the approach there taken is mostly
based on the aforementioned query/reply or command events, which are in some
cases handled via wrappers encapsulating the actual application code and inter-
cepting the attempt to access to a remote object state (as in classical RPC archi-
tectures). Also, these proposals target object oriented programming languages,
while ECS is aimed at transparent parallelizing simulation programs based on
ANSI-C. Additionally, as far as we know, the proposal in [9] relies on time-stepped
(conservative) synchronization as implemented on top of the facilities offered by
the Mozart framework [10], while we target transparent parallelization in the
context of asynchronous optimistic discrete event simulation.

Other literature studies (see, e.g., [11,12,13,14]) provide techniques and en-
vironments for parallel execution of agent-based simulation models. However,
their primary focus is not on parallelism transparency (in the form of allow-
ing a sequential style code to be directly processed concurrently). Hence, these
proposals stand as orthogonal to what we present in this paper.

3 ECS Overview

The ECS synchronization protocol [7] is based on managing the virtual memory
destined for usage to any simulation object according to stocks. More in detail,
when the object requests new memory buffers for installing and/or updating its
state layout, which is supported via the traditional malloc service, redirected to
a proper memory allocator integrated with ECS, the memory management ar-
chitecture reserves an interval of page-aligned virtual memory addresses, namely
the stock, via the standard mmap POSIX API.

To understand how ECS manages the stocks, let us consider the actual paging
scheme supported by Linux on top of x86 64 architectures, namely the target
platform for the ECS protocol. Virtual addresses are used as access keys for



398 A. Pellegrini and F. Quaglia

PML4

PDP
simulation object x

simulation object y

STOCK ASSOCIATION TABLE

O-th PDPTE
1-st PDPTE

STOCK ASSOCIATION TABLE

first 2 levels page tables

Fig. 1. Example association between stocks of virtual memory and simulation objects

a 4-level paging scheme, ultimately managing pages of 4KB in size. The top
level page table is called PML4 (or PGD—Page General Directory) and keeps
512 entries. All the other page tables, operating at lower levels, also have 512
entries each. In ECS, the stock of virtual memory pages destined to allocate
memory buffers for a given simulation object corresponds to the set of contiguous
virtual-pages whose virtual-to-physical memory translation is associated with a
single entry of the second-level page table, which is called PDP—Page Directory
Pointer (its entries are therefore referred to as PDPTE). Note that a single
stock corresponds to 5122 pages, for a total of 1GB of virtual memory. Hence, a
single stock allows managing an object-state requesting up to 1GB of (dynamic)
memory. On the other hand, reserving multiple stocks for a same simulation
object will lead to managing object states reaching multiple gigabytes in size. In
Figure 1 we show an example where a given PDP table has its 0-th entry—and
hence the corresponding stock of virtual memory pages—reserved for object x,
and its 1-st entry reserved for object y.

The above scheme is complemented by having different worker threads within
the simulation process (run on the multi-core machine) associated with multiple
sibling page tables, which is achieve by augmenting the Linux paging scheme
with the facilities offered by a special device file, as designed in [7] (installed
via an external module). When a simulation object x is dispatched to be run by
worker thread Ti for processing its next event e, then the access rule to the stock
associated with x is changed in the corresponding PDP entry of the sibling page
tables associated with Ti from NULL to a value allowing read/write access by the
thread (which is done via an ioctl command issued towards the special device
file). Instead, the memory stocks associated with the other simulation objects
are left unaccessible, in terms of read/write permission. If during the processing
of the event e at object x, the event handler run by thread Ti performs an access
to a virtual memory region currently in use for the stock associated with object
y, ECS captures the access via a lightweight trap-handler (not requiring to pass
through the full memory-fault handling chain of Linux) and“transactifies” the
execution of the event by allowing the handler run by thread Ti to access the
target stock (opening the access permission on the sibling page tables of Ti)
in mutual exclusion. Also, the transaction associated with the event e needs



Programmability and Performance of Parallel ECS-Based Simulation 399

to observe the snapshot of the target object y exactly at the timestamp of e.
To achieve this, ECS relies on special system-level rendez-vous events, which
support a temporary block of the source/target object along virtual time (at the
rendez-vous point). In particular, the source object x remains blocked until the
correct snapshot of the target one is available, while the target object y remains
blocked in the rendez-vous until the event e is completely processed by object x.

