
Programmatic Gold: Targeted
and Scalable Quality Assurance in Crowdsourcing

David Oleson, Alexander Sorokin,
Greg Laughlin, Vaughn Hester, John Le, Lukas Biewald

CrowdFlower
2111 Mission Street, Suite 302,
San Francisco, CA, USA, 94110

{dave,alex,greg,vaughn,john,lukas}@crowdflower.com

Abstract

Crowdsourcing is an effective tool for scalable data annota-
tion in both research and enterprise contexts. Due to crowd-
sourcing’s open participation model, quality assurance is crit-
ical to the success of any project. Present methods rely on
EM-style post-processing or manual annotation of large gold
standard sets. In this paper we present an automated quality
assurance process that is inexpensive and scalable. Our novel
process relies on programmatic gold creation to provide tar-
geted training feedback to workers and to prevent common
scamming scenarios. We find that it decreases the amount of
manual work required to manage crowdsourced labor while
improving the overall quality of the results.

1 Introduction

Human-annotated data is the cornerstone of scientific
method in machine learning. Many business applications
require human judgment to supplement AI-based systems.
Traditionally, this manual annotation has been carried out by
small teams of human annotators over long periods of time.
Although businesses often can afford to hire and manage an-
notator workforces, traditional hiring practices become in-
efficient or insufficient in the face of the demands of mod-
ern applications. These needs are characterized by unpre-
dictable scaling, spiky traffic and short deployment cycles.
Crowdsourcing - the use of large, distributed groups of peo-
ple to complete tasks on demand (Howe 2008) - is one so-
lution to these problems. Crowdsourcing has changed data
annotation practices by distributing large amounts of work
efficiently.

Crowdsourcing is a growing industry, and many online
platforms exist for completion of microtasks. (Amazon
Mechanical Turk 2005) was the first large scale labor-on-
demand platform. It provides a powerful API for application
development, international payment infrastructure and basic
quality assurance mechanisms. For the purposes of this pa-
per we also consider two more recent general-purpose plat-
forms. (SamaSource 2011) is a crowdsourcing non-profit
with a mission to lift people out of poverty through train-
ing and provision of digital work. (CrowdFlower 2011) is a
general-purpose crowdsourcing platform with built-in qual-
ity assurance. Unlike other platforms, CrowdFlower does

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not have its own workers. Instead it pushes the crowdsourc-
ing tasks to partners (like AMT or Samasource), who engage
their worker pools to complete the available tasks. Partner-
ing with a multitude of labor pools significantly increases
scalability of the platform and diversifies worker base.

Crowdsourcing has become a global phenomenon with a
low barrier to entry. Millions of people around the world
now participate in a digital and virtual workplace. The
crowdsourcing ecosystem is one in which work is being re-
defined as an online meritocracy in which skilled work is
rewarded in real time and job training is imparted immedi-
ately via feedback loops (Lehdonvirta and Ernkvist 2011).
The breadth and diversity among crowdsourcing partici-
pants, workers and researchers is immense. This means that
quality control mechanisms should account for a wide range
of worker behavior: scammers, lazy workers, ethical work-
ers, slow learners, etc.

With these services, researchers can manage a huge pool
of workers on a crowdsourcing platform to perform various
tasks. To name a few, (Snow et al. 2008) has shown applica-
bility of crowdsourcing to NLP, (Sorokin and Forsyth 2008)
demonstrated how to efficiently crowdsource annotation
for computer vision, (Ipeirotis, Provost, and Wang 2010)
applied crowdsourcing to content moderation, (Holmes,
Kapelner, and Lee 2009) applied crowdsourcing to identify
bacteria and (Alonso, Rose, and Stewart 2008) used crowd-
sourcing for assessments of search relevance.

