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Programmable photonic neural 
networks combining WDM 
with coherent linear optics
Angelina Totovic1*, George Giamougiannis1, Apostolos Tsakyridis1, David Lazovsky2 & 
Nikos Pleros1

Neuromorphic photonics has relied so far either solely on coherent or Wavelength-Division-
Multiplexing (WDM) designs for enabling dot-product or vector-by-matrix multiplication, which 
has led to an impressive variety of architectures. Here, we go a step further and employ WDM for 
enriching the layout with parallelization capabilities across fan-in and/or weighting stages instead 
of serving the computational purpose and present, for the first time, a neuron architecture that 
combines coherent optics with WDM towards a multifunctional programmable neural network 
platform. Our reconfigurable platform accommodates four different operational modes over the same 
photonic hardware, supporting multi-layer, convolutional, fully-connected and power-saving layers. 
We validate mathematically the successful performance along all four operational modes, taking 
into account crosstalk, channel spacing and spectral dependence of the critical optical elements, 
concluding to a reliable operation with MAC relative error < 2%.

The explosive growth of Artificial Intelligence (AI) and Deep Learning (DL) together with maturing photonic 
integration have created a new window of opportunity for use of optics in computational  tasks1–5. The use of 
photons and relevant optical technologies in Neural Network (NN) hardware is predicted to offer a significant 
boost in Multiply-Accumulate (MAC) operations per second compared to the respective NN electronic plat-
forms, with computational energy and area efficiency being estimated to reach < fJ/MAC and > TMAC/s/mm2 , 
 respectively6,7. The pathway towards realizing this NN hardware paradigm-shift aims to exploit the high line-rates 
supported by integrated photonic technologies together with the small-size and low-power weighting function 
that can be offered at chip-scale4,8. So far, the vast majority of photonic devices utilized for weighting purposes 
has emphasized on slowly reconfigurable elements, like Thermo-Optic (T/O) phase  shifters9,10 and Phase-Change 
Material (PCM)-based non-volatile memory  structures4,8, implying that inference applications are currently 
considered as the main target within the area of neuromorphic  photonics3.

Inference engines indeed require a rather static neuron architecture and a layer connectivity graph that usually 
gets defined for optimally performing a certain AI task. Object tracking and image classification, for example, are 
typically performed via a number of convolutional layers followed by one or more Fully Connected (FC) layers, 
while autoencoders require cascaded stages of FC  layers11,12. Although convolutional and FC layers comprise 
critical architectural elements in almost all inference platforms, a large set of parameters—such as the number 
of layers and/or neurons per layer and the connectivity graph—can vary significantly depending on the targeted 
DL architecture and application. Electronic implementations may conclude to Application-Specific Integrated 
Circuits (ASICs) customized for a specific inference task, but the use of GPUs, TPUs or even FPGAs becomes 
unavoidable when reprogrammability and reconfigurability are required in order to utilize the same hardware 
for multiple  applications13.

Transferring the reconfiguration capability to Photonic (P)-NN implementations requires a platform that can 
flexibly support different functional layouts over the same neural hardware. Programmability in photonics has 
made significant progress over the last  years14–16 and programmable Photonic Integrated Circuits (PICs) have 
been shown to offer important advantages towards releasing cost-efficient, flexible and multi-functional photonic 
platforms that can closely follow the concept of electronic  FPGAs17. In this effort, it has also been highlighted that 
just the use of slowly reconfigurable 2× 2 Mach-Zehnder Interferometric (MZI) switches within an appropriate 
architectural scheme can yield a large set of circuit connectivities and functionality  options14,15. However, the idi-
osyncrasy of NN architectures has to proceed along alternative functionalities that are currently still not offered 
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by programmable photonic implementations. Although weight value reconfiguration can be indeed offered by 
state-of-the-art photonic weighting  technology4,8–10 and a shift in perspective towards programmable activation 
functions has also started to  emerge16,18,19, neuromorphic photonic architectures demonstrated so far are not 
supporting any reconfiguration mechanism for their linear neuron stages. PNNs have so far progressed along two 
main architectural categories for realizing linear neural layers, where Wavelength-Division-Multiplexed (WDM) 
and coherent platforms seem to follow discrete and parallel roadmaps: (i) incoherent or WDM-based layouts, 
where a discrete wavelength is used for each axon within the same  neuron3,4,20, and (ii) coherent interferometric 
schemes, where a single wavelength is utilized across the entire neuron, exploiting interference between coherent 
electrical fields for weighted sum  operations9,10.

Here, we present a novel architecture that can efficiently combine WDM and coherent photonics towards sup-
porting Programmable PNNs (PPNNs) with four different linear neural layer operational modes. Starting from 
our recently proposed dual-IQ coherent linear neuron  architecture21, that has been recently demonstrated also as 
a PIC with the ground breaking compute-rates per  axon22,23, we extend single neuron architecture by employing 
multiple wavelength channels and respective WDM De/Multiplexing (DE/MUX) structures towards creating 
multi- and single-element fan-in (input) and weight stages per every axon. Programmability is then enforced 
through 2× 2 MZI switches that can flexibly define the connectivity between fan-in and weighting stages, allow-
ing in this way for software-defined neural layer topologies. We formulate the mathematical framework for this 
programmable neuromorphic architecture and proceed with an in-depth study of the anticipated performance 
impairments originating from the use of multiple wavelengths within the same interferometric arrangement. 
We conclude to a simple mechanism for counteracting wavelength-dependent behaviour of modulators and 
phase shifters at the fan-in and weighting stage, respectively, showing that our programmable layout performs 
equally well for any number of employed optical channels in any of the 4 distinct modes of operation, with all 
supported neurons always offering a relative error lower than 2% as long as the inter-channel crosstalk is kept 
at typical values of less than − 20 dB.