The actual synchronization protocol instantiated in ECS is optimistic, with
the meaning that the local simulation clock of the target object y might be be-
yond the value of the timestamp of the event e at the time when the correspond-
ing transaction (namely rendez-vous) needs to be processed. This is addressed
by having rendez-vous events marked with the correct timestamp for their oc-
currence (namely, the timestamp of e in our example discussion), and by forcing
a rollback of the state snapshot of the target object y to a simulation time equal
to the timestamp of the rendez-vous in case of out of timestamp order occurrence
of the rendez-vous.

As also discussed in [7], the ECS synchronization protocol is deadlock free,
thanks to a priority scheme adopted to process events whose timestamp falls in
the past of the current logical clock of the target object. In particular, anytime an
event in the past needs to be processed by an object which is currently blocked
due to a rendez-vous it issued (which still needs to be finalized since the state
image of the target object, hit by the rendez-vous, is still unavailable), the block
phase is squashed, thus avoiding indefinite block scenarios. On the other hand,
in case the event to be processed is scheduled at the same time of the blocking
rendez-vous, then classical tie-break mechanisms can be adopted to prioritize
event processing and to avoid permanent blocking situations.

Further, the guarantee of freedom from the domino effect within the roll-
back scheme can be provided in ECS by integrating classical sparse state saving
strategies (see, e.g., [15,16,17,18,19,20,21]), aimed at (infrequently) logging the
state image of the simulation objects (either for recoverability purposes within
the synchronization scheme or for on-the-fly/a-posteriori inspection of the state
trajectory of the simulation objects) with forced logs taken so to avoid any
rendez-vous event to be reprocessed as an artifact of the reconstruction phase of
non-logged state images. Essentially this implies forcing additional logs on both
source and destination objects right after the rendez-vous is processed.

We note that in case each simulation object only accesses its own state (namely
the data structure logically associated with such a state), which is the only
scenario valid for classical PDES programming approaches, then the performance
penalty incurred by ECS compared to classical optimistic PDES synchronization
is exclusively related to opening the access into the sibling page tables upon
dispatching some object along a given worker thread. However, thanks to the
current support offered by modern processors for fast system-call paths, the
corresponding ioctl operation imposes negligible overhead except for simulation
models with very fine event-granularity. On the other hand, the management of
rendez-vous events induces a cost to be necessarily paid to allow the parallel run
to mimic a classical sequential one where the simulation events are processed



400 A. Pellegrini and F. Quaglia

in non-decreasing timestamp order, while jointly being allowed to access any
valid memory location belonging to the state of the simulation model (namely
any memory location logically belonging to the state of some object included
in the simulation model). But, as we will show in the next section, this has the
potential for extremely simplifying the application programmer job.

4 Programming the Multi-agent Exploration Model

To assess the programmability and performance of ECS, we have implemented
a distributed multi-robot exploration and mapping simulation model, according
to the results in [22]. Specifically, a group of robots is set out into an unknown
space, with the goal of fully exploring it, while acquiring data from sensors (e.g.,
cameras, lasers, . . . ) which are used to map the environment. The robots are
equipped with enough processing power to elaborate the sensors data online
(thus, the map is constructed during the exploration), so as to allow them to
rely on the acquired knowledge to drive the exploration in a more efficient way.
Specifically, whenever a robot has to make a decision about which direction
should be taken to carry on the exploration, it is done by relying on the notion
of exploration frontier. By keeping a representation of the explored world, the
robot is able to detect which is the closest unexplored area it can reach, computes
the fastest way to reach it and continues the exploration.

