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Abstract. We discuss high-performance programmable asynchronous
pipeline arrays (PAPAs). These pipeline arrays are coarse-grain field pro-
grammable gate arrays (FPGAs) that realize high data throughput with
fine-grain pipelined asynchronous circuits. We show how the PAPA ar-
chitecture maintains most of the speed and energy benefits of a custom
asynchronous design, while also providing post-fabrication logic recon-
figurability. We report results for a prototype PAPA design in a 0.25µm
CMOS process that has a peak pipeline throughput of 395MHz for asyn-
chronous logic.

1 Introduction

We present programmable asynchronous pipeline arrays (PAPAs) as a high-
performance FPGA architecture for implementing asynchronous circuits. Asyn-
chronous design methodologies seek to address the design complexity, energy
consumption, and timing issues affecting modern VLSI design [10]. Since most
experimental high-performance asynchronous designs (cf. [1, 13]) have been de-
signed with labor-intensive custom layout, we propose the PAPA architecture as
an alternative method for prototyping these asynchronous systems.

Previously proposed asynchronous FPGAs have shown that it is possible
to port a clocked FGPA architecture to an asynchronous circuit implementa-
tion (cf. [2, 14]). However, in an asynchronous system, logic computations are
not artificially synchronized to a global clock signal and hence we can explore
a larger programmable design space. In this paper we present one such explo-
ration into the design of high-performance pipelines suitable for programmable
asynchronous systems.

The PAPA architecture is inspired by high-performance, full-custom asyn-
chronous designs [1, 13] that use very fine-grain pipelines. Each pipeline stage
contains only a small amount of logic (e.g., a 1-bit full-adder) and combines com-
putation with data latching, such that explicit output latches are absent from
the pipeline. This pipeline style achieves high data throughput and can also be
used to design energy-efficient systems [15]. As a result, we use fine-grain asyn-
chronous pipelines as the basis for our high-performance FPGA architecture.



Existing work in programmable asynchronous circuits has concentrated on
three design approaches: (1) mapping asynchronous logic to clocked FPGAs
(cf. [3, 5]), (2) asynchronous FPGA architectures for clocked logic (cf. [4, 16]),
and (3) asynchronous FPGA architectures for asynchronous logic [2, 6, 8, 14].
The first approach suffers from an inherent performance penalty because of the
circuit overhead in making a hazard-prone clocked FPGA operate in a hazard-
free (the absence of glitches on wires) manner, which is necessary for correct
asynchronous logic operation. Likewise, the second approach is not ideal because
clocked logic does not behave like asynchronous logic and need not efficiently map
to asynchronous circuits. The third approach runs asynchronous logic natively
on asynchronous FPGA architectures. The work in this area has largely been
modeled from existing clocked FPGA architectures, with the most recent running
at an unencouraging 20MHz in 0.35µm CMOS [6].

In this paper we introduce the PAPA architecture as a new asynchronous
FPGA that is designed to run asynchronous logic, yet differs from existing work
because it is based on high-performance custom asynchronous circuits and is
not a port of an existing clocked FPGA. The result is a programmable asyn-
chronous architecture that is an order-of-magnitude improvement over [6]. Sec-
tion 2 describes the asynchronous pipelines that our FPGA targets. In Section 3
we present the programmable asynchronous pipeline array architecture and in
Section 4 describe its circuit implementation. Section 5 analyzes the performance
of the PAPA architecture and Section 6 discusses logic synthesis results.

2 Asynchronous Pipelines

We design the logic that runs on PAPAs and other asynchronous systems as a
collection of concurrent hardware processes that communicate with each other
through message-passing channels [11]. Asynchronous pipelines can be constructed
using such processes by connecting their channels in a FIFO configuration, where
each pipeline stage consists of a single process. We refer to data items in a
pipeline as tokens (i.e., the messages passed on channels).

Since there is no clock in an asynchronous design, processes use handshake
protocols to send and receive tokens on channels. All PAPA channels use three
wires, two data wires and one acknowledge wire, to implement a four-phase
handshake protocol. The data wires encode bits using a dual-rail code, such that
setting “wire-0” transmits a “logic-0” and setting “wire-1” transmits a “logic-
1”. The four-phase protocol operates as follows: the sender sets one of the data
wires, the receiver latches the data and raises the acknowledge wire, the sender
lowers both data wires, and finally the receiver lowers the acknowledge wire. The
cycle time of a pipeline stage is the time required to complete one four-phase
handshake.

