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Abstract

Programmable force vector fields can be used to control a variety of

flexible planar parts feeders such as massively parallel microactua-

tor arrays or transversely vibrating (macroscopic) plates. These new

automation designs promise great flexibility, speed, and dexterity—

we believe they may be employed to position, orient, singulate, sort,

feed, and assemble parts. However, since they have only recently

been invented, programming and controlling them for manipulation

tasks is challenging. When a part is placed on our devices, the pro-

grammed vector field induces a force and moment upon it. Over

time, the part may come to rest in a dynamic equilibrium state. By

chaining sequences of force fields, the equilibrium states of a part

in the field may be cascaded to obtain a desired final state. The

resulting strategies require no sensing, and enjoy efficient planning

algorithms.

This paper begins by describing new experimental devices that

can implement programmable force fields. In particular, we describe

our progress in building the M-CHIP (Manipulation CHIP), a mas-

sively parallel array of programmable micromotion pixels. Both

the M-CHIP and other microarray devices, as well as macroscopic

devices such as transversely vibrating plates, may be programmed
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with vector fields, and their behavior predicted and controlled using

our equilibrium analysis. We demonstrate lower bounds (i.e., im-

possibility results) on what the devices cannot do, and results on a

classification of control strategies yielding design criteria by which

well-behaved manipulation strategies may be developed. We provide

sufficient conditions for programmable fields to induce well-behaved

equilibria on every part placed on our devices. We define compo-

sition operators to build complex strategies from simple ones, and

show the resulting fields are also well behaved. We discuss whether

fields outside this class can be useful and free of pathology.

Using these tools, we describe new manipulation algorithms. In

particular, we improve existing planning algorithms by a quadratic

factor, and the plan length by a linear factor. Using our new and

improved strategies, we show how to simultaneously orient and pose

any part, without sensing, from an arbitrary initial configuration. We

relax earlier dynamic and mechanical assumptions to obtain more

robust and flexible strategies.

Finally, we consider parts feeders that can only implement a very

limited “vocabulary” of vector fields (as opposed to the pixel-wise

programmability assumed above). We show how to plan and ex-

ecute parts posing and orienting strategies for these devices, but

with a significant increase in planning complexity and some sacri-

fice in completeness guarantees. We discuss the trade-off between

mechanical complexity and planning complexity.

1



2 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

Fig. 1. Sensorless sorting using force vector fields: parts of

different sizes are first centered, then subsequently separated,

depending on their size.

1. Introduction

Programmable force fields offer a fundamentally new ap-

proach to automated parts manipulation. Instead of handling

a part directly (e.g., with a robot gripper), a force field sur-

rounding the part causes it to move. Programmable force

fields promise great flexibility, speed, and dexterity for a wide

variety of tasks such as parts orienting, positioning, singulat-

ing, sorting, feeding, and assembly. Recently, several de-

vices have been invented that can implement programmable

force fields: in particular, actuator arrays fabricated with Mi-

cro Electro Mechanical System (MEMS) technology, as well

as macroscopic vibrating plates. These new automation de-

signs permit distributed, parallel, nonprehensile, sensorless

manipulation tasks that make them particularly attractive for

handling batch microfabricated parts, whose small dimen-

sions and large numbers would prohibit conventional pick-

and-place operations.

A wealth of geometric and algorithmic problems arise in

the control and programming of manipulation systems with

many independent actuators. The theory of programmable

force fields represents the first systematic, computational at-

tack on massively parallel distributed manipulation based on

geometric and physical reasoning. The goal of this paper is to

develop a science base for manipulation using programmable

force fields, and to demonstrate experiments with prototype

devices that support this theory. We present combinatorially

precise planning algorithms that synthesize strategies for con-

trolling and coordinating a very large number of distributed

actuators in a principled, task-level fashion.

When a part is placed on such a device, the programmed

vector field induces a force and moment upon it. Over time,

the part may come to rest in a dynamic equilibrium state.

In principle, we have tremendous flexibility in choosing the

vector field, since using, e.g., MEMS array technologies, the

force field may be programmed pixel-wise. Hence, we have a

lot of control over the resulting equilibrium states. By chain-

ing sequences of vector fields, the equilibria may be cascaded

to obtain a desired final state—for example, this state may

represent a unique orientation or pose of the part. A system

with such a behavior exhibits the feeding property (Akella et

al. 1995):

A system has the feeding property over a set of parts P and

a set of initial configurations 4 if, given any part P ∈ P, there

is some output configuration q such that the system can move

P to q from any location in 4.

Our work on programmable vector fields is related to non-

prehensile manipulation [Donald, Jennings, and Rus 1995;

Zumel and Erdmann 1996; Erdmann and Mason 1996; Erd-

mann l996]: in both cases, parts are manipulated without form

or force closure.

This paper describes our experimental devices, a technique

for analyzing them called equilibrium analysis, lower bounds

(i.e., impossibility results) on what the devices cannot do, and

results of a classification of control strategies yielding design

criteria for useful manipulation strategies. Then we describe

new manipulation algorithms using these tools. In particular,

we improve earlier planning algorithms by a quadratic factor,

show how to simultaneously orient and pose a part, and relax

dynamic and mechanical assumptions to obtain more robust

and flexible strategies.

One corollary of our results is a method for coordinat-

ing the actions of a large distributed actuation system. Such

systems comprise arrays with up to tens of thousands of in-

dependently servoable actuator cells, which we call motion

pixels. We show how these systems can be programmed in a

fine-grained, SIMD (single instruction multiple data) fashion

to exert force fields on the manipulated object, thereby accom-

plishing massively parallel distributed manipulation. More-

over, the theory of programmable force fields gives a method

for controlling a large number of distributed actuators in a

principled, geometric, task-level fashion. Whereas many con-

trol theories for multiple independent actuators break down

as the number of actuators becomes large, our systems should

only become more robust as the actuators become denser and

more numerous.

The theory developed in this paper is applicable to any con-

trollable array capable of generating force vector fields, and it

is independent of the specific device hardware. We have tested

it thoroughly in collaboration with J. Suh and G. Kovacs on a

MEMS actuator array developed at Stanford (Böhringer et al.

1997c). This microcilia device consists of a 16 × 16 array of
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motion pixels, which covers an area of about 2 cm × 2 cm.

Each pixel consists of four thermobimorph actuators. Actu-

ators in each direction can be controlled independently by a

graphical user interface on a personal computer. Böhringer

and coworkers (1997b) reported on experiments in sensorless

manipulation with the microcilia device. Small chips were

placed at arbitrary initial positions on the array and were trans-

lated, rotated, centered, and aligned by the array without sen-

sor feedback. These experiments constitute strong evidence

in support of our theory of sensorless manipulation.

In this paper, we focus on the theoretical foundations of

manipulation with programmable force fields. We pose the

question, Which force fields are suitable for manipulation

strategies? In particular, we ask whether the fields may be

classified. That is, can we characterize all those force fields

in which every part has stable equilibria? While this question

has been well studied for a point mass in a field, the issue

is more subtle when lifted to a body with finite area, due to

the moment covector. To answer, we first demonstrate im-

possibility results, in the form of “lower bounds”: there exist

perfectly plausible fields that induce no stable equilibrium in

simple parts.

Fortunately, there is also good news. We present condi-

tions for fields to induce well-behaved equilibria,

by exploiting the theory of potential fields. While potential

fields have been widely used in robot control (Khatib 1986;

Koditschek and Rimon 1988; Rimon and Koditschek 1992;

Reif and Wang 1995], microactuator arrays present us with

the ability to explicitly program the applied force at every

point in a vector field. Whereas previous work has developed

control strategies with artificial potential fields, our fields are

nonartificial (i.e., physical). Artificial potential fields require

a tight feedback loop, in which at each clock tick, the robot

senses its state and looks up a control (i.e., a vector) using

a state-indexed navigation function (i.e., a vector field). In

contrast, physical potential fields employ no sensing, and the

motion of the manipulated object evolves in an open-loop

manner (for example, like a particle in a gravity field). This

alone makes our application of potential-field theory to mi-

crodevices unique and novel. Moreover, such fields can be

composed using addition, sequential composition, “parallel”

composition by superposition of controls, or by a new kind of

“morphing” of control signals, which we will define.

Previous results on array manipulation strategies may be

formalized using equilibrium analysis. Böhringer and col-

leagues proposed a family of control strategies called squeeze

patterns, and a planning algorithm for parts orientation. This

first result proved an O(n2) upper bound on the number E of

orientation equilibria of a nonpathological (see Section 3.2)

planar part with n vertices. This yields an O(E2) = O(n4)

planning algorithm to uniquely orient a part, under certain

geometric, dynamic, and mechanical assumptions. In this pa-

per, we argue that this bound on equilibria appears tight. This

results in a high planning and execution complexity.

Using our equilibrium analysis, we introduce radial fields,

which satisfy our stability property. Radial fields can then

be combined with squeeze fields. We show this has several

benefits:

1. the number of equilibria drops to E = O(n);

2. the planning complexity drops to O(E2) = O(n2);

3. throughout the strategy execution, every part rotates

about one fixed, unique point (after the first step); and

4. this means that we can dispense with one critical as-

sumption (called 2PHASE by Böhringer and coworkers

(1994a)): we no longer need to assume that the trans-

lational and rotational motions induced by the array

interact in a “quasi-static” and “sequential” manner.

We motivate our results by beginning with a description

of the experimental devices we are interested in program-

ming. In particular, we describe our progress in building the

M-CHIP (Manipulation CHIP), a massively parallel array of

programmable micromotion pixels. As proof of the concept,

we demonstrate a prototype M-CHIP containing up to 15,000

silicon actuators in 1 in2. Our strategies are also applicable

to macroscopic partsfeeders. We describe a planar, vibratory

orienting and manipulation device that also uses our novel

strategies.

Both of these devices portend several key practical is-

sues. First, the strategies employed by our improved algo-

rithms and analysis require significant mechanical and con-

trol complexity—even though they require no sensing. While

we believe such mechanisms are feasible to build using the

silicon MEMS technologies we advocate, it is undeniable that

no such device exists yet (the M-CHIP has pixel-wise

programmability, but the first generation does not have suf-

ficient directional resolution to implement highly accurate

radial strategies). For this reason, we introduce and ana-

lyze strategies composed of field sequences that we know are

implementable using current (microscopic or macroscopic)

technology. Each strategy is a sequence of pairs of squeezes

satisfying certain “orthogonality” properties. Under these as-

sumptions, we can ensure:

1. equilibrium stability,

2. relaxed mechanical and dynamical assumptions (the

same as point 4, above), and

3. complexity and completeness guarantees.

The framework is quite general, and applies to any set

of primitive operations satisfying certain “finite equilibrium”

properties (which we define)—hence it has broad applicability

to a wide range of devices. In particular, we view the restricted

class of fields as a vocabulary and its rules of composition as a

grammar, resulting in a language of manipulation strategies.

Using our grammar, the resulting strategies are guaranteed to

be well-behaved.

Finally, both our radial strategies and our finite manip-

ulation grammar have the following advantage over previ-

ous manipulation algorithms for programmable vector fields:
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previous algorithms such as those described by Böhringer

and colleagues (1994a, 1996a) guarantee to uniquely orient a

part, but the translational position of the part is unknown at

the strategy’s termination. Both of our new algorithms guar-

antee to position the part uniquely (up to part symmetry) in

translation as well as orientation space. Like the algorithms

in Böhringer’s work (1994a, 1996a), the new algorithms re-

quire no sensing, and work from any initial configuration to

uniquely pose the part. In particular, the initial configuration

is never known to the (sensorless) execution system, which

functions in an open-loop manner.

The complexity and completeness guarantees we obtain

for manipulation grammars are considerably weaker than for

the ideal radial strategies. For radial strategies, we show that

any nonpathological planar part with finite area contact can

be placed in a unique pose in O(E) = O(n) steps. Under the

simplified manipulation grammar, our planner is guaranteed

to find a strategy if one exists (if one does not exist, the plan-

ner will signal this). However, it is not known whether there

exists a strategy for every part. This lack of completeness

of manipulation grammar strategies stands in contrast to the

complete general squeeze and radial algorithms for which a

guaranteed strategy exists for all parts. Moreover, the plan-

ning algorithm is worst-case exponential instead of merely

quadratic.

Finally, the desire to implement complicated fields raises

the question of control uncertainty. We close by describing

how families of potential functions can be used to represent

control uncertainty and analyzed for their impact on equilib-

ria, and we give an outlook on still-open problems and future

work.

2. Experimental Apparatus: Parts Feeders

It is often extremely costly to maintain part order throughout

the manufacture cycle. For example, instead of keeping parts

in pallets, they are often delivered in bags or boxes, whence

they must be picked out and sorted. A parts feeder is a machine

that orients such parts before they are fed to an assembly

station. Currently, the design of parts feeders is a black art

that is responsible for up to 30% of the cost and 50% of work-

cell failures (Nevins and Whitney 1978; Boothroyd, Poli, and

Murch 1982; Farnum and Davis 1986; Schroer 1987; Singer

and Seering 1987). “The real problem is not part transfer

but part orientation,” according to Frank Riley of the Bodine

Corporation (Riley 1983, p. 316, his italics). Thus, although

part feeding accounts for a large portion of assembly cost,

there is not much scientific basis for automating the process.

The most common type of parts feeder is the vibratory

bowl feeder, where parts in a bowl are vibrated using a rotary

motion, so that they climb a helical track. As they climb, a

sequence of baffles and cutouts in the track create a mechan-

ical “filter” that causes parts in all but one orientation to fall

back into the bowl for another attempt at running the gaunt-

let (Boothroyd, Poli, and Murch 1982; Riley 1983; Sandler

1991).

Sony’s APOS parts feeder (Hitakawa 1988) uses an ar-

ray of nests (silhouette traps) cut into a vibrating plate. The

nests and the vibratory motion are designed so that the part

will remain in the nest only in one particular orientation. By

tilting the plate and letting parts flow across it, the nests even-

tually fill up with parts in the desired orientation. Although

the vibratory motion is under software control, specialized

mechanical nests must be designed for each part (Moncevicz,

Jakiela, and Ulrich 1991).

The reason for the success of vibratory bowl feeders and

the Sony APOS system is the underlying principle of sen-

sorless manipulation (Erdmann and Mason 1988) that allows

parts positioning and orienting without sensor feedback. This

principle is even more important at small scales, because sen-

sor data will be less accurate and more difficult to obtain. The

APOS system or bowl feeders are unlikely to work in the micro

domain: instead, novel device designs for micromanipulation

tasks are required. The theory of sensorless manipulation is

the science base for developing and controlling such devices.

Reducing the amount of required sensing is an example of

minimalism (Canny and Goldberg 1994; Böhringer et al. 1995b),

which pursues the following agenda: for a given robot task,

find the minimal configuration of resources required to solve

the task. Minimalism is interesting, because doing task A

without resource B proves that B is somehow inessential to

the information structure of the task. In robotics, minimal-

ism has become increasingly influential. Raibert and col-

leagues (1993) showed that walking and running machines

could be built without static stability. Erdmann and Mason

(1988) showed how to do dexterous manipulation without

sensing. McGeer (1990) built a biped, kneed walker with-

out sensors, computers, or actuators. Canny and Goldberg

(1994) argued that minimalism has a long tradition in indus-

trial manufacturing, and developed geometric algorithms for

orienting parts using simple grippers and accurate, low-cost

light beams. Brooks (1986) developed online algorithms that

rely less extensively on planning and world models. Don-

ald, Jennings, and Rus (1995) and Böhringer et al. (1995b)

have built distributed teams of mobile robots that cooperate in

manipulation without explicit communication. We intend to

use these results for our experiments in micromanipulation,

and to examine how they relate to our theoretical proofs of

minimalist systems.

