
   
      

   

 

  
  

 
 

 
 

 
  

 

 

 

  
  
     

    
  

    
  

 
  

   
  

   
  

 
  

    
   

   
  

  
   

  
 

  
   

  
   

Programmable Diagnostic Devices Made from Paper and Tape  

Andres W. Martinez, Scott T. Phillips, Zhihong Nie, Chao-Min Cheng, Emanuel Carrilho,  
Benjamin J. Wiley and George M. Whitesides  

This paper describes three-dimensional microfluidic paper-based analytical devices (3-D µPADs) that 
can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. 
These devices are programmed by pressing single-use ‘on’ buttons, using a stylus or a ballpoint pen. 
Pressing a button closes a small space (gap) between two vertically aligned microfluidic channels, and 
allows fluids to wick from one channel to the other. These devices are simple to fabricate, and are made 
entirely out of paper and double-sided adhesive tape. Programmable devices expand the capabilities of 
µPADs and provide a simple method for controlling the movement of fluids in paper-based channels. 
They are the conceptual equivalent of field-programmable gate arrays (FPGAs) widely used in 
electronics. 

Introduction 

We and others are developing microfluidic paper-based analytical devices (µPADs) for use in health-

related analyses (e.g., medical diagnostics, water purity, food quality, etc.) for use in developing 
countries.1–10 MicroPADs are made from paper patterned into hydrophilic channels bounded by 
hydrophobic polymers2 or paper cut into channels with controlled geometry using laser cutter.11 They are 

2–4,12–17inexpensive, easy-to-use, and equipment-free. The function of µPADs is normally determined 
during fabrication: i.e., fluids will fill the channels in the device in a sequence predetermined by the 
design of the channels. This article describes programmable µPADs, where the structure of the channels, 
the paths taken by fluid flowing through the devices, and the function of the devices are determined by the 
user after fabrication is complete. These devices follow a design philosophy similar to that in field-

programmable gate arrays (FPGAs), which enable the functions of an integrated circuit to be determined 
after fabrication.18 The value of these systems is that a single platform can be fabricated in quantity, and 
programmed for multiple, smaller, and more specialized uses. With programmable µPADs, the user can 
choose which channels or areas of the device should be filled with fluid, and which channels or areas 
should not. The user also can choose when to fill a given channel with fluid. A single programmable 
device, for example, can be used to test for glucose and nitrites when programmed one way, and to test for 
protein and ketones when programmed another way. Alternatively, a single device can be programmed to 
perform from one to eight replicates of a glucose assay, depending on how many repetitions of an assay 
are desired based on the volume of sample available. These capabilities should be useful in situations 
where only a limited quantity of sample is available, where analytical standards necessitate multiple 
repetitions of an assay, or where reagents and samples must be combined in a timed sequence. 

A number of valving mechanisms have been reported for controlling the pressure-driven flow of fluids 
19–23in conventional microfluidic devices made out of glass, silicone and plastics, but none of these 

technologies can be applied to paper-based microfluidics because the movement of fluids in paper-based 
microfluidic channels is based on capillary flow. Li et al.24 described a reconfigurable switch for 
controlling capillary wicking in paper-based channels by cutting a channel into two parts and then 
manually separating or joining them to control capillary flow. Alternatively, Noh and Phillips25 

programmed the flow rate of fluids by modulating the wettability of paper-based microfluidic channels, 
and thus the time required for fluids to wick to different locations within a µPAD. Programmable µPADs 

http:fabrication.18
http:cutter.11


  
 

    
   

  
 

   
 

   
   

  

  
   

   
   

 

 

 

  
   

 

  
  

  

 
   

 
  

   
 

   
  

 
    

  
  

 
   

  
 

 
   

   

introduce a different, and perhaps more practical method for controlling capillary flow in paper-based 
devices. 

