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Abstract 

Circuits of threshold elements ( Boolean input, Boolean output neurons ) have been 
shown to be surprisingly powerful. Useful functions such as XOR, ADD and MULTIPLY 
can be implemented by such circuits more efficiently than by traditional AND/OR circuits. 
In view of that, we have designed and built a programmable threshold element. The 
weights are stored on polysilicon floating gates, providing long-term retention without 
refresh. The weight value is increased using tunneling and decreased via hot electron 
injection. A weight is stored on a single transistor allowing the development of dense 
arrays of threshold elements. A 16-input programmable neuron was fabricated in the 
standard 2 pm double - poly, analog process available from MOSIS. A long term goal 
of this research is to incorporate programmable threshold elements, as building blocks in 
Field Programmable Gate Arrays. 

1 Introduction 

In the field neuromorphic analog VLSI, most research deals with implementing neurons 
that in some way learn or adapt, [7], [9], [lo]. That is because it is believed that the 
power of neural systems comes from their adaptive behavior. In fact it has been shown 
that the function performed by a neuron - the sum of weighted inputs followed by a 
threshold - is by itself ( without learning ) a powerful building block. For many years, 
theoretical computer science has studied the power of such neurons, in issues related to 
polynomial versus exponential size circuits and the general problem of N P  completeness. 
The basic problem - build Boolean input Boolean output threshold circuits, to compute 
useful Boolean functions efficiently. Threshold circuits have been shown to be surprisingly 
powerful [l]. For example, integer division can be implemented by a polynomial-size 
threshold circuit of constant depth, [3], [20]. In other words, if one is to implement a 
threshold circuit to compute the division of two n-bit integers, one needs polynomially 
many, in n threshold elements. On the other hand, using the traditional logic circuits, 
composed of AND ,OR and NOT gates, requires exponentially many gates. That is also 
the case with simpler functions such as exclusive-OR and and integer addition. 
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Figure 1: Linear Threshold Element y = sgn(-t + Cr=l w,%,) 

Many results from the theory of threshold circuits could be applied to the implemen- 
tation of circuits on silicon. Results such as the relationship between the maximal size 
allowed for the weights and the power of the resulting element or circuit [5], [a], not to 
mention efficient designs for X O R ,  ADD, MULTIPLY and other useful functions, see 
~11 ,  1131, ~ 5 1 .  

Our research has three distinct goals: 
1. The implementation aspect. To design and implement efficient threshold elements 

on silicon. 

2. The theoretical aspect. To leverage the work done in theoretical computer science 
in order to design high performance threshold circuits in a systematic way. 

3. The programmable aspect. To introduce threshold elements as building blocks in 

Implementations of threshold circuits were proposed already in the 60’s and 70’s [2], 
[21], [24], and more recently in [13], 1181 To our knowledge, the theoretical results on 
threshold circuits have not been linked to any work involving silicon implementations. 
Programmable neuron-based hardware has been recently proposed [17], [19]. In the im- 
plementation section below, we show how those relate to our work. For a short overview 
of FPGA’s see [22]. In Section 2 we define the linear threshold element. In Section 3 
we compare threshold circuits to traditional logic circuits. In Section 4 we discuss the 
programmable aspect of the design. Section 5 shows the implementation and results. 

FPGA’s. 

2 Mathematical setting 

A linear threshold element computes a linear threshold function as shown in Figure 1 

Definition 1 ( LINEAR THRESHOLD FUNCTION ) 
A lznear threshold functzon of n vanables zs a Boolean function f : {0,1}” -+ {0,1} 
that can be wrztten, for any znput word ( 2 1 , .  .,z,) E (0, l}” and a fized wezght vector 
(WO, ..., w,) E Z”+l, as : 

n 

where F ( X )  = -wo + C w , z i u  i=l 
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Figure 2: Linear threshold gates for 5-input A N D ,  OR and Majority. 

/.=T\N;;r, 

Figure 3: Neural vs. conventional logic. Two circuits computing XOR. 

Although we could allow the weights, w,, to be real numbers, it is known [16] that for an 
arbitrary linear threshold function one can use integers and needs at  most O(n logn) bits 
per weight, where n is the number of inputs. 

Example 1 ( A N D  ) 

weight vector (WO, ...i wg) = (-5,1,1: 1; 1,l) : 
We want to implement A N D  of five variables. Consider the function defined by the 

f(z1, ..., 2 5 )  = sgn(-5 + 2 1  3- 2 2  + 5 3  + 2 4  + 2 5 )  

It outputs 1 only when all inputs are 1, therefore: 

Figure 2 shows the diagram for f along with two other Boolean functions that can be 
realized by a single threshold element. Majority is defined in Example 2 below. 

3 Neural logic versus conventional logic 

Why bother use threshold elements given that any Boolean functions can be imple- 
mented, in a systematic way, by a circuit of AND,  OR and NOT gates ( AON circuit 
). The reason is that for some functions, such as exclusive-OR ( X O R ) ,  the number of 
elements in the AON circuit will grow exponentially with the number of bits in the input. 
On the other hand, if one uses linear threshold elements, the number of gates is linear 
in the number of input bits. This is shown in Figure 3 for a 3-bit input. In general, a 
depth-2, AON circuit computing X O R  of n bits requires at least 2"-l + 1 gates. Using 
L T ,  one needs only n + 1 gates. 
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COMP 

Figure 4: Comparison of two 4bi t  integers. 

It is easy to see that LT circuits are more powerful than AON circuits. The reason 
is that for any single AON gate there is an equivalent LT gate, computing the same 
function. Example 1 shows the LT equivalent of AND.  On the contrary, most LT gates 
do not have equivalents in AON. 