2.1. Microfabricated Actuator Arrays

A wide variety of micromechanical structures (devices with

features in the µm range) has been built recently by using pro-

cessing techniques known from the VLSI industry (see, for

example, the work of Gabriel (1995), MacDonald and col-

leagues (1997) and MacDonald (forthcoming). Various
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microsensors and microactuators have been shown to per-

form successfully; e.g., a single-chip air-bag sensor is com-

mercially available (Analog Devices 1991), and video projec-

tions using an integrated, monolithic mirror array have been

demonstrated recently (Sampsell 1993) and are now starting

to replace conventional projection systems. A fully integrated

scanning tunneling microscope (STM) has been developed in

our group (Xu, Miller, and MacDonald 1995; MacDonald et

al. 1997). However, the fabrication, control, and program-

ming of microdevices that can interact and actively change

their environment remains challenging.

Problems arise from:

1. unknown material properties and the lack of adequate

models for mechanisms at very small scales,

2. the limited range of motion and force that can be gen-

erated with microactuators,

3. the lack of sufficient sensor information with regard to

manipulation tasks, and

4. design limitations and geometric tolerances due to the

fabrication process.

Several MEMS researchers, among others (Fujita 1993;

Storment et al. 1994; Liu and Will 1995; Jacobson et al.

1995; Suh et al. 1996) have proposed MEMS manipulator

arrays. For an overview, see the work of Liu and Will (1995)

or Böhringer and colleagues (1994a, 1994b).

Our arrays (Fig. 2) are fabricated using a SCREAM (Single-

Crystal Silicon Reactive Etching and Metallization) process

developed in the Cornell Nanofabrication Facility (Zhang and

MacDonald 1992, Shaw, Zhang, and MacDonald 1993). The

SCREAM process is low temperature, and does not interfere

with traditional VLSI (Shaw and MacDonald 1996). Hence

it opens the door to building monolithic microelectromechan-

ical systems with integrated microactuators and control cir-

cuitry on the same wafer.

One of the goals of research in microactuators is to de-

velop devices for manipulating other small components; for

example, to accurately position micromachined components

for inspection or assembly purposes. Fabrication constraints

limit the design of most of these components (usually small

chiplets made from silicon wafers) to extruded planar shapes,

so manipulation in the plane is sufficient for many applica-

tions. For example, a microactuator array has been success-

fully employed to replace a 3-DOF stage in a scanning electron

microscope (SEM) (Darling et al. 1997).

Our design is based on microfabricated torsional resonators

(Mihailovich et al. 1993; Mihailovich and MacDonald 1996).

Each unit device consists of a rectangular grid etched out of

single-crystal silicon suspended by two rods that act as tor-

sional springs (Fig. 3). The grid is about 200 µm long, and

extends 120 µm on each side of the rod. The rods are 150

µm long. The current asymmetrical design has 5-µm high

protruding tips on one side of the grid that make contact with

an object lying on top of the actuator (Fig. 4). The other side

Fig. 2. A prototype M-CHIP fabricated in 1995: a large uni-

directional actuator array (viewed via scanning electron mi-

croscopy). Each actuator is 180 × 240 µm in size. De-

tail from a 1 in2 array with more than 15,000 actuators

(For more pictures on device design and fabrication, see

the World Wide Web at http://www.cs.cornell.edu/home/karl/

MicroActuators.)

Fig. 3. Released asymmetric actuator for the M-CHIP (viewed

via scanning electron microscopy): a dense grid (10 µm spac-

ing) with an aluminum electrode underneath (left); a grid with

5-µm high poles (right).

of the actuator consists of a denser grid above an aluminum

electrode. If a voltage is applied between the silicon sub-

strate and the electrode, the dense grid above the electrode

is pulled downward by the resulting electrostatic force. Si-

multaneously, the other side of the device (with the tips) is

deflected several µm out of the plane. Hence, an object can

be lifted and pushed sideways by the actuator.

Because of its low inertia (resonance in the high-kHz

range), the device can be driven in a wide frequency range

from DC to several 100 kHz AC. Our actuators need not be

operated at resonance: they can also be servoed to periodically

“hit” an object on top, thereby applying both lateral and ver-

tical forces. Our calculations, simulations, and experiments

have shown that the force generated with a torsional actuator
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is approximately 10 µN, which corresponds to a force-per-

area ratio of 100 µN/mm2, which is large enough to levitate a

piece of paper (1 µN/mm2) or a silicon wafer (10 µN/mm2).

Each actuator can generate motion in one specific direc-

tion if it is activated; otherwise, it acts as a passive frictional

contact. Figure 2 shows a small section of such a unidirec-

tional actuator array, which consists of more than 15,000 in-

dividual actuators. The combination and selective activation

of several actuators with different motion bias allows us to

generate various motions in discrete directions, spanning the

plane (Fig. 5).

The microscopic features of these actuators pose a possi-

ble disadvantage, which may make them less useful in harsh

Fig. 4. Released M-CHIP actuators consisting of single-crystal

silicon with 5-µm high tips.

Fig. 5. Released M-CHIP prototype motion pixel, consisting

of actuators oriented in four different directions.

or dirty environments. Macroscopic objects and forces can

easily damage microactuators. For example, careful handling

is required when placing objects on the array. However, sil-

icon is a surprisingly flexible material at microscopic scales

(Peterson 1982), and extremely large elastic deformations are

possible without structural damage (Taher, Saif, and Mac-

Donald 1995). Another concern are dust particles that could

jam the microactuators. As a remedy, tiny venting holes can

be etched from the backside of the substrate, such that dust

particles are removed by a constant flow of air. Such air jets

are also useful for levitating or manipulating objects (Pister

Fearing, and Howe 1990; Konishi and Fujita 1993).

The fabrication process and mechanism analysis have been

described in more detail in other works (Böhringer et al.

1994a, 1994b; Böhringer, Donald, and MacDonald 1996b).

2.2. Macroscopic Vibratory Parts Feeder

Böhringer and colleagues (1995a) have presented a device

that uses the force field created by transverse vibrations of a

plate to position and align parts. The device consists of an

aluminum plate that is attached to a commercially available

electrodynamic vibration generator,1 with a linear travel of

0.02m, and the capability to produce a force of up to 500

N (Fig. 6). The input signal, specifying the waveform cor-

responding to the desired oscillations, is fed to a single-coil

armature, which moves in a constant field produced by a ce-

ramic permanent magnet in a center-gap configuration.

For low amplitudes and frequencies, the plate moves longi-

tudinally with no perceptible transverse vibrations. However,

1. Model VT-100G, Vibration Test Systems, Akron, Ohio, USA.

Fig. 6. Vibratory plate parts feeder: an aluminum plate (size

50 cm × 40 cm) exhibits a vibratory minimum. Parts are

attracted to this nodal line, and reach equilibrium there.

(See also the World Wide Web at www.ee.washington.edu/

faculty/karl/Research/VibratoryPlate.)
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as the frequency of oscillations is increased, transverse vibra-

tions of the plate become more pronounced. The resulting

motion is similar to the forced transverse vibration of a rect-

angular plate, clamped on one edge and free along the other

three sides. This vibratory motion creates a force field in

which particles are attracted to locations with minimal vibra-

tion, called the nodal lines. This field can be programmed

by changing the frequency, or by employing clamps as pro-

grammable fixtures that create various vibratory nodes.

Figure 6 shows two parts, shaped like a triangle and a

trapezoid, after they have reached their stable poses. To better

illustrate the orienting effect, the curve showing the nodal line

has been drawn by hand. Note that this device can only use the

finite manipulation grammar described in Section 6.2, since it

can only generate a constrained set of vibratory patterns, and

cannot implement radial strategies.

3. Equilibrium Analysis for Programmable

Vector Fields

For the generation of manipulation strategies with pro-

grammable vector fields, it is essential to be able to predict

the motion of a part in the field. Particularly important is de-

termining the stable equilibrium poses that a part can reach

in which all forces and moments are balanced. This equi-

librium analysis was introduced in our short conference pa-

per (Böhringer et al. 1994a), where we presented a theory of

manipulation for programmable vector fields, and an algo-

rithm that generates manipulation strategies to orient polygo-

nal parts without sensor feedback using a sequence of squeeze

fields. We now review the algorithm from that work and give a

detailed proof of its complexity bounds. The tools developed

here are essential to understanding our new and improved re-

sults, and will be used throughout this paper to develop com-

plexity bounds for our distributed manipulation algorithms.

In general, we assume that the dynamics of a part moving

in the force field is governed by first-order dynamics. This

assumption is based on extensive experimentation with the

devices presented in Section 2. In a first-order system, the

velocity of a part is directly proportional to the force acting

on it. Basically, it is a rigid-body dynamical system that is

heavily damped.

3.1. Squeeze Fields and Equilibria

In the work of Böhringer and colleagues (1994a), we pro-

posed a family of control strategies called squeeze fields and

a planning algorithm for parts orientation.

DEFINITION 1. Assume l is a straight line through the ori-

gin. A squeeze field f is a two-dimensional force-vector field

defined as follows:

1. if z ∈ R
2 lies on l, then f (z) = 0; and

2. if z does not lie on l,then f (z) is the unit vector normal

to l and pointing toward l.

We refer to the line l as the squeeze line, because l lies in

the center of the squeeze field. See Figure 7 for examples of

squeeze fields.

Assuming quasi-static motion, an object will move per-

pendicularly toward the line l and come to rest there. We are

interested in the motion of an arbitrarily shaped (not neces-

sarily small) part P . Let us call P1, P2 the regions of P that

lie to the left and to the right of l, respectively, and c1, c2 their

centers of area. In a rest position, both translational and rota-

tional forces must be in equilibrium. We obtain the following

two conditions:

1. The areas P1 and P2 must be equal, and

2. The vector c2 − c1 must be normal to l.

Part P has a translational motion component that is normal

to l if condition 1 does not hold, and P has a rotational motion

component if condition 2 does not hold (see Fig. 8). This

assumes a uniform force distribution over the surface of P ,

which is a reasonable assumption for a flat part that is in

contact with a large number of elastic actuators.

Fig. 7. Sensorless parts orienting using force-vector fields: the

part reaches unique orientation after two subsequent squeezes.

There exist such orientating strategies for all polygonal parts.

(See the World Wide Web at www.ee.washington.edu/

faculty/karl/PFF for an animated simulation.)
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Fig. 8. Equilibrium condition: to balance the force and mo-

ment acting on P in a unit squeeze field, the two areas P1 and

P2 must be equal (i.e., l must be a bisector), and the line con-

necting the centers of area c1 and c2 must be perpendicular to

the node line.

DEFINITION 2. A part P is in translation equilibrium if the

forces acting on P are balanced; P is in orientation equilib-

rium if the moments acting on P are balanced. Total equilib-

rium is simultaneous translation and orientation equilibrium.

Let (x0, y0, θ0) be an equilibrium pose of P . (x0, y0) is

the corresponding translation equilibrium, and θ0 is the cor-

responding orientation equilibrium.

Note that conditions 1 and 2 do not imply that in equilib-

rium, the center of area of P has to coincide with the squeeze

line l. For example, consider a large and a small square con-

nected by a long rod of negligible width (Fig. 9). If the rod

is long enough, the center of area will lie outside of the large

square. However, in equilibrium, the squeeze line l will al-

ways intersect the large square.

3.2. Polygon Bisectors and Complexity

Consider a polygonal part P in a unit squeeze field, as de-

scribed in Section 3.1. In this section, we describe how to

determine the orientations θi in which P achieves equilib-

rium. This construction will show that equilibria always ex-

Fig. 9. A part consisting of two squares connected by a long,

thin rod. The part is in total equilibrium, but its COM does

not coincide with the squeeze line l.

ist, as long as the contact areas have finite size, and that for

connected parts, the orientation equilibria are discrete. More

precisely, if a connected part is in equilibrium in a squeeze

field, there are discrete values for its orientation and its off-

set from the center of the squeeze line. The equilibrium is

of course independent of its position along the squeeze line.

Hence, in the remainder of Section 3, when using the term

“discrete equilibria,” we mean that the orientation and offset

of the part is discrete. We will derive upper bounds on the

number of these discrete equilibria.

DEFINITION 3. A bisector of a polygon P is a line that cuts

P into two regions of equal area.

PROPOSITION 1. Let P be a polygon whose interior is con-

nected. There exist O(kn2) bisectors such that P is in equilib-

rium when placed in a squeeze field where the bisector coincides

with the squeeze line. n is the part complexity measured as

the number of polygon vertices, and k denotes the maximum

number of polygon edges that a bisector can cross.

If P is convex, then the number of bisectors is bounded by

O(n).

For most part geometries, k is a small constant.2 However,

in the worst case, pathological parts can reach k = O(n).

A spiral-shaped part (e.g., a rectilinear part) would be an

example for such a pathological case, because every bisector

intersects O(n) polygon edges.

LEMMA 1. Given a polygon P and a line l : y = mx + c,

let n be the number of vertices of P :

1. there exist O(n2) combinatorially different ways how

a line l can intersect P ;

2. let a and b be the intersections of bisector l with the

convex hull of P . As m varies from −∞ to +∞, a and

b progress monotonically counterclockwise about the

convex hull of P ; and

3. if the interior of P is connected, then there exists a

unique bisector of P for every m ∈ R.

2. In particular, in an earlier work (Böhringer et al. 1994a), we assumed that

k = O(1).
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Combinatorially equivalent intersections of polygon P are

all those placements of the intersecting line l such that the

sets of left and right polygon vertices are fixed. A necessary

condition for combinatorial equivalence is that l intersects the

same ordered set of polygon edges.

Proof. There are O(n2) different placements for l such that it

coincides with more than one vertex of P . Hence, all place-

ments of l fall into one of O(n2) combinatorially equiva-

lent classes. This was proven by Díaz and O’Rourke (1990,

Lemma 3.1).

Assume l is a bisector of P with a fixed slope m. Since

the interior of P is connected, the intersection between l and

P must be a line segment of nonzero length. Hence a transla-

tion of l (e.g., toward the left) will cause a strictly monotonous

decrease in the left-area segment of P , and vice versa. There-

fore, the bisector placement of l for a given slope m is unique.

�

Consider the bisector l of polygonP for changingmvalues,

as described in Lemma 5. The intersections of l with the

convex hull of P , a and b, progress monotonically about the

convex hull. In general, this progression corresponds to a

rotation and a translation of l.

In the following proof for Proposition 1, we investigate the

relationship between the location of the bisector and the cor-

responding left and right areas of P and its respective centers

of area.

This will allow us to show that for combinatorially equiva-

lent bisector placements, there are only a finite number of pos-

sible equilibria, and this number is bounded by O(k), where

k ≤ n is the number of polygon edges that the bisector inter-

sects.

Proof (Proposition 1). Consider two combinatorially equiv-

alent placements of bisector l on polygon P . We will show

that the number of equilibria for this bisector placement is

bounded by O(k). Since there are O(n2) such placements

for P (see Lemma 1), the total number of equilibria will be

O(kn2).