PPNN architecture and operating principle
In our recent  study21 we have demonstrated how coherent linear neurons, offering dot-product functionality, 
can be constructed of IQ-modulator blocks, allowing for the sign information (encoded into the signal’s phase) 
to be preserved by introducing the biasing signal, �wixi + b , making the neuron compatible with all-optical 
nonlinear activation functions, fNL(·) , tailored either for electric field, or for optical power, without suffering 
information loss. Having the wavelength domain unexploited, we advance our original neuron architecture in 
order to accommodate multiple channels and achieve parallelization as shown in Fig. 1.

As Fig. 1a reveals, the backbone of our neural layer remains similar as  in21 with the main differences being: 
(i) a single Continuous Wave (CW) input optical signal is now replaced by M multiplexed CW signals, each 
centered at �m and supporting one independent virtual neuron, and (ii) input and weight modulators are now 
replaced by more elaborate modulator banks given in Fig. 1c, e, delimited by software-controllable switches in 
the case of latter. The input, multichannel signal is first split by a 3dB X-coupler to the portion directed to the 
bias branch and the remaining one entering the Optical Linear Algebraic Unit (OLAU). Within the OLAU, the 
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Figure 1.  (a) Schematic representation of PPNN showing M laser diodes (LDs), a MUX, a 3dB X-splitter 
followed by a bias branch ( Wb ) and a reconfigurable OLAU encompassing 1-to-N splitting stage, input ( Xn ) 
and weight ( Wn ) modulator banks and an N-to-1 combiner stage, the output of which is brought to interfere 
with the bias signal within 3dB X-coupler and sent to the DEMUX. Closer look into (b) 1-to-N splitting and (d) 
its π-rotated N-to-1 coupling stage. Zoom-in into the (c) bias branch wavelength selective weights and phase 
modulators and (e) an axon of the OLAU consisting of switches for signal routing and modulators for inputs 
( xn,m ) and weights ( wn,m).
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signal gets further split equally in terms of power by a 1-to-N splitter, an example of which is given in Fig. 1b, 
and, after being appropriately modulated by inputs xn,m and pondered by weights wn,m , gets sent to the N-to-1 
combiner, shown in Fig. 1d. At this stage, the output signal interferes with the bias within a 3dB X-coupler and 
is forwarded to the DEMUX to generate the outputs ym . Finally, each channel m will have its own algebraic addi-
tion of the weighted inputs with a designated bias, concluding to a total of M independent N-fan-in neurons.

Depending on the configuration of switches, an overview of which is given in Table 1, channels within a 
single axon from Fig. 1e, can be controlled either individually or by a common modulator, allowing the network 
to operate as: 

1. multi-neuron (M independent N-to-1 neurons), allowing for an arbitrary logical interconnection graph, 
supporting even a multi-layer operation by designating different neurons to different layers of the NN;

2. convolutional (M independent N-element inputs with a single kernel of size N), where all different input vec-
tors pass through the same set of weights, Fig. 2c, achieving simultaneous M-fold usage of the same kernel, 
speeding up convolution operation from Fig. 2b;

3. fully-connected (FC) (single N-element input over M neurons), where a single input passes through all M 
available weight sets, each of size N, allowing for full connectivity between all inputs and outputs, Fig. 3a, c;

4. power-saving (single N-to-1 neuron), which, even though is not a primarily targeted mode of operation due to 
large footprint penalty and low aggregated throughput, still allows for resource conservation by powering-off 
the excess channels and can be useful if NN is occasionally required to operate in sequential manner (one 
neuron at a time).

A detailed mapping between the architecture from Fig. 1 and the enlisted modes of operation can be found 
in Section 1, Supplementary Document, with some examples also given in Figs. 2 and 3. Convolutional and FC 
modes of operation are particularly important due to their ubiquitous presence in deep NNs, especially in the 
widely-used Convolutional NNs (CNNs), Fig. 2a11. In both convolutional and pooling layers, a unique kernel 
(filtering or weighting window) is applied to the inputs in a scanning manner with a certain stride, yielding a 
single output value, as depicted schematically in Fig. 2b and implemented over PPNN in Fig. 2c. On the other 
hand, FC layer, shown implemented over PPNN in Fig. 3a, c, has a single set of inputs passing through multiple 
sets of weights to produce the outputs and it is the main building block of autoencoders, Fig. 3b, along with 
being necessary in CNNs, Fig. 2a. Both of these operations are time and energy consuming if approached to in 
a sequential manner, implying that they greatly benefit from parallelization.

Table 1.  PPNN modes of operation and the corresponding switch states.

Mode SX,n SW,n SO,n

#1 Multi-neuron 1 (up) 1 (bar) 1 (up)

#2 Convolutional 1 (up) 0 (cross) 0 (down)

#3 Fully-connected 0 (down) 0 (cross) 1 (up)

#4 Power-saving 0 (down) 1 (bar) 0 (down)

Figure 2.  (a) Simplified CNN inspired by LeNet-5, employed in image classification. (b) Schematic of a 
convolutional layer with color coded input/output pairs and (c) its implementation over PPNN in mode #2 
where each channel m corresponds to one input/output pair.
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Although the switches of different axons can be controlled independently, the resulting mixed type NN 
layer has no application foreseen at the moment. Therefore, we assume that switches in all branches are syn-
chronized in the following manner SX,n = SX , SW,n = SW and SO,n = SO, ∀n . The matrices encapsulating the 
values of the inputs, Xn , and weights, Wn , for different modes of operation are summarized in Table 2 where 
IM stands for M ×M identity matrix. Inputs require no more than one amplitude modulator per value, since 
they are defined on the positive domain xn,m ∈ [0, 1] , whereas, in case of weights, which can be both positive 
and negative, wn,m ∈ [−1, 1] , two modulators are required, one for the amplitude, which will be proportional 
to the weight magnitude, |wn,m| , and the remaining for the phase, which will be carrying the sign of the weight, 
ϕn,m = [1− sgn(wn,m)]π/2.