All authors agree that crowdsourcing requires explicit
quality assurance mechanism to deal with scammers, insuffi-
cient attention and incompetent workers. (Snow et al. 2008)
relies on averaging and bias correction, (Ipeirotis, Provost,
and Wang 2010) develops bias correction into an EM-based
procedure to detect scammers. (Kittur, Chi, and Suh 2008)
argues that verifiable questions must be included into other-
wise subjective tasks and answering the verifiable part cor-
rectly should take as much effort as doing the whole task.
(Dow et al. 2011) designs interactive and peer-to-peer feed-
back system to encourage quality work. (Le et al. 2010)
develop a gold standard-based quality assurance framework
that provides direct feedback to the workers and targets spe-
cific worker errors. The approach of (Le et al. 2010) re-
quires extensive manually-generated collection of gold data.
In this paper we present an algorithm for generating gold
data automatically while maintaining important gold proper-

43

Human Computation: Papers from the 2011 AAAI Workshop (WS-11-11)



ties: transparency to workers, mistake targeting and in-task
training. Our approach still requires manual intervention to
detect errors and codify the specific gold generator, but it
provides significant time savings and ensures overall scala-
bility of crowdsourced data processing.

2 Quality in crowdsourcing

In the paper, we refer to any piece of data that needs to be
processed as unit and denote it with u. We call any worker
output judgment j. We apply this term more generally than
the original meaning of judging relevance. We apply it to
any work provided for a single unit by a single worker. We
assume that there are units that have a single unambiguous
answer j∗, which we call the correct answer. This is not al-
ways the case, but we must leave these special cases outside
of the scope of the paper.

2.1 Worker screening

Pre-screening workers is a simple strategy: set up multiple-
choice questions and ban people who do not pass the test.
If the workers pass the test, assume they work well. This
strategy is simple to implement and can improve accuracy
by preventing unskilled or unethical workers from entering
a task. It is readily available on the (Amazon Mechanical
Turk 2005; CrowdFlower 2011) platforms. Other platforms
(SamaSource 2011; Microtask 2011) pre-screen the entirety
of their workforces.

Worker screening has limitations. The introduction of a
barrier to entry affects good and bad workers alike. Uneth-
ical workers (“scammers”) looking for easy tasks are less
likely to put in effort to pass the screening test, but diligent
workers may also opt not to enter the task. Once the worker
passes the screening, there is no continued incentive to sub-
mit accurate responses. The screening module itself may be
vulnerable to scammers who may share the answers to the
questions. Finally, the screening test must be manually de-
signed.

2.2 Inferring worker trust

The second strategy (Dawid and Skene 1979), introduced by
(Ipeirotis, Provost, and Wang 2010) in the context of crowd-
sourcing, is to simultaneously infer worker accuracy and the
correct answer. We can formulate an EM optimization that
accounts for worker biases pw(j|j∗), estimates these biases
and the correct response for each unit p(j∗|u) (see (Dawid
and Skene 1979) and (Ipeirotis, Provost, and Wang 2010)
for details and a sample implementation). The estimation is
necessarily iterative, because the resulting EM formulation
is NP-hard, and needs all data to be present.

This strategy requires batch post-processing. It is neces-
sary to obtain multiple judgments for many units of data,
then to estimate worker accuracy, true answers and worker
biases. One then iterates this process several times to pro-
vide true responses. Once all data is collected, it is possi-
ble to identify trusted workers and untrusted workers, the
latter which should be rejected. If some units of data are
missing the required number of independent trusted judg-
ments, those should be collected again and the estimation

process repeated. Alternatively, one might collect an ex-
cessive number of judgments for EM purposes (P. Welinder
2010), thereby making the process much more expensive.
While this is a perfect tool to study the behavior of workers,
collecting excessive number of judgments is impractical for
any large-scale application.

Offline estimation introduces large delays and allows
workers to submit large batches of work that might be later
rejected. Most workers are highly sensitive to rejections and
will contact the requester if they feel rejections were unfair.
The requester would then have to respond to a very large
number of e-mails. As a result, rejecting large number of
judgments becomes expensive, it can damage requester rep-
utation and deter workers. These factors make EM-style QA
difficult for large scale, ongoing projects.

Gold-based quality assurance Gold-based quality assur-
ance provides a direct estimate of worker accuracy and al-
lows for in-task worker training. A gold standard dataset is
a set of gold units, each with a known correct answer j∗ and
a feedback message explaining why the answer is chosen.
We can explicitly estimate worker accuracy by randomly in-
jecting gold units into the workflow. If the worker gives an
incorrect answer for a gold unit (“misses the gold unit”), we
show the feedback message to train the worker. The worker
has an option to contest the gold message if they believe the
gold answer j∗ is incorrect. If their complaint is accepted
(e.g. j∗ is corrected), the worker answer is considered cor-
rect.

