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Abstract— We present a system of coupled nonlinear oscillators
to be used as programmable central pattern generators, and
apply it to control the locomotion of a humanoid robot. Central
pattern generators are biological neural networks that can
produce coordinated multidimensional rhythmic signals, under
the control of simple input signals. They are found both in
vertebrate and invertebrate animals for the control of locomotion.
In this article, we present a novel system composed of coupled
adaptive nonlinear oscillators that can learn arbitrary rhythmic
signals in a supervised learning framework. Using adaptive
rules implemented as differential equations, parameters such
as intrinsic frequencies, amplitudes, and coupling weights are
automatically adjusted to replicate a teaching signal. Once the
teaching signal is removed, the trajectories remain embedded as
the limit cycle of the dynamical system. An interesting aspect of
this approach is that the learning is completely embedded into
the dynamical system, and does not require external optimization
algorithms.

We use our system to encapsulate rhythmic trajectories for
biped locomotion with a simulated humanoid robot, and demon-
strate how it can be used to do online trajectory generation. The
system can modulate the speed of locomotion, and even allow the
reversal of direction (i.e. walking backwards). The integration
of sensory feedback allows the online modulation of trajectories
such as to increase the basin of stability of the gaits, and therefore
the range of speeds that can be produced.

I. INTRODUCTION

This contribution presents a programmable Central Pattern
Generator (CPG) for the online generation of periodic trajecto-
ries, and its application to the control of biped locomotion in a
simulated Hoap-2 robot. Our work is motivated by the growing
interest in biologically inspired control of autonomous robots
and especially the use of CPGs as a new paradigm to generate
coordinated periodic movements.

As an alternative to methods using pre-recorded trajectories
(e.g. ZMP-based [1]) and methods using heuristic control
laws (e.g. Virtual Model control [2]), CPGs encode rhythmic
trajectories as limit cycles of nonlinear dynamical systems,
typically systems of coupled nonlinear oscillators. This offers
multiple interesting features such as the stability properties
of the limit cycle behavior (i.e. perturbations are quickly for-
gotten), the smooth online modulation of trajectories through
changes in the parameters of the dynamical system, and
entrainment phenomena when the CPG is coupled with a
mechanical system. Interesting examples of CPGs applied to
biped locomotion include [3], [4].

One drawback of the CPG approach is that most of the time
these CPGs have to be tailor made for a specific application,
and there are very few methodologies to construct a CPG for
generating an arbitrary periodic signal. In [5], a method is
presented which uses regression techniques to shape limit cy-
cles of nonlinear dynamical systems, but that method requires
preprocessing the teaching signal to extract its main period.

In this contribution, we present a novel system of coupled
adaptive oscillators that can learn arbitrary periodic signals
in a supervised learning framework. An interesting aspect of
our approach is that the learning is completely embedded
into the dynamical system, and does not require any external
regression or optimization algorithms, nor any preprocessing
of the teaching signal. The system essentially implements a
kind of dynamic Fourier series representation. We apply our
system to the control of locomotion of a 23-DOF simulated
humanoid robot. Results are presented demonstrating how
pre-recorded walking trajectories can be learned with the
system and then modulated online using the CPGs limit cycle
properties. In particular, we show how sensory feedback can
be integrated into the CPGs to increase the basin of stability
of the gaits, and how the speed of walking can be modulated
and even reversed by using a single control parameter.

II. GENERIC CENTRAL PATTERN GENERATORS

In this section we present our model of a generic CPG that
we use to encode periodic trajectories. First, we present in
details the architecture of the CPG which is made of adaptive
oscillators and then we discuss the intrinsic properties of the
system that makes it suitable for periodic movement control.

A. Architecture of the CPG

The basic building block of our generic CPG is the adaptive
frequency Hopf oscillator, which we present in the following.
Then we present the complete architecture of the CPG.