The robots explore independently of each other until one coincidentally de-
tects another robot. Whenever two robots enter a proximity region, they perform
three different actions: i) they use their sensors to estimate their mutual physical
position—recall that they are just in proximity; ii) they verify the goodness of
their position hypothesis by creating a rendez-vous point in the explored part
of the region, and trying to meet again there; iii) if the hypothesis is verified,
they exchange the data acquired during the exploration, thus reducing the ex-
ploration time and allowing for a more accurate decision of the actions to be
taken. Additionally, in case step ii) succeeds (i.e., the robots actually meet in
the rendez-vous point), it means that the estimation of their respective position
is correct. Therefore, they can form a cluster, i.e. they can start exploring the
environment in a collaborative way. Specifically, this collaborative exploration
can take place in two different ways. On the one hand, they jointly define (by
relying on cost and utility functions, as defined in [22]) their next exploration
targets, so that they can minimize the time required for a complete environment
exploration. On the other hand, they might decide to make a guess about the
position of other robots (the total number of which is known) which are not
part of the cluster yet. In the latter case, one of the robots (the one for which
the utility/cost ratio is convenient) targets the hypothesized position. If a robot
is found there, the aforementioned steps are carried out, so as to increase the
knowledge of the environment.

When implementing a PDES simulation model for this scenario, three main
hindrances are found. First, discovering the presence of a nearby robot can be
difficult. In fact, either the robots must communicate to each other their current



Programmability and Performance of Parallel ECS-Based Simulation 401

position (thus exponentially increasing the number of exchanged messages, which
in turn can limit the performance of the simulation), or they have to notify it
to specific simulation objects (i.e., the regions), again increasing the number of
messages exchanged. Second, to estimate the respective position of the agents,
many simulation events could be required. In this specific case, these events
should be marked with the same timestamp, thus requiring efficient (but non-
negligible in cost) tie-breaking approaches, like the one in [23]. Third, exchanging
map information could entail a data transfer non-negligible in size, posing a huge
burden on the communication subsystem. Additionally, all these programmatic
steps are not straightforward, as they force the modeler to reason according to
the state-separation paradigm proper of PDES.

On the other hand, as mentioned, relying on ECS allows for a completely
transparent synchronization of the simulation objects involved in any mutual
state update, which therefore simplifies the development process of the simula-
tion model. In our implementation1, we rely on two different types of simulation
objects, namely active ones (implementing the robots) and passive ones (imple-
menting regions of the exploration environment). More specifically, the environ-
ment is represented as a square region, divided into hexagonal cells. This choice
allows us to define a meaningful mobility model for the agents, and at the same
time allows us to define proximity regions which are used by the agents to detect
the presence of other robots in the nearby. Also, in our model, periodic events
occurring into any cell are envisaged as the basis for modeling the evolution
(inside the cell) of any phenomenon characterizing the dynamic change in the
state of the explored region.

At simulation startup, each passive simulation object creates random obstacles
(which prevent the agents from reaching any neighbour cell), mimicking a rescue
scenario where an open space is modified by an accident and the robots are
used to explore it for rescue activities. At the same time, each passive object
instantiates in its private simulation state (by relying on a traditional malloc
call) a presence bitmap. Each bit is associated with a specific robot, and its value
is associated with the robot being in the cell or not. By relying on a fast bitmap
scan, each robot (thus each active simulation object) is able to discover which
ones are present in the cell. Finally, the passive object registers its simulation
state by storing a pointer in a global array called states[], thus allowing any
other simulation object to directly access (and/or modify) it. This is done by
relying on standard (sequential) code, where the modeler is not required to rely
on any platform-specific API, as illustrated in the following code snippet which
is executed upon initializing the simulation model.

1 // Allocated state
2 state = malloc(sizeof(agent state type));
3

4 for(i = 0; i < 6; i++) {
5 if(isValidNeighbour(me, i)) {
6 // With a random probability, an obstacle prevents from getting there
7 if(Random() < OBSTACLE PROB) {

1 The full source code of our model implementation can be found at http://svn.dis.
uniroma1.it/svn/hpdcs/root sim/trunk/examples/robot explore/

http://svn.dis.uniroma1.it/svn/hpdcs/root_sim/trunk/examples/robot_explore/
http://svn.dis.uniroma1.it/svn/hpdcs/root_sim/trunk/examples/robot_explore/