Gold-based worker accuracy is then the agold = 1 −
Nmissed

Nshown
, where the Nmissed is the number of gold units they

missed and Nshown is the number of gold units they have
seen. The accuracy agold is computed only after the worker
has seen at least N0 = 4 gold units. As the workers progress
through the task, gold sampling frequency is reduced if the
workers maintain high accuracy levels. If at any point in
time the worker falls below task-specific accuracy threshold
treject, they are rejected from the task. To increase trans-
parency, we warn workers when their accuracy falls below a
higher threshold twarn.

To ensure that workers are adequately prepared to work on
the task, we start with a training session. In training, workers
see only gold units and receive feedback for every mistake
made. Training continues until the worker has completed
Ntraining = 4 gold units correctly. After that the workers
are switched into regular work mode. The mistakes made in
training mode do not affect the worker’s accuracy estimate
for subsequent questions answered. The workers are paid
for training responses only upon successful completion of
training mode.

Gold-based QA has a number of advantages. First, it ex-
plicitly measures worker accuracy. This accuracy can then
be used to make decisions regarding the worker: can we
use their work? Should we block them? Do they deserve
a bonus? Second, the process is transparent to the work-
ers. They see the current accuracy estimate and how each
missed gold affects it. Last, workers receive in-task train-
ing. By presenting special cases as gold units, we can ensure
that workers understand the nuanced or challenging details

44



of the task requirements. By balancing the answer distribu-
tion within the gold set like in (Le et al. 2010), we can ensure
that the workers are trained to choose the correct answers in
edge cases that may only comprise a small fraction of the
data.

3 Challenges of gold-based quality assurance

Gold questions are used to improve the accuracy of results
collected in crowdsourced tasks. CrowdFlower relies exten-
sively on gold-based quality assurance efforts in all projects.
These questions aim to: a) remove unethical workers from
a task and b) educate untrained or incompetent workers to
improve the accuracy of their responses. Key considerations
for successful implementation of gold units include the time,
cost and efficacy of gold units.

3.1 Size of gold dataset

Repeat exposure to specific gold units increases the likeli-
hood that a worker will recognize a particular unit (partic-
ularly one which he or she has answered incorrectly previ-
ously) as belonging to the quality control system. This can
result in a subsequent minimal effort by a worker on non-
gold units. In jobs with a high number of units, if a particular
gold unit is viewed repeatedly by a single worker, it could in-
validate the accuracy estimate (Figure 1). Limiting the max-
imum of amount of work per worker may minimize repeat
views of gold units, but can also result in decreased through-
put. Use of extra (or excessive) questions (or very large gold
datasets) to minimize repeat views of gold units involves a
considerable cost. Most tasks with automated quality con-
trol will compensate workers for all judgments submitted
during a task up until the point at which the worker fails to
meet a minimum accuracy level. In addition, there are costs
of internal resources and time for creation, oversight and re-
sponses to worker feedback when quality control strategies
raise questions or confusion.

3.2 Composition

The selection of gold units should focus on those with objec-
tive, irrefutable true answers. True answers should encom-
pass as wide/even of a distribution as possible; no single
response category should dominate the gold unit distribu-
tion. Gold units can provide an active learning environment
if accompanied by a clear, specific reason as to why a par-
ticular response would be the correct answer. This process
flows under the assumption is that the creators of these gold
units (know as “gold-diggers”) are ethical and strategic: they
must plan ahead to anticipate likely types of worker errors
on a particular task. The creation of gold units manually is a
time-consuming and expensive process.