1) Adaptive frequency Hopf oscillator: Our CPG architec-
ture is made of coupled adaptive frequency Hopf oscillators,
which are modified Hopf oscillators that we developed in
[6], [7]. These oscillators have the property that they can
learn the frequency of a periodic input signal without any
external optimization process fixed. Generally, the frequency
of an oscillator is controlled by some parameter. In [7], we
changed this parameter into a new state variable that has a
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Fig. 1. Structure of the network of adaptive Hopf oscillators. Each oscillator
receives the same learning signal F (t) = Pteach(t)−P

i αixi, which is the
difference between the signal to be learned, Pteach(t), and the signal already
learned, Qlearned(t) =

P
i αixi. Then all the oscillators (except oscillator

0) receive the scaled phase input Ri from oscillator 0. Refer to Equations
(4)-(8) and to the text for more details.

general evolution rule. Then we proved that when perturbed
by a periodic input, this new state variable will converge to
one of the frequency components of the periodic input. Thus
the oscillator will learn and, of course, synchronize to the
perturbing input. The adaptation is an intrinsic property of
the oscillator, no supervisor or external processing is needed.
After convergence, if the input signal disappears, the learned
frequency stays encoded in the system. The equation of this
oscillator is as follow

ẋ=γ(μ − r2)x − ωy + εF (t) (1)

ẏ =γ(μ − r2)y + ωx (2)

ω̇=−εF (t)
y

r
(3)

where r =
√

x2 + y2, μ controls the amplitude of the oscil-
lations, γ controls the speed of recovery after perturbation, ω
controls the frequency of the oscillations, F (t) is a periodic
input to which the oscillator will adapt its frequency and ε > 0
is a coupling constant. Its frequency will adapt to one of the
frequency component of the input F (t). The frequency com-
ponent adapted will depend on the initial conditions for ω. A
more detailed discussion about adaptive frequency oscillators
is given in [7].

2) Generic CPG: The basic idea for constructing the
generic CPG is to use coupled adaptive oscillators to reproduce
a periodic signal [8]. The output of a CPG is usually multidi-
mensional but in this section we present a network of coupled
oscillators to encode one dimension. However, we will show
in Section III how we can use several coupled generic CPGs
to encode multidimensional trajectories.

The adaptive property of the oscillators is used for learning
the different frequency components of the periodic teaching
signal. As the oscillations of the Hopf oscillator are harmonic,
an appropriate linear combination of several Hopf oscillators
could reproduce any periodic input signal. It would act as a
dynamic Fourier series representation, each oscillator encoding

one frequency component of the teaching signal.
We associate to each adaptive oscillator a variable represent-

ing the amplitude of the learned frequency, then the output of
the network will be the weighted sum of the outputs of the
oscillators with the associated amplitude variables. By using a
negative feedback loop, we can substract the already learned
frequencies from the teaching signals and the oscillators that
have not yet converged to a stable frequency can adapt to the
remaining frequency components.

We also associate to each oscillator a variable encoding
for the phase difference between the oscillator and the first
oscillator of the network, thus enabling us to reproduce any
phase relationship between the oscillators. Figure 1 shows the
structure of the network. The equations describing this CPG
are as follow

ẋi = γ(μ − r2
i )xi − ωiyi + εF (t) + τ sin(θi − φi) (4)

ẏi = γ(μ − r2
i )yi + ωixi (5)

ω̇i = −εF (t)
yi

ri
(6)

α̇i = ηxiF (t) (7)

φ̇i = sin
( ωi

ω0
θ0 − θi − φi

)
(8)

with
θi = sgn(xi) cos−1

(
−yi

ri

)
(9)

F (t) = Pteach(t) − Qlearned(t) (10)