The bias branch, given in Fig. 1c differs from the axon branch, Fig. 1e, in two aspects: (i) it has no input 
sequence modulator(s); (ii) it has only one possible route the signal can take, with a separate control of each 
channels’ phase and amplitude. The latter comes as a counteraction measure to the anticipated wavelength-
dependent variation of the input and weight magnitudes when a single phase- and amplitude-modulator is used 
in each axon of the OLAU. Moreover, it allows for compensating potentially different transmission coefficients 
and phase offsets that will be accumulated by different channels within OLAU, therefore meeting the conditions 
for constructive interference at the last 3dB coupler of the PNN. Bias matrix remains the same for all modes of 
operation and reads Wb = diag[wb,1, . . . ,wb,M ] , where wb,m = |wb,m| exp(iϕb,m).

Let us assume that the optical carrier consists of M channels �m , and is represented via an M × 1 column-
vector of electric fields ELD = [ELD,1, . . . ,ELD,M ]T , which are normalized such that their magnitude squared 
yields optical power, i.e., ELD,m =

√
PLD,m exp(iϕLD,m) . Following the architecture given in Fig. 1 and the detailed 

derivation presented in Section 2 of Supplementary Document, we find the column-vector of electric fields at 
the output of PPNN as

where, in order to ensure constructive interference at the last 3dB X-coupler of Fig. 1a, phase matching between 
the bias and the signal coming from OLAU is performed. The former is done through W̃b = Wb exp(−iπ/2)log2 N , 
which denotes the bias branch channel-wise transfer matrix accounting for phase alignment, with its mth ele-
ment being w̃b,m = |wb,m| exp(iϕb,m) exp(−iπ/2)log2 N . Disregarding accumulated phase shift and losses that are 
identical for all channels, the transfer matrix of the PPNN, Qt , can be written as 

(1)Eout =
1
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(
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(
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1

N
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WnXn

)
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Figure 3.  (b) Schematic of an autoencoder and (a), (c) its two FC layers implemented over PPNN in mode #3 
where channels correspond to unique weight vectors and outputs ym . Based on the connectivity graph from (b), 
the implementation assumes the use of (a) 4 branches and 2 wavelengths in the first layer and (c) 2 branches 
and 4 wavelengths in the second one. If the number of available branches N is greater than needed, all the excess 
branches will have the inputs set to 0 (observe the Nth branch in (a), (c), where the condition N > 4 and N > 2 
is imposed, respectively). Index n in the implementation (a) is set to n ≤ 4 to denote that the lit nth branch 
carries a non-zero input. Similarly, if the number of available wavelengths M exceeds the number of required 
ones, the excess LDs are powered off.

Table 2.  Input and weight matrices of the nth axon.

Mode Xn Wn

#1 diag[xn,1, . . . , xn,M ] diag[wn,1, . . . ,wn,M ]

#2 diag[xn,1, . . . , xn,M ] wn,0IM

#3 xn,0IM diag[wn,1, . . . ,wn,M ]

#4 xn,0IM wn,0IM
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The mth element of Qt matrix, qt,m , given by Eq. (2b) for multi-neuron mode of operation (#1), reveals 
the underlying principle of operation of our PPNN, demonstrating how normalized dot-product between the 
N-element vectors represented across axons, [w1,m, . . . ,wN ,m] and [x1,m, . . . , xN ,m] , can be achieved at the mth 
channel neuron output with bias w̃b,m superimposed to it. The reconfigurability of PPNN is concealed in Eq. (2a), 
where the choice of matrices Xn and Wn is governed by the mode of operation according to the Table 2, leading 
to alternative functionalities. In convolutional mode (#2), a single kernel as in Fig. 2b, i.e., a single set of weights 
across different channels [w1,0, . . . ,wN ,0] , calls for common weight modulator per axon since wn,m = wn,0, ∀m , 
whereas the input vectors remain different across the channels, [x1,m, . . . , xN ,m] , concluding to M-fold paralleli-
zation, and consequently acceleration, of convolution operation. On the other hand, in FC mode (#3), a single 
input vector [x1,0, . . . , xN ,0] , calling for one input modulator xn,0 per nth axon, is passed through multiple, channel 
selective, weights, [w1,m, . . . ,wN ,m] , yielding full connectivity between all N inputs xn,0 and all M outputs ym , as 
depicted in Fig. 3b. Finally, in power-saving mode (#4), unique weight and input vectors, [w1,0, . . . ,wN ,0] and 
[x1,0, . . . , xN ,0] , allow for only one channel to be used and the remaining ones to be powered off, offering the 
same functionality as our dual-IQ dot-product engine  from21 without additional penalties in power consump-
tion or throughput per channel, albeit, suffering from footprint penalty imposed by PPNN programmability and 
multi-channel design. This mode of operation is certainly not the preferred one, but, in case reconfigurability is 
a necessary feature of the system, such as in prototyping stages, one can save power when faced with sequential 
operations, typically embracing the parallel ones, in the form of setup and analysis procedures.

As noted earlier, Eq. (2b) is given for mode #1, but can be updated to any other by replacing the channel-
specific xn,m and/or wn,m , by a joint xn,0 and/or wn,0 . In what follows, except when explicitly noted otherwise, we 
will be using xn,m and wn,m notation for an arbitrary mode of operation for simplicity and clarity.

In certain application scenarios, such as image classification, Fig. 2a, b, it is convenient to choose the number 
of axons as a square of the linear filter (kernel) dimension which is typically an odd number, resulting in, e.g., 
N = 3× 3 or N = 5× 5 . Some other applications may call for an arbitrary N, not necessarily a square. In this 
case two approaches can be adopted to exploit the PPNN architecture from Fig. 1, bearing in mind that splitter 
and combiner from Fig. 1b, d were engineered assuming N to be a power of 2. First approach is straight-forward 
and assumes using the N needed axons and ignoring the remaining ones that are supplementing to the closest 
power-of-2 number larger than N. In this case, certain amount of optical power will be lost, but being propor-
tional to N/2⌈log2 N⌉ , loss will never exceed 3dB. Second approach aims to eliminate power losses at the expense 
of redesigning the splitter and combiner, asserting identical phase shift along all paths resulting in coherence 
preservation between the signals traveling along different axons. The algorithm for designing such splitter and 
the corresponding combiner is presented in Section 3 of Supplementary Document.