In PAPA logic designs we enforce the following constraints on channels and
processes: (1) no shared variables, (2) no shared channels, (3) no arbiters, and (4)
the ability to add an arbitrary number of pipeline stages on a channel without
changing the logical correctness of the original system. These system restrictions



are reasonable for many high-performance asynchronous systems, including en-
tire microprocessors [13], and in the rest of this paper we restrict our attention
to asynchronous pipelines and circuits satisfying them.

A system that satisfies the aforementioned constraints is an example of a
slack-elastic system [9] and has the nice property that a designer can locally add
pipelining anywhere in the system without having to adjust the global pipeline
structure. This property allows PAPA logic cells to be implemented with a vari-
able number of pipeline stages and enables channels with long routes to be
pipelined to improve performance. Any non-trivial clocked design will not be
slack elastic, since changing local pipeline depths in a clocked system may re-
quire global retiming of the entire system. Adding high-speed retiming hardware
support to a clocked FPGA incurs a significant register overhead [17], which the
PAPA architecture can avoid because its logic cells are inherently pipelined and
its channels are slack elastic.

Asynchronous (fine-grain) pipeline stages perform one or more of the follow-
ing dataflow operations: (1) compute arbitrary logical functions, (2) store state,
(3) conditionally receive tokens on input channels, (4) conditionally send tokens
on output channels, and (5) copy tokens to multiple output channels. While
strategies for implementing these pipeline operations in custom circuitry have
been described in [7], the goal of the PAPA architecture is to implement these
operations in a programmable manner.

Techniques for implementing operations 1 and 2 are well-known in both the
clocked and asynchronous FPGA circuit literature (cf. [2, 14]). PAPAs have a
Function unit to compute arbitrary functions and use feedback loops to store
state. However, because operations 3, 4, and 5 involve tokens they are inherently
asynchronous pipeline structures. The PAPA architecture provides a Merge unit
to conditionally receive tokens, a Split unit to conditionally send tokens, and an
Output-Copy unit to copy tokens. Since a clocked FPGA circuit has no concept
of a token, it uses multiplexers, demultiplexers, and wire fanout to implement
structures similar to operations 3, 4, and 5, respectively. The main difference is
that these clocked circuits are destructive (i.e., wire values not used are ignored
and overwritten on the next cycle), whereas an asynchronous circuit is non-
destructive (i.e., tokens remain on channels until they are used).

3 The PAPA Architecture

The PAPA architecture is a RAM-based, coarse-grain FPGA design and con-
sists of Logic Cells surrounded by Channel Routers. Figure 1a shows the basic
PAPA logic cell and channel router configuration that is used in this paper.
Logic cells communicate through 1-bit wide, dual-rail encoded channels that
have programmable connections configured by the channel routers.

Logic Cell. The pipeline structure of a PAPA logic cell is shown in Figure 1b.
The Input-Router routes channels from the physical input ports (Nin, Ein,
Sin, Win) to the three internal logical input channels (A,B,C). This router is
implemented as a switch matrix and is unpipelined. If an internal input channel is
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Fig. 1. PAPA architecture: (a) logic cell and channel router configuration, (b) pipeline
structure of logic cell.

not driven from a physical input port, a token with a “logic-1” value is internally
sourced on the channel (not shown in the figure). The internal input channels
are shared between four logical units, of which only one unit can be enabled.

The logical units are as follows:

– Function Unit (2 pipeline stages): Two arbitrary functions of three variables.
Receives tokens on channels (A,B,C) and sends function results on output
channels (Y, Z). (e.g., this unit efficiently implements a 1-bit full-adder).

– Merge Unit (1 pipeline stage): Two-way controlled merge.
Receives a control token on channel C. If the control token equals “logic-0”
it reads a data token from channel A, otherwise it reads a data token from
channel B. Finally, the data token is sent on channel Z.