Qlearned(t) =
N∑

i=0

αixi (11)

where τ and ε are coupling constants and η is a learning
constant. The output of the CPG, Qlearned, is the weighted sum
of the outputs of each oscillator. F (t) represents the negative
feedback, which in average is the remaining of the teaching
signal Pteach(t) the CPG still has to learn. αi represents the
amplitude associated to the frequency ωi of oscillator i. Its
equation of evolution maximizes the correlation between xi

and F (t), which means that αi will increase only if ωi has
converged to a frequency component of F (t) (the correlation
will be positive in average) and will stop increasing when the
frequency component ωi will disappear from F (t) because
of the negative feedback loop. φi is the phase difference
between oscillator i and 0. It converges to the phase difference
between the instantaneous phase of oscillator 0, θ0, scaled
at frequency ωi and the instantaneous phase of oscillator
i, θi. Each adaptive oscillator is coupled with oscillator 0,
with strength τ to keep correct phase relationships between
oscillators, using the well known Kuramoto coupling scheme
[9] to achieve phase synchronization. We mention that with
this coupling scheme, the system is more than just a dynamic
Fourier series representation because the oscillators can have
any phase relationship and not only 0, π

2 , π or 3π
2 phase

differences.
With this generic architecture, we are able to learn any

periodic input signal. We just have to provide Pteach the
periodic trajectory we want to learn as input and integrate the
system of equations. After convergence, we can set F (t) = 0
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(b) Evolution of the state variables of the CPG

Fig. 2. Figure 2(a) shows the input signal to learn, Pteach, in the upper graph
and the result of learning Qlearned in the lower graph. It is obvious that the
network correctly learned the input pattern. Figure 2(b) shows the evolution
of the state variables of the generic CPG during learning of an input signal
(Pteach = 0.8 sin(15t) + cos(30t) − 1.4 sin(45t) − 0.5 cos(60t)) and the
evolution of the error of learning. The upper graph is a plot of the error, defined
by error = ‖Pteach − Qlearned‖. The 3 other graphs show the evolution
of the frequencies, ωi, the amplitudes, αi and the phases, φi. The variables
for each oscillator are plotted, variables of oscillator 0 are the plain lines,
variables for oscillator 1 are the dotted-dashed lines, variables for oscillator
2 are the dotted lines and the dashed lines represent oscillator 3. The initial
conditions are αi(0) = φi(0) = 0, xi(0) = 1, yi(0) = 0 ∀i, μ = 1, γ = 8,
ε = 0.9, η = 0.5 and τ = 2. The frequencies ωi(0) are uniformly distributed
from 6 to 70.

(no more input nor feedback loop) and the periodic signal stays
encoded into the network of oscillators. The learning process
is embedded in the equations, there is no need of any external
optimization or learning algorithm. In Section III we will see
how this concept of generic CPG can be extended to learn
multidimensional signals.

B. Properties of the generic CPG

In this section, we present a numerical experiment where the
generic CPG learns a simple signal Pteach = 0.8 sin(15t) +
cos(30t) − 1.4 sin(45t) − 0.5 cos(60t). The network we use
is composed of 4 oscillators. Figure 2 shows the result of
the experiment. An interesting aspect of this generic CPG is
that the frequencies of the oscillators are first adapted, each
oscillator converges to one of the frequency component 15,
30, 45 and 60. Only when an oscillator matches the frequency
of the teaching signal is the corresponding amplitude adapted
and then the corresponding frequency component disappears
from the signal F (t), as can be seen by the sudden decrease in
the error. The phase variables stabilize when the involved os-
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Fig. 3. Figure 3(a) presents the evolution of the output of the generic CPG
when perturbed. At time tp = 1 a perturbation occurs on all the oscillators of
the CPG. We clearly see that the CPG quickly recovers its original behavior,
thus proving the stability properties of the system. Figure 3(b) shows the
behavior of the system when the amplitude 	α is changed. At time t = 2, the
amplitude is divided by 2 and at time t = 4.5 the amplitude is multiplied
by 3. Figure 3(c) shows the behavior of the network when the frequency 	ω
is changed. At time t = 2 the frequency is divided by 2 and at time t = 5
frequency is multiplied by 3. In both graphs, we can notice the smoothness
of the trajectory when the parameters are changed.

cillators have their frequencies correctly tuned. After learning,
the periodic signal is encoded in the network of oscillators, as
can be seen in Figure 2(a).

