
Programmable Neural Logic

Vasken Bohossian Paul Hasler Jehoshua Bruck
California Institute of Technology

Mail Code 136-93
Pasadena, CA 91125

e-mail: {Vincent, bruck}@paradise . caltech. edu
paul@pcmp.caltech.edu

URL: paradise. caltech. edu/ETR. html

Abstract

Circuits of threshold elements (Boolean input, Boolean output neurons) have been
shown to be surprisingly powerful. Useful functions such as XOR, ADD and MULTIPLY
can be implemented by such circuits more efficiently than by traditional AND/OR circuits.
In view of that, we have designed and built a programmable threshold element. The
weights are stored on polysilicon floating gates, providing long-term retention without
refresh. The weight value is increased using tunneling and decreased via hot electron
injection. A weight is stored on a single transistor allowing the development of dense
arrays of threshold elements. A 16-input programmable neuron was fabricated in the
standard 2 pm double - poly, analog process available from MOSIS. A long term goal
of this research is to incorporate programmable threshold elements, as building blocks in
Field Programmable Gate Arrays.

1 Introduction

In the field neuromorphic analog VLSI, most research deals with implementing neurons
that in some way learn or adapt, [7], [9], [lo]. That is because it is believed that the
power of neural systems comes from their adaptive behavior. In fact it has been shown
that the function performed by a neuron - the sum of weighted inputs followed by a
threshold - is by itself (without learning) a powerful building block. For many years,
theoretical computer science has studied the power of such neurons, in issues related to
polynomial versus exponential size circuits and the general problem of N P completeness.
The basic problem - build Boolean input Boolean output threshold circuits, to compute
useful Boolean functions efficiently. Threshold circuits have been shown to be surprisingly
powerful [l]. For example, integer division can be implemented by a polynomial-size
threshold circuit of constant depth, [3], [20]. In other words, if one is to implement a
threshold circuit to compute the division of two n-bit integers, one needs polynomially
many, in n threshold elements. On the other hand, using the traditional logic circuits,
composed of AND ,OR and NOT gates, requires exponentially many gates. That is also
the case with simpler functions such as exclusive-OR and and integer addition.

0-7803-4275-5197 $8.00 01997 IEEE 13

mailto:paul@pcmp.caltech.edu

14 1996 Innovative Systems in Silicon Conference

Figure 1: Linear Threshold Element y = sgn(-t + Cr=l w,%,)

Many results from the theory of threshold circuits could be applied to the implemen-
tation of circuits on silicon. Results such as the relationship between the maximal size
allowed for the weights and the power of the resulting element or circuit [5], [a], not to
mention efficient designs for X O R , ADD, MULTIPLY and other useful functions, see
~11 , 1131, ~ 5 1 .

Our research has three distinct goals:
1. The implementation aspect. To design and implement efficient threshold elements

on silicon.

2. The theoretical aspect. To leverage the work done in theoretical computer science
in order to design high performance threshold circuits in a systematic way.

3. The programmable aspect. To introduce threshold elements as building blocks in

Implementations of threshold circuits were proposed already in the 60’s and 70’s [2],
[21], [24], and more recently in [13], 1181 To our knowledge, the theoretical results on
threshold circuits have not been linked to any work involving silicon implementations.
Programmable neuron-based hardware has been recently proposed [17], [19]. In the im-
plementation section below, we show how those relate to our work. For a short overview
of FPGA’s see [22]. In Section 2 we define the linear threshold element. In Section 3
we compare threshold circuits to traditional logic circuits. In Section 4 we discuss the
programmable aspect of the design. Section 5 shows the implementation and results.

FPGA’s.

2 Mathematical setting

A linear threshold element computes a linear threshold function as shown in Figure 1

Definition 1 (LINEAR THRESHOLD FUNCTION)
A lznear threshold functzon of n vanables zs a Boolean function f : {0,1}” -+ {0,1}
that can be wrztten, for any znput word (2 1 , . .,z,) E (0, l}” and a fized wezght vector
(WO, ..., w,) E Z”+l, as :

n

where F (X) = -wo + C w , z i u i=l

Session 1: Advances in Configuration for Performance 15

Figure 2: Linear threshold gates for 5-input A N D , OR and Majority.