3.3 Disguising gold units

A key best practice for optimizing crowdsourcing tasks is it-
eration. However, this iteration is frequently accompanied
by minor adjustments to the language or images in each
question which can expose that unit as belonging to a previ-
ous version of the job. Gold units must be undetectable from
the non-gold units in a job, and iteration becomes difficult

���

���

���

���

���

���

���

���

���

���

	���

��

���

���

���

���

	���


���
	� 
���
�� 
���
�� 
���
��

��
��
��
��
�

�	

�
�

��
�


�
��
��
��
��
���

�

�

�

��
���

��
��
�

��
��
��

�

�

��������
��

���������������
���������
��������

�������������	�

���������������

���������������

���������������

����������

Figure 1: Observed example of accuracy degradation over
time. In Job 1, there is new gold, workers from group 1
cannot pass the gold accuracy targets, none of their work is
counted, and accuracy is at 97%. By Job 4, group 1 workers
have learned the gold, allowing them to submit inaccurate
judgments on non-gold units, and overall accuracy is down
to 85%.

when gold units must be manually recreated due to iteration
in the job. All data fields and visual clues in one job must be
consistent, otherwise workers will have a clear opportunity
to scam the task and extract compensation correctly answer-
ing (only) the gold units. The accuracy on non-gold units is
severely impacted when analyzed post-processing.

3.4 Detecting new error types

Creation of gold units must be as iterative as the task design,
layout, and UI. Processing multiple batches of data will,
however, expose the most frequently occurring patterns of
worker behavior and errors. Identifying these errors makes
it possible to then target them via specific types of gold units:
those which ask the workers to make judgments on challeng-
ing edge cases, to complete a specific type of research, or to
complete a particular field within the task interface.

3.5 Scammer behavior

Strict quality control measures give rise to a variety of types
of scamming, generally by workers who are removed from
a particular task (for failing to maintain the 70% accuracy
required). Creation of multiple worker accounts by the same
individual is common if a worker has too low of a trust rating
to continue working on a particular job of interest. Workers
may collude regarding gold unit answers in order to inflate
their accuracy ratings, especially if they are located in the
same physical location.

A final consideration is that it can be difficult to generate
gold data that targets specific worker behavior or errors on
a particular task. Traditionally, gold units have been manu-
ally created using source data units from the batch of source
data from the present job; this is a time-consuming, labori-
ous process. Additionally, it is a process that is difficult to

45



a) rapidly scale and b) adapt to precisely target certain be-
havior. The experiments in this paper attempt to reduce the
effects of many of these challenges. Our work extends ba-
sic, traditional strategies of quality control in crowdsourcing
by attempting to mitigate the impact of the scenarios listed
here.

4 Programmatic gold
Programmatic gold is a process of generating gold units with
known answers. New units are generated from previously
collected correct data. By injecting known types of errors
into the data, we gain control over the training experience
of the workers and force all workers to consider most com-
mon error cases. When the workers make mistakes, they see
automatically-generated feedback. We refer to this manipu-
lated data as pyrite. The simplest application of program-
matic gold is use of high confidence answers to benchmark
future workers. This approach is similar to EM-based qual-
ity assurance, however it does not provide as clear of an im-
pact with respect to targeting specific errors as pyrite does.

The first step in creating pyrite is identifying worker er-
rors through manual audits. Then, mutating the conditions
for correct worker responses so that pyrite directly targets
the most common errors by workers. For example, in a
URL verification task, workers might have difficulty with
businesses which are similarly named but are located in the
wrong city. For instance, if a local search engine wanted the
“Bob’s Restaurant” located in Seattle, WA, but the URL pro-
vided was for a “Bob’s Restaurant” in Portland, OR, workers
often have difficulty distinguishing between the two and in-
correctly state the URL is for the right business in the given
city and state. As described below, it is possible to generate
pyrite that directly targets this type of worker error (“city-
state” gold). Worker errors usually fall into discrete sets,
once these are identified through manual spot checks, pro-
grammatic gold can be generated for the universe of worker
errors, insuring consistently high accuracy of results.

The second step is to define a set of data mutations
μ(u, j∗, U). Each mutation applies to a single unit u with
correct judgment j∗, but generally requires all available data
as input. The mutations alter individual attributes of the
data to produce a new unit that (a) differs the original unit
enough to violate task requirements and (b) looks similar
to original data. For example, to create city-state gold, we
assigned variables to each units address, city, state, postal
code, and phone number (“location information”). We ran-
domize each unit’s location information with location infor-
mation from another entity. For instance, Gramercy Tavern
in New York , NY, 10003 212-477-0777 would now have the
location information from an entity outside of New York.
Workers would be presented with the information Gramercy
Tavern, San Francisco, CA 94103 415-555-1234. The link
(http://www.gramercytavern.com) takes workers to the NY-
based Gramercy Tavern website. The workers should an-
swer “no” because the entity is not in the correct location or
with the correct phone number.