402 A. Pellegrini and F. Quaglia

8 state−>neighbours[i] = −1;
9 } else {

10 state−>neighbours[i] = GetNeighbourId(me, i);
11 }
12 } else {
13 state−>neighbours[i] = −1;
14 }
15 }
16 // Allocate the presence bitmap
17 state−>agents = malloc(BITMAP SIZE(n prc tot − num cells));
18 bzero(state−>agents, BITMAP SIZE(n prc tot − num cells));
19 // Register the state
20 states[me] = state;

isValidNeighbour() is a model-specified function determining whether a cell
is placed on the boundary of the square region, GetNeighbourId() is a model-
defined function which performs hexagonal-to-linear coordinates conversion for
detecting a neighbour id, num cells is a variable defined by the model (and
initialized at simulation startup by the user) which tells how many cells must
be used to represent the square region, BITMAP SIZE is a model-defined macro
which converts the number of agents to be represented into the bitmap to a
number of sequential bytes providing the relative number of bits, n prc tot is
a variable initialized at simulation startup which tells the total number of sim-
ulation objects in the current run, and me is a unique integer used to identify
a specific simulation object, passed as input to callbacks giving control to the
application for event processing (as in most traditional simulation frameworks).
At this point, when an active agent executes the event associated with the en-
trance within a specific hexagonal cell (the id of the cell is piggy-backed on the
event), registering its presence in the cell is as simple as:

21 state−>current cell = event content−>cell;
22

23 // Register the position of the robot in the cell
24 cell = (cell state type ∗)states[state−>current cell];
25 cell−>present agents++;
26 SET BIT(cell−>agents, me − num cells);

Then, the agent has to acquire information about the environment (which in
our model is represented by the obstacles in the current cell) and has to detect
the presence of additional robots. Since we have direct access to the cell’s state
thanks to ECS, this can be easily done by reading this information from it:

27 // Mark the cell as explored and ”discover” the surroundings
28 state−>visit map[state−>current cell].visited = true;
29 memcpy(&state−>visit map[state−>current cell].neighbours, cell−>neighbours, sizeof(

unsigned int) ∗ 6);
30

31 // Is there any other robot in the cell?
32 if(cell−>present agents > 1) {
33 <scan the bitmap>
34 }

In case one robot is found in the cell, then the agent simply “merges” its view
of the environment. This can be easily done by relying again on the states[]

array, provided that each robot registers a pointer to its private state in it at
simulation startup:



Programmability and Performance of Parallel ECS-Based Simulation 403

35 robot = (agent state type ∗)states[robot index];
36 for(j = 0; j < num cells; j++) {
37 if(robot−>visit map[j].visited) {
38 memcpy(&state−>visit map[j], &robot−>visit map[j], sizeof(map t));
39 } else if (state−>visit map[j].visited) {
40 memcpy(&robot−>visit map[j], &state−>visit map[j], sizeof(map t));
41 }
42 }

No notion of parallelism is present in the shown code snippets from the sim-
ulation model, yet (by relying on ECS) ROOT-Sim is able to run the simulation
model in parallel, exploiting the computing power offered by multi/many-core
architectures. We emphasize that the simulation model is written in a pure
sequential style, without the need for respecting any programming model con-
straint, except for the signature of the event handlers, which is compliant with
the one adopted by ROOT-Sim. Therefore, by relying on ECS, any sequential
model developed for the traditional DES paradigm can be easily run concur-
rently, by making extremely minor modifications to it.

As a final note, ECS is triggered in different lines of the above code snippets. In
particular, lines 25 and 32 trigger the synchronization with a cell (i.e., the current
cell hosting the robot), while lines 37, 38, and 40 synchronize with another
robot, namely one of the (possibly multiple) robots found to be in the cell. It
is interesting to note that lines 25 and 32 access the state in different ways, the
former being a read/write operation, the latter being simply a read operation.
Similarly, line 37 accesses the state in read mode, while lines 38 and 40 entail
writing multiple bytes of memory. Nevertheless, despite the multiple accesses,
ECS requires executing the synchronization protocol only once per each other
simulation object the state of which is being accessed while processing the current
event. It is interesting to note that, if the same model were implemented using
traditional message passing, multiple messages should have been exchanged to
support the execution of a single event.

5 Performance Data

In this section we report performance results related to the execution of the pre-
viously described simulation model. The hardware architecture used for running
the experiments is a 64-bit NUMA machine, namely an HP ProLiant server,
equipped with four 2GHz AMD Opteron 6128 processors and 64GB of RAM.
Each processor has 8 cores (for a total of 32 cores) that share a 12MB L3 cache
(6 MB per each 4-cores set), and each core has a 512KB private L2 cache. The
operating system is 64-bit Debian 6, with Linux Kernel version 2.6.32.5 (with
supports for ECS [7]). The compiling and linking tools used are gcc 4.3.4 and
binutils (as and ld) 2.20.0.