– Split Unit (1 pipeline stage): Two-way controlled split.
Receives a control token on channel C and a data token on channel A. If
the control token equals “logic-0” it sends the data token on channel Y ,
otherwise it sends the data token on channel Z.

– Token Unit (2 pipeline stages): Initializes with a token on its output.
Upon system reset a token (with a programmable value) is sent on channel
Y . Afterwards the unit acts as a normal pipeline (i.e., it receives a token on
channel B and sends it on channel Y ). Unit is used for state initialization.

The Output-Copy pipeline stage copies result tokens from channels Y and Z
to one or more of the physical output ports (Nout,Eout, Sout,Wout) or sinks
the result tokens before they reach any output port.

A PAPA logic cell uses 44 configuration bits to program its logic. The con-
figuration bits are distributed as follows: 15 bits for the Input-Router, 4 bits for
the logical unit enables, 16 bits for the Function unit, 1 bit for the Token unit,
and 8 bits for the Output-Copy stages.

Unlike most existing FPGA architectures, PAPA logic cells do not have inter-
nal state feedback. Instead, state feedback logic is synthesized with an external
feedback loop through an additional logic cell that is configured as a Token unit.
This ensures that the state feedback loop is pipelined and operates at close to full



throughput without adding additional area overhead to the logic cell to support
an internal feedback path [7].

Channel Router. A PAPA channel router is an unpipelined switch matrix
that statically routes channels between logic cells. PAPA channel routers route
all channels on point-to-point pathways and all routes are three wires wide (nec-
essary to support the dual-rail channel protocol). Each channel router has 12
channel ports (6 input and 6 output) that can route up to six channels. Four
of the ports are reserved for connecting channels to adjacent logic cells and the
remaining ports are used to route channels to other channel routers. To keep
the configuration overhead manageable, a PAPA channel router does not allow
“backward” routes (i.e., changing a channel’s route direction by 180 degrees)
and requires 26 configuration bits.

By examining numerous pipelined asynchronous logic examples, we empir-
ically determined the PAPA logic cell and channel router interconnect topol-
ogy (Fig.1a) as a good tradeoff between performance, routing capability, and
cell area. We make no claims that it is the most optimal for this style of pro-
grammable asynchronous circuits and in fact it has several limitations. For ex-
ample, it is not possible to directly route a channel diagonally on a 3x3 or
larger PAPA grid using only channel routers (routing through one logic cell is
required, which will improve performance for long routes). However, since most
asynchronous logic processes communicate across short local channels we have
not found this long-diagonal route limitation to be overly restrictive. More com-
plicated channel routing configurations (such as those used in clocked FPGAs)
could be adapted for the PAPA architecture, with the added cost of more con-
figuration bits and cell area.

4 Pipelined Asynchronous Circuits

The asynchronous circuits we use are quasi-delay-insensitive (QDI). While they
operate under the most conservative delay model that assumes gates and most
wires have arbitrary delays [12], we believe QDI circuits to be the best asyn-
chronous circuit style in terms of performance, energy, robustness, and area.

Although high-throughput, fine-grain QDI pipelined circuits have been used
previously in several full-custom asynchronous designs [1, 13], the PAPA archi-
tecture is the first to adapt these circuits for programmable asynchronous logic.
A detailed description on the design and behavior of this style of pipelined asyn-
chronous circuits is in [7]. What follows is a summary of their salient features.

– High throughput – Minimum pipeline cycle times of ∼10-16 FO4 (fanout-
of-4) delays (competitive with clocked domino logic).

– Low forward latency – Delay of a token through a pipeline stage is ∼2
FO4 delays (superior to clocked domino logic).

– Data-dependent pipeline throughput – Operating frequency depends
on arrival rate of input tokens (varies from idle to full throughput).

– Energy efficient – Power savings from no extra output latch, no clock tree,
and no dynamic power dissipation when the pipeline stage is idle.
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Fig. 2. Fine-grain pipelined asynchronous circuit templates: (a) weak-condition (dual-
rail) pipeline stage, (b) precharge (dual-rail) pipeline stage.