Another type of pyrite is name gold. Name gold targets
behavior where workers would say that the website for En-
terprise Lawyers located in Durango, CO, was the correct

website for Enterprise Group, also located in Durango, CO.
To address this problem, we create name gold by taking an-
swers where workers had answered yes with 1 confidence,
then parsing out the words into their component pieces (i.e.
first word, second word) and rearranging both the compo-
nent pieces of the names, as well as the last 7 digits of the
phone number.

For instance, for the unit Nulook Party in Greenville, NC
with phone number 252-367-7444, we scrambled the name
and the phone number so that the gold unit would be Au-
tomated Party in Greenville, NC with phone number 252-
8985-9733. Worker have to identify that this is not the cor-
rect website.

Each mutation function produces the gold unit that corre-
sponds to a particular error ε identified earlier, so we use the
description of the error to automatically generate the feed-
back message. If the workers answered city-state gold in-
correctly, they would see a message of “The URL is for
Gramercy Tavern located in New York, NY. We asked for
the Gramercy Tavern in San Francisco, CA. Be sure to check
that the restaurant is located in the correct city and state!” If
workers answered name gold incorrectly, they would see a
message of “The URL is for Nulook Party in Greenvile, NC,
but we asked for Automated Party. Be sure that the name is
the same!”

The third step is to collect a set of units with known cor-
rect answers. When such a set is not available, we start with
a small data run that requires little gold to complete (as de-
scribed below in Experiment 2). The results with highest
agreement are then used as source data for programmatic
gold. If there is another set of accurate data, that can be used
instead (as described below in Experiment 1). Occasionally
all workers agree on an incorrect response, and an incorrect
response is turned into a gold unit. Since each gold unit is
seen by many workers in the course of normal data process-
ing, workers contest the wrong gold and we automatically
disable the gold unit if the gold contention rate is high. This
makes programmatic gold tolerant to inevitable errors in the
source data set.

The last step is to define the target distribution of gold.
As shown by (Le et al. 2010), sampling from underlying
distribution of examples is inferior to sampling uniformly
from possible worker errors. We follow that idea and gen-
erate gold with uniform distribution of target errors identi-
fied by manual spotchecks. For each sampled error ε we
select a source unit u. We then apply the transformation
με(u, j

∗, U) corresponding to this particular error ε to gen-
erate gold units. We automatically attach the respective er-
ror description as feedback for the generated gold unit. Note
that the errors ε are sampled with replacement, while the
source units are sampled without replacement to prevent de-
tectability.

5 Experiments

We evaluate programmatic gold in two experiments: Exper-
iment 1 compares the effect of manual gold with program-
matic gold, while Experiment 2 tests the scaling up of the
gold set from 10 intial gold units to a total of 22,000 units.

46



For Experiment 1 we used a dataset of 9,659 business list-
ings which had web addresses. The goal was to first verify
the correct name of the business, and, if the business name
was different on the website vs. the information in the busi-
ness listing, change the business name to the name listed on
the website. Workers were instructed to find the correct busi-
ness name on the website and, if the name provided by the
local index was incorrect, copy and paste the correct name
from the URL onto the page. Some businesses have differ-
ent names for specific locations or divisions of the business.
In that situation, workers were asked to use the name that
best matches the location or division.

We used previous data runs to look for units where work-
ers agreed with each other with 1 confidence. Then, we
turned those units into gold units (without any additional
transformations), and processed the data again. To measure
the effect of programmatic gold, we performed 3 separate
data runs: with no gold, with manually-dug gold and with
programmatic gold. To measure accuracy we performed in-
ternal audits (spot checks) of 100 units on each set. For each
unit, we measure if the aggregate result is correct or not. The
accuracy is then the percentage of correct aggregate results
in the spotcheck. Different kinds of errors are not reflected
in the accuracy measure - any incorrect result is treated the
same.

For Experiment 2 we used a 22,000-unit subset of a larger
set of 500,000 local business listings with business web ad-
dress (candidate URL), business name, physical address,
and phone number data. The goal was to verify whether
or not the candidate URL was correct.