Rotating the Bisector. Consider the line l and a point s

that lies on l (Fig. 10). The direction of l is given by a vector

r . Assume for now that the line l intersects two edges of the

polygon P in the points r1 and r2. Also assume that these

edges have directions a1 and a2. Now consider another line

l′ with direction r ′ that intersects l in s. Assume that l and

l′ have combinatorially equivalent intersections with polygon

P , and that l′ intersects the polygon edges in r ′
1 and r ′

2. Let

us write ri = s + ρir and r ′
i = s + ρ′

ir
′ for i = 1, 2. Then the

polygon area between l and l′ is

A =
1

2

(

ρ′
2ρ2 − ρ′

1ρ1

) (

r ′ × r
)

.

In the general case where l and l′ intersect multiple edges of

some arbitrary polygon P at points r1, r2, . . . , rk and r ′
1, r

′
2,

Fig. 10. Two nonparallel lines l and l′ in a combinatorially

equivalent intersection with polygon P .

. . . , r ′
k (k even), the polygon area between l and l′ is

A =
1

2

(

r ′ × r
)

k
∑

i=1

(−1)iρ′
iρi .

Without loss of generality, let ρk 6= 0. Then r ′ can be written

as r ′ = r + αak for some α ∈ R, and the above equation

becomes

A =
1

2
((r + αak) × r)

k
∑

i=1

(−1)iρ′
iρi,

=
α

2
(ak × r)

k
∑

i=1

(−1)iρ′
iρi .

(1)

From the two vector equations r ′
i = s + p′

ir
′ and r ′

i = s +

ρir + λai, λ ∈ R, we can determine ρ′
i as

ρ′
i =

ρi(ai × r)

(ai × r) + α(ai × ak)
. (2)

If we also choose the edge-direction vectors ai such that (ai ×

r) = 1, then eqs. (1) and (2) simplify to the following rational

functions in α:

ρ′
i =

ρi

1 + α(ai × ak)
, (3)

A =
α

2

k
∑

i=1

(−1)i
ρ2

i

1 + α(ai × ak)
. (4)

Let us look at the denominator di(α) = 1 + α(ai × ak) in

more detail. This is important because we shall see that in
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all formulas we will obtain, the denominators consist only of

di(α). For an arbitrary polygon, di is a linear function of α.

If all ai are parallel, then di = 1. If the polygon is rectilinear,

i.e., all ai are either parallel or perpendicular, then di(α) = 1

if ai ||ak , and di(α) = 1 + αa⊥ if ai ⊥ ak , where a⊥ is

constant. So in this case, there are only two different constant

denominators, one of which is 1.

Translating the Bisector. We now consider the case where

l′ shifts parallel (Fig. 11). Analogously to the previous para-

graph, let r ′
i = s′ + ρ′

ir
′, and r ′′

i = s′′ + ρ′′
i r ′. Also, let the

vector between s′ and s′′ be s′′ − s′ = βa2. Then the polygon

area between l′ and l′′ is

B = βa2 ×
1

2

((

r ′
2 + r ′′

2

)

−
(

r ′
1 + r ′′

1

))

,

=
β

2

(

ρ′
2 + ρ′′

2 − ρ′
1 − ρ′′

1

)

(a2 × (r + αa2)) ,

=
β

2

(

ρ′
2 + ρ′′

2 − ρ′
1 − ρ′′

1

)

.

(5)

In the general case, l′ and l′′ intersect multiple edges of some

arbitrary polygon P at points r ′
1, r

′
2, . . . , r ′

k and r ′′
1 , r ′′

2 , . . . , r ′′
k .

Now the ρ′′
i can be determined from the two vector equations

r ′′
i = r ′

i + λai, λ ∈ R, and r ′′
i = s′′ + ρ′′

i r ′:

ρ′′
i = ρ′

i − β
ai × ak

ai × r ′
,

= ρ′
i − β

ai × ak

1 + α(ai × ak)
,

=
ρi − β(ai × ak)

1 + α(ai × ak

.

(6)

Fig. 11. Two parallel lines l′ and l′′ in combinatorially equiv-

alent intersection with polygon P .

Then the polygon area between l′ and l′′ is

B =
β

2

k
∑

i=1

(−1)i(ρ′
i + ρ′′

i ),

=
β

2

k
∑

i=1

(−1)i
(ρi − β(ai × ak)

1 + α(ai × ak)
.

(7)

This is a quadratic polynomial in β (unless all ai are paral-

lel, in which case it simplifies to the linear equation B =

β
∑k

i=1(−1)iρi).

Maintaining the Bisector Property. From the above two

paragraphs, we see that if the bisector l is rotated to l′, then

the left and right areas are changed by a value A ( 6= 0 in

general) as described in eq. (4). Hence, a subsequent shift of

l′ is necessary to restore the bisector property, by changing

the areas by a value B, as described in eq. (7).

This implies the condition A+B = 0, with A and B given

by eqs. (4) and (7):

A + B =
1

2

k
∑

i=1

(−1)i
αρ2

i + 2βρi − β2(ai × ak)

1 + α(ai × ak)
.

= 0.

(8)

This equation ensures that l is a bisector of P . It is a necessary

and sufficient condition for translation equilibrium in a unit-

squeeze field. Equation (8) is a rational equation in α, and a

quadratic polynomial equation in β. Hence for all combinato-

rially equivalent bisectors, we can obtain an explicit formula

to describe β as a function of α.

In general, eq. (8) is equivalent to a polynomial in α and

β whose degree depends on the number k of polygon edges

intersected by the bisectors l, l′, or l′′. The degree of this

polynomial is limited by k for α, and by 2 for β. In the

rectilinear case, the degrees for α and β are limited by 2. In

the case where all ai are parallel, eq. (8) simplifies to a linear

equation:
∑k

i=1(−1)i(α
ρi

2
+ β)ρi = 0.

Moment Equilibrium. After rotating (parameter α, obtain

l′) and translating (parameter β, obtain l′′) the bisector l, its

intersections with the polygon edges move from ri to

r ′′
i = s + ρ′′

i r ′ + βak,

= s +
ρi − β(ai × ak)

1 + α(ai × ak)
(r + αak) + βak.

(9)

If all ai are parallel, this simplifies to r ′′
i = s + ρir + (αρi +

β)ak .

Suppose that cl and cr , are the left and the right centers

of area of P , and Al and Ar are the respective area sections,

so Al + Ar = A. We are interested in how these points

change when the bisector changes. Note that always c =
1
A

(Alcl + Arcr), and if P is bisected (i.e., Al = Ar = 1
2
A)

then c = 1
2
(cl + cr).
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We consider the area between l and l′′, which can be written

as a sum of quadrangles (ri, rk, r
′′
k , r ′′

i ). The weighted center

area of this area can be determined as

C =

k
∑

i=1

(−1)i
1

6
((ri + rk)(ri × rk) + (rk + r ′′

k )(rk × r ′′
k )

+ (r ′′
k + r ′′

i )(r ′′
k × r ′′

i ) + (r ′′
i + ri)(r

′′
i × ri)).

(10)

For the left areas, the following relationship holds (assuming

A′′
l 6= 0):

A′′
l c

′′
l = Alcl + C

⇒ c′′
l =

Al

A′′
l

cl +
1

A′′
l

C,

and similarly, for the right areas (assuming A′′
r 6= 0):

c′′
r =

Ar

A′′
r

cr −
1

A′′
l

C.

Hence,

c′′
r − c′′

r =
Al

A′′
l

ct −
Ar

A′′
r

cr +

(

1

A′′
l

+
1

A′′
r

)

C.

Both l and l′′ are bisectors, so Al = Ar = A′′
l = A′′

r = A
2

,

and

c′′
l − c′′

r = cl − cr +
4

A
C.

For orientation equilibrium, we require that the line connect-

ing the centers of area, c′′
r −c′′

l , and the direction of the bisector

r ′, are perpendicular:

(c′′
l − c′′

r ) · r ′ = (cl − cr +
4

A
C) · r ′,

= 0.

(11)

The value of C = C(α, β) can be determined by using eqs.

(9) and (10), and the equation r ′ = r+αak . Equation (11) is a

necessary and sufficient condition for orientation equilibrium.

By using the expressions derived in eqs. (1)–(10), both

eqs. (8) (for translation equilibrium) and (11) (for orientation

equilibrium) can be expressed with rational functions in α and

β whose numerator (respectively, denominator) degrees are

O(k) (respectively, O(1)) for α and 2 for β. Hence, we can

obtain a system of two polynomial equations of degree O(k)

for α and 2 for β. This system has at most O(k) solutions,

resulting in O(k) total equilibria for bisector placements that

are combinatorially equivalent. Since there are (n2) com-

binatorially different bisector placements, there are at most

O(kn2) total equilibria.�[]

3.3. Planning of Manipulation Strategies

In this section, we present an algorithm for sensorless parts

alignment with squeeze fields (Böhringer et al., 1994a;

Böhringer, Donald, and MacDonald 1996a). Recall from

Section 3.2 that in squeeze fields, the equilibria for connected

polygons are discrete (modulo a neutrally stable translation

parallel to the squeeze line, which we will disregard for the

remainder of Section 3).

To model our actuator arrays and vibratory devices, we

made the following assumptions:

Density: the generated forces can be described by a vector

field, i.e., the individual microactuators are dense com-

pared to the size of the moving part; and

2Phase: the motion of a part has two phases: (1) pure transla-

tion towards l until the part is in translation equilibrium,

and (2) motion in translation equilibrium until orienta-

tion equilibrium is reached.

Note that due to the elasticity and oscillation of the actuator

surfaces, we can assume continuous area contact, and not just

contact in three or a few points. If a part moves while in

translation equilibrium, in general the motion is not a pure

rotation, but also has a translational component. Therefore,

relaxing the 2Phase assumption is one of the key results of

this paper.

DEFINITION 4. Let θ be the orientation of a connected poly-

gon P in a squeeze field, and let us assume that condition 1

holds. The turn function t : θ → {−1, 0, 1} describes the

instantaneous rotational motion of P :

t (θ) =







1  if P will turn counterclockwise,

−1     i f P will turn clockwise,

0            if P is in total equilibrium.

See Figure 12 for an illustration. The turn function t (θ)

can be obtained, for example, by taking the sign of the lifted

moment MP (z) for poses z = (x, y, θ), in which the lifted

force fP (z) is zero.

Definition 6 immediately implies the following lemma.

LEMMA 2 (Böhringer, MacDonald, and Donald 1996a). Let

P be a polygon with orientation θ in a squeeze field such that

condition 1 holds. P is stable if t (θ) = 0, t (θ+) ≤ 0, and

t (θ−) ≥ 0; otherwise, P is unstable.

Proof. Assume the part P is in a pose (x, y, θ) such that con-

dition 1 is satisfied. This implies that the translational forces

acting on P balance out. If in addition t (θ) = 0, then the

effective moment is zero, and P is in total equilibrium. Now

consider a small perturbation δθ > 0 of the orientation θ of P

while condition 1 is still satisfied. For a stable equilibrium,

the moment resulting from the perturbation δθ must not ag-

gravate, but rather counteract, the perturbation. This is true if

and only if t (θ + δθ ) ≤ 0 and t (θ − δθ ) > 0.
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Fig. 12. (a) Polygonal part: stable (thick line) and unsta-

ble (thin line) bisectors are also shown. (b) Turn func-

tion, which predicts the orientations of the bisectors. Sta-

ble (respectively, unstable) bisectors correspond to angles

at which the turn function changes from +1 to −1 (respec-

tively, from −1 to +1). (c) Squeeze function, constructed

from the turn function. (d) Alignment strategy for two ar-

bitrary initial configurations. (See the World Wide Web at

www.ee.washington.edu/faculty/karl/Research/ for an animated

simulation.)

Using this lemma, we can identify all stable orientations,

which allows us to construct the squeeze function (Goldberg

1993) of P (see Fig. 12c); i.e., the mapping from an initial

orientation of P to the stable equilibrium that it will reach in

the squeeze field:

LEMMA 3. Let P be a polygonal part on an actuator array A

such that Density and 2Phase hold. Given the turn function

t of P , its corresponding squeeze function s : S
1 → S

1 is

constructed as follows:

1. all stable equilibrium orientations θ map identically

to θ ;

2. all unstable equilibrium orientations map (by conven-

tion3) to the nearest counterclockwise stable orienta-

tion; and

3. all orientations θ with t (θ) = 1(−1) map to the nearest

counterclockwise (clockwise) stable orientation.

Then, s describes the orientation transition of P induced by A.

Proof. Assume that part P initially is in pose (x, y, θ) in

array A. Because of the 2Phase assumption, we can assume

that P translates toward the center line l until condition 1 is

3. Equally, one could define t to map unstable equilibrium orientations to the

nearest clockwise stable equilibrium. This choice for a set of measure zero

does not affect our subsequent analysis and algorithms.

satisfied without changing its orientation θ . P will change its

orientation until the moment is zero, i.e., t = 0: a positive

moment, (t > 0) causes counterclockwise motion, and a neg-

ative moment (t < 0) causes clockwise motion until the next

root of t is reached. �

We conclude that any connected polygonal part, when put

in a squeeze field, reaches one of a finite number of possi-

ble orientation equilibria (Böhringer et al. 1994a; Böhringer,

Donald, and MacDonald 1996a). The motion of the part

and, in particular, the mapping between initial orientation

and equilibrium orientation is described by the squeeze func-

tion, which is derived from the turn function (as described in

Lemma 3). Note that all squeeze functions derived from turn

functions are monotone step-shaped functions.

Goldberg (1993) has given an algorithm that automatically

synthesizes a manipulation strategy to uniquely orient a part,

given its squeeze function. While Goldberg’s algorithm was

designed for squeezes with a robotic parallel-jaw gripper, in

fact, it is more general, and can be used for arbitrary mono-

tone step-shaped squeeze functions. The output of Goldberg’s

algorithm is a sequence of angles that specify the required di-

rections of the squeezes; therefore, these angles specify the

direction of the squeeze line in our force-vector fields (for

example, the two-step strategies in Figures 7 and 12d). It

is important to note that the equilibria obtained by a MEMS

squeeze field and by a parallel-jaw gripper will typically be

different, even when the squeeze directions are identical. For

example, to see this, consider squeezing a square-shaped part

(Fig. 13). Stable and unstable equilibria are reversed. This

shows that our mechanical analysis of equilibrium is different

from that of the parallel-jaw gripper. Let us summarize these

results in the following statements.

PROPOSITION 2. Let P be a polygon whose interior is con-

nected. There exists an alignment strategy consisting of a

Fig. 13. Equilibrium configurations for a square-shaped part

using (a) a frictionless parallel-jaw gripper, and (b) a MEMS

squeeze field. In this example, stable and unstable equilibria

are reversed.
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sequence of squeeze fields that uniquely orients P up to sym-

metries.

Since the strategies of Proposition 2 consist of fields with

squeeze lines at arbitrary angles through the origin, we call

them general S
1 squeeze strategies, or, henceforth, general

squeeze strategies.

COROLLARY 1. The alignment strategies of Proposition 2

have O(kn2) steps, and they may be computed in time

O(k2n4), where k is the maximum number of edges that a

bisector of P can cross. In the case where P is convex, the

alignment strategy has O(n) steps, and can be computed in

time O(n2).

Proof. Proposition 1 states that a polygon with n vertices

has E = O(kn2) stable orientation equilibria in a squeeze

field (O(n) if P is convex). This means that the image of its

corresponding squeeze function is a set of E discrete values.