If there are not enough oscillators to code for all the
frequency components of the teaching signal, the system will
only learn the frequency components with the more power.
Thus, the learned trajectory will only be an approximation
of the teaching one. However, if there are more oscillators
than frequency components to learn, either some oscillators
will not converge to any frequency and their contribution to
the learned signal will be null (α = 0) or some frequency
components will be coded by several oscillators and the sum
of the corresponding αi will match the amplitude of the
frequency component.

This generic CPG possesses intrinsic properties of stability
that are inherent to the Hopf oscillator, which has a structurally
stable limit cycle. The CPG can thus produce trajectories that
are stable to perturbations. This can be useful when integrating
sensory feedback in the CPG to be sure that the sensory
information will be forgotten as soon as it disappears from
the environment.

Another important aspect of the CPG is that it allows
easy modulation of the amplitude and the frequency of the
trajectory. Since the frequency and amplitude are linearly
related to the vectors �ω and �α, simple modulation of these
vectors can generate an infinite variation of stable trajectories
from the learned input. Because of the properties of coupled
oscillators, modulation of these parameters is always smooth
and thus interesting for trajectory generation in a robot. Some
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(a) The Hoap-2 Robot (b) The DOFs of the Hoap-2

Fig. 4. Real Hoap-2 robot (Fig. (a)) and schematic of its DOFs (Fig. (b)),
this pictures were taken from [10]. We can directly see which DOF the CPG
of Figure 5 controls on the schematic.

of these properties are shown in Figure 3.
We have now introduced our generic CPG that can encode

periodic inputs as stable limit cycles. In the next section, we
show an application of this generic CPG as a controller for a
humanoid robot. To prove the usefulness of the architecture,
we apply it to the control of bipedal locomotion.

III. APPLICATION TO BIPEDAL LOCOMOTION

In this section we show how, given a sample trajectory,
we can use our generic CPG architecture to control bipedal
locomotion on a simulation of the Hoap-2 (a 25-DOF hu-
manoid robot built by Fujitsu). First, we present the controller
architecture made of several coupled generic CPGs, one for
each DOF. Then we show how we can easily integrate sensory
feedback in the controller that generates the trajectories. The
lower level control is done by a PID controller.

A. The controller architecture

In our controller architecture, we control 10 of the 25 DOFs
of the robot. For the moment, the arms have fixed position.
We control 2 of the 3 DOFs of each hip, the 3rd one which
controls vertical rotation is not used. We also control the DOFs
of the knees and the ankles. Figure 4 shows a schematic view
of the Hoap-2 robot and its DOFs.

We use one generic CPG for each controlled DOF, each
CPG is made of 3 oscillators as can be seen in Figure 5. For
coordinating these several DOFs, for each leg we use a chain
coupling from the hip to the ankle of the first oscillator of
each CPG. And we add a symmetric coupling between the
first oscillators of the Hip2 joints of each leg, to conserve a π
phase difference between the legs.

The coupling scheme to keep correct phase differences
between the DOFs of one leg is similar to the one we presented
in Section II, for the oscillators of one generic CPG. The phase
difference between 2 DOFs is also learned using the same
evolution equation as in Equation 8. The equation of coupling
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RLEG JOINT[6]

Right Leg Left Leg

Fig. 5. Structure of the CPG for the humanoid. We use a generic CPG as
presented in Section II for each DOF of the legs. We also add state variables
that will learn the phase differences between the generic CPGs of the legs
(the descending arrows). Antisymmetric coupling is also done between the
2 legs through the main oscillator of the first DOF of each leg (horizontal
arrow). The trajectories generated for each DOF is the weighted sum of the
corresponding 3 oscillators.

between the oscillators and the learning rule for the phase
difference are as follow

ẋ0,k=(μ − r2)x0,k − ω0,ky0,k + τ sin(θ0,k − φ0,k) (12)

φ̇0,k=sin(θ0,k−1 − θ0,k − φ0,k) (13)

where (0, k) denotes the first oscillators of the kth CPG. The
other terms are the same as defined in Equations (4)-(8). Thus,
in addition to the 10 generic CPGs made of 3 oscillators,
we add 8 new state variables to the system that will learn
the correct phase difference between the CPGs of each DOF.
Figure 5 shows the architecture of the controller.