Workers are given the business data and the URL candi-
date and are instructed to answer “yes, this is the correct url”
(a “yes unit”) if it meets at least one of the following condi-
tions:

1. A location of the business on the website is located in the
provided city or has the provided phone number and the
business name on the website is similar to the provided
name

2. A location of the business on the website is located in
the provided city and the business name on the website is
nearly identical to the provided name
To process such a large dataset, we would need, at min-

imum, 200 gold units for every 20,000 units of data pro-
cessed. When processing this data at the rate of 20,000
units/day, gold units must be refreshed on a daily basis.
These units would have to be created manually. As ex-
plained in Section 3, gold-diggers would have to identify
instances in which workers are likely to make mistakes, turn
them into gold units and provide the correct answer and
feedback message. This process is time-consuming and it
is challenging to find good gold candidates that target spe-
cific worker errors.

5.1 Scaling up with programmatic gold

In the aforementioned set of 22,000 units, we first manually
created 10 gold standard test questions. We used those gold
standard test questions to maintain high worker quality on
the processing of 300 listings. Those 300 listings yielded 60

No Programmatic Manual
Experiment #1 88% 99% 99%
Experiment #2 83% 92% N/A

Gold

Table 1: Results accuracy: No gold, Manual and Program-
matic gold

listings on which multiple workers had agreed that the web-
site in question was correct. We then turned those 60 units
into programmatic gold units: 30 units using the city-state
gold algorithm described above, and 30 “yes units” with
confidence values of 1.0 (indicating perfect agreement) were
turned into “yes” gold units. We then used these 60 newly
created gold units to process 3,000 units with a limit of 1,000
judgments per worker.

After processing those 3,000 units, we audited the worker
results and found that workers were missing similarly named
businesses located in the correct city. To educate workers,
we created name gold as described in Section 4.

We then used 200 programmatically created gold test
units (100 “yes” gold units, 50 “no” city-state gold units,
and 50 “no” name gold units) to process the next 3,000 units
with a limit of 1,500 judgments per worker. On the next it-
eration we created 233 gold for 15,000 units and the same
1,500 judgments per worker limit, refreshing the gold units
so that workers would not see the same gold unit multiple
times. We performed a 100-unit spot check on each set as
described above with the exception of 15,000-unit set, where
we evaluated 253 units.

6 Experimental results

The results of Experiment 1 are shown in Table 1. Program-
matic gold yielded 99% accuracy: which is comparable to
the results using manual gold. Comparing this to the no-
gold scenario, in which only 88% of responses were accu-
rate, shows a substantial difference in the quality of the re-
sults.

Experiment 2 shows that the programmatic gold allows
us to scale up the task and reduces the amount of manual
gold digging. As shown in Table 2, the use of programmatic
gold resulted in overall accuracy of 92.2%. The baseline
accuracy for this job is 85%. The most common scenario
in this sample of data is that the URL is not correct and no
actual work can be performed for that unit. However, it is the
other cases that we are really interested in. As mentioned in
Section 3, gold balancing is extremely important in this case.
By using uniform distribution of non-trivial examples, we
prevent scammers and lazy workers from getting a free pass
on our task. While maintaining the accuracy level of 92% at
scale, programmatic gold also reduced the amount of gold
digging by a factor of 50 from 511 to just 10.

In Table 1, accuracy dropped from 95% in the 1st iteration
with manual gold to 89% in the 2nd iteration with program-
matic gold before increasing to 94% in the 3rd iteration and
dropping to 92.5% in the 4th iteration. We note that the ratio

47



Gold Units Accuracy MAX work/worker Gold Ratio Time (hr)
Accuracy at 

confidence 1.0

10 manual 213 95.0% 100 1:10 4 100.0%
60 programmatic 3,004 89.0% 1,000 1:17 5 96.0%
208 programmatic 3,103 94.0% 1,500 1:8 9 97.0%
233 programmatic 15,509 92.5% 1,500 1:7 27 97.0%

Table 2: Scaling up with programmatic gold

of gold units to the amount of work a single worker can do
can affect the accuracy of the results and should be a very
important consideration in task design. The gold:unit ratio
was 1:10 in the first job, 1:17 in the second, 1:8 in the third
and 1:7 in the fourth. As workers in the second job have
higher recollection of gold, they could put less effort into
non-gold units. Programmatic gold allows project managers
to scale the ratio of gold to units without inflated costs and
to minimize repeat viewing of a gold unit by a worker. Ac-
curacy is thus increased and scammer activity is reduced.