Given such a squeeze function, Goldberg’s algorithm (Gold-

berg 1993) constructs alignment strategies with O(E) steps.

Planning complexity is O(E2). �

The strategies of Goldberg (1993) have the same complex-

ity bounds for convex and nonconvex parts, because when us-

ing squeeze grasps with a parallel-jaw gripper, only the con-

vex hull of the part need be considered. This is not the case

for programmable vector fields, where manipulation strate-

gies for nonconvex parts are more expensive. As described

in Section 3.2, there could exist parts that have E = �(kn2)

orientation equilibria in a squeeze field, which would imply

alignment strategies of length �(kn2) and planning complex-

ity �(k2n4).

Note that the turn and squeeze functions have a period of π ,

due to the symmetry of the squeeze field; rotating the field by

an angle of π produces an identical vector field. Rotational

symmetry in the part also introduces periodicity into these

functions. Hence, general squeeze strategies (see Proposition

2) orient a part up to symmetry, that is, up to symmetry in

the part and in the squeeze field. Similarly, the grasp plans

based on squeeze functions in the work of Goldberg (1993)

can orient a part with a macroscopic gripper only modulo

symmetry in the part and in the gripper.4 Since in Goldberg’s

(1993) work we reduce to the squeeze-function algorithm, it

is not surprising that this phenomenon is also manifested for

squeeze-vector fields as well. A detailed discussion of parts

orientation modulo symmetry has been provided (Goldberg

1993).

The algorithm in this section uniquely orients a part (up

to symmetry); however, its position cannot be predicted pre-

cisely. In Section 6, we will present new and improved ma-

nipulation algorithms that position and orient parts uniquely,

and also reduce the number of equilibria to E = O(kn). In

Section 6.2 we will show that the algorithm described in this

4. Parallel-jaw gripper symmetry is also modulo π .

section can be extended easily such that unique positioning

and orienting can be achieved.

Squeeze fields may be generalized to the case where l is

slightly curved, as in the “node” of the vibrating plate in Fig-

ure 6 (details are available (Böhringer 1995a)). The remaining

sections of this paper investigate using more exotic fields (not

simple squeeze patterns) to:

• allow disconnected polygons,
• relax the 2Phase assumption,
• reduce the planning complexity,
• reduce the number of equilibria,
• reduce the execution complexity (strategy length), and
• determine feasibility results and limitations for manip-

ulation with general force fields.

3.4. Relaxing the 2Phase Assumption

In Section 3.3, the 2Phase assumption allowed us to determine

successive equilibrium positions in a sequence of squeezes,

by a quasi-static analysis that decouples translational and ro-

tational motion of the moving part. For any part, this obtains

a unique orientation equilibrium (after several steps). If the

2Phase assumption is relaxed, we obtain a dynamic manip-

ulation problem, in which we must determine the equilibria

(x, θ) given by the part orientation θ and the offset x of its

center of mass from the squeeze line. A stable equilibrium

is a (xi, θi) pair in R × S
1 that acts as an attractor (the x

offset in an equilibrium is, surprisingly, usually not 0; see

Fig. 9). Again, we can compute these (xi, θi) equilibrium

pairs exactly, as outlined in Section 3.2.

Considering (xi, θi) equilibrium pairs has another advan-

tage. We can show that, even without the 2Phase assumption,

after two successive, orthogonal squeezes, the set of stable

poses of any part can be reduced from C = R
2 × S

1 to a

finite subset of C (the configuration space of part P ); see

claim 1 (Section 6.2). Subsequent squeezes will preserve the

finiteness of the state space. This will significantly reduce the

complexity of a task-level motion planner. Hence, if assump-

tion 2Phase is relaxed, this idea still enables us to simplify the

general motion-planning problem (as formulated, for exam-

ple, by Lozano-Pérez, Mason, and Taylor (1984)) to that of

Erdmann and Mason (1988). Conversely, relaxing assump-

tion 2Phase raises the complexity from the “linear” planning

scheme of Goldberg (1993) to the forward-chaining searches

of Erdmann and Mason (1988) or Donald (1990).

4. Lower Bounds: What Programmable Vector

Fields Cannot Do

We now present “lower bounds”—constituting vector fields

and parts with pathological behavior, making them unusable

for positioning. These counterexamples show that we must

be careful in choosing programmable vector fields, and that,

a priori, it is not obvious when a field is well behaved.
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4.1. Unstable Fields

In Section 3, we saw that in a vector field with a simple squeeze

pattern (see again Fig. 7), polygonal parts reach certain equi-

librium poses. This raises the question of a general classifi-

cation of all those vector fields in which every part has stable

equilibria. There exist vector fields that do not have this prop-

erty, even though they are very similar to a simple squeeze.

DEFINITION 5. A skewed field fS is a vector field given by

fS(x, y) = −sign(x) (1, ǫ), where 0 6= ǫ ∈ R.

PROPOSITION 3. A skewed field induces no stable equilib-

rium on a disk-shaped part.

Proof. Consider Figure 14, which shows a skewed field with

ǫ = − 2
3

: only when the center of the disk coincides with the

center of the squeeze pattern do the translational forces acting

on the disk balance. But it will still experience a positive

moment that will cause rotation. �

PROPOSITION 4. A diagonally skewed field (ǫ = ±1) in-

duces no stable equilibrium on a square-shaped part.

Proof. To reach equilibrium in a diagonally skewed field,

the squeeze line has to bisect the part such that the connector

between the left and the right centers of area is diagonal (i.e.,

parallel to the force vectors). An analysis similar to the proof

of Proposition 1 (Section 3.2) shows that for a square, no

bisector placement can achieve an angle with the connector

of less than 83◦. �

Propositions 3 and 4 show that skewed squeeze fields can-

not be used for open-loop positioning or orienting of parts,

since there may not exist any stable equilibria. However,

skewed squeeze fields may be very useful if our goal is to

continuously rotate a part (e.g., for inspection purposes).

Fig. 14. Unstable part in the skewed squeeze field (ǫ = − 2
3
).

The disk with its center on the squeeze line will keep rotating;

moreover, it has no stable equilibrium in this field.

4.2. Unstable Parts

Similarly, we would like to identify the class of all those parts

that always reach stable equilibria in particular vector fields.

From Section 3, we know that connected polygons in simple

squeeze fields satisfy this condition. This property relies on

finite area contacts: it does not hold for point contacts. As a

counterexample, consider the part PS in Figure 15.

PROPOSITION 5. There exist parts that do not have stable

equilibria in a simple squeeze field.

Proof. The S-shaped part in Figure 15 has four rigidly con-

nected “feet” with small contact surfaces. As the area of each

of these four feet approaches zero, the part has no stable equi-

librium in a simple squeeze field. There is only one orientation

for the part in which both force and moment balance out, and

this orientation is unstable. �

In Section 5.2, we discuss this phenomenon in greater de-

tail, after the tools necessary for a complete mathematical

analysis have been developed.

Finally, the number of stable equilibria of a given part

influences both the planning complexity and the plan length

of an alignment strategy. It also affects the resolution of the

vector field that is necessary to perform a strategy accurately.

Even though all parts we have considered exhibit only one or

two orientation equilibria, there exist no tight bounds on the

maximum number of orientation equilibria in a unit squeeze

field.

PROPOSITION 6. Let n be the number of vertices of a polygon

P , and let k be the maximum number of edges that a bisector

of P can cross:

Fig. 15. The S-shaped part PS with four rigidly connected

point-contact “feet” in unstable total equilibrium (forces

and moments balance). There exists no stable equilib-

rium position for this part in a vector field with a simple

squeeze pattern.
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A. regular polygons have n stable orientation equilibria in

a squeeze field; and

B. every connected polygon has O(kn2) stable orientation

equilibria in a squeeze field.

Proof.

A. Because of their part symmetry, regular polygons have

2n equilibria. Half of them are stable, the other n are

unstable.

B. See Section 3.2.

As described in Section 3.2, there exist simple polygons

with n vertices that can be bisected by a straight line in up to

O(kn2) topologically different ways (Böhringer et al. 1997a).

This suggests that there could be parts that have �(kn2) orien-

tation equilibria in a squeeze field, which would imply align-

ment strategies of length �(kn2) and planning complexity

�(k2n4).

While the counterexample in Figure 15 may be plausibly

avoided by prohibiting parts with “point contacts,” the other

examples (Fig. 14 and Proposition 6) are more problematic. In

Section 5, we show how to choose programmable vector fields

that exclude some of these pathological behaviors, by using

the theory of potential fields to describe a class of force vector

fields for which all polygonal parts have stable equilibria. In

Section 6.1, we show how to combine these fields to obtain

new fields in which all parts have only O(kn) equilibria.

We believe parts with point contact (not having finite area

contact) will behave badly in all vector fields. We can model a

point contact with delta functions, such that, e.g., for a point-

contact P0 at (x0, y0):

∫

P0

f dA =

∫

f δ(x0, y0)dA = f (x0, y0).

This model is frequently used in mechanics (see, e.g., the

work of Erdmann (1994)). Point contact permits rapid, dis-

continuous changes in force and moment. Hence, bodies with

point contact will tend to exhibit instabilities, as opposed to

flat parts that are in contact with a large number of (elastic)

actuators. Finally, we believe that as the area contact—the

size of the “feet” of a part—approaches zero, the part may

become unstable. This represents a design constraint on parts

that are to be manipulated using programmable planar parts

feeders.

The lower bounds we demonstrate are indications of the

pathologies that can arise when fields without potential or

parts with point contact are permitted. Each of our coun-

terexamples (Figs. 14 and 15) is “generic” in that it can be

generalized to a very large class of similar examples. How-

ever, these lower bounds are just a first step, and one wishes

for examples that delineate the capabilities of programmable

vector fields for planar parts manipulation even more

precisely.

The separating field shown in Figure 1c is not a poten-

tial field, and there exist parts that will spin forever, with-

out equilibrium, in this field (this follows by generalizing the

construction in Fig. 14). However, for specific parts, such as

those shown in Figure 1, this field is useful if we can pose the

parts appropriately first (e.g., using the potential field shown

in Fig. lb).

Finally, we may “surround” nonpotential fields with poten-

tial fields to obtain reasonable behavior in some cases. Figure

1 shows how to “surround” a nonpotential field in time by

potential fields, to eliminate pathologies. Similarly, we can

surround nonpotential fields spatially. For example, if field

lc could be surrounded by a larger potential field, then after

separation, parts could reach a stable equilibrium.

Nonpotential fields can be used safely with the following

methodology: let H ⊂ C = R
2 × S

1 be the undesirable limit

set. For example, H could be a limit cycle where the part

spins forever. Let P̂V (H) be the weak pre-image (Lozano-

Pérez, Mason, and Taylor 1984; Donald 1989) of H under the

field V . If we can ensure that the part starts in a configuration

z ∈/ P̂V (H), it will not reach the unwanted limit cycle. For

example, in Figure 1 the centering step (b) ensures that the

part does not end up on the border between the two separating

fields, where it would spin forever in step (c).

5. Completeness: Classification using Potential

Fields

We are interested in a general classification of all those vector

fields in which every part has stable equilibria. As motivation,

recall that a skewed vector field, even though very similar to

a regular squeeze field (see again Fig. 7), induces no stable

equilibrium in a disk-shaped part (Fig. 14). In this section,

we discuss a family of vector fields that will be useful for

manipulation tasks. These fields belong to a specific class of

vector fields: the class of fields that have a potential.

We believe that fields without potential will often induce

pathological behavior in many parts. Fields without poten-

tial admit paths along which a particle (point mass) will gain

energy. Since mechanical parts are rigid aggregations of par-

ticles, this may induce unstable behavior in larger bodies.

However, there are some cases where nonpotential fields may

be useful. For example, see Figure lc, which is not a potential

field. Such fields may be employed to separate but not to sta-

bilize, pose, or orient parts. This strong statement devolves to

our proof that fields like Figure 14 do not have well-behaved

equilibria. Hence, they should only be employed when we

want to induce an unstable system that will cast parts away

from equilibrium, e.g., to sort or separate them.

Consider the class of vector fields on R
2 that have a po-

tential, i.e., fields f in which the work is independent of the

path, or equivalently, the work on any closed path is zero,
∮

f ·ds = 0. In a potential field, each point (x, y) is assigned
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a real value U(x, y) that can be interpreted as its potential

energy. When U is smooth, then the vector field f associated

with U is the gradient −∇U . In general, U(x, y) is given, up

to an additive constant, by the path integral
∫

a
f · ds (when

it exists and it is unique), where α is an arbitrary path from a

fixed reference point (x0, y0) to (x, y). Assuming first-order

dynamics, when U is smooth, an ideal point object is in stable

equilibrium when it is at a local minimum of U .

DEFINITION 6. Let f be a force-vector field on R
2, and let

p be a point that is offset from a fixed reference point q by a

vector r(p) = p − q. We define the generalized force F as the

force and moment induced by f at point p:

F(p) = (f (p), r(p) × f (p)). (12)

Let P be a part of arbitrary shape, and let Pz denote the

part P in pose z = (x, y, θ) ∈ C. We define the lifted force

field fP as the area integral of the force induced by f over Pz:

fP (z) =

∫

Pz

f dA.  (13)

The lifted generalized force field FP is defined as the area

integral of the force and moment induced by f over P in

configuration z:

FP (z) =

∫

Pz

FdA,

=







∫

Pz

f dA,

∫

Pz

r × f dA






.

(14)

Hence, FP is a vector field on C. Finally, we define the lifted

potential UP : C → R. UP is the area integral of the potential

U over P in configuration z:

UP (z) =

∫

Pz

UdA. (15)

We now show that the category of potential fields is closed

under the operation of lifting, and that UP is the potential of

FP (see Fig. 16). Note that U need not be smooth.

Let g : X → Y and h : Y → Z. Let k : X → Z

be the function that is the composition of g and h, defined

by k(x) = h(g(x)). In the following proposition, we use

the notation h(g) to denote k, the function composition of g

and h.

PROPOSITION 7. Let f be a force field on R
2 with potential

U , and let P be a part of arbitrary shape. For the lifted gener-

alized force field FP and the lifted potential UP , the following

equality holds: UP =
∫

P
UdA =

∫

α
FP · dz + c, where α is

Fig. 16. Determining the potential, and lifting are commuta-

tive operations on force-vector fields.

an arbitrary path in C from a fixed reference point, and c is a

constant.

Proof. Given a force field f with potential U , and a part

P , we define P ∗ as the set {(r, η)|(r cos η, r sin η) ∈ P } ⊂

R × S
1. P ∗ is a representation of P in polar coordinates: p

= (r cos η, r sin η) ∈ P if and only if (r, η) ∈ P ∗.

We write Pz to denote P in pose z = (xz, yz, θz). If P is

moved into pose z, then the point p moves to pz = (xz +

r cos(θz + η), yz + r sin(θz + η)) = (xz, yz) + rz. Let us

assume that for a given P , the COM of P is at 0; this implies

that the COM of Pz lies at (xz, yz).

We define three families of functions ρ, ζ , and α, as fol-

lows:

ρr,η : [0, 1] → R
2

such that ρr,η is a smooth path in R
2 with ρr,η (0) = 0 and

ρr,η(1) = p0 = (r cos η, r sin η),

ζz : [0, 1] → R
2 × S

1

such that ζz is a smooth path in R
2 × S

1 with ζz(0) = 0 and

ζz(1) = z = (xz, yz, θz), and

αr,η : R
2 × S

1 → R
2

(x, y, θ) 7→ (x + r cos(θ + η),

y + r sin(θ + η).