Impairment analysis
Operating PPNN in power-saving mode with a single active channel, opens the possibility to bypass the DE/
MUXes in axons and center all passive (splitters, combiners) and active components (switches, input and weight 
modulators) to the channel’s central wavelength, leaving no room for output degradation due to wavelength 
dependent properties of optical components. On the other hand, having a multichannel PPNN (modes #1 
through #3) rightfully raises a concern on whether all channels will perform in equal manner, having similar 
relative error between the targeted output, given by matrix element qt,m in Eq. (2b), and experimentally obtained 
value qe,m . The wavelength dependent loss and phase accumulation along with the crosstalk in DE/MUXes could 
lead to performance degradation of some channels to a higher extent than the others, measured by increase of 
absolute, �qm = qe,m − qt,m , and relative error, δqm = |�qm|/qt,m , between the matrix elements. Setting the limit 
for tolerable relative error can be a challenging task as the network’s error-tolerance depends on the assignment 
in which it is employed and on the training algorithm. As a rule of thumb, an acceptable PPNN error should be 
lower than the training error, which is commonly in the range of few  percent21–23. Moreover, employing noise-
aware training algorithms has proven to increase the resilience of the NN models even in the noisy  environment24, 
where the noise should be understood as a broad term encapsulating any randomly distributed deviation from the 
targeted output. Following the above said, in this Section we set to investigate how much will the experimental 
PPNN transfer matrix, Qe , deviate from the targeted one, Qt , and whether this deviation can be counteracted.

We start our analysis by examining the effect of wavelength dependence of X-couplers, used for splitting and 
combining stages, as well as optical switches, used for signal routing within the axons. In what follows, the num-
ber of axons N is assumed to be a power of two, implying that the splitting and combining stages are composed 
of cascaded 3dB X-couplers. Nevertheless, all the conclusions can be generalized to an arbitrary number of axons 
N, following the splitter/combiner design outlined in Section 3 of Supplementary Document. The wavelength 
dependent power splitting ratio of the coupler for the mth channel can be written as αm = 1/2+�αm , where 
�αm denotes coefficient’s deviation from the targeted value of 1/2. All three switches, SX , SW and SO , are assumed 
to introduce wavelength dependent loss-penalty, such that the amount of optical power forwarded to the active 
port is proportional to sm ≤ 1 . According to the detailed study reported in Section 4 of Supplementary Docu-
ment, we find the output electric field from PPNN in a column-vector form

(2a)Qt = diag[qt,1, . . . , qt,M ] = W̃b +
1

N

N∑

n=1

WnXn ,

(2b)qt,m = w̃b,m +
1

N

N∑

n=1

wn,mxn,m .
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w h e r e  S = diag
[√

s1, . . . ,
√
sM

]
 d e n o t e s  t h e  t r a n s f e r  m a t r i x  o f  t h e  s w i t c h  a n d 

Abar/cross = diag
[√

1∓ 2�α1, . . . ,
√
1∓ 2�αM

]
 stands for the bar/cross transfer matrix of an X-coupler, both 

wavelength dependent. Ensuring the constructive interference at the output 3dB coupler and preserving the sign 
integrity of the resulting output field requires phase compensation and per-channel loss balancing within the 
bias branch, which is achieved by modified weight matrix W̃b , with its mth element

Both the coefficient pondering wb,m in (4) and the one pondering Qt in (3) depend only on the properties of 
the switches and X-couplers, and remain unchanged regardless of the input sequence and/or weighs. Compar-
ing (3) to the ideal case given by (1)–(2), it can be seen that the interference condition is successfully fulfilled by 
individual control of the bias amplitude and phase according to (4). Different channels will certainly accumulate 
different amount of loss, however, this disbalance can be easily counteracted by employing a set of Variable 
Optical Attenuators (VOAs) at the demultiplexed output of the PPNN (refer to Fig. 1a). Having the possibility 
to resolve this challenge outside of the core of PPNN, from this point on, we assume that wavelength depend-
ence of X-couplers and switches is not critical, and we focus on the impairments which may cause degradation 
of the targeted matrix Qt.

For implementing the inputs xn,c , we use Mach-Zehnder Modulators (MZMs) in our study, with c being 
the index of the channel �c at which the MZM is centered. We assume that MZMs have voltage-controlled 
Phase Shifters (PS) in both arms (indexed as “1/2” for upper/lower arm, respectively) and are operated in push-
pull configuration with DC induced phase shifts given as φDC,1/2 = 2πn(VDC,1/2, �)LDC/� and RF induced as 
φ1/2(±VRF, �) = φ0(�)±�φ(VRF, �) with φ0 = 2πn0(�)L/� and �φ = 2π�n(VRF, �)L/� where L and LDC 
denote the lengths of RF and DC active regions and n = n0 +�n , with n0 and �n being the refractive index at 
zero applied voltage and its deviation when the voltage is applied. The transfer function of the MZM is given as

and is tailored such that tMZM(�c) = xn,c by choosing the DC voltages (biases) which induce phase shifts sepa-
rated by π , implying φDC,1 = φDC − π and φDC,2 = φDC . Assuming that the modulation-induced phase-variation 
does not contribute significantly to the overall wavelength dependence, the MZM transfer function can be 
approximated by