7 Discussion

In this paper we present a novel method to achieve scalable
quality control for crowdsourcing. Previous methods relied
on batch post-processing or manual gold digging, an expen-
sive and time-consuming process that is difficult to scale.
Programmatic gold is an efficient way to generate gold. It
is as easy to create 100 gold units are it is to create 10,000
gold units. This allows us to lift the limits on the maximum
number of units per workers, allowing the best workers to
work as much as they want, increasing both accuracy and
throughput.

As presented here, programmatic gold relies on manual
spot checks and detection of worker errors. In the future, we
plan to develop methods to automatically detect common er-
rors and identify confusing cases for manual analysis. The
applicability of programmatic gold is limited to tasks with
definitive answer, which comprise a large share of crowd-
sourcing tasks that we run. As presented here, programmatic
gold can’t be applied to highly subjective tasks.

Programmatic gold mitigates the challenges associated
with manual gold creation (as described in Section 3). We
reduce the chance that two workers see the same gold unit,
provide extensive feedback to train workers and target spe-
cific worker errors. Programmatic gold creation improves
the quality and scalability of crowdsourced data collection.
We currently apply this strategy to most tasks that we run.

8 Acknowledgments

The authors of this paper are indebted to the whole team
at CrowdFlower. We specifically thank Adam Abeles for
observing the effects of programmatic gold on scammer de-
tection and prevention, Aaron Spector for running some of
the initial experiments with programmatic gold, and Lukas
Bergstrom for discussions and help in editing the paper.

References
Alonso, O.; Rose, D. E.; and Stewart, B. 2008. Crowdsourc-
ing for relevance evaluation. SIGIR Forum 42(2):9–15.
2005. Amazon mechanical turk. http://www.mturk.com/.
2011. Crowdflower. http://www.crowdflower.com/.
Dawid, A. P., and Skene, A. M. 1979. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Applied Statistics 28(1):20–28.
Dow, S.; Kulkarni, A.; Bunge, B.; Nguyen, T.; Klemmer, S.;
and Hartmann, B. 2011. Shepherding the crowd: managing
and providing feedback to crowd workers. In Proceedings of
the CHI Extended Abstracts on Human factors in computing
systems, 1669–1674. New York, NY, USA: ACM.
Holmes, S.; Kapelner, A.; and Lee, P. P. 2009. An interac-
tive java statistical image segmentation system: Gemident.
Journal of Statistical Software 30(10):1–20.
Howe, J. 2008. Crowdsourcing: Why the Power of the
Crowd Is Driving the Future of Business. New York, NY,
USA: Crown Publishing Group, 1 edition.
Ipeirotis, P.; Provost, F.; and Wang, J. 2010. Quality man-
agement on amazon mechanical turk. In KDD-HCOMP ’10.
Kittur, A.; Chi, E. H.; and Suh, B. 2008. Crowdsourcing
user studies with mechanical turk. In CHI, 453–456.
Le, J.; Edmonds, A.; Hester, V.; and Biewald, L. 2010. En-
suring quality in crowdsourced search relevance evaluation:
The effects of training question distribution. In Proceedings
of the ACM SIGIR 2010 Workshop on Crowdsourcing for
Search Evaluation (CSE 2010).
Lehdonvirta, V., and Ernkvist, M. 2011.
Knowledge map of the virtual economy.
http://www.infodev.org/en/Publication.1056.html.
2011. Microtask. http://www.microtask.com/.
P. Welinder, P. P. 2010. Online crowdsourcing: rating anno-
tators and obtaining cost-effective labels. In CVPR.
2011. Samasource. http://www.samasource.org/.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008.
Cheap and fast—but is it good?: evaluating non-expert an-
notations for natural language tasks. In EMNLP ’08: Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing, 254–263. Association for Computa-
tional Linguistics.
Sorokin, A., and Forsyth, D. 2008. Utility data annotation
with amazon mechanical turk. In First International Work-
shop on Internet Vision, CVPR 08.

48