We trained the generic CPGs with sample trajectories of
walk motion of the Hoap-2 robot provided by Fujitsu. Each
trajectory was a teacher signal to the corresponding CPG
controlling the associated DOF. All the control parameters of
the CPGs converged correctly and, after learning, the sample
trajectories are encoded in the controller as can be shown in
Figure 6. We clearly see that the learning was successful since
the learned trajectories match well the sample trajectories.
The system is able to generate the learned trajectories and
moreover we benefit of properties of the CPGs, such as limit
cycle behavior, amplitude and frequency modulation and the
possibility to add feedback pathways. Now, online trajectory
generation rather than following fixed trajectory is possible.

B. Feedback pathways

In this section we introduce three kinds of feedback path-
ways. We discuss each of them in the following.

1) Lateral stability: The first feedback pathway we intro-
duce is for maintaining lateral stability during locomotion.
This feedback pathway is inspired by the vestibular system
in humans that measures the tilt of the body and activates
contralateral muscle to keep balance. In this sense, we use
the Gyros located in the chest of the robot to calculate the
lateral tilt of the body. When this tilt is increasing we want
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Fig. 6. Result of training of the generic CPG. We plotted the 10 controlled
DOFs, the plain line corresponds to the output of the CPG for each DOF, the
dashed line corresponds to the sample trajectory.

the robot to tilt in the opposite lateral direction. There are 2
DOFs controlling the lateral direction in the robot, one DOF
in the hip called LEG JOINT[2] (Hip1) and one in the ankle
called LEG JOINT[6] (Ankle2) (Figure 4). Consequently we
will introduce the feedback pathways in the CPGs controlling
these joints.

We notice from Figure 6 that the Hip1 joints have the same
trajectories on both legs. We notice the same for the Ankle2
joints. The effect of feedback we want should be of opposite
effect on the Ankles and on the Hip to keep the ankle parallel
to the ground. The feedback pathways should also influence
in the same way both legs.

Let ψlateral be the lateral tilt of the body, then we set the
feedback for the ankles and the hips as

gAnkle2=Klateral|ψlateral| (14)

gHip1 =−Klateral|ψlateral| (15)

the gain Klateral is the same for both feedback pathways
because we want to assure that we have a symmetric change
of trajectory, so when the ankle touches the ground, correct
orientation is preserved.

We project these feedbacks on the radius of the limit cycle
of all the oscillators associated to the Hip1 and Ankle2 joints.
We make this projection to be sure that the phase is preserved,
because we are only interested in amplitude of trajectories. The
following Equation shows the principle

ẋi=(μ − r2)xi − ωiyi + τ sin(θi − φi) + gk
xi

ri
(16)

ẏi=(μ − r2)yi + ωixi + gk
yi

ri
(17)

where xi, yi are the state variables of the ith oscillator, gk is
the feedback term (gAnkle2 or gHip1).

2) Pendulum effects compensation: When walking the body
of the robot has the dynamics of an inverted pendulum.

When modulating the speed of walking, we will change these
effects and the controller has to compensate for these effects.
Therefore we introduce feedback to compensate tilt of the
body in the sagittal plane in the same way we did above.
Let ψPendulum be the angle of tilt of the body in the direction
of walking, then we set the following feedback term

gPendulum = KPendulumψPendulum (18)

we project this feedback term on the radius of all the oscillators
of the CPGs associated to the Ankle1 joints (LEG JOINT[5])
and the Knee joints (LEG JOINT[4]).

3) Phase resetting: The effect of pendulum will also influ-
ence the frequency at which the legs touch the ground, which
will be slightly different than the frequency of the trajectory
generation in the controller.

To compensate this effect, we introduce phase resetting of
the oscillators each time the right leg touches the ground. Im-
portance of phase resetting for biped locomotion was already
discussed in [11] where they showed that it creates entrainment
of the controller with the body dynamics of the robot. This
induce tight coupling between the body and the controller.