So ζz is an arbitrary smooth path from 0 to z in C, and

αr,η(ζz) is a smooth path in R
2 from p0 = (r cos η, r sin η)

to pz = (xz + r cos(θz + η), yz + r sin(θz + η)). Recall that

αr,η(ζz) is the function composition of ζz and αr,η.

We are interested in the potential of U at pz.
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U(pz) =

∫

β

f · ds,

where β is some path from 0 to pz. The integral is

path independent, because f has potential U . Since

we can choose any path, we choose a path β that

consists of two parts: (1) a path from 0 to the point

p0, and (2) a path from p0 to pz.

=

∫

ρr,η

f · ds +

∫

αr,η(ζz)

f · ds,

where the path αr,η(ζz), given by the composition of

ζz and αr,η, depends on z as well as on r and η, but

ρr,η is independent of z. The left integral is the

potential difference between p0 and 0. Without loss

of generality, let us choose U(0) = 0.

=U(p0) +

∫

ζz

f (αr,η) · (J dz),

where J is the Jacobian:

J =

( ∂αx
∂x

∂αx
∂y

∂αx
∂θ

∂αy
∂x

∂αy
∂y

∂αy
∂θ

)

=

(

1 0 −r sin(θ + η)

0 1 r cos(θ + η)

)

,

which is the derivative of αr,η. f (αr,η) is the function

composition of αr,η and f . Also note that dz =

(dx, dy, dθ).

=U(p0) +

∫

ζz

(

fx(αr,η), fy(αr,η),

r cos(θ + η)fy(αr,η) − r sin(θ + η)fx(αr,η)
)

· dz.

=U(p0) +

∫

ζz

F(αr,η), ·dz.

(16)

Equation (16) states that the potential at a point pz = (xz +

r cos(θz +η), yz +r sin(θz +η)) can be determined as the sum

of two integrals: the first integrates the force f over a path

from 0 to p0 = (r cos η, r sin η). If we choose U(0) = 0,

then the first integral is the potential at point p0. The right

part of the expression can be understood as the path integral

of the generalized force from p0 to pz

With this result, we can now consider the lifted potential

UP at a point z = (xz, yz, θz) ∈ C:

UP (z) =

∫

Pz

U(p)dA,

=

∫ ∫

P ∗

U(pz)r dr dη,

where pz = (xz + r cos(θz + η), yz

+r sin(θz + η)) such that (r, η) ∈ P ∗.

=

∫ ∫

P ∗






U(p0) +

∫

ζz

F(αr,η) · dz






r dr dη,

by using eq. (16). Again, F(αr,η) denotes the

function composition of αr,η and F .

=

∫ ∫

P ∗

U(p0)r dr dη

+

∫ ∫

P ∗







∫

ζz

F(αr,η) · dz






r dr rη.

The first expression is the area integral of U over

P . From Definition 6, it follows that this express-

ion is equal to UP (0) (note that UP (0) is a con-

stant that does not depend on z).

=UP (0)

+

∫ ∫

P ∗





1
∫

0

F(αr,η(ζz(t))) · ζ ′
z(t)dt



 r dr rη,

where ζ ′
z is the derivative of ζz. The dot product

yields a scalar value. We can now switch the

integrals.

=

1
∫

0





∫ ∫

P ∗

F(αr,η(ζz(t))) · ζ ′
z(t) r dr dη



 dt

+UP (0).

ζ ′
z is constant with respect to the integration

parameters r and η hence, we can move ζ ′
z out-

side of the area integral.

=

1
∫

0





∫ ∫

P ∗

F(αr,η(ζz(t)))r dr dη



 · ζ ′
z(t) dt

+UP (0),

=

1
∫

0





∫ ∫

P ∗

F(ζz,x(t) + r cos(ζz,θ (t) + η),
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ζz,y(t) + r sin(ζz,θ (t) + η))r dr dη
)

· ζ ′
z(t)dt

+UP (0),

where ζz = (ζz,x, ζz,y, ζz,θ ).

=

1
∫

0









∫ ∫

P ∗
ζz(t)

F(r cos η, r sin η)r dr dη









· ζ ′
z(t)dt

+UP (0),

where P ∗
ζz(t)

= {(r, η)|(r cos η, r sin η) ∈ Pζz(t)}.

=

1
∫

0







∫

Pζz(t)

FdA






· ζ ′

z(t)dt + UP (0),

=

1
∫

0

FP (ζz(t)) · ζ ′
z(t)dt + UP (0)

by definition of the lifted force FP .

=

∫

ζz

FP · dz + UP (0).

Hence, UP is indeed the potential of FP . �

We believe that a shorter proof is possible by using differ-

ential forms for the case that both f and U are smooth. How-

ever, since the fields in consideration are usually not smooth

(e.g., unit squeeze or radial fields), we give the longer general

proof here. Note that this proof does not rely on the fact that

f is a vector field on R
2. Therefore, the proof generalizes to

dimensions 3 or higher.

COROLLARY 2. Let f be a force field on R
2 with potential U ,

and let P be a part of arbitrary shape. For the lifted generalized

force FP and the lifted potential UP , the following equality

holds if UP is differentiable: ∇UP = −FP .

Proof. Follows directly from Proposition 7. �

So again, UP (x, y, θ) can be interpreted as the potential en-

ergy of part P in configuration (x, y, θ) Therefore, we obtain

a lifted potential field UP whose local minima are the stable

equilibrium configurations in C for part P . Furthermore, po-

tential fields are closed under addition and scaling. We can

thus create and analyze more complex fields by looking at

their components. In general, the theory of potential fields al-

lows us to classify manipulation strategies with vector fields,

offering new insights into equilibrium analysis and provid-

ing the means to determine strategies with stable equilibria.

For example, it allows us to show that orientation equilibrium

Fig. 17. Two triangles Pz and Pz′ with reference points z and

z′ whose symmetric difference is less than ǫ.

in a simple squeeze field is equivalent to the stability of a

homogeneous boat floating in water, provided its density is

ρ = 1
2
ρwater (for references on boat stability, see the works of

Gillmer (1956, pp. 42ff) or Newman (1977, p. 290ff)).

5.1. Properties of Lifted Force and Potential Fields

In this section, we show that for a polygonal part P , the lifted-

force field is always continuous, and the lifted potential is

always smooth.

PROPOSITION 8. Consider a polygon P at two configura-

tions: z = (x, y, θ) and z′ = (x′, y′, θ ′), z, z′ ∈ C = R
2 ×S

1.

For all ǫ > 0, there exists aδ > 0 such that if z′ lies within

a δ-ball around z, z′ ∈ Bδ(z), then µ(Pz1Pz′) < ǫ(µ(·) de-

notes the size of an area, and 1 is the symmetric difference

of two sets).

Proof. First we will create a region S around Pz such that for

any perturbed triangle Pz′ ⊂ S, the nonoverlapping regions

of Pz and Pz′ are less than a given ǫ in size. Then we will

show that there always exists a region Bδ(z) around z such

that if z′ ∈ Bδ(z), then Pz′ lies in S.

For now, let us assume that Pz is a triangle in configuration

z, and let a be the length of its longest side. Consider the set

S = Pz ⊕ Bα(0), for some a > 0 (Fig. 17). The area of

S − Pz is µ(S − Pz < 3α(a + 2α). Let us choose α < 1
9

min(1, ǫ, ǫ/a). Then, if ǫ < 1, µ(S−Pz) < 1
3
(ǫ+2ǫ2) < ǫ.

If ǫ ≥ 1, µ(S − Pz) < 1
3
(ǫ + 2) < ǫ. So in both cases, if

Pz′ ⊂ S, then the area of the symmetric difference, Pz1Pz′

is at most ǫ.

We are interested in the distance between a point p ∈ Pz,

and the corresponding perturbed point p′ ∈ Pz′ . We can

describe the points p and p′ as p = (x + r cos(φ + θ), y +

r sin(φ+θ)) and p′ = (x′ +r cos(φ+θ ′), y′ +r sin(φ+θ ′)),

where r and φ are the length and the angle of a line from the

reference point of P to the point p. The distance between the
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x-coordinates is

|xp − xp′ | = |x + r cos(φ + θ) − x′ − r cos(φ + θ ′)|

≤ |x − x′| + |2r sin
2φ + θ + θ ′

2
sin

θ − θ ′

2
|

≤ |x − x′| + r|θ − θ ′|.

If we choose δ = α
4max(1,r)

, we obtain

|xp − xp′ | ≤ α/4 + α/4

= α/2.

Similarly, |yp − yp′ < α/2, and hence |p − p′| < α. We

conclude that p′ ∈ S whenever z′ ∈ Bδ(z). Hence we can

always find a δ-ball around z such that the areas of Pz and

Pz′ differ by at most ǫ (by choosing δ < α
4max(1,r)

, i.e.,

δ <
min(1,ǫ,ǫ/a)
36 max(1,r)

).

This proof generalizes to arbitrary polygons (e.g., by using

triangulations). �

PROPOSITION 9. Let P be a polygonal part in a force field

f with potential U . The lifted force field fP (z), and the

lifted generalized force field FP (z), with z = (x, y, θ) ∈ C =

R
2 × S

1, are continuous functions in x, y, and θ .

Proof. For a given γ > 0, we want to determine an up-

per bound on the difference between F(z) and F(z′) for an

arbitrary z′ ∈ Bγ (z):

|F(z) − F(z′)| =

∣

∣

∣

∣

∣

∣

∣

∫

Pz

f dA −

∫

Pz′

f dA

∣

∣

∣

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

∣

∣

∣

∫

Pz−Pz′

f dA

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫

Pz′−Pz

f dA

∣

∣

∣

∣

∣

∣

∣

,

≤ f̂







∫

Pz−Pz′

dA +

∫

Pz′−Pz

dA






,

= f̂ |Pz1Pz′ |,

where f̂ = supS (|f (x, y)|) with S = {s ∈ Pz′ |z′ ∈ Bγ (z)}.

This supremum exists whenever f is integrable; i.e., if fP

exists.

From Proposition 8, we know that we can make the area

of Pz1Pz′ arbitrarily small, by choosing an appropriate δ-

ball around z. In particular, we can force it to be less than

1/f . Hence we can ensure that |F(z) − F(z′)| < ǫ for any

z′ ∈ Bδ(z), and any ǫ > 0. This implies that F is continuous

in z = (x, y, θ).

An analogous argument holds for the lifted generalized

force FP .

COROLLARY 3. For a polygonal part P , the lifted potential

field UP (z) =
∫

Pz
UdA is C1 (i.e., its derivative exists and

is continuous). Moreover, ∇UP (z) = −FP (z), where FP is

the lifted generalized force acting on P .

Proof. Because of Proposition 7, UP (z) =
∫

α
FP · dz + c for

some constant c. From Proposition 9, we know that the lifted

generalized force FP is continuous; hence the path integral of

FP must be C1. ∇UP (z) = −FP (z) because of Corollary 2.

5.2. Examples: Classification of Force Fields

Example 1. (Radial Fields) A radial field is a vector field

whose forces are directed toward a specific center point. It

can be used to center a part in the plane. The field in Fig-

ure lb can be understood as a radial field with a rather coarse

discretization using only four different force directions. Note

that this field has a potential.

DEFINITION 7. A unit radial field R is a two-dimensional

force-vector field such that R(z) = −z/|z| if z = 0, and

R(0) = 0.

Note that R has a discontinuity at the origin. A smooth

radial field can be defined; for example, by R′(z) = −z.

PROPOSITION 10. Given the radial fields R and R′, the cor-

responding potential fields are U(z) = ||z||, and U ′(z) =
1
2
||z||2, respectively.

Note that U is continuous (but not smooth), while U ′ is

smooth.

Counterexample 1 (Skewed Squeeze Fields): Consider again

the skewed squeeze field in Figure 14. Note that, for example,

the integral on a cyclic path along the boundary of the disk

is nonzero. This explains why the disk-shaped part has no

equilibrium.

PROPOSITION 11. No skewed squeeze field has a potential.

Counterexample 2 (Parts with Point Contacts): Consider

again the globally unstable S-shaped part PS from Section

4 (Fig. 15). At first glance, this example may seem coun-

terintuitive. It can be shown (see Lemma 4) that there must

exist a pose zmin in which PS achieves minimal potential, so

why is PS not stable in pose zmin? To better understand this

problem, we investigate S-shaped parts with finite area con-

tacts, and the transition as their contact areas are decreased

towards 0.

Let us consider an S-shaped part with four square “feet.”

We choose the reference point at the COM, such that two

of the feet are centered at ±(rA, 0), and the other two feet

are at ±(rB cos φ, rB sin φ) with φ constrained to −π/2 <

φ < π/2 (Fig. 18). Figure 19 shows two equilibria for an

S-shaped part. It is easy to see that these are the only two

total equilibria, and that one of them (Fig. 19a) is unstable.

For the following discussion, it is sufficient to investigate the

behavior in a squeeze field with its reference point fixed at

(0,0).

Figure 20a shows the moment function MPS
and the po-

tential UPS
of an S-shaped part, where rA = 12, rB = 4, φ =



20 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

Fig. 18. An S-shaped part with four rigidly connected square

“feet” in configuration (x, y, θ) = (0, 0, 0), rA = 12, rB =

4, and φ = 60◦.

60◦, and the feet have area size 10. Notice that in poses with

θ -angles corresponding to minima in the potential, the mo-

ment has a root with negative slope, which indicates a stable

(orientation) equilibrium. Figures 20b and 20c show the (nor-

malized) moments and potentials for parts with feet sizes 5

and 1, respectively. We observe that with decreasing contact

areas, these functions become “less smooth,” and the slope at

the moment root increases. Figure 20d depicts moment and

potential for a part with infinitesimally small feet. In this case,

the moment function does not have a root at the minimum of

the potential; rather, it exhibits a discontinuity at this orien-

tation. This has the consequence that the part is not stable

in this pose. In fact, for the moment function in Figure 20d,

there exist no roots with negative slope, and hence there exists

no stable equilibrium.

This observation can be made mathematically precise. The

exact equations for the lifted potential and the moment of PS

are

UPS
= 2rA| cos θ | + 2rB | cos(θ + φ)|, (17)

MPS
= 2rAS(θ) + 2rBS(θ + φ),

with S(θ) =











sin θ if 0 ≤ θ < π/2 or 3/2π < θ < 2π,

− sin θ if π/2 < θ < 3/2π,

0 if θ = π/2 or θ = 3/2π.

(18)

The potential minimum is reached at θ = π/2 or θ =

3/2π . However, we see that, for example, MPS
(π/2) =

−2rBS(π/2 + φ) = −2rB cos φ 6= 0. Furthermore,

MPS
(π/2−) > 0, and M(π/2+) < 0. This implies that the

part PS will oscillate about θ = π/2. Under first-order dy-

namics, this oscillation will be infinitesimally small, because

any infinitesimal angular deflection of PS results in a restor-

Fig. 19. Total equilibria of an S-shaped part with area

contacts in a squeeze field. (a) Maximum potential, zmax =

(0, 0, θmax), such that rA sin θmax = −rB sin(θmax + φ);

θmax ≈ −0.24. (b) Minimum potential, zmin = (0, 0, θmin);

θmin ≈ π/2.

ing moment with opposed orientation. Under second-order

dynamics, the part may have a finite oscillation amplitude be-

cause of the inertia of the part. However, damping will reduce

this amplitude over time.

