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ABSTRACT The sculpturing of shape in the developing limb together with the regression of the tail

in anuran tadpoles constitute, perhaps, the most paradigmatic processes of programmed cell

death. The study of these model systems has been of fundamental importance to support the idea

that cell death is a physiological behavior of cells in multicellular organisms. Furthermore, different

experimental approaches, including comparative analyses of the pattern of cell death in different

avian species (i.e. chick interdigits versus duck interdigital webs) and in chick mutants with different

limb phenotypes, provided the first evidence for the occurrence of a genetic program underlying the

control of cell death. Two well known research groups in the field of limb development, the USA

group headed first by John Saunders and next by John Fallon and the group of Donald Ede and

Richard Hinchliffe in the U.K. provided a remarkable contribution to this topic. In spite of the

historical importance of the developing limb in establishing the concept of programmed cell death,

this model system of tissue regression has been largely neglected in recent studies devoted to the

analysis of the molecular control of self-induced cell death (apoptosis). However, a considerable

amount of information concerning this topic has been obtained in the last few years. Here we will

review current information on the control of limb programmed cell death in an attempt to stimulate

further molecular studies of this process of tissue regression.
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Patterns of Apoptosis in the Developing Limb

In the developing limb, major areas of programmed cell death
occur in the undifferentiated mesoderm in association with the
establishment of the prechondrogenic condensations of the skel-
eton and in the ectoderm of the AER. In addition cell death is also
observed during the formation of the joints (Mitrovic, 1977; Mori et
al., 1995), in the establishment of the axon pathways (Tosney et al.,
1988) and during the remodeling of the vascular pattern (Hurle et
al., 1985; Feinberg, 1991). It must be mentioned that the areas of
cell death in the limb have been formerly termed necrotic areas but
they occur by apoptosis (Garcia-Martinez et al., 1993). This contra-
diction is explained because the classical studies on limb pro-
grammed cell death have been performed prior to the introduction
in the literature of the term apoptosis.

The areas of mesodermal cell death are related with the estab-
lishment of the shape and skeletal pattern of the limb and exhibit
significant differences between species. A remarkable feature is
that mesodermal cell death is a characteristic feature of amniota. In
amphibians, limb develops without programmed mesodermal cell
death (Cameron and Fallon, 1977). The biological significance of
this difference between amniota and anamniota embryos remains
to be explained.

In the early avian limb there are two areas of cell death, the
Anterior Necrotic Zone (ANZ; Fig. 1C), and the Posterior Necrotic
Zone (PNZ; Fig.1B), which have been related with the reduced
number of digits in birds (three digits in the wing and four in the leg).
These areas are absent in polidactylous avian mutants (Hinchliffe
and Ede, 1967). The absence of wings in the wingless chick mutant
is correlated with a dramatic increase in ANZ (Hinchliffe and Ede,
1973). In mammals ANZ and PNZ similar to those of the avians are
not present (Milaire and Rooze, 1983).

The formation of independent rudiments for the zeugopodial
bones (tibia-fibula; ulna-radius) is accompanied both in mammals
(Alles and Sulik, 1989) and in birds (Dawd and Hinchliffe, 1971) by
an area of cell death in the central mesenchyme of the limb bud
which has been termed the Opaque Patch (OP; Fig.1A). The
absence of this area of cell death in the talpid3 chick mutant
correlates with fusion of the skeletal pieces of the zeugopod
(Hinchliffe and Thorogood, 1974)
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The formation of free digits in all amniota vertebrates is accompa-
nied by massive apoptosis of the interdigital mesoderm. These areas
of cell death have been termed the Interdigital Necrotic Zones (INZs;
Fig. 1D,F), and serve the function of sculpturing the shape of the
digits (see reviews by Saunders 1966 and Hurle et al., 1996). In
species with free digits, such as the chick, quail, lizard, mouse or
human, apoptosis extends through all the interdigital space. In
species with webbed digits, such as the duck or turtle, apoptosis is
limited to the distal part of the interdigit. In species with autopods of
singular morphology, such as the digits with lateral membranous
lobulations present in the moorhen (Gallinula chloropus) and in the
coot (Fulika atra), or the splited autopod (zygodactyly) present in
Chamaleons, the pattern of INZ correlates closely with their specific
phenotypes.

The correlation between INZ and the phenotype of the digits is
also observed in syndactylous mutant species (Hinchliffe and
Thorogood, 1974) and in experimental limbs treated with drugs
which inhibit cell death (see review by Hurle et al., 1996). Interest-
ingly, the inhibition of INZ is often followed by the presence of digit
fusions or even by the formation of an ectopic digit (Gañan et al.,
1996). This finding indicates that the interdigital mesoderm has the
potential to form digits.

In addition to mesodermal cell death, apoptosis is also an
important feature of the ectoderm of the AER (Fig. 1E). In the
chick limb bud ectodermal apoptosis appears to exert the
function of controlling the extension of that structure (Todt and
Fallon, 1986). In mammalians, apoptosis in the AER is more
prominent than in birds and forms well-defined foci of cell death
(Milaire and Roze, 1983). The inhibition or delay of this ectoder-
mal cell death causes an enlargement of the AER followed by
an increase in the amount of subridge mesenchyme which
results in the induction of polydatyly (Naruse and Kameyama,
1982, 1986). In serpentiform reptiles with rudimentary limbs the

regression of the limb primordium is mediated by massive cell
death in the AER (see Raynaud, 1990).