IV. EXPERIMENTAL RESULTS

In this section we present experiments we did with the CPG
we presented. We did these experiment with a simulation of
the Hoap-2 robot in Webots [12]. This simulator is based on
ODE [13], an open source physics engine for simulating 3D
rigid body dynamics. The model of the robot is as close to
the real robot as the simulation enables us to do. It means we
simulate the exact number of DOFs, the same mass distribution
and inertia matrix for each limb, the same sensors (gyroscope
and accelerometer in the chest, load sensors on the bottom of
the feet).

The architecture of CPG we presented generates online
trajectories for each joint. We use these trajectories as desired
angles for the PID controllers controlling each joint.

When increasing the stepping frequency and therefore the
speed of locomotion, the CPG has to react faster to sensory
feedback. By changing the gains of the feedback pathways,
we can change this speed of response, thus we define gains
for the feedback that depends on the speed of locomotion

KLateral =2000.0 + 200.0 ∗ (ζ − 1.0) (19)

KPendulum=1000.0(ζ − 1.0) (20)

where ζ is the ratio between the frequency to which we
modulate the controller and the original frequency of the
learned trajectory. In these equations we see that the gains
increase as the speed of walking increases. We tested the
CPG model with the simulated Hoap-2 robot. First of all we
modulated the speed of walking by changing ζ. We managed
to increase the speed of the robot up to 50% of the original
speed by simply setting ζ = 1.5. This correspond to a
speed of approximately 0.12 m.s−1. We also managed to
generate backward locomotion by simply inverting the sign of
�ω. Pictures of the robot walking at 0.12 m.s−1 and walking
backward can be seen on Figure 7.
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(a) The robot is walking at 0.12 m.s−1

(b) The robot is walking backward

Fig. 7. Snapshots of the robot while walking at higher speed (Figure (a))
and while walking backward (Figure (b)). The pictures have to be seen from
left to right.
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Fig. 8. Effect of feedback on the generation of trajectory. The dotted line
shows the trajectory initially encoded in the CPG, the plain line shows the
trajectory generated by the CPG with the feedback pathways. The graphs are
taken from trajectories at speed ζ = 1.20

Moreover, by linearly changing �α we managed to control
the step length. It was possible to control the robot so that
it made smaller steps and eventually stops if �α = 0, it was
possible to walk again by increasing �α.

The feedback pathways enabled us to increase the speed
of locomotion. Indeed if we do not activate the pathways,
the robot falls when we increase speed of locomotion more
than 5%. The contribution of the feedback, when increasing
speed of locomotion can be seen in Figure 8. We plotted the
trajectories generated without and with feedback when the
robot walks 20% faster (ζ = 1.2). It is obvious on these graphs
that the lateral feedback modifies quite a lot the trajectories
of the Hip1 and Ankle2 joints. The importance of feedback
on the other joints is less obvious but the experiments showed
that without this pathway, the robot falls.

V. CONCLUSION

In this contribution we presented a new architecture for
building programmable Central Pattern Generators used for
online trajectory generation in autonomous robots. The interest
of the method we presented is that we can encode arbitrary
periodic trajectories as limit cycles in a network of coupled
oscillators. Then we get all the properties of such systems, we
can modulate the frequency and the amplitude in a smooth
way, we have stability to perturbations and we can integrate
feedback pathways. Moreover we showed that it was easy

to couple several of such networks to generate coordinated
multidimensional periodic trajectories. Furthermore, this new
architecture is general enough to be applied to various fields
where the control of periodic signals is important as, for
example, in signal processing.

Afterwards, we showed an application of this programmable
Central Pattern Generator to control a simulated Hoap-2 hu-
manoid robot for bipedal locomotion. We introduced simple
feedback pathways and showed how from a sample trajectory
we could build a controller able to modulate the speed of
locomotion and the step length of the robot. These modulation
are simple to do since we only have to vary the value of two
parameters (ω and α).

We are currently implementing this architecture in a real hu-
manoid Hoap-2 in order to completely validate the approach.
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