Example 2 ( MAJORITY ) 
Consider the function defined by the weight vector (WO, ..., wg) = (-3,1,1,1,1,1) : 

f(z1, ..., 25) = sgn(-3 + 2 1  + 2 2  + 2 3  + 2 4  + 2 5 )  

It outputs 1 only when three or more of the inputs are 1. It cannot be implemented by a 
0 

One may argue that even though LT circuits are more powerful, their building blocks 
are more complex and therefore will require a larger area in the circuit layout. This 
argument is correct to some extent. However, the exponential to polynomial decrease in 
the number of required gates dominates the penalty introduced by an increase in their 
size. The following section addresses the issue. 

single AND or OR gate, even if we allow some inputs to be negated (NOT) .  

4 Programmable versus hardwired weights 

One can look at FPGA's as circuits of elements in which the function that each element 
computes can be programmed, that is it can be chosen among a set of available functions. 
In traditional FPGA's that set consists of A N D ,  O R  and NOT. We propose a larger 
collection of functions, namely the set of Linear Threshold Functions, LT. 

All the information about an LT gate is contained in the weights and threshold. We 
consider two ways of implementing the weights. 

0 Hardwired weights are encoded in the width to length ratio of a transistor. 

0 Programmable weights are stored as non volatile charge on a floating gate. 

Hardwired weights cannot be changed once the circuit has been fabricated, while pro- 
grammable ones can. Hardwired weights present an interesting problem in terms of auto- 
mated layout. Some functions such as the comparison function, COMP, require weights 
ranging from 1 to 2n/2. Figure 4 shows a 8-bit COMP function. A N D ,  O R  and all 
symmetric functions can be implemented with small weights. This difference implies that 
using hardwired weights, some LT gates are larger than others. 

Using programmable weights simplifies the layout, and allows one to modify the func- 
tion that the LT element computes. In the next section we describe the details of the 
implementation. 
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Weighted Sum Thresholding 
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Figure 5: Schematic of a Programmable Linear Threshold Element 

5 Implementation and Results 

In [19] the authors have fabricated a neuron-based circuit that implements an arbitrary 
Boolean function. We implement an arbitrary threshold element ( a limited set of Boolean 
functions ). The actual function is selected by modifying the weights. Figure 5 shows 
the schematic implementation. A 16-input threshold element was fabricated using the 
standard 2 pm double - poly, analog process available from MOSIS. See Figure 6 for the 
layout. The 16 inputs are fed to all four gates via metal 2 ( purple ), such layout allows 
one to build dense arrays of threshold elements. 

We store the weights on polysilicon floating gates, using a single transistor per weight, 
providing long-term retention without refresh. The multiplication relies on the fact that 
the inputs are boolean, 0 Volts for a logical 0, and X volts for a logical 1, where X can vary 
from 1 to 5 Volts. An input generates current proportional to the corresponding weight. 
The sum, E&, w,z, comes naturally as we connect all transistors to the same node. That 
is another difference with the approach of [18] where a capacitive sum of voltages is used, 
rather than a sum of currents. Finally two inverters provide hard thresholding pulling the 
output to logical 0, or logical 1. 

To program in a new function one modifies the weights via tunneling (increasing) and 
hot electron injection (decreasing), see [9], [lo], [23] for similar applications of floating 
gates. As shown in [6] an analog memory cell, which is slightly more complex than the 
single transistor storage used here, can store up to 14 bits of information, an amount 
largely sufficient for most practical threshold functions. 

We tested the linearity of our threshold element by detecting the value of the threshold, 
wo, at which WO + x:20 z, = 0, while varying the number of 1's in the input vector. 1 Volt 
was used as the value of logical 1. Figure 7 shows the result. 

Notice the square root shape of the data. This illustrates an important point, the 
voltage one needs to apply in order to get a certain value of T is not linear in T. For 
an nFET,  operating above or below threshold the contributions of a single input are 
respectively: 

P I = -(Vg - V*)2 
2 
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Figure 6: Layout of the linear sum - W O  + wZx,. Four threshold elements are shown, 
two programmable and two non programmable, the latter having unit weights. The Area 
shown is 168p x 360p. The chip was fabricated using the 2 p  technology available from 
MOSIS. The dimensions of a typical contact are 4p x 4p. 
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Figure 7: Vdd - Threshold versus the number of 1's in the input. 

where VT is the thermal voltage and p, 10 and K are constants. Hardwired weights are 
encoded as the W / L  ratio of the transistor to which both p and 10 are proportional [14]. 
That in turn makes the values of the weights linear in W / L  irrespective of the region of 
operation of the transistor. In the case of programmable weights, the value of the weights 
can be quadratic or exponential in the voltage stored on the floating gate, see Figure 5 .  
Such non-linearities result in a large dynamic range. 

6 Conclusion 

We have fabricated and tested a 16-input programmable linear threshold element 
using floating gates to store the weights. Such storage requires no refresh and allows the 
weights to be modified via tunneling and injection. We have fabricated a second chip 
implementing a multi-threshold element. A single multi-threshold element can implement 
X O R  and integer addition. It takes advantage of the fact that some useful Boolean 
functions can be implemented by a 2-layer LT circuit in which all gates of the first layer 
have the same weights. That allows to reduce the area from n2 to n, by implementing 
the weighted sum only once. See [4] for further details. 

From the practical point of view one possible extension of this research is to devise 
a systematic ( maybe automated ) way of generating the layout of threshold circuits 
with hardwired weights. Another direction of research is to incorporate programmable 
threshold elements as building blocks in FPGA's. 
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