For modes of operation #3 and #4, MZM transfer function will be centered at a certain �c , i.e., optimized to 
deliver targeted input xn,c at the given channel by enforcing �φ(VRF, �c) = arcsin xn,c and setting the argument 
of the exponential function in Eq. (5) to a multiple of 2π . For any other channel m, the imprinted value xn,m,c 
will deviate from the targeted one. Following the detailed analysis of the input modulator operation given in 
Section 5 of Supplementary Document, relying on the 1 st order Taylor expansion of the phases φ0(�) and φDC(�) 
around �c , we find that the mth channel of the nth axon carries the input value given by 

where px = n0(�c)L/�c and qx = n(VDC, �c)LDC/�c stand for normalized lengths of RF and DC phase shifters 
within the MZM and are restricted to px , qx ∈ N , ng is the group refractive index, and ��1 = �m+1 − �m denotes 
channel spacing (assuming equidistant channels). Parameter ξ (x)m,c represents the phase shift accumulated by 
channel m and reveals four important facts: (i) it does not depend on targeted xn,c value implying that the phase 
accumulation does not vary with the input sequence; (ii) it does not depend on the axon index n, implying that 
all axons introduce the same amount of phase accumulation that can be compensated outside the OLAU rather 
than within the OLAU itself; (iii) it depends on the difference between m and c implying that all side channels 
of the same order have the same phase accumulation which magnitude increases with |m− c| ; (iv) it increases 
with the channel spacing ��1.

In order to implement the weights wn,c a combination of MZM and an independent PS can be used. Depend-
ing on targeted application, amplitude modulation can be achieved either through absorption  control4,8,23 or by 
employing interferometric  modules9,10,22 using either T/O or E/O PSs. Aligning with the majority of reported 
state-of-the-art coherent layouts targeting inference, and thus allowing slow reconfiguration rates, we choose 
thermally controlled PSs both within MZM’s arms and in the PS that follows. Here we note that cointegration of 
the E/O (input) and T/O (weight) modulators requires careful planning in order to avoid thermal crosstalk but 
has turned into a well-established process during the last years, with significant on-chip demonstrations of co-
integrated E/O and T/O structures both in the fields of silicon-based  transceivers25, as well as in neuromorphic 
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 photonics22,23. Adopting thermally insulating trenches and/or heat  shunts26,27 or more elaborate approaches such 
as thermal eigenmode  decomposition28, can be additionally employed, if necessary, in order to ensure reliable 
operation of both device types in diverse PIC platforms, including Si and InP ones. Unlike E/O MZM, the T/O 
MZM cannot be operated in push-pull configuration; instead, it can be made asymmetrical by changing the 
length of the waveguide(s) in one or both of its arms to achieve a built-in phase difference of 2θ at the nominal 
temperature T0 and �c , or, in other words, it will be biased at 2θ-point. At any point in time, only one PS is being 
used for adjusting the weight magnitude depending on the ratio of |wn,c| and cos θ . This is reflected in the electric 
field transfer function of the MZM-PS system

where φ(T0, �) = 2πn(T0, �)L/� is the phase accumulated in MZM at T0 , �φ(�T , �) = 2π�n(�T , �)L/� is the 
phase shift due to applied differential temperature �T , and φ3(T , �) = 2πn(T , �)L3/� is the phase accumulated 
in the standalone PS. Similar to the case of input MZM, we can neglect the contribution of �φ variation with 
the wavelength and approximate the MZM-PS transfer function by

taking into account that it will be centered at �c yielding tMZM−PS(�c) = wn,c , implying also φ(T0, �c) = 2pwπ and 

where pw , ps ∈ N . For any channel m  = c , staying restricted to the 1st order approximation and assuming 
pw , ps ≫ 1 which is expected in all cases of practical interest, following the detailed derivation given in Section 6 
of Supplementary Document, we find that the mth channel of the nth axon carries the weight 

where pw = n(T0, �c)L/�c and ps = n(T0, �c)L3/�c represent normalized lengths of the PSs within the MZM 
and the standalone PS, respectively, with L and L3 being their lengths. Same conclusions enlisted earlier for ξ (x)m,c 
hold for ξ (w)m,c .

For signal multiplexing and demultiplexing Arrayed Waveguide Gratings (AWGs) are used, with a flat chan-
nel-wise spectral response over the frequency band of interest. We assume that the AWG’s power transfer function 
is given as a parabola in logarithmic domain, symmetrical and centered at the channel’s wavelength, and that it 
introduces negligible overall losses. In linear domain, the transfer function corresponds to the far-field shape, 
i.e., a Gaussian function versus the  wavelength29. The crosstalk of the AWG, defined as the ratio of powers of the 
first suppressed channel and the pass channel, is denoted as rAWG in linear terms, or RAWG in logarithmic (dB) 
domain. In what follows, we assume zero insertion loss (IL) and restrict ourselves to the 1 st order approxima-
tion where it is assumed that the crosstalk is relevant only between adjacent channels. We also assume that the 
curvature of the output free-propagating region of the AWG matches the curvature of the Gaussian field (its 
equiphase line in transversal plane) yielding zero-phase difference between adjacent output waveguides.

When passing through the DEMUX, channel m will be distributed not only to the mth output port, but also 
to ports (m± 1) , with the ratio of powers being determined by rAWG . This will cause the mth channel in adjacent 
waveguides to be modulated by input or weight targeted at channels (m± 1) . Subsequently, when collected by 
MUX, reversed process will follow, which will gather all the signals back to the output, leading to mixing of 
inputs or weights belonging to the three adjacent paths, with the appropriate coefficients. Following the detailed 
derivation given in Section 7 of Supplementary Document, we find that the actual, imprinted value of the input 
in modes of operation #1 and #2 deviates from the targeted one as

under the constrain xn,0 = xn,M+1 = 0 and with the same formalism being applied to weights in modes #1 and 
#3, and biases in all modes of operation. Unlike the deviation coming from using a single modulator for multiple 
channels, which can be compensated to a certain extent, the crosstalk originating from the AWG cannot be easily 
counteracted outside the OLAU as it its pattern-dependent and, consequently, depends both on the index of the 
axon n and index of the channel m.