We control the flow of fluid in programmable µPADs by compressing single-use ‘on’ push-buttons 
that are built into the device (Fig. 1). Programmable µPADs are made using the same techniques described 
for fabricating three-dimensional (3-D) µPADs: that is, they comprise stacked layers of patterned paper 
and double-sided adhesive tape with designed perforations .3 When the layers of paper and tape are 
stacked to assemble the 3- D device, there is a small gap between the layers of paper that is created by the 
finite thickness of the tape (Fig. 1). Fluid will not flow across the gap between channels in two adjacent 
layers of paper unless the gap is filled with cellulose powder or some other hydrophilic material .3 The gap 
is closed by pressing the two layers of paper together through a hole in the tape interlayer using a modest 
mechanical force; the paper deforms inelastically and remains compressed (Fig. 2). 

The input from the user is the choice of the layers of paper to connect, and the pattern of those 
connections; the output is fluid flowing into a specific channel. The devices can be programmed by the 
user with a standard ballpoint pen or any other object with a narrow point (-0.5 to 1 mm in diameter). The 
programming can be done at any time before (and in some cases, after) adding the sample to the device. 

Results and discussion 

‘On’ buttons 

We designed and fabricated ‘on’ buttons based on four principal elements: (i) an inlet channel that 
carries fluid to the button, (ii) an outlet channel that carries fluid from the button to another location when 
the button is compressed, (iii) two gaps between 

the inlet and outlet channel separated by an additional layer of patterned paper, and (iv) a mark on the 
top of the device that indicates the location of the button (Fig. 3). This mark helps the user to locate the 
position of gaps precisely, and switch on the buttons efficiently. 

We chose to incorporate two gaps between the inlet and the outlet channel because initial experiments 
indicated that fluid would sometimes wick across a single gap before the button was compressed; two (or 
more) gaps provided redundancy and prevented errors; the fluid reliably did not wick across the gaps 
unless both buttons had been compressed (Fig. 4). There are two possible configurations for the buttons: 
(i) the inlet channel below the outlet channel (Fig. 3A), or (ii) the inlet channel above the outlet channel 
(Fig. 3B). We demonstrated that both of these configurations led to functional buttons (Fig. 3D, E and 4). 
After assembling the devices, we tested the buttons by compressing them (or not), adding fluid to the 
inlet, and measuring the amount of time required for the fluid to reach the outlet. When compressed, the 
‘on’ buttons successfully connected the inlet to the outlet in 83 out of 84 tests. When not compressed, the 
‘on’ buttons successfully prevented fluid from wicking from the inlet to the outlet after 10 minutes of 
observation in 79 out of 80 tests. ‘On’ buttons can only be used one time; once they are compressed, fluid 
will wick continuously through the channels until the sample is consumed. 

The height of the gaps is defined by the thickness of the double-sided tape (-100 µm). Fluid would 
rarely wick across a button consisting of two (or more) gaps before the button was compressed. When the 
device was carelessly bent or when a large quantity of liquids was added on the paper, the buttons, 
however, sometimes leaked and failed to function as designed. 

To solve this problem, we removed the portion of paper located between two adjacent gaps that 
separate the inlet channel and outlet channel, and created one single gap with significantly increased space 
(-400 gm), as described in ESI† (Fig. S1). We tested the performance of ‘on’ buttons with single large 



     
  

   

 
    

    
 

   
   

 

 

 

 
   

  
 

 

    
  

 
    

   
 

 
  

 
 

 

  

  
    

  
   

   
  

   
   

 

 

  
  

  
 

spaces that separate the inlet and outlet channels .26 After 10 minutes without being compressed, the ‘on’ 
buttons successfully prevented the fluid from wicking from the inlet to the outlet in all of the 112 tests. 
When compressed, the ‘on’ buttons successfully connected the inlet to the outlet in all of the 112 tests. 