Figure 2 shows the two pipeline circuit templates used in the PAPA architec-
ture. L0 and L1 are the dual-rail inputs to the pipeline stage and R0 and R1 are
the dual-rail outputs. We use inverted-sense acknowledge signals (LACK , RACK)
for circuit efficiency. The weak-condition pipeline stage (Fig.2a) is most useful for
token buffering and token copying, while the precharge pipeline stage (Fig.2b) is
optimized for performing logic computations (similar to dual-rail clocked domino
circuits). Since the weak-condition and precharge pipeline stages both use the
dual-rail handshake protocol, they can be freely mixed together in the same
pipeline. Weak-condition pipeline stages are used in the Token unit, Output-
Copy, and in the copy processes of the Function unit. The Split unit, Merge
unit, and the evaluation part of the Function unit use precharge pipeline stages.

A partial circuit used in the evaluation part of the Function unit is shown in
Figure 3. A, B, and C are the input channels and S0d . . . S7d are the configu-
rations bits that program the function result Fd, where d specifies the logic rail
(e.g., d=0 computes F0). As noted in [2], a function computation block of this
style will suffer from charge sharing problems, which we solved using aggressive
transistor folding and internal-node precharging techniques.
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Physical Design. A prototype PAPA device has been designed and prelimi-
narily layed out in TSMC’s 0.25µm CMOS process (FO4 delay≈120ps) available
via MOSIS. An arrayable PAPA cell that includes one logic cell and two channel
routers is 144 x 204 µm2 (1200 x 1700 λ2) in area, which is 50-100% larger than
a conventional clocked FPGA cell but 100-200% smaller than the pipelined clock
FPGA in [17]. To minimize cell area and simplify programming, configuration
bits are programmed using JTAG clocked circuitry. The area breakdown for the
architecture components is: function unit (14.4%), merge unit (2.5%), split unit
(2.9%), token unit (2.6%), output copies (12.5%), configuration bits (37.7%),
channel/input routers (18.2%), and miscellaneous (9.1%).

We have simulated our layout in SPICE (except for inter-cell wiring para-
sitics) and found the maximum inter-cell operating frequency for PAPA logic to
be 395MHz. Internally the logical units can operate much faster, but are slowed
by the channel routers. To observe this we configured the logical units to inter-
nally source “logic-1” tokens on their inputs and configured the Output-Copy
stages to sink all result tokens (bypassing all routers). The results are: Func-
tion unit (498MHz, 26pJ/cycle), Merge unit (543MHz, 11pJ/cycle), Split unit
(484MHz, 12pJ/cycle), and Token unit (887MHz, 7pJ/cycle). These measure-
ments compare favorably to the pipelined clock FPGA in [17] that operates at
250MHz and consumes 15pJ/cycle of energy per logic cell. Our current work fo-
cuses on intelligently pipelining the channel routers to match the internal cycle
times of the logical units and using improved circuit techniques to reduce the
energy consumption of the PAPA logic cells.

5 Performance Analysis

The pipeline dynamics of asynchronous pipelines, due to their interdependent
handshaking channels, are quite different from the dynamics of clocked pipelines.
To operate at full throughput, a token in an asynchronous pipeline must be phys-
ically spaced across multiple pipeline stages, whereas in a clocked pipeline the
optimum results when there is one token per stage [18]. The optimal number
of pipeline stages, n0, per token in an asynchronous pipeline is attained when
n0 = τ0/l0, where τ0 is the cycle-time of a pipeline stage and l0 is its forward
latency. For circuits used in the PAPA design, n0 ranges from 5 to 8 pipeline
stages per token (for pipelines without switches). If a pipeline has fewer stages
per token than n0, it will operate at a slower than maximal frequency but con-
sume less energy [15]. On the other hand, if the pipeline has more stages per
token than n0, it will both operate slower and consume more energy than the
optimal case.