We conclude that parts with point contacts can exhibit

pathological behavior even in very simple and otherwise well-

behaved potential fields: this example shows that for such

parts, it is possible that the generalized force is not zero in a

pose that minimizes the potential of the part.

This pathology cannot occur when only parts with finite

area contact are allowed. From Corollary 3, we know that the

(lifted) potential of a part with area contact is C1; hence its

gradient exists everywhere. In particular, the gradient is zero

at the minimum of the potential. This means that in a pose

with minimum potential, the generalized force must be zero.

Let us summarize these results.
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Fig. 20. Moment function MPS
(thin line) and potential UPS

(thick line) for S-shaped parts: (a) feet have contacts of area size

10; (b) size = 5; (c) size = 1; (d) point contacts. Note how a discontinuity is created in the moment function when the contact

area is decreased toward 0.

COROLLARY 4. Let P be a part with finite area contact in a

force-vector field f with potential U . In a configuration z0

that corresponds to a local extremum of the lifted potential

UP , the lifted generalized force FP (z0) is zero.

In other words, for a first-order dynamical system and a

part P with finite-area contact, a local minimum (maximum)

of UP corresponds to a stable (unstable) equilibrium of P

in f .

Example 2 (Morphing and Combining Vector Fields). Our

strategies from Section 3 have switch points in time, where the

vector field changes discontinuously (Fig. 7). This is because

after one squeeze, for every part, the orientation equilibria

form a finite set of possible configurations, but in general

there exists no unique equilibrium (as shown in Section 3.3).

Hence, subsequent squeezes are needed to disambiguate the

part orientation. These switches are necessary for strategies

with squeeze patterns.

One may ask whether, using another class of potential field

strategies, unique equilibria may be obtained without discrete

switching. We believe that continuously varying vector fields

of the form (1 − t)f + tg, where t ∈ [0, 1] represents time,

and f and g are squeezes, may lead to vector fields that have

this property. Here, “+” denotes point-wise addition of vector

fields, and we will write “f  g” for the resulting continu-

ously varying field. By restricting f and g to be fields with

potentials U and V , we know that U + V and (1 − t)U + tV

are potential fields, and hence we can guarantee that f + g

and f  g are well-behaved strategies. These form the basis

of our new algorithms in Section 6.

Let us formalize the previous paragraphs. If f is a vector

field (in this case a squeeze pattern) that is applied to move

part P , we define the equilibrium set EP (f ) as the subset of

the configuration space C for which P is in equilibrium. Let

us write f ∗ g for a strategy that first applies vector field f ,

and then vector field g, to move part P . f + g can be under-

stood as applying f and g simultaneously. We have shown

that in general, EP (f ) is not finite, but for two orthogonal

squeezes f and g, the discrete-switching strategy f ∗g yields

a finite equilibrium set EP (f ∗g) (see Section 6.2, Claim 1 ).

Furthermore, for some parts, the equilibrium is unique up to

symmetry.
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We wish to explore the relationship between equilibria

in simple vector fields EP (f ) or EP (g), combined fields

EP (f +g), discretely switched fields EP (f ∗g), and contin-

uously varying fields EP (f  g). For example, one may ask

whether there exists a strategy with combined vector fields, or

continuously varying fields, that, in just one step, reaches the

same equilibrium as a discretely switched strategy requiring

multiple steps. Finally, let f1 ∗ f2 ∗ . . . ∗ fs be a sequence of

squeeze fields guaranteed to uniquely orient a part P under

assumption 2Phase. We wish to investigate how continuously

varying strategies such as f1  f2  . . .  fs can be em-

ployed to dynamically achieve the same equilibria even when

the 2Phase assumption is relaxed. The distributed actuation

strategy f ∗ g is distributed in space, but not in time. The

strategy f +g is parallel with respect to space and time, since

f and g are simultaneously “run.” Research in this area could

lead to a theory of parallel distributed manipulation that de-

scribes spatially distributed manipulation tasks that can be

parallelized over time and space by superposition of controls.

5.3. Upward-Shaped Potential Fields

So far we have presented specific force fields that always

(e.g., squeeze and radial fields) or never (e.g., skewed squeeze

fields) induce stable equilibria on certain classes of parts. We

conclude this section with a criterion that provides a sufficient

condition on force fields such that all parts of a certain size

reach a stable equilibrium.

We have observed in Section 4 that a priori it is not obvious

when a force field induces stable equilibria. Our equilibrium

criterion will be based on two important properties:

1. The field has a potential. Potential fields do not allow

closed paths (technically, limit cycles) along which the

work is positive, which could induce infinite motion of

a part.

2. The force field is “inward-directed,” which implies that

(assuming first-order dynamics) parts can never leave a

certain region, R. This useful property is a direct con-

sequence of the definition of inward-directedness. An

inward-directed force field corresponds to an “upward-

shaped” potential, in which all paths that leave region

R have an ascending slope.

We will require Property 1 to hold for the entire force field,

while Property 2 devolves to a boundary condition.

5.3.1. Elementary Definitions

DEFINITION 8. Let z ∈ R
n. The ǫ-ball around z, denoted

Bǫ(z), is the set {r ∈ R
n| |r − z| < ǫ} of all points within a

distance ǫ of z.

DEFINITION 9. (Lozano-Pérez 1983). Let A, B be sets in

R
n. The Minkowski sum A ⊕ B of two sets A and B is

defined as the set {a + b|a ∈ A, b ∈ B}.

From these definitions, it follows that for a region R with

boundary ∂R, the set ∂R ⊕ Bd(0) = {r + z|r ∈ ∂R, and

|z| ≤ d} comprises all points that are within a distance d

from the boundary of R.

DEFINITION 10. Given a region R ⊂ R
n, define the set

CI (R, d) = R − (∂R ⊕ Bd(0), which is the region R

shrunk by distance d . Note that CI (R, d) is based upon

the configuration-space interior (Lozano-Pérez 1983) of R

for Bd(0). Abusing terminology slightly, we call CI (R, d)

the configuration-space interior of R in this paper.

DEFINITION 11. The radius rP of a part P is the maximum

distance between an arbitrary point of P and the center of

mass (COM) of P .

5.3.2. Equilibrium Criterion

We are now able to state a general criterion for a force field

f to induce stable equilibria on all parts in a region S. As

mentioned at the beginning of Section 5.3, this criterion is

based on two main conditions: (1) if f has a potential, limit

cycles with positive energy gain are avoided inside S; and

(2) if f is “inward-directed” (see the definition below), parts

cannot leave the region S.

In the following, we give a general definition of inward-

directed vector fields on a manifold Z. We then specialize the

definition to the special instances of Z = C = R
2 × S

1 (the

configuration space) and Z = R
2, and give a sufficient, prac-

tical condition for inward-directed vector fields. We conclude

with the presentation of our equilibrium criterion.

DEFINITION 12. (Inward-Directed Force Fields).5 Let Z be

an arbitrary smooth manifold, and let Y ⊂ Z be a compact

and smooth submanifold with boundary of Z. Assume that

∂Y has codimension 1 in Z, and that the boundary of Y is

orientable. Let q ∈ ∂Y be a point on the boundary of Y , and

Vq ∈ TqZ be a tangent vector to Z at q.

We say Vq is inward-directed to ∂Y at q if there exists a

sufficiently small ǫ > 0 such that q + ǫVq ∈ Y .

Let V be a vector field on Z. We say V is inward-directed

to ∂Y if V (q) is inward-directed to ∂Y at q for all q ∈ ∂Y .

Assume the set S ⊂ R
2 is compact and smooth. Consider

the part P when it is placed into the force field f such that

its COM lies in S. The set of all such poses is a subset of the

configuration space C = R
2 ×S

1, which we call S̃ = S ×S
1.

The boundary of S̃ is ∂S̃ = ∂S×S
1. Note that ∂S̃ separates the

interior iS̃ = S̃ − ∂S from the exterior C−S̃ = R
2 −S)×S

1,

and that ∂S̃ is isomorphic to a torus S
1 × S

1.

Now let z = (x, y, θ) ∈ ∂S̃, and let Fz ∈ TzC represent

the lifted generalized force acting on part P in pose z. Fz

is inward-directed (with respect to ∂S̃) if Fz points into the

interior of S̃. Note that this condition is equivalent to saying

5. In this definition, for convenience we assume that Z is embedded in R
m

for some m. This condition may be relaxed.
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that the projection of Fz onto the tangent space at (x, y) to

R
2 points into S, because the rotational component of Fz is

tangential to ∂S̃. So, for example, if z = (x, y, θ) ∈ ∂S̃, then

z′ = (x, y, θ ′) ∈ ∂S̃ for any θ ′.

The following proposition gives a simple condition on a

force field f that tells us if, for a given part P , its lifted

generalized force field FP is inward-directed:

PROPOSITION 12. Let P be a part with radius r whose COM

is the reference point used to define its configuration space C

= R
2 × S

1. Let f be a force-vector field defined on a region

R ⊂ R
2, with FP the corresponding lifted generalized force

field. Let S ⊂ R
2 be a convex, compact, and smooth subset

of the configuration-space interior of R, and S ⊂ CI (R, r).

Consider a point q ∈ ∂S with outward normal nq , and a

ball Br(q) with radius r about q. If for every point q ∈ ∂S,

and for every point s in the corresponding ball Br(q), the

dot-product g(s) = f (s) · nq is less than 0, then the lifted

generalized force field FP is inward-directed to ∂S (note: (·)

is the standard inner product).

Proof. Consider the part P in pose z = (x, y, θ) ∈ ∂S̃ such

that q = (x, y). P has radius r; hence it lies completely

inside the ball Br(q), independent of its orientation θ . As

we know that g(p) = f (p) · nq < 0 for all p ∈ Br(q),

we can conclude that the integral of g(p) over P is also less

than 0:
∫

P
g(p)dA =

∫

P
f (p) · nqdA = fP · nq < 0. This

implies that for fP , which is the translational component of

FP (see Definition 6), the vector q + ǫfP (z) lies inside S, if

ǫ is positive and sufficiently small. As mentioned above, this

suffices to ensure that the vector z + ǫFP (z) lies inside S̃.[]

LEMMA 4. (Equilibrium Criterion). Let P be a polygonal

part with radius r , let f be a force field with potential U

defined on a region R ⊂ R
2, and let S ⊂ R as specified in

Proposition 12. Let us also assume that the motion of part P

is governed by first-order dynamics.

If the lifted force-vector field FP is inward-directed to ∂S̃,

then the part P will reach a stable equilibrium under f in iS̃

whenever its COM is initially placed in S.

Proof. Assume that the COM of part P is placed at a point

(x, y) ∈ S. This means that P is in some pose z = (x, y, θ) ∈

S̃. We now show that the COM of P cannot leave S when

initially placed inside S. We know that ∂S̃ separates iS̃ from

C −S̃. Hence every path from z to some z∗ ∈ C −S̃ must

intersect ∂S̃ at some point z′ ∈ ∂S̃. Now consider part P in

pose z′. Under first-order dynamics, its velocity must be in

the direction of FP (z′). Because FP is inward-directed, the

velocity of P must be toward iS̃. In particular, this means

that the COM will move into iS; hence P cannot leave S, and

that there is no equilibrium on ∂S.

Because of Proposition 7, f , and hence FP , have potential

U and UP , respectively. Therefore limit cycles with energy

gain are not possible. Furthermore, UP (S̃) is the continuous

image of a compact set, S̃. Therefore the image UP (S̃) is a

compact subset of R, which has a minimum value attained by

some point s ∈ S̃. Since f is inward-directed, s must lie in

iS̃. This minimum is a stable equilibrium of P in f , as shown

in Corollary 4. []

Because of Lemma 4, the use of potential fields is invalu-

able for the analysis of effective and efficient manipulation

strategies, as discussed in the following section. In particular,

it is useful for proving the completeness of a manipulation

planner.

6. New and Improved Manipulation Algorithms

The part-alignment strategies in Section 3.3 have switch points

in time where the vector field changes discontinuously (Fig.

12). We can denote such a switched strategy byf1∗f2∗. . .∗fs ,

where the fi are vector fields. In Section 3.3, we showed that

a general squeeze strategy to align a (nonconvex) polygonal

part with n vertices may need up to O(kn2) switches, and

require O(k2n4)time in planning (k is the maximum number

of polygon edges that a bisector can cross). To improve these

bounds, we now consider a broader class of vector fields in-

cluding simple squeeze patterns, radial, and combined fields,

as described in Section 5.

In Section 6.1 we show how, by using radial and combined

vector fields, we can significantly reduce the complexity of

the strategies from that of Section 3. In Section 6.2 we de-

scribe a general planning algorithm that works with a limited

“grammar” of vector fields (and yields, correspondingly, less-

favorable complexity bounds).

6.1. Radial Strategies

Consider a part P in a force field f . Some force fields exhibit

rotational symmetry properties that can be used to generate

efficient manipulation strategies:

Property 1: There exists a unique pivot point v of P such

that P is in translation equilibrium if and only if v coincides

with 0.

Property 2: There exists a unique pivot point v of P such

that P is in (neutrally stable) orientation equilibrium if and

only if v coincides with 0.

We typically think of the pivot point v being a point of P ;

however, in generality, just like the center of mass of P , v

does not need to lie within P , but instead is some fixed point

relative to the reference frame of P . Now consider the part

P in an ideal unit radial force-vector field R as described in

Section 5.

PROPOSITION 13. In a unit radial field R, Properties 1 and 2

hold.

Proof. First, we fix the part P at an arbitrary orientation θ ,

and show that at this orientation P has a unique translation
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equilibrium v(θ). That is, placing v(θ) at the origin is nec-

essary and sufficient for P to be in translation equilibrium at

orientation θ . Second, we show that for any two distinct ori-

entations θ and θ ′, v(θ) = v(θ ′). We call this unique point v,

dropping the orientation θ . Finally, we argue that whenever

P is in translation equilibrium (i.e., v is at the origin), P is

neutrally stable with respect to orientation. This follows by

the radial symmetry of R.

Consider the translational forces (but not the moments)

acting on P in the radial field R. To do this, let us sepa-

rate R into its x- and y-components, Rx , and Ry , such that

R = (Rx, Ry). Assume for now that the orientation of P

is fixed. If P is placed at a position z0 ∈ R
2, whose x-

coordinate is sufficiently negative, the total force induced by

Rx on P will point in the positive x-direction. Symmetri-

cally, placing P at a sufficiently large positive x-coordinate

will cause a force in the negative x-direction. We claim that

by translating P rigidly with an increasing x-coordinate, this

force decreases continuously and strictly monotonically, and

hence has a unique root.

To verify this claim, consider a small area patch P0 of

P . A uniform translation t of P0 in the x-direction can be

described as P(t) = P0 ⊕ (z0 + t x̂) (with z0 the initial po-

sition of the patch, x̂ the unit vector in the x-direction, and

⊕ the Minkowski sum). The total force on P(t) in the x-

direction is
∫

P(t)
RxdA. This force decreases continuously

and strictly monotonically with t , because Rx is strictly mono-

tone and continuous everywhere except on the x-axis, which

has measure zero in R
2. A similar argument applies for the

y-direction, and because of the radial symmetry of R, for any

direction.