We simulated a region with 4096 cells, and we varied the number of agent
(robot) units moving around between 100 and 1000, passing though the inter-
mediate value of 500. The higher values (say 500 and 1000 agents) give rise
to average agent density into the explored space on the order of 0.12 and 0.24



404 A. Pellegrini and F. Quaglia

 1

 10

 100

 1000

 10000

100 Robots 500 Robots 1000 Robots

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of Robots

Serial 8 WT 16 WT 32 WT

Fig. 2. Sequential vs parallel ECS-based execution times

per cell, respectively. Although these values might be above realistic settings,
especially for cells modeling regions with non-minimal size, they help anyway
assessing how the performance of the ECS support for easy of programming and
transparent parallelization scales vs variations of the ratio between the number of
passive simulation objects (the cells) and the number of active ones (the agents).
On the other hand, the configuration with 100 agents gives rise to an average
density of per-cell agents of 0.02, realistically representing cases where, e.g., a
reduced number of highly specialized agents is employed for the exploration of
a non-minimally sized region.

In Figure 2 we report the execution time of the simulation model for the three
different cases, and for different amounts of ROOT-Sim worker threads (say 8,
16, and 32) deployed on top of the multi-core computing system. We also report
the execution time for running the very same application code sequentially, on
top of a classical calendar-queue scheduler. By the data we see how the parallel
runs provide speedup that ranges between 30 and 35, which also linearly scales
while varying the number of worker threads in the parallel simulation platform.
This demonstrates the effectiveness of ECS in delivering adequate performance,
beyond providing support for easy of programming. Also, the implementation
patterns used in our model can constitute a reference for different scenarios
entailing both passive (region) and active (agent) simulation objects.

6 Conclusions

In this article we have discussed how to exploit the innovative ECS (Event and
Cross State) synchronization protocol for discrete event simulation in order to
easily implement a multi-agent exploration model. The objective of ECS is to
provide the illusion of a sequential style execution mode for models based on
multiple simulation objects that develop (mutual) cross-state dependencies via
direct cross-references on their states, while actually running the model in paral-
lel. With ECS, the programmer is exposed to a classical and easy sequential style



Programmability and Performance of Parallel ECS-Based Simulation 405

approach for coding the state transitions associated with the occurrence of simu-
lation events (e.g. the application code is allowed to reference any valid memory
location while performing whichever state transition, under the programmer’s
illusion that all the transitions are sequentialized). On the other hand, the ECS-
based run-time environment, which has been integrated within the ROOT-Sim
open source simulation platform, allows for executing the objects (namely, the
simulation events destined to them) concurrently, while correctly maintaining
causality across state transitions. We have discussed the relation between ECS
and multi-agent exploration models from a twofold perspective: on one side we
have shown code snippets illustrating the simplicity according to which the pro-
grammer can code his model; on the other side we have provided data related to
speedup results achieved via ECS-based runs (which are able to transparently
support parallel execution of the sequentially conceived code) on top of a 32-core
commodity machine.

References

1. Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster
rescue simulation - from test-bed of multiagent system to practical application.
In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI),
vol. 2377, pp. 102–111. Springer, Heidelberg (2002)

2. Di Sanzo, P., Antonacci, F., Ciciani, B., Palmieri, R., Pellegrini, A., Peluso, S.,
Quaglia, F., Rughetti, D., Vitali, R.: A framework for high performance simulation
of transactional data grid platforms. In: Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, SimuTools 2013. ICST, pp. 63–72
(2013)

3. Fujimoto, R.M.: Parallel discrete event simulation. Communications of the
ACM 33(10), 30–53 (1990)

4. Low, M.Y.H., Gan, B.P., Wei, J., Wang, X., Turner, S.J., Cai, W.: Shared state
synchronization for HLA-based distributed simulation. Simulation 82(8), 511–521
(2006)

5. Gan, B.P., Low, M., Wei, J., Wang, X., Turner, S., Cai, W.: Synchronization and
management of shared state in HLA-based distributed simulation. In: Proceedings
of the Winter Simulation Conference, pp. 847–854 (December 2003)