/.=T\N;;r,

Figure 3: Neural vs. conventional logic. Two circuits computing XOR.

Although we could allow the weights, w,, to be real numbers, it is known [16] that for an
arbitrary linear threshold function one can use integers and needs at most O(n logn) bits
per weight, where n is the number of inputs.

Example 1 (A N D)

weight vector (WO, ...i wg) = (-5,1,1: 1; 1,l) :
We want to implement A N D of five variables. Consider the function defined by the

f(z1, ..., 2 5) = sgn(-5 + 2 1 3- 2 2 + 5 3 + 2 4 + 2 5)

It outputs 1 only when all inputs are 1, therefore:

Figure 2 shows the diagram for f along with two other Boolean functions that can be
realized by a single threshold element. Majority is defined in Example 2 below.

3 Neural logic versus conventional logic

Why bother use threshold elements given that any Boolean functions can be imple-
mented, in a systematic way, by a circuit of AND, OR and NOT gates (AON circuit
). The reason is that for some functions, such as exclusive-OR (X O R) , the number of
elements in the AON circuit will grow exponentially with the number of bits in the input.
On the other hand, if one uses linear threshold elements, the number of gates is linear
in the number of input bits. This is shown in Figure 3 for a 3-bit input. In general, a
depth-2, AON circuit computing X O R of n bits requires at least 2"-l + 1 gates. Using
L T , one needs only n + 1 gates.

16 1996 Innovative Systems in Silicon Conference

COMP

Figure 4: Comparison of two 4bi t integers.

It is easy to see that LT circuits are more powerful than AON circuits. The reason
is that for any single AON gate there is an equivalent LT gate, computing the same
function. Example 1 shows the LT equivalent of AND. On the contrary, most LT gates
do not have equivalents in AON.

Example 2 (MAJORITY)
Consider the function defined by the weight vector (WO, ..., wg) = (-3,1,1,1,1,1) :

f(z1, ..., 25) = sgn(-3 + 2 1 + 2 2 + 2 3 + 2 4 + 2 5)

It outputs 1 only when three or more of the inputs are 1. It cannot be implemented by a
0

One may argue that even though LT circuits are more powerful, their building blocks
are more complex and therefore will require a larger area in the circuit layout. This
argument is correct to some extent. However, the exponential to polynomial decrease in
the number of required gates dominates the penalty introduced by an increase in their
size. The following section addresses the issue.

single AND or OR gate, even if we allow some inputs to be negated (NOT) .

4 Programmable versus hardwired weights

One can look at FPGA's as circuits of elements in which the function that each element
computes can be programmed, that is it can be chosen among a set of available functions.
In traditional FPGA's that set consists of A N D , O R and NOT. We propose a larger
collection of functions, namely the set of Linear Threshold Functions, LT.

All the information about an LT gate is contained in the weights and threshold. We
consider two ways of implementing the weights.

0 Hardwired weights are encoded in the width to length ratio of a transistor.

0 Programmable weights are stored as non volatile charge on a floating gate.

Hardwired weights cannot be changed once the circuit has been fabricated, while pro-
grammable ones can. Hardwired weights present an interesting problem in terms of auto-
mated layout. Some functions such as the comparison function, COMP, require weights
ranging from 1 to 2n/2. Figure 4 shows a 8-bit COMP function. A N D , O R and all
symmetric functions can be implemented with small weights. This difference implies that
using hardwired weights, some LT gates are larger than others.

Using programmable weights simplifies the layout, and allows one to modify the func-
tion that the LT element computes. In the next section we describe the details of the
implementation.

Session 1 : Advances in Configuration for Performance 17

Weighted Sum Thresholding

_ _ - - - _ _ .- - - - - - - - - - - - - _ _ _ _ - - _ _ _ - - -

Figure 5: Schematic of a Programmable Linear Threshold Element

5 Implementation and Results

In [19] the authors have fabricated a neuron-based circuit that implements an arbitrary
Boolean function. We implement an arbitrary threshold element (a limited set of Boolean
functions). The actual function is selected by modifying the weights. Figure 5 shows
the schematic implementation. A 16-input threshold element was fabricated using the
standard 2 pm double - poly, analog process available from MOSIS. See Figure 6 for the
layout. The 16 inputs are fed to all four gates via metal 2 (purple), such layout allows
one to build dense arrays of threshold elements.