Having identified wavelength-dependent behaviour of the PPNN’s constituent components, its experimental 
diagonal transfer matrix, Qe , can be derived based on the PPNN configuration for different modes of opera-
tion, as per Tables 1 and 2, following the path of the signal in Fig. 1e, relying on Eq. (12) for modeling the AWG 
response, and Eqs. (5) and (8) for unapproximated input and weight modulator transfer functions. Similar as in 
the case of Qt in Eq. (2a), we disregard the accumulated phase shift in Qe and restrain our focus only to the phase 
difference between the bias branch and the OLAU and between the axons in the OLAU itself, as these lead to 
potential performance deterioration through impairment of interference conditions. In order to perform phase 
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alignment between the bias branch and the OLAU in modes of operation which assume using a single modulator 
for enforcing inputs or weights to multiple channels (mode #3 for inputs and #2 for weights), we modify the bias 
branch transfer matrix from W̃b to W̃b�

(w)
c  in mode #2 or W̃b�

(x)
c  in mode #3, where

with ξ (x)m,c and ξ (w)m,c  being defined by Eqs. (7b) and (11b), respectively. In this manner, channel-selective phase accu-
mulation originating from Eqs. (7a) and (11a) is cancelled, as detailed in Section 8 of Supplementary Document. 
It should be stressed that Qe derived based on Eqs. (7), (11) and (12) is approximate and, even though the phase 
compensation is carried out via the PSs in the bias branch, certain deviation from Qt will remain. In the forth-
coming analysis, these will be quantified by absolute, �qm = qe,m − qt,m , and relative error, δqm = |�qm|/qt,m , 
between the experimental, qe,m , and targeted, qt,m , diagonal matrix elements. The errors can be derived based 
on the expressions correlating qe,m and qt,m in Section 8 of Supplementary Document.

PPNN performance analysis
For our case-study, we assume silicon platform, with the refractive index dependence on wavelength at different 
temperatures taken  from30. At �c = 1.55µm and T0 = 293K we have n = 3.4757 and ng = 3.5997 . In case of 
E/O modulators, unless doping is severe and/or composite materials are used, optical properties of the undoped 
silicon (where the majority of light is confined) remain the same as above, whereas the dependence of the refrac-
tive index on the voltage is assumed to be approximately linear for the voltage ranges of interest.

Using Monte-Carlo method, we observe 104 sets of random, uniformly distributed input and weight values, 
chosen on the domain xn,m ∈ [0, 1] and wn,m ∈ [−1, 1] and keep the bias fixed to w̃b,m = 1 in order to ensure that 
the information about the sign of the sum is preserved when transitioning to the power domain. When employing 
PPNN in trained environment, bias weight can take any value from w̃b,m ∈ [−1, 1] imposed by the training algo-
rithm. Following the simulation, the diagonal matrix elements qt,m and qe,m are aggregated and 2-D scatter plots 
analyzed using multivariate statistical approach to determine deviations in terms of absolute and relative error.

Figure 4 shows 2-D scatter plots for two different modes of operation, convolutional (left-hand-side) and FC 
(right-hand-side), for T/O MZM biasing point θ = π/3 , normalized lengths px = qx = 100 and pw = ps = 50 , 
nominal channel spacing ��1 = 0.8 nm , translating to approximately 100GHz in frequency domain, and 
RAWG = −15 dB . Phase alignment between the bias branch and the OLAUs output has been carried out fol-
lowing Eq. (13).

In terms of magnitude of the experimental matrix element, |qe,m| , versus the targeted matrix element, qt,m , 
both modes of operation show similar performance, as confirmed by Fig. 4a, b, when optimized for the same 
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Figure 4.  Comparison between the convolutional (#2, left-hand-side) and the fully-connected (#3, right-hand-
side) mode of PPNN operation with M = 4 channels, optimized for operation at channel c = 2 , and N = 8 
axons for ��1 = 0.8 nm and RAWG = −15 dB . Channel-wise color coded 2-D scatter plots of the targeted 
matrix element qt,m and (a), (b) the magnitude and (c), (d) the argument of the experimental matrix element 
|qe,m| and (e), (f) the algebraic magnitude of the absolute deviation of the experimental from targeted matrix 
element, sign(Re{�qm})|�qm| , with �qm = qe,m − qt,m , all with displayed univariate kernel probability density 
plots on the corresponding horizontal and vertical axes of the scatter plots.
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channel, c = 2 , out of M = 4 color-coded channels in the PPNN when a single modulator is used, or, optimized 
for m if a modulator per channel is used. The Spearman’s rank correlation coefficient ρ in both cases given in 
Fig. 4a, b exceeds 0.999 for all 4 observed channels, indicating almost perfect monotonic relation between the 
two quantities. The univariate Probability Density Functions (PDFs) of both qt,m and |qe,m| retain Gaussian shape, 
complying with Central Limit Theorem (CLT). Nevertheless, a slight downshift in the means of edge channels’ 
PDFs can be observed ( m = 1 and m = 4 ), or, in other words, reduction in the mean value of the experimental 
matrix element comparing to the targeted one. The downshift implies that edge channels encounter greater power 
loss than the inner ones during the propagation through PPNN, which can be attributed to the DEMUX/MUX 
pairs embracing the modulators in the input and weight banks. Namely, as the edge channel gets demultiplexed, 
the fraction of its optical power that is proportional to the crosstalk strength ( rAWG ) and is sent to an adjacent 
channel not supported by PPNN (channel 0 for m = 1 and channel M + 1 for m = M ) gets irreversibly lost during 
demultiplexing step. This effect is not observed for inner channels, since they distribute their crosstalk signals 
to the adjacent channels which are supported by PPNN, and can be later on collected by MUX, as described in 
Section 7 of Supplementary Document. This edge-channel loss penalty is captured by xn,0 = xn,M+1 = 0 and 
wn,0 = wn,M+1 = 0 in Eq. (12) and its counterpart for wAWG

n,m .
Scatter plots of the argument of qe,m versus qt,m , given in Fig. 4c, d, reveal that phase alignment based on the 