6. Pellegrini, A., Vitali, R., Peluso, S., Quaglia, F.: Transparent and efficient shared-
state management for optimistic simulations on multi-core machines. In: Proceed-
ings 20th International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pp. 134–141. IEEE Computer Society (Au-
gust 2012)

7. Pellegrini, A., Quaglia, F.: Transparent multi-core speculative parallelization of
DES models with event and cross-state dependencies. In: Proceedings of the 2014
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. PADS,
pp. 105–116. ACM (May 2014)

8. Quaglia, F., Pellegrini, A., Vitali, R., Peluso, S., Didona, D., Castellari, G., Gheri,
V., Cucuzzo, D., D’Alessio, S., Santoro, T.: ROOT-Sim: The ROme OpTimistic
Simulator - v 0.99 RC-1 (October 2011),
http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/

http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/


406 A. Pellegrini and F. Quaglia

9. Popov, K., Vlassov, V., Rafea, M., Holmgren, F., Brand, P., Haridi, S.: Parallel
agent-based simulation on a cluster of workstations. In: Kosch, H., Böszörményi,
L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 470–480. Springer,
Heidelberg (2003)

10. The Mozart Programming System, http://mozart.github.io/
11. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,

C.: A framework for distributing agent-based simulations. In: Alexander, M., et al.
(eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg
(2012)

12. Hybinette, M., Kraemer, E., Xiong, Y., Matthews, G., Ahmed, J.: Sassy: A design
for a scalable agent-based simulation system using a distributed discrete event
infrastructure. In: Proceedings of the 2006 Winter Simulation Conference, WSC,
pp. 926–933. Society for Computer Simulation (2006)

13. Richmond, P., Walker, D.C., Coakley, S., Romano, D.M.: High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in Bioinformat-
ics 11(3), 334–347 (2010)

14. Marurngsith, W., Mongkolsin, Y.: Creating GPU-enabled agent-based simulations
using a PDES tool. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F.,
Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217,
pp. 227–234. Springer, Heidelberg (2013)

15. Fleischmann, J., Wilsey, P.A.: Comparative analysis of periodic state saving tech-
niques in time warp simulators. In: Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, pp. 50–58. IEEE Computer Society (June 1995)

16. Preiss, B.R., Loucks, W.M., MacIntyre, D.: Effects of the checkpoint interval on
time and space in Time Warp. ACM Transactions on Modeling and Computer
Simulation 4(3), 223–253 (1994)

17. Quaglia, F.: Combining periodic and probabilistic checkpointing in optimistic simu-
lation. In: Proceedings of the 13th workshop on Parallel and distributed simulation,
pp. 109–116. IEEE Computer Society Press (1999)

18. Quaglia, F.: Event history based sparse state saving in time warp. In: Proceedings
of the 12th Workshop on Parallel and Distributed Simulation, pp. 72–79. IEEE
Computer Society Press (1998)

19. Quaglia, F.: A cost model for selecting checkpoint positions in Time Warp parallel
simulation. IEEE Transactions on Parallel and Distributed Systems 12(4), 346–362
(2001)

20. Rönngren, R., Ayani, R.: Adaptive checkpointing in Time Warp. In: Proceedings
of the Workshop on Parallel and Distributed Simulation, Society for Computer
Simulation, pp. 110–117 (July 1994)

21. Cucuzzo, D., D’Alessio, S., Quaglia, F., Romano, P.: A lightweight heuristic-based
mechanism for collecting committed consistent global states in optimistic simula-
tion. In: Proceedings of the IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications, pp. 227–234. IEEE Computer Society, Los
Alamitos (2007)

22. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed
multirobot exploration and mapping. Proceedings of the IEEE 94(7), 1325–1339
(2006)

23. Mehl, H.: A deterministic tie-breaking scheme for sequential and distributed sim-
ulation. In: Proceedings of the Workshop on Parallel and Distributed Simulation.
ACM (1992)

http://mozart.github.io/

	Programmability and Performance of Parallel ECS-Based Simulation of Multi-agent Exploration Models
	1 Introduction
	2 Related Work
	3 ECS Overview
	4 Programming the Multi-agent Exploration Model
	5 Performance Data
	6 Conclusions
	References