We store the weights on polysilicon floating gates, using a single transistor per weight,
providing long-term retention without refresh. The multiplication relies on the fact that
the inputs are boolean, 0 Volts for a logical 0, and X volts for a logical 1, where X can vary
from 1 to 5 Volts. An input generates current proportional to the corresponding weight.
The sum, E&, w,z, comes naturally as we connect all transistors to the same node. That
is another difference with the approach of [18] where a capacitive sum of voltages is used,
rather than a sum of currents. Finally two inverters provide hard thresholding pulling the
output to logical 0, or logical 1.

To program in a new function one modifies the weights via tunneling (increasing) and
hot electron injection (decreasing), see [9], [lo], [23] for similar applications of floating
gates. As shown in [6] an analog memory cell, which is slightly more complex than the
single transistor storage used here, can store up to 14 bits of information, an amount
largely sufficient for most practical threshold functions.

We tested the linearity of our threshold element by detecting the value of the threshold,
wo, at which WO + x:20 z, = 0, while varying the number of 1's in the input vector. 1 Volt
was used as the value of logical 1. Figure 7 shows the result.

Notice the square root shape of the data. This illustrates an important point, the
voltage one needs to apply in order to get a certain value of T is not linear in T. For
an nFET, operating above or below threshold the contributions of a single input are
respectively:

P I = -(Vg - V*)2
2

18 1996 Innovative Systems in Silicon Conference

Figure 6: Layout of the linear sum - W O + wZx,. Four threshold elements are shown,
two programmable and two non programmable, the latter having unit weights. The Area
shown is 168p x 360p. The chip was fabricated using the 2 p technology available from
MOSIS. The dimensions of a typical contact are 4p x 4p.

Session 1 : Advances in Configuration for Performance 19

1.8 -I

0

1.2

I"
1.0 ' I

0 2 4 6 8 10 12 14 16

Number ofhputs at lVolt

Figure 7: Vdd - Threshold versus the number of 1's in the input.

where VT is the thermal voltage and p, 10 and K are constants. Hardwired weights are
encoded as the W / L ratio of the transistor to which both p and 10 are proportional [14].
That in turn makes the values of the weights linear in W / L irrespective of the region of
operation of the transistor. In the case of programmable weights, the value of the weights
can be quadratic or exponential in the voltage stored on the floating gate, see Figure 5 .
Such non-linearities result in a large dynamic range.

6 Conclusion

We have fabricated and tested a 16-input programmable linear threshold element
using floating gates to store the weights. Such storage requires no refresh and allows the
weights to be modified via tunneling and injection. We have fabricated a second chip
implementing a multi-threshold element. A single multi-threshold element can implement
X O R and integer addition. It takes advantage of the fact that some useful Boolean
functions can be implemented by a 2-layer LT circuit in which all gates of the first layer
have the same weights. That allows to reduce the area from n2 to n, by implementing
the weighted sum only once. See [4] for further details.

From the practical point of view one possible extension of this research is to devise
a systematic (maybe automated) way of generating the layout of threshold circuits
with hardwired weights. Another direction of research is to incorporate programmable
threshold elements as building blocks in FPGA's.

20 1996 Innovative Systems in Silicon Conference

7 Acknowledgments

This work was supported in part by the NSF Young Investigator Award CCR-9457811,
by the Sloan Research Fellowship, by a grant from the IBM Almaden Research Center,
San Jose, California, and by the center for Neuromorphic Systems Engineering as a part
of the National Science Foundation Engineering Research Center Program; and by the
California Trade and Commerce Agency, Office of Strategic Technology. The authors
would like to thank the reviewers for their comments. Special thanks to Vincent Koosh
for helping with the testing and analysis of the chip.

References
[l] E. Allender. A note on the power of threshold circuits. Proc. 30th IEEE Symposium

on Foundations of Computer Science, pages 580 - 584, 1989.

[2] J.J. Amodei, R.O. Winder, D. Hampel and T.R. Mayhew. Digital Circuit Techniques
International Solid-State Circuits Conference, February 1967.