If we choose the set S as a sufficiently large disk-shaped

region around the origin, and recall that R has a potential, we

can apply Lemma 4 to conclude that there must exist at least

one total equilibrium for P . Now assume that there exist two

distinct equilibria e1 = (x1, y1, θ1), and e2 = (x2, y2, θ2) for

P in R. We write “P(ei)” to denote that P is in configuration

ei . Because of the radial symmetry of R, we can reorient

P(e2) to P(e′
2) such that its orientation is equal to P(e1 :

e′
2 = (x′

2, y
′
2, θ1), where

(

x′
2

y′
2

)

= M
(

x2

y2

)

, and M is a rotation

matrix with angle θ1 − θ2 (Fig. 21). This reorientation does

not affect the equilibrium. Note that P can be moved from e1

to e′
2 by a pure translation. From above, we know that such a

translation of P corresponds to a strictly monotone change in

the translational forces acting on P . Hence we conclude that

P(e1) and P(e′
2) cannot both be in translation equilibrium

unless e1 and e′
2 are equal. This implies that e1 and e2 cannot

both be equilibria of P in R unless they both have the same

pivot point v. �

Definition 7 assumes that the center of a radial field lies at

the origin. This definition can be generalized to radial fields

with arbitrary centers (xc, yc). Then properties 1 and 2 hold

when the pivot point v coincides with (xc, yc). Surprisingly,

Fig. 21. Rotating a part about the center of a unit radial field.

The force and torque on the part remain constant with respect

to its reference frame.

v need not be the center of area P : for example, consider

again the part in Figure 9, which consists of a large and a

small square connected by a long rod of negligible width.

The pivot point of this part will lie inside the larger square.

But if the rod is long enough, the center of area will lie outside

of the larger square. However, the following corollary holds:

COROLLARY 5. For a part P in a continuous radial force field

R′ given by R′(z) = −z, the pivot point of P coincides with

the center of area of P .

Proof. The force acting on P in R′ is given by F =
∫

P
−zdA,

which is also the formula for the (negated) center of area. �

Now suppose that R is combined with a unit squeeze pat-

tern S, which is scaled by a factor δ > 0, resulting in R + δS.

The squeeze component δS of this field will cause the part

to align with the squeeze, similarly to the strategies in Sec-

tion 3.3. But note that the radial component R keeps the part

centered in the force field. Hence, by keeping R sufficiently

large (or δ small), we can assume that the pivot point of P

remains within an ǫ-ball of the center of R. This implies that

assumption 2Phase (see Section 3.3) is no longer necessary.

Moreover, ǫ can be made arbitrarily small by an appropriate

choice of δ.

PROPOSITION 13. Let P be a polygonal part with n vertices,

and let k be the maximum number of edges that a bisector of

P can cross. Let us assume that v, the pivot point of P , is in

general position. There are at most O(kn) stable equilibria

in a field of the form R + δS if δ is sufficiently small and

positive.

Proof. For a part in equilibrium in a pure radial field R (i.e.,

with δ = 0), the pivot point v is essentially fixed at the origin.

This is implied by Property 1. It is easy to see that Property 1

is not true in general for arbitrary fields of the form R + δS.

Property 1 holds if δ = 0, because then any orientation is an
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equilibrium when v is at the center of R. However, Property

2 does not hold if δ > 0, because in general there does not

exist a unique pivot point in squeeze fields (see Section 3.3).

We conduct the combinatorial analysis of the orientation

equilibria under the assumptions that (1) δ > 0, and (2) that v

is fixed at the origin. Then we relax the latter assumption, and

show that Property 1 holds, approximately, even in R+δS, for

a sufficiently small δ > 0. That is, we show that a sufficiently

small δ can be chosen so that the combinatorial analysis is

unaffected when assumption (2) is relaxed.

First, we show that when δ is small but positive, and with

v fixed at the center of R, there are only a linear number

of orientation equilibria (i.e., we constrain the pivot point v

to remain fixed at the origin until further notice). So let us

assume that we are in a combined radial and small squeeze

field R + δS.

Consider a ray w(0) emanating from v. Assume without

loss of generality that v is not a vertex of P , and that w(0)

intersects the edges S(0) = {e1, . . . , ek} of P in general po-

sition, 1 ≤ k ≤ n. Parameterize the ray w(·) by its angle φ

to obtain w(φ). As φ sweeps from 0 to 2π , each edge of P

will enter and leave the crossing structure S(φ) exactly once.

S(φ) is updated at critical angles where w(φ) intersects a

vertex of P . Since there are n vertices, there are O(n) criti-

cal angles, and hence O(n) changes to S(φ) overall. Hence,

since between critical angles S(φ) is constant, we see that

S(φ) takes on O(n) distinct values. Now place the squeeze

line l to coincide with w(φ). For a given crossing structure

S(φ) ∪ S(φ + π), satisfying conditions 1 and 2 as defined

in Section 3.3 devolves to solving two equations. The first

equation provides the condition for translation equilibrium,

while the second equation implements the condition for ori-

entation equilibrium. The latter equation is called the moment

function M(φ), because it describes the moment acting on P

as a function of φ. (But note that M is different from the mo-

ment function defined in Section 3.3, because here the part

rotates about a fixed pivot point.) In analogy to Section 3.3,

it can be shown that these equations are algebraic and of de-

gree k, where k is the maximum number of edges intersected

by the squeeze line as described in Section 3.2. This implies

that between any two adjacent critical values there are only

O(k) orientations of l (given by w(φ)) that satisfy conditions

1 and 2. Hence, the overall number of orientations satisfying

conditions 1 and 2 is O(k, n).

If δ > 0, the part P will be perturbed, so that Property

1 is only approximately satisfied. (That is, we can relax the

assumption that v is constrained to be at the origin). However,

we can ensure that v lies within an ǫ-ball around the origin (the

center of the radial field). To see this, first consider P at some

arbitrary configuration z in the squeeze field δS. The total

squeeze force on Pz is given by the area integral δSP (z) =
∫

Pz
δSdA. (Recall that SP denotes the lifted force field of S;

see Definition 6, eq. (13).) Now δSP is bounded above by

|δSP | ≤ δA, where A is the area of P (note that S is a unit

squeeze field).

P is in equilibrium with respect to the radial field R if v is

at the origin. Now consider the lifted force RP when the pivot

point of P is not at the origin. More specifically, let vz be the

pivot point of Pz, and let us define a set RP (d) = {|RP (z)|

such that |vz| = d}. We also define a function R̂P (d) = min

{RP (d)}. This function is well defined, because RP (d) is

the continuous image of a compact set; hence the minimum

exists. R̂P (d) is the minimum magnitude of the lifted force

acting on Pz when its pivot point vz is at distance d from the

origin.

By decomposing RP into its x- and y-components, we can

write |RP | as
√

R2
P,x + R2

P,y . Because of the radial symmetry

of R, let us assume without loss of generality that vz = (d, 0).

From the proof of Proposition 13, we know that for any given

orientation of Pz, the magnitude of RP,x increases continu-

ously and strictly monotonically with increasing d ≥ 0. Fur-

thermore, RP,y is continuous in d, and RP,y(0) = 0, so R2
P,y

is continuous and monotonically increasing for all d less than

some sufficiently small d0 > 0. Hence for any fixed orien-

tation of Pz, RP is a continuous and strictly monotonically

increasing function for all d ∈ |0, d0 |.

Now suppose that R̂P (d) is not strictly monotone, i.e., that

there exist d1, d2 with 0 ≤ d1 < d2, but R̂P (d1) ≥ R̂P (d2).

Then there must exist z1, z2 with |vz1
| = d1 and |vz2

| = d2,

and |RP (z1)| = R̂P (d1) ≥ R̂P (d2) = |RP (z2)|. Let us define

z′
2 such that z′

2,θ = z2θ and vz′
2

= cvz2
for some c ∈ R, i.e.,

vz2
and vz′

2
lie on a line through the origin. If we choose 0 ≤

c < 1, then RP (z′
2)| < |RP (z2)|, because |RP | is monotone,

as shown in the previous paragraph. In particular, if we choose

c = d1/d2, then RP (z′
2)| < |RP (z2)| ≤ |RP (z1)| = R̂P (d1),

and |vz′
2
| = |vz1

|. This is a contradiction to the definition of

R̂P (d1) = min {RP (d)}. We conclude that RP is continuous

and strictly monotone for sufficiently small d ≥ 0.

Now consider Pz in the combined field R+δS, and again let

d denote the distance between pivot point vz and the origin.

In equilibrium, the lifted forces RPz and δSPz balance out;

hence R̂P (d) ≤ |RPz | = |δSPz | ≤ δA, with A the area of

P . Since R̂P is continuous and strictly monotone in d for

sufficiently small d, we can ensure that d is less than a given

ǫ, by choosing an appropriately small δ. This implies that vz

must lie within an ǫ-ball of the center of the radial field. In

particular, we can make this ǫ-ball small enough so that the

crossing structure S(φ) is not affected.

Finally, we have to ensure that the stable equilibria, as

predicted by the moment function M , are approximated arbi-

trarily closely. This means that the disturbance in the moment

function, caused by pivot point vz not exactly coinciding with

the center of the radial field, can be made arbitrarily small.

To see this, first consider the original (unperturbed) moment

function M , which describes the moment acting on the part

P if its pivot point coincides with the origin. In this case, the

moment is caused solely by the squeeze field δS, while P is
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in equilibrium with respect to the radial field R.

Now consider the disturbance in M if the pivot point vz is

not exactly at the origin, but somewhere in an ǫ-ball around it.

Let us call this disturbance 1M , and note that 1M has two

components: 1MδS , which is the change in moment caused

by the squeeze field δS, and 1MR , the disturbance caused by

the radial field R.

For a part P at a given orientation, any ǫ-displacement

of vz can change the force in a squeeze field δS by at most

|1FδS | ≤ δǫdP , where dP is the maximum diameter of P .

Hence 1MδS = r×1FδS is proportional to the product of the

disturbance in location ǫ, and the magnitude of the squeeze

field δ (r is the fixed distance between pivot point and COM

of P ), i.e., |1MδS | = O(δǫ).

Since the force caused by the radial field R balances the

force generated by the squeeze field δS, we obtain the same

bounds for 1MR . We see that 1M = 1MδS + 1MR =

O(δǫ). Recall that ǫ decreases strictly monotonically with

δ; hence 1M decreases asymptotically faster than δ. This

ensures that we can find a sufficiently small δ such that the

moment function M is approximated arbitrarily closely, and

the equilibria of the squeeze field δS are not affected.

We conclude that the number of equilibria in a field R+δS

is bounded by O(kn), for sufficiently small δ. �

In analogy to Section 3.3, we define the turn function

t : S
1 → S

1, which describes how the part will turn un-

der a squeeze pattern, and hence yields the stable equilibrium

configurations. Given the turn function t , we can construct

the corresponding squeeze function s as described in Sec-

tion 3.3. With s as the input for the alignment planner de-

scribed by Goldberg (1993), we obtain strategies for unique

part alignment (and positioning) of length O(kn). They can

be computed in time O(k2n2).

The result is a strategy for parts positioning of the form

(R + δS1) ∗ · · · ∗ (R + δSO(kn)). Compared to the general

squeeze algorithm in Section 3.3, it improves the plan length

by a factor of n, and the planning complexity is reduced by a

factor of n2 . The planner is complete: for any polygonal part,

there exists a strategy of the form ∗i(R + δSi). Moreover, the

algorithm is guaranteed to find a strategy for any input part.

By appending a step that is merely the radial field R without a

squeeze component, we are guaranteed that the part P will be

uniquely posed (v is at the origin) as well as uniquely oriented.

We can also show that the continuously varying “morphing”

strategy (R + δS1)  · · · (R + δSO(kn)) R works in

the same fashion to achieve the same unique equilibrium.

6.2. Manipulation Grammars

The development of devices that generate programmable vec-

tor fields is still in its infancy. The existing prototype devices

exhibit only a limited range of programmability. For example,

the prototype MEMS arrays described in Section 2.1 currently

have actuators in only four different directions, and the actu-

ators are only row-wise controllable. Arrays with individu-

ally addressable actuators at various orientations are possible

(Böhringer et al. 1994a, 1994b; Liu and Will 1995; Böhringer,

Donald, and MacDonald 1996b; Suh et al. 1996) but require

significant development effort. There are also limitations on

the resolution of the devices given by fabrication constraints.

For the vibrating-plate device from Section 2.2, the fields are

even more constrained by the vibrational modes of the plate.

We are interested in the capabilities of such constrained

systems. In this section, we give an algorithm that decides

whether a part can be uniquely positioned using a given set of

vector fields, and it synthesizes an optimal-length strategy if

one exists. Furthermore, in Section 6.2, the vector fields we

consider may be arbitrary, and in particular can vary in magni-

tude (as opposed to unit-squeeze fields). If we think of these

vector fields as a vocabulary, we obtain a language of manipu-

lation strategies. We are interested in those expressions in the

language that corresponds to a strategy for uniquely posing

the part.

We define two basic operations on vector fields. Consider

two vector fields f and g : f +g denotes point-wise addition,

and f ∗ g denotes sequential execution of f and then g.

DEFINITION 13. Let P be an arbitrary planar part. A finite

field operator is a sequence of vector fields that brings P from

an arbitrary initial pose into a finite set of equilibrium poses.

A field operator comes with the following guarantee: no

matter where in R
2 ×S

1 the part starts off, it will always come

to rest in one of E different total equilibria (Fig. 22). That

is, for any polygonal part P , either of these field operators is

always guaranteed to reduce P to a finite set of equilibria in

its configuration space C = R
2 × S

1.

From Section 6.1, we know that combined radial squeeze

patterns R + δS have this property. However, there are other

simple field operators that also have this finiteness property.

CLAIM 1. Let f and f⊥ be unit-squeeze fields such that f⊥

is orthogonal to f . Then the fields f ∗f⊥ and f +f⊥ induce

a finite number of equilibria on every connected polygon P ;

hence f ∗ f⊥ and f + f⊥ are finite field operators.

Proof. First, consider the field f ∗ f⊥, and without loss of

generality assume that f (xy) = (−sign(x), 0). Also assume

that the COM of P is the reference point used to define its

configuration space, C = R
2 × S

1. As discussed in Sections

3.2 and 3.3, P will reach one of a finite number of orientation

equilibria when placed in f or f⊥. More specifically, when

P is placed in f , there exists a finite set of equilibria Ef =

{(xi, θi)}, where xi is the offset fromf ’s squeeze line, and

θi is the orientation of P (see Section 3.4). Similarly for

f⊥(x, y) = (0, −sign(y)), there exists a finite set of equilibria

Ef⊥ = {(yj , θj )}. Since the x-component of f⊥ is zero, the

x-coordinate of the reference point of P (the COM) remains

constant while P is in f⊥. Hence P will finally come to rest in

a pose (xk, yk, θk), where xk ∈ π1(Ef ), (yk, θk) ∈ Ef⊥ , and
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Fig. 22. Manipulation vocabulary for a triangular part on a

vibrating plate, consisting of two consecutive force fields

with slightly curved nodal lines (attractors), which bring the

part into (approximately) the same equilibria.

π1 is the canonical projection such that π1(x, θ) = x. Since

Ef is finite, so is π1(Ef ). E(f⊥) is also finite; therefore,

there exists only a finite number of such total equilibrium

poses for f ∗ f⊥.