approximate expression given by Eqs. (7b) and (11b) yields excellent results, bringing the residual phase shifts 
below 0.01π rad . The distribution of arg(qe,m) is well approximated by Gaussian owing to CLT and depends to a 
certain extent on the targeted matrix element qt,m value. It can be also noticed that the edge channels ( m = 1 and 
m = 4 ) suffer a shift of the PDFs as was the case with the PDFs describing the magnitude of qe,m , arising from 
non-symmetrical phase shifts seen by the 1 st and Mth channel. This time, however, the shift of the mean is of 
different sign: positive for the 1 st and negative for the Mth channel. In both cases, the shift originates from the 
crosstalk in the bias branch, where phase compensation is performed. Looking at the bias counterpart of (12), 
the crosstalk term is proportional to rAWG(w̃b,m−1 − 2w̃b,m + w̃b,m+1) , and, having w̃b,m = 1 for all supported 
channels m ∈ [1,M] , should amount to 0. Yet, when m = 1 or m = M , the signals are not counterbalanced since 
w̃b,0 = w̃b,M+1 = 0 , leaving a residual crosstalk term proportional to −rAWG , which is multiplied by �(x)

c  or �(w)
c  

depending on the mode of operation, as detailed in Section 8 of Supplementary Document. On the other hand, 
the elements of �(x/w)

c  depend on the difference between the observed channel m and the channel with respect to 
which the modulator was centered, c, as (7b) and (11b) show. This leads to phase shifts of different signs for the 
1 st and the Mst channel, since the typical choice is c = ⌈M/2⌉ . Regardless of means being shifted, standard devia-
tions of the corresponding quasi-Gaussian PDFs remain similar as for the inner channels ( m = 2 and m = 3).

Finally, in Fig. 4e, f, we observe the algebraic magnitude of the absolute error between the experimental 
and the targeted transfer matrix elements, sign(Re{�qm})|�qm| . The effect of mean drifting for edge channels, 
observed in Fig. 4a, b, can now be quantified and, for all analyzed cases stays below |�qm| < 0.06 which yields 
the maximum relative error of the order of 4% for edge channels. In case of inner channels, the error is centered 
in the proximity of 0 and, for a given ��1 and RAWG stays below 2% in > 90% of analyzed random sets.

We extend our analysis to all multichannel modes of PPNN operation according to Table 1 for ��1 from 0.4 
to 1.6 nm (translating to grid spacing of 50–200GHz ) and RAWG from − 40 to − 5 dB , accounting for M = 8 
channels centered at c = 4 when a single modulator for all channels is used, and at m otherwise, aiming to 
determine the influence of various system parameters on the relative error of the matrix element, δqm . Figure 5 
shows mean values of relative errors over the collection of 104 analyzed samples, together with 5–95% confidence 
bounds versus ��1 for AWG crosstalk of −15 dB and versus RAWG for channel spacing of 0.8 nm . As observed in 
scatter plots given in Fig. 4, we again confirm based on Fig. 5 that edge channels ( m = 1 and m = 8 ) introduce 
similar amount of error (lines are overlapping), which is greater than the error encountered by inner channels 
( 2 ≤ m ≤ 7 ), also overlapping among themselves. The underlying cause is related to the asymmetry in the filed 
magnitude and phase shifts accumulated by edge channels when passing through AWG, as previously elabo-
rated. The important conclusion stemming from this overlap is that the number of employed channels M does 
not pose a challenge for any of the PPNN modes of operation, as long as phase compensation is done within the 
bias branch following Eq. (13).

Comparing different modes of operation in Fig. 5 reveals that the mean relative error, be it higher for the edge 
channels or lower for the inner ones, remains fairly similar for different modes of operation (excluding very high 
RAWG ), having weaker dependence on ��1 than on RAWG . For RAWG = −15 dB it does not exceed 4% for any 
analyzed ��1 , however, as the crosstalk increases, the mean error shoots up exponentially, surpassing 10% for 
the edge channels at RAWG = −10 dB and remaining within manageable values of up to 6% for the inner ones 
even at RAWG = −5 dB . On the other hand, there is a significant difference in the confidence interval between 
the modes of operation: it is widest for the multi-neuron mode of operation, given in Fig. 5a, b, and reduces for 
convolutional and FC modes, given in Fig. 5c–f, implying that, although not common, large errors can occur in 
multi-neuron case. Same evolution of the confidence interval can be seen with respect to AWG crosstalk, Fig. 5b, 
d, f, revealing that having more DE/MUX stages in mode #1 comparing to the remaining 2 modes of operation 
is actually responsible for its sizeable spread of errors, as is expected based on the Eq. (12).

Looking at convolutional, Fig. 5c, d, and FC mode of operation, Fig. 5e, f, difference can be observed in the 
confidence intervals, and to a certain extent in the mean relative error for the inner channels, indicating that 
convolutional mode of operation seems to exhibit better overall performance. Yet, from architectural point of 
view, Figs. 1, 2 and 3, the two are nearly interchangeable. At the same time, our analysis shows that the normal-
ized modulator lengths px , qx , pw and ps play marginal role in relative error means and confidence intervals, 
as was expected having in mind that the accumulated phase given by Eqs. (7b) and (11b) is compensated by 
the PSs within the bias modulator bank following Eq. (13). The difference, thus, comes in response to different 
domains of inputs and weights, i.e., the the quantities enforced jointly to all-channels and the ones enforced 
on per-channel bases. Repeating the analysis from Fig. 5 for weights restricted to the same domain as inputs, 
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namely wn,m ∈ [0, 1] , confirms that the confidence intervals slightly reduce for both modes of operation and, 
more importantly, become similar in magnitude. This can be explained by reducing the magnitude of crosstalk 
in weight modulator bank in the FC mode of operation by halving the range of the values wn,m±1 can take in the 
equivalent of Eq. (12) for wAWG

n,m .
The study of the PPNN performance on fan-in has been carried out for N ranging from 2 to 64 and reported 

in Fig. 6 for convolutional and FC configuration. A clear trend can be observed for both modes of operation 
where the confidence interval reduces with the increase of N, stemming from narrowing of the univariate PDF 
of both qt,m and |qe,m| , complying with CLT, whereby the standard deviation decreases with 1/

√
N  . The values 

of the mean relative error remain similar to the ones in Fig. 5 across different N values, implying that, similar to 
other analyzed parameters, the number of axons does not pose a challenge to PPNN operation.