[3] P.W. Beame, S.A. Cook and H.J. Hoover. Log depth circuits for division and related
problems. Proc. 25th IEEE Symposium on Foundations of Computer Science, pages
1 - 6, 1984.

[4] V. Bohossian and J. Bru.ck. Multiple Threshold Neural Logic Technical Report,
ETRO10, June 1996. (available at http://paradise.caltech.edu/ETR.html)

[5] V. Bohossian and J. Bruck. On Neural Networks with Minimal Weights. In Proc. of
Neural Infomation Processing Systems 8, 1995.

[6] C. Diorio, S. Mahajan, P. Hasler, B.A. Minch, and C. Mead, “A high resolution non-
volatile analog memory cell,” Proceedings of the International Conference of Circuits
and Systems, Seattle, vol. 3, 1995, pp. 2233-2236.

[7] R. Douglas, M. Mahowald and C. Mead. Neuromorphic Analogue VLSI. Annual
Reviews in Neuroscience, 18:255-81, 1995.

[8] M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits.
In Proc. 25th AGM STOC, pp. 551-560, 1993.

[9] P. Hasler, C. Diorio, B.A. Minch, and C. Mead, “Single transistor learning synapses,”
in Advances in Neural Information Processing Systems 7, MIT Press, Cambridge,
MA, 1995, pp. 817-824. Also at http://www.pcmp.caltech.edu/anaprose/paul.

[lo] M. Holler, S. Tam, H. Castro and R. Benson. An electrically trainable artificial
neural network with 10240 ’floating gate’ synapses. International Joint Conference
on Neural Networks, Washington, D.C., June 1989, pp. 11-191 - 11-196.

[ll] W.H. Kautz. The Realization of Symmetric Switching Functions with Linear - Input
Logical Elements. IRE Transactions on Electronic Computers, March 1961.

[12] M. Krause and P. Pudlak. On computing boolean functions by sparse real polynomi-
als. Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pp. 682-691, October 1995.

http://paradise.caltech.edu/ETR.html
http://www.pcmp.caltech.edu/anaprose/paul

Session 1 : Advances in Configuration for Performance 21

[13] R. Lauwereins and J. Bruck. Efficient Implementation of a Neural Multiplier. IBM

1141 C. Mead, Analog VLSI and Neural Systems,' Addison-Wesley, Reading, MA, 1989.

[15] R.C. Minnick. Linear - Input Logic. IRE Transactions on Electronic Computers,

Research Report, RJ 8138 (74551), May 30, 1991.

March 1961.

[16] M. Muroga. Threshold Logic and its Applications. Wiley-Interscience, 1971.

[17] T. Shibata, K. Kotani, T. Ohmi. Real-Time Reconfigurable Logic Circuits Using
Neuron MOS Transistors. International Solid-state Circuits Conference, 1993.

[l8] T. Shibata, T. Ohmi. A Functional MOS Transistor Featuring Gate-Level Weighted
Sum and Threshold Operations IEEE Bansactions on Electron Devices, vol. 39, no.
6, June 1992.

[19] T. Shibata, T. Ohmi. Neuron MOS Binary-Logic Integrated Circuits - Part I: Design
Fundamentals and Soft-Hardware-Logic Circuit Implementation. IEEE Transactions
on Electron Devices, vol. 40, no. 3, March 1993.

[20] K. Siu, J. Bruck, T. Kailath and T. Hofmeister. Depth efficient neural networks
for division and related problems. IEEE Transattions on Information Theory, Vol.
39(No. 3), pages 423-435, May 1993.

1211 T. Tich Dao. Threshold 12L and Its Applications to Binary Symmetric Functions and
Multivalued Logic. IEEE Journal of Solid-state Circuits, vol. sc-12, no. 5, October
1977.

[22] J. Villasenor and W.H. Mangione-Smith. Configurable Computing. Scientific Amer-
ican, pp. 66-71, June 1997.

[23] K. Yang and A.G. Andreou. The Multiple Input Floating Gate MOS Differential
Amplifier: An Analog Computational Building Block. IEEE ISCAS, vol. 5, London
1994.

[24] B.A. Wooley and C.R. Baugh. An Integrated m-Out-of-n Detection Circuit Using
Threshold Logic. IEEE Journal of Solid- State Circuits, vol. sc-9, no. 5, October
1974.