If P is placed into the field f + f⊥, there exists a unique

translation equilibrium for every given, fixed orientation θ . In

each of these translation equilibria, the squeeze lines of f and

f⊥ are both bisectors of P . Now consider the moment acting

on P when P is in translation equilibrium as a function of

θ . Since there are O(n2) topological placements for a single

bisector, therefore there exist also only O(n2) topological

placements for two simultaneous, orthogonal bisectors. In

analogy to Proposition 1 in Section 3.2, we can show that for any

topological placement of the bisectors, this moment function

has at most O(k) roots, where k is the maximum number of

edges a bisector of P can cross. This implies that there exist

only O(kn2) distinct total equilibria for f + f⊥. �

If we can assume that the 2Phase assumption holds, then

Claim 1 leads to an interesting extension of the parts-orienting

algorithm described in Section 3.3. Let fx and fy be two or-

thogonal squeeze fields with their squeeze lines coinciding

with the x-axis and the y-axis, respectively. Note that fx ∗fy

is a finite field operator. Let us append fx ∗ fy to an orient-

ing strategy, s. After s has been executed, the part will be

uniquely orientated. Assuming that the 2Phase assumption

holds, fx ∗ fy first brings the y-coordinate and then the x-

coordinate of the part to a unique value, while maintaining

unique orientation. Hence, given an arbitrary parts-orienting

strategy s, by executing s ∗ fx ∗ fy , we obtain unique posi-

tioning and orienting.6

6. This scheme can be simplified even further: Let sn be the last squeeze of

the orienting strategy s. Let s⊥
n be a squeeze field orthogonal to sn. Then it

is easy to show that s ∗ s⊥
n uniquely positions and orients the part.

COROLLARY 6. Let f be a finite field operator for a part P ,

and let g be an arbitrary vector field. Then the sequence g ∗f

is a finite field operator.

Proof. By definition of a finite field operator, f brings the

part P into a finite set of equilibrium poses from arbitrary

initial poses, in particular, from the poses that are the result

of field g. �

Thus, by pre-pending an arbitrary sequence of fields to a

finite field operator, one can always create a new finite field

operator (possibly with a smaller set of discrete equilibria). In

the remainder of this section, however, we will only consider

finite field operators of minimal length, i.e., field sequences

from which no field can be removed without losing the finite-

ness property (Definition 13).

We have seen in Sections 3 and 5 that for simple force fields

such as squeeze or radial fields, we can predict the motion and

the equilibria of a part using exact analytical methods. How-

ever, for arbitrary fields (e.g., the force fields described in

Section 2.2, which are induced by vibrating plates), such al-

gorithms are not known. Instead, we can employ approximate

methods to predict the behavior of the part in the force field.

These methods are typically numerical computations that in-

volve simulating the part from a specific initial pose, until it

reaches equilibrium.7 We call the cost for such a computation

the simulation complexity s(n). We write s(n), because the

simulation complexity will usually depend on the complexity

of the part, i.e., its number of vertices n (for more details also

see the work of Donald and Xavier (1995)).

PROPOSITION 14. Consider a polygonal part P , and m finite

field operators {Fi}, 1 ≤ i ≤ m, each with at most E distinct

equilibria in the configuration space C for P . There exists an

algorithm that generates an optimal length strategy of the form

F1 ∗F2 ∗· · ·∗Fl to uniquely pose P up to symmetries, if such

a strategy exists. This algorithm runs in O(m2E(s(n)+ 2E))

time, where s(n) is the simulation complexity of P in Fi . If

no such strategy exists, the algorithm will signal failure.

Proof. Construct a transition table T of size m2E that de-

scribes how the part P moves from an equilibrium of Fi to an

equilibrium of Fj . This table can be constructed either by a

dynamic analysis similar to that in Section 3.1, or by dynamic

simulation. The time to construct this table is O(m2Es(n)),

where s(n) is the simulation complexity, which will typically

depend on the complexity n of the part.

Using the table T , we can search for a strategy as follows:

define the state of the system as the set of possible equilibria

a part is in, for a particular finite field operator Fi . There are

O(E) equilibria for each finite field operator; hence, there are

O(m2E) distinct states. For each state, there are m possible

7. See, for example, the World Wide Web at www.ee.washington.edu/faculty/

karl/Research/.
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successor states, as given by table T , and they can each be

determined in O(E) operations, which results in a graph with

O(m2E) nodes, O(m22E) edges, and O(m2E2E) operations

for its construction. Finding a strategy, or deciding that one

exists, then devolves to finding a path whose goal node is a

state with a unique equilibrium. The total running time of this

algorithm is O(m2E(s(n)) + 2E)).

Hence, as discussed by Erdmann and Mason (1988), for

any part we can decide whether a part can be uniquely posed

using the vocabulary of field operators {Fi}, but (1) the plan-

ning time is worst-case exponential, and (2) we do not know

how to characterize the class of parts that can be oriented by

a specific family of operators {Fi}. However, the resulting

strategies are optimal in length.

Manipulation grammars are discussed in much greater de-

tail by Böhringer and colleagues (forthcoming) in the context

of the limited manipulation vocabulary generated by vibrating

plates.

7. Conclusions and Open Problems

The following table 1 summarizes fields and algorithms for ma-

nipulation tasks with programmable force fields, and includes

some additional recent results.

Less-difficult tasks such as translation can be achieved with

relatively simple fields and without any planning. More com-

plex tasks, such as centering or unique orienting, require in-

creasingly complex fields. However, planning complexity is,

e.g., higher for sequences of squeeze fields, and lower for the

more complex combined radial + squeeze fields. This illus-

trates a trade-off between mechanical complexity (the dexter-

ity and controllability of actuator-array elements) and compu-

tational complexity (the algorithmic difficulty of synthesizing

a strategy). For example, if one is willing to build a device

capable of radial fields, then one reaps great benefits in plan-

ning and execution speed. On the other hand, we can still plan

for simpler devices, but the plan synthesis is more expensive

(worst-case exponential in the number of equilibria), and we

lose some completeness properties.

We believe that the rapid growth in this research area

will continue. Even though a science base for manipulation

with programmable force fields has emerged, many important

questions remain open. Some topics for future work are listed

in the following paragraphs.

• Universal feeder-orienter (UFO) devices. It was shown

in Proposition 1 that every connected polygonal part

P with n vertices has a finite number of stable orien-

tation equilibria when P is placed into a squeeze field

S. Based on this property, we were able to generate

manipulation strategies for unique part alignment. We

showed in Section 6.1 that by using a combined ra-

dial and squeeze field R + δS, the number of equilibria

can be reduced to O(kn). Using elliptic force fields

f (x, y) = (αx, βy) such that α 6= β and α, β 6= 0,

this bound can be reduced to two (Kavraki 1995, 1997).

,

In

a stable equilibrium, the part’s major principal axis of

inertia lines up with the squeeze line to minimize the

second moment of inertia.

Does there exist a universal field that, for every part

P , has only one unique equilibrium (up to part sym-

metry)? Such a field could be used to build a universal

parts feeder (Abell and Erdmann 1996) that uniquely

positions a part without the need of a clock, sensors, or

programming.

We propose a combined radial and “gravitational” field

R + δG that might have this property. δ is a small pos-

itive constant, and G is defined as G(x, y) = (0, −1).

This device design is inspired by the “universal grip-

per” described by Abell and Erdmann (1996). Such a

field could be obtained from a MEMS array that imple-

ments a unit radial force field. Instead of rectangular

actuators in a regular grid, triangular actuators could

be laid out in a polar-coordinate grid. The array could

then be tilted slightly to obtain the gravity component;

hence, such a device would be relatively easy to build.

Alternatively, a resonating speaker, or a vibrating disk-

shaped plate that is fixed at the center, might be used to

create a radial force field. Extensive simulations show

that for every part we have tried, one unique total equi-

librium is always obtained. We are working toward a

rigorous proof of this experimental observation.

• Abstraction barriers. We believe that programmable

force fields can be used as an abstraction barrier be-

tween parts positioning and feeding applications and

devices implementing the requisite mechanical two-

dimensional force fields (MEMS arrays, vibratory de-

vices, or other devices). That is, applications such as

parts feeding can be formulated in terms of the force

fields required. This then serves as a specification that

the underlying device technology must deliver. Con-

versely, the capabilities of MEMS-array or vibratory-

device technology can be formulated in terms of the

force fields they can implement. This means that de-

vice designers can potentially ignore certain details of

the application process, and instead focus on match-

ing the required force-field specification. This would

free application engineers from needing to know much

about process engineering, in the same way that soft-

ware and algorithm designers often abstract away from

details of the hardware. Such an abstraction barrier

could permit hierarchical design, and allow application

designs with greater independence from the underlying

device technology.
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Table 1.

Complexity

Task Field(s) Fields Planning Plan Steps

Translate Constant Constant magnitude − 1

and direction

Center Radial Constant magnitude, − 1

continuous directions

Orthogonal squeezes Piecewise constant O(1) O(1)

magnitude and direction

Uniquely orient Sequence of squeezes Piecewise constant O(k2n4) O(kn2)

magnitude and direction

Inertial Smooth magnitude O(1) O(1)

piecewise-constant direction

Uniquely pose Manipulation grammar m arbitrary fields, O(m22E) O(m2E)

at most E stable equations (not com-

plete)

Sequence of radial + squeeze Piecewise-continuous O(k2n2) O(kn)

magnitude and direction

Elliptic Smooth magnitude and direction O(1) O(1)

UFO Continuous magnitude and direction −− 1

• Magnitude control. Consider an array in which the

magnitude of the actuator forces cannot be controlled.

Does there exist an array with constant magnitude in

which all parts reach one unique equilibrium? Or can

one prove that, without magnitude control, the number

of distinct equilibria is always greater than one?

• Geometric filters. This paper focuses mainly on sensor-

less manipulation strategies for unique positioning of

parts. Another important application of programmable

vector fields are geometric filters, which would be use-

ful for the sorting and singulation of parts. Figure 1

shows a simple filter that separates smaller and larger

parts. We are interested in the question, Given n parts,

does there exist a vector field that will separate them

into specific equivalence classes? For example, does

there exist a field that moves small and large rectangles

to the left, and triangles to the right? In particular, it

would be interesting to know whether for any two dif-

ferent parts there exists a sequence of force fields that

will separate them.

• Force-field computers. In this paper, we have demon-

strated that even with a rather limited vocabulary of

simple force fields, useful and quite complex tasks such

as sensorless posing or sorting of parts can be per-

formed. It might be possible that force fields could

be used to solve certain classes of problems, by en-

coding them in particular force fields, part shapes, and

initial and goal poses, resulting in a “force-field com-

puter” that provides a physical implementation of the

problem. Identifying the class of encodable problems

might yield deeper insights into the complexity of parts

manipulation with force-vector fields.

• Performance measures. Are there performance mea-

sures for how fast (in real time) an array will orient a

part? In some sense, the actuators are fighting each

other (as we have observed experimentally) when the

part approaches equilibrium. For squeeze grasps, one

measure of “efficiency,” albeit crude, might be the in-

tegral of the magnitude of the moment function, i.e.,
∫ 2π

0 |M(θ)|dθ . The issue is that if, for many poses,

|M(θ)| is very small, then the orientation process will

be slow. Better measures are also desirable.

• Uncertainty. In practice, neither the force-vector field

nor the part geometry will be exact, and both can only be

characterized up to tolerances (Donald 1989). This is

particularly important at the microscopic scale. Within

the framework of potential fields, we can express this

uncertainty by considering not one single potential

function UP , but rather families of potentials that corre-

spond to different values within the uncertainty range.

Bounds on part and force tolerances will correspond to

limits on the variation within these function families.

An investigation of these limits will allow us to obtain

upper error bounds for manipulation tasks under which

a specific strategy will still achieve its goal.

A family of potential functions is a set {Uα : C →

R}α∈J where J is an index set. For example, we may

start with a single potential function U : C → R and

define a family of potential functions F (U, ǫ, z) as

{{Uα : C → R| ||Uα(p)−U(p)||z < ǫ} for some ǫ and
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norm z. This is analogous to defining a neighborhood in

function space, using, e.g., the compact-open topology.

When we differentiate a family of potential fields (using

the gradient), we obtain a differential inclusion instead

of a differential equation. So if F(u) = F (u, ǫ, z), then

∇ F (u) = {∇Uα}α∈J .

When considering families of potentials, the equilib-

rium may be known to lie only within a set Ei , al-

though we may know that it is always a point in Ei .

If the sets Ei are of a small diameter less than some

ǫ > 0, our algorithms could be extended to handle the

ǫ-approximations.

As a more general approach, we propose an algo-

rithm based on back-projections: for a given part, let

BFi
(G) ⊂C= R

2×S
1 be the back-projection (Lozano-

Pérez, Mason, and Taylor 1984) of the set G under

Fi , where G ⊂ C, and Fi is a family of fields on

R
2 . Then we wish to calculate a sequence of fields

Fl, F2, . . . , Fk , such that BF1
(BF2

(· · ·BFk
(G) · · · )) =

C, where G is a single point in C (cf. Lozano-Pérez, Ma-

son, and Taylor 1984; Erdmann and Mason 1988; Brost

1988; Donald 1989; Brigg 1992).

• Output sensitivity. We have seen in Sections 3.1, 6.1,

and 6.2 that the efficiency of planning and executing

manipulation strategies critically depends on the num-

ber of equilibrium configurations. Expressing the plan-

ning and execution complexity as a function of the num-

ber of equilibria E, rather than the number of vertices n,

is called output-sensitive analysis. In practice, we have

found that there are almost no parts with more than

two distinct (orientation) equilibria, even in squeeze

fields. This is far less than the E = O(kn2) upper

bound derived in Section 3.2. If this observation can be

supported by an exact or even statistical analysis of part

shapes, it could lead to extremely good expected bounds

on plan length and planning time, even for the less

powerful strategies employing manipulation grammars

(note that the complexity of the manipulation grammar

algorithm in Proposition 14 is output-sensitive).

• Discrete force fields. For the manipulation strategies

described in this paper, we assume that the force fields

are continuous, i.e., that the generated forces are dense

compared to the moving part (the density assumption

in Section 3.3). When manipulating very small parts

on microactuator arrays, this condition may be only

approximately satisfied. We are interested in the limi-

tations of the continuous model, and we would like to

know the conditions under which it is necessary to em-

ploy a different, discrete model of the array that takes

into account individual actuators, as well as the gaps

between actuators. In the work of Böhringer et al.

(1994b), we propose a model for the interaction be-

tween parts and arrays of individual actuators, based

on the theory of limit surfaces (Goyal and Ruina 1988;

Goya, Ruina, and Papadopoulos 1991).

• Resonance properties. Is it possible to exploit the dy-

namic resonance properties of parts to tune the control

signal of the array or plate to perform efficient dynamic

manipulation?

• 3-D force fields. It may be possible to generate 3-D

force fields by using Lorentz electromagnetic forces.

Tunable electric coils could be attached to various

points of a 3-D body, suspending the resulting object in

a strong permanent magnetic field using magnetic levi-

tation (the Lorentz effect) (Hollis and Salcudean 1993;

Salcudean, Wong, and Hollis 1995. The tuning (con-

trol) of the electric coils could be effected as follows:

integrated control circuitry could be fabricated and co-

located with the coils, and conceivably, a power sup-

ply. The control could be globally effected using wire-

less communication, or the control of each coil could

evolve in time until the part is reoriented as desired.

The Lorentz forces could then be deactivated to bring

the object to rest on the ground. Planning for such a

3-D device might reduce to that described by Erdmann

and colleagues (1993).
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