Implementation considerations and perspectives
Here we discuss the practical aspects of PPNN implementation, focusing on insertion losses ( ILPPNN ), power con-
sumption ( PPPNN,m ), footprint ( APPNN,m ) and throughput ( TPPNN,m ), jointly shaping the energy- and footprint-
efficiency, defined as the ratio of the throughput and the power consumption or the PPNN area, respectively. We 
recognize the penalties introduced by sub-optimal resource employment, such as powering off some of the LDs 
or keeping some of the axons dark, i.e., using less channels ( MA ≤ M ) or less axons ( NA ≤ N ) than the PPNN 
supports. Based on the detailed study reported in Section 9 of Supplementary Document, we find the respective 
values per number of active channels for power-of-2 splitting and combining stages 
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where ILi , Li and Pi denote per-device insertion losses, length and power consumption, with the exception of PLD 
which stands for the optical power of the LD per channel. Indices i ∈ {MUX, S, C, X,W, R} refer, in the given 
order, to DE/MUX, switch, X-coupler, input amplitude modulator, weight amplitude and phase modulator and 
routing waveguides. Moreover, ηwp is the wall-plug efficiency of the LD, LA is the total length of an axon, L� 
distance between lateral waveguides, BX is the datarate of the input modulator, and S{X,W,O} are the switch states 
defined in Table 1 depending on the mode of operation.

The first two terms of ILPPNN in (14a) denote the penalty introduced by multichannel operation ( ∼ ILMUX ) 
and programmability ( ∼ ILS ), whereas the last term denotes the penalty in the form of irreversibly lost optical 
power when NA < N axons are used. No IL penalty is observed when MA < M channels are employed.

The PPNN power consumption per channel, given by (14b), is governed by all of its active components, which 
are, in turn, powered on based on the states of the switches and modes of operation. The power consumption of 
the optional Transimpedance Amplifier (TIA) and Temperature Controller (TEC) are excluded from the analysis 
as they would contribute to the total power consumption in a similar manner regardless of the multichannel 
operation or PNN programmability. Comparing to its predecessor, dual-IQ coherent linear  neuron21, power 
consumption of PPNN in modes #1 and #4 is similar to that of dual-IQ, with a minor penalty ∼ PS in PPNN 
case owing to its programmability. However, operating in either mode #2 (convolutional) or #3 (fully-connected) 
brings power savings in PPNN case through weight (#2) or input (#3) modulator sharing, since the coefficients 
pondering PW and P(DC)/(RF)X  , respectively, get divided by the number of active channels, MA , implying increased 
energy-efficiency of the PPNN comparing to using MA dual-IQ neurons.

Comparing the PPNN footprint per channel, given by (14c), to that of dual-IQ, we can observe both longi-
tudinal and lateral penalty, the former due to DE/MUXes and switches making LA longer for PPNN than for 
dual-IQ, and the latter due to the existence of two alternative routes a signal can take within the input and/or 
weight banks. Focusing on two corner scenarios, when (i) MA = M ∼ N and (ii) MA = 1 , the lateral footprint 
penalty due to multichannel operation and programmability ranges from multiplicative factors of (i) ∼ (1+ 2/N) 
(best-case scenario) to (ii) M(1+ 1/N)+ 1− 1/N (worst-case scenario). The second case reveals that power-
saving mode of operation comes at a price of footprint penalty proportional to the number of channels for which 
PPNN was designed.

The thorough study on wavelength dependence of individual components could be further extended to 
incorporate the temperature dependent operation of devices and statistical differences between the employed 
components. Temperature dependent operation would provide useful information regarding the performance 
reliability in realistic conditions where on-chip temperatures up to 80–100◦ C can be encountered. An extended 
analysis where statistical differences between the employed components are taken into account would provide a 
clearer insight with respect to its practical perspectives, since current silicon photonic platforms don’t guarantee 
identical performance for identical devices, calling for a system tolerance analysis. The study can also be expanded 
to different types of input/weight modulators which are governed by different amplitude and phase equations, 
aiming to conclude to analytical expressions for deviation compensation.

On the system level, two upscaling directions can be taken. One relates to interconnection of multiple PPNNs 
and employing them in inference task in order to estimate their accuracy under a non-random load. The second 
relies on the positive impact that the increase of number of axons has on the reduction of the confidence interval 
of relative error reported in Fig. 6. This indicates that PPNN architecture can be reliably extended into a two-
dimensional arrangement, similar to our recently proposed photonic  crossbar31, yielding K spatially separated 
neuron outputs. Boosted by WDM, crossbar could support a total of K ×M logical outputs, while also offering 
flexibility to switch between the different modes of operation, approaching to the photonic FPGA concept.

Conclusion
In this manuscript we present an in-situ reconfigurable coherent PNN, exploiting the wavelength domain for 
achieving parallel operation of multiple neurons with flexible, user-defined interconnection graph, supporting 
four distinct modes of operation, among others convolutional and fully-connected layer. We carry out a detailed 
analytical study of the modulator and DE/MUX wavelength dependence, offering a simple approach for restoring 
the PNN fidelity through phase alignment of the bias signal, revealing that the majority of the residual errors 
comes from the crosstalk in DE/MUX stages. The analytical approach is benchmarked against Monte-Carlo 
simulation showing that the residual relative error typically remains within the manageable 2% range for AWG 
crosstalk of up to −20 dB . More importantly, the PNN performance does not degrade with the increase of number 
of channels or the neuron fan-in as long as phase alignment in the bias branch is carried out, supporting seamless 
network upscaling, including the extension to multi-column arrangements for vector-by-matrix multiplication. 

(14b)
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The relative error dependence on channel spacing is weak, allowing the PNN to be operated equally well in 
coarse and dense WDM systems.

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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