To observe the pipeline dynamics when there are programmable switches
between pipeline stages, we modeled a PAPA pipeline with a linear pipeline of n
weak-condition pipeline stages that contain a variable number of routing switches
between each pipeline stage. This model uses layout from the Token unit, has
n0=5, and measures all results from full SPICE simulations (including inter-
cell wiring parasitics). This model gives an upper bound on the performance of



PAPA pipelines and shows the behavioral trends of inserting switches between
fine-grain asynchronous pipeline stages.

a)

Uniform switch distribution

1000

900

800

700

600

500

400

300

200

100

0
3 4 5 6 7 8 9 10 11

n (pipeline stages per data token)

f 
(M

H
z) K=5

K=4
K=3
K=2
K=1
K=01100

b)
4

L=1
L=2
L=3
L=4
L=5
L=6
L=7

5 6 7 8 9 10 11

Long channel route

3

f 
(M

H
z)

n (pipeline stages per data token)

1100

1000

900

800

700

600

500

400

300

200

100

0

L=0

Fig. 4. Maximum operating frequency curves for one token in a linear pipeline of n
weak-condition pipeline stages, when (a) there are K routing switches between every
pipeline stage and (b) one pipeline stage has a long route through L switches.

Figure 4a shows the maximum operating frequency curves for our model
pipeline when there are K routing switches between every pipeline stage (K=0
is the “custom” case when there are no switches between stages). We observe
that as K increases, n0 decreases from 5 stages to 4 stages and the frequency
curves shift downward because the switches uniformly increase the cycle time of
every pipeline stage. Figure 4b shows the effect of one pipeline stage having a
long route through L switches (when the other pipeline stages have no switches).
In this case, the frequency curves flatten as L increases because the cycle time
of the pipeline is mainly determined by the cycle time of the stage containing
the long route (i.e., the long route behaves as a pipeline bottleneck).

In addition to decreasing their operating frequency, the energy consumption
of asynchronous pipelined circuits also increases when routing switches are added
between pipeline stages. To observe the energy effect of adding switches to asyn-
chronous pipelines we use the Eτ2 energy-time metric [13, 15]. E is the energy
consumed in the pipeline per cycle and τ is the cycle time (1/f). Since E is
proportional to V 2 and τ is proportional to 1/V , to first order this metric is in-
dependent of voltage and provides an energy-efficiency measure to compare both
low-power designs (low voltage) and high-performance designs (normal voltage).
Figure 5 shows energy-efficiency curves for our model pipeline under the two
switch scenarios examined earlier (lower values imply more energy efficiency).

The maximum operating frequency and energy-efficiency curves for a PAPA
pipeline will look like a mixture of the two switch scenarios we investigated, since
some pipeline stages will have no switches between them (channels inside of the
logic cell) and some will have two or more (channels going through the input
and channel routers). We have found that in synthesized PAPA logic there is at
most six switches between logic cells, and on average two to four (including input
routers). While the plots in this section show that (as expected) adding routing
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switches to full-custom, high-throughput pipelined circuits decreases both their
speed and energy efficiency, they also show that there is still much performance
remaining (≈ 50%) to make them attractive for high-speed programmable asyn-
chronous logic.

6 Logic Synthesis Results

High-level logic synthesis for PAPA designs borrows heavily from the formal syn-
thesis methods we use to design full-custom asynchronous circuits [10]. We begin
with a sequential description of the logic that is written in the CHP (Communi-
cating Hardware Processes) hardware description language and apply (already
existing) semantics-preserving program transformations to get a set of fine-grain
concurrent CHP processes. Each of the resulting processes can be implemented in
a single PAPA logic cell. The processes are then physically mapped onto PAPA
logic cells. While this procedure is currently only semi-automated, it is not as
tedious a task as for gate-level FPGAs. Finally, channels connecting logic cells
are automatically routed and a configuration file generated.

We report SPICE simulations for several synthesized logic examples:

– N-bit ripple-carry adder (N logic cells) – Throughput of 292MHz, with a data
input-to-output latency of 1.91ns, and a carry input-to-output propagation
latency of 1.04ns per bit (the router was directed to minimize carry latency).

– Pipelined Booth encoded multiplier 1-bit cell (12 logic cells) – Throughput
of 222MHz (original full-custom version ran at 190MHz in 0.8µm [1]).

– Register bit (5 logic cells) – Throughput of 272MHz, can read and/or write
on same cycle.

7 Summary

We introduced a new high-performance asynchronous FPGA architecture. The
architecture uses fine-grain asynchronous pipelines to implement a coarse-grain



FPGA and is suitable for prototyping pipelined asynchronous logic. Our prelim-
inary circuit simulations demonstrate that PAPA logic systems are a promising
alternative to full-custom asynchronous designs.
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