The smallest functional ‘on’ buttons that we made had a diameter of 1.2 mm and connected inlet and 
outlet channels that were 1 mm wide. We used buttons with these dimensions in all our tests. Smaller ‘on’ 
buttons were difficult to assemble and operate, so we did not consider them in our study. Larger ‘on’ 
buttons can be fabricated, and we made buttons with diameters up to 3 mm (data not shown). The size of 
the button should be chosen based on the width of the inlet and outlet channels. We recommend that the 
diameter of the button be 0.2 mm larger than the width of the channels to allow for slight misalignment 
among layers in a device. 

Fluidic de-multiplexers made out of paper and tape 

To demonstrate the function of the ‘on’ buttons and the capabilities of programmable pYADs, we 
developed a fluidic de-multiplexer (Fig. 5). The fluidic de-multiplexer directed fluid from a single inlet 
into any combination of outlets—each outlet was controlled by an independent ‘on’ button. Although our 
prototype device had eight buttons and eight outlets, it is possible to incorporate many more buttons and 
outlets into a device. 

The prototype de-multiplexer requires 15 gL of fluid to fill the first outlet and only 0.7 gL of fluid to 
fill each additional outlet. This difference in volume requirements arises because all eight inlet channels 
must be filled before any of the outlet channels can be filled. The fluid takes approximately 1 min to wick 
from an inlet to the ‘on’ button and another 1 min to wick from the ‘on’ button to an outlet. The variation 
in time required for fluids to reach the outlets from the buttons was about f4 seconds after the buttons 
were compressed. 

We compressed the buttons at one minute intervals using a ballpoint pen after adding fluid (1 mM 
Erioglaucine) to the inlet (Fig. 5B). The fluid was successfully delivered to each outlet in sequence. 
Alternatively, we programmed the device to distribute fluid to specific location(s) on the device by com-

pressing different buttons selectively (Fig. 5C). 

Programmable µPADs for urinalysis 

We developed a programmable µPAD for urinalysis with which the user can choose to run any 
combination of colorimetric assays for testing the presence of glucose, proteins, ketones or nitrite (Fig. 
6).4,27–29 For ease of use, one corner of the device was designed as a sample inlet and was dipped directly 
into the sample. The sample inlet then wicks the sample to four ‘on’ buttons, each of which controls 
access to a separate test zone. The device was tested with solutions of artificial urine 30 containing known 
amounts of glucose, bovine serum albumin (BSA), acetoacetate and sodium nitrite. The device required 
10 µL of sample to fill the first test zone and an additional 1.5 µL to fill each additional test zone. The 
device wicked fluid into all four test zones within five minutes. 

Conclusions 

Programmable µPADs bring another layer of sophistication to microfluidic devices made out of paper 
and tape without compromising the simplicity, low cost, or ease-of-use that are characteristic of paper-
based devices. Single-use ‘on’ buttons allow the user to prioritize tests based on the amount of sample that 
is available. They could also be used to control a time-sensitive sequence of fluid movements for an assay, 



    
    

 

 

 

    
 

 
  

 

 

 

   

  
 

  
 

  
 

  
  

   

  
 

  
  

  
 

  
 

  

  
 

  

  

   

   

  
  

   

  
 

  

or be incorporated into a ‘universal µPAD’ designed to test a wide variety of samples (e.g., water, urine, 
saliva, blood) for a wide range of analytes, where the user could program the device on-site based on the 
type of sample being analyzed. 
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Fig. 1 Fabrication of 3~D microfluidic devices out of paper and tape. 

(A) Patterning of chromatography paper by photolithography. (B) 

Patterning of double-sided tape using a laser cutting. (C) The patterned 

paper and tape are aligned and stacked. Small gaps between the channels 

in adjacent layers of paper reflect the thickness of the tape. For fluids to 

wick between channels in adjacent layers of paper, these gaps must be 

eliminated. To do so, either the gap can be filled with  a hydrophilic 

material during fabrication, or the paper in  adjacent layers can be 

brought into contact using a mechanical force. 
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Fig.2 Demonstration of 'on' buttons. (A) Top view and crosssection of 

a fully assembled 3-D device. The crosssection shows the two layers of 

paper, the layer of tape, and the sma1J gaps between the channels. The 

crosssection image is obtained by sectioning the device, as illustrated by 

dashed line. (8) Top view and crosssection ofa device identical to the one 

shown in (A) after adding 10 ilL aqueous blue dye (I mM Erioglaucine) 

to the left end of the channel. The gaps prevented the dye from wicking 

between the two adjacent layers of paper. (C) Top view and crosssection 

of a 3-D device after closing the gaps by compressing the top layer of 

paper with a ballpoint pen. (D) Top view and crosssection of a device 

identical to the one shown in (C) after adding blue dye to the left end of 

the channel The dye wicked across the entire length of the channel. 
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Fig. 3 Fabrication of 'on' buttons in 3-D microfluidic devices. (A) 

Schematic of the cross-section of an '00' button where the inlet channel is 

below the outlet channel. The inlet channel and outlet channel are 

separated by two gaps aod one layer ofpsper. The location of the button 

is indicated by a square design (0) pstterned on the top of the device. (B) 

Schematic of the crosssection of an 'on' button where the inlet channel is 

above the outlet channel. The location of the button is indicated by 

a circular design (0) pstterned on the top of the device. (C) Schematic 

representation of the layers of paper and tape required to assemble 

a device with four independent '00' buttons. When assembling the device, 

all the holes in the tape except those used in the 'on' buttons were filled 

with cellulose powder. (0) Top of the assembled device with four 'on' 

buttons. Each button has its own inlet and outlet. Buttons 1 and 2 have 

the inlet channel below the outlet channel. while buttons 3 aod 4 have the 

inlet channel above the outlet channel. (E) Buttons 2 aod 4 of the device 

shown in D were compressed and aqueous blue dye was added to the four 

inlets. The dye reached the outlet within two minutes only when the 

buttons were compressed. 
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Fig. 4 Schematic representations and photographs of the CTosssections 

of the four buttons in  Fig. 3. Buttons 2 and 4 were switched on by 

compressing the buttons using a ballpoint pen; buttons 1 and 3 were not 

compressed. The photographs were taken 10 minutes after the fluid had 

been added to the in1et. 
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Fig.5 A fluidic de-multiplexer. This device can be used to direct fluid from a single inlet into any combination of eight outlets. The device consists of 

a fluid inlet, eight 'on' buttons, and eight circuJar zones connected to the outlet of each button. (A) Schematic of the layers in the fluidic de-multiplexer. 

(8) Use of the fluidic de-multiplexer. The 'on' buttons can be compressed before or after the fluid is added to the fluid inlet. In this example, the buttons 

were pressed using a baH-point pen at one minute intervals after adding fluid (1 mM EriogJaucine) to the inlet. (q Pictures of de-multiplexers after 

compressing different buttons or combinations of buttons and adding fluid to the source. Each picture shows a different device. 
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Fig. 6 Programmable j.lPADs for urinalysis. (A) Schematic of the 

proposed strategy for using programmable ~ADs. The device was 

progrnmmed with a ballpoint pen to test faT glucose and ketones, and 

dipped into a sample; the assays developed in the test zones. (8) Sche

matic diagram of the layers of paper and tape in the device shown in (A) 

for testing a sample of urine faT any combination of glucose, protein, 

ketones or nitrite. (C) ~AD that was programmed to run all four assays, 

and dipped into a sample of artificial urine that contained no glucose, 

protein, ketones or nitrite. (D) j.lPAD that was programmed to run all 

four assays and was dipped into a sample ofartificiaJ urine that contained 

to mM glucose, 30 j.lM BSA, 10 mM acetoacetate, and 300 j.lM sodium 

nitrite. The color changes in each test zone indicate the presence of the 

anaJyte. 