BMPs are the Triggering Signal for Limb Programmed
Cell Death

Evidence obtained mainly with the chick embryo indicates that
programmed cell death in the limb bud shares many control
mechanisms with those regulating proliferation and differentiation.
BMPs have been identified as the triggering apoptotic signal for
both the ectoderm of the AER (Gañan et al., 1998) and the
mesodermal cells (Gañan et al., 1996; Zou and Niswander, 1996;
Yokouchi et al., 1996; Macias et al., 1997). According to their
pattern of expression BMP-2, BMP-4 and BMP-7 are the most
likely physiological signals triggering apoptosis in the limb bud.
However, these BMPs are also involved in the control of limb
patterning (Pizette et al., 2001) and in the regulation of chondro-
genic differentiation (Macias et al., 1997). In fact, local treatments
with any of the above mentioned BMPs induce intense growth and
differentiation in the prechondrogenic mesenchyme and massive
apoptosis in the undifferentiated mesoderm (Macias et al., 1997).
The chondrogenic effect of BMPs appears to be mediated by the
type Ib receptor (Yi et al., 2000). However, the receptor implicated
in the control of apoptosis remains to be identified. Inhibition of
apoptosis have been obtained in over-expression experiments
using dominant negative type IB and type IA BMP receptors (Zou
and Niswander, 1996; Yokouchi et al., 1996). However, since,
these receptors are not expressed in the areas of programmed cell
death at levels detectable by in situ hybridization the most likely
explanation for these results is that the phenotype was secondary
to depletion of BMPs which bind to the overexpressed receptors.
Furthermore, interdigital induction of the type IB BMP receptor
gene by application of TGFβ-1-beads is followed by inhibition of

Fig. 1. The areas of cell death in the developing chick limb bud. (A) Wing bud showing
the OP vital stained with nile blue. (B-E) Neutral red vital staining showing the PNZ (B), ANZ
(C) INZs (D) and cell death in the AER (E). (F) Longitudinal section of the second interdigital
space of a leg bud of the same stage to that showed in (D), illustrating the appearance of
INZ after TUNEL labeling.

apoptosis and formation of an ectopic digit (Merino
et al., 1998).

The intracellular pathway activated by BMPs
during apoptosis also remains unknown. However,
there is evidence suggesting that the apoptotic
effect of BMPs in the limb bud and in other develop-
ing model systems is mediated by the activation of
cytoplasmic kinase TAK-1 rather than by the ca-
nonical intracellular pathway of BMPs involving
phosphorylation of Smad proteins (Grotewold and
Ruther, 2002).

In most embryonic models, BMP-signaling is
additionally regulated by different types of BMP
antagonists that play the function of modulating the
intensity and/or the spatial distribution of the BMP
signal. In the developing limb different BMP an-
tagonists control the function of BMPs. One of
these antagonists, Gremlin, is expressed in pat-
terns that fit with a role in protecting the undifferen-
tiated mesoderm from the apoptotic influence of
BMPs (Merino et al., 1999). It is remarkable, that
Gremlin is expressed in the duck interdigital webs
while in the chick interdigital expression of this BMP
antagonist is down-regulated prior to the onset of
INZ. Furthermore, interdigital implantation of beads
bearing Gremlin in the chick leg bud inhibits INZ
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and induces a membranous syndactyly similar to that found in the
duck (Merino et al., 1999). We have also observed that Bambi, a
characteristic BMP antagonist acting at the level of the cell mem-
brane, is expressed and regulated in the limb bud in the same
fashion than cell death (unpublished observations)

Regulation of Programmed Cell Death by FGF-, TGFβs,
and RA-Signaling

It is now clear, that the regulation of limb programmed cell death
by BMPs is closely integrated with other signaling pathways
implicated in the control of outgrowth and differentiation of the limb
bud.

In the limb bud, FGF signaling is currently considered as
responsible for outgrowth. However, experiments of gain-of- and
loss-of-function have demonstrated that FGFs cooperate with
BMPs in the control of mesodermal apoptosis (Montero et al.,
2001). When FGF-signaling is blocked by local application of FGF
inhibitors, BMPs are not sufficient to trigger apoptosis. Further-
more, we have provided evidence suggesting that the reduced
pattern of interdigital apoptosis observed in the interdigital webs of
the duck might be due to a decrease in FGF-signaling rather than
caused by absence of BMPs. The fashion by which BMPs and
FGFs cooperates in the control of apoptosis awaits clarification, but
the expression of several genes potentially involved in apoptosis
requires the integrity of both FGF- and BMP-signaling (Montero et
al., 2001 and see below).

TGFβ2 has been implicated in the formation of digits. This factor
is expressed in the developing digital both in birds and mice.
Furthermore interdigital implantation in chick embryos of beads
incubated either with TGFβ1, β2 or β3 proteins causes the forma-
tion of ectopic digits. However, Dünker et al. (2002) have
recently observed that interdigital cell death is inhibited in
Tgfβ2(-/-)Tgfβ3(-/-) double knockouts mice.

Retinoic acid signaling exerts major roles in limb patterning,
including the control of apoptosis. In mouse, inhibition of interdigital
cell death and subsequent syndactyly, has been reported in a
variety of mutations of retinoic acid receptor genes (see Dupe et al.,
1999). Furthermore, the phenotype of the hammertoe mutant
caused by defective apoptosis can be partially rescued by admin-
istration of retinoic acid to the pregnant females (Ahuja et al., 1997).
In the chick, we have observed that retinoic acid act in concert with
BMPs to establish the interdigital regions (Rodriguez-Leon et al.,
1999). The function of RA-signaling consists of promoting the
apoptotic effect of BMPs and at the same time inhibiting the
chondrogenic effect of these factors. This may be of considerable
importance for normal morphogenesis since in the developing
autopod BMPs not only induce apoptosis but also promote a
dramatic growth of the cartilage.

The Apoptosis Molecular Cascade

The molecular machinery responsible for apoptosis exhibits a
high degree of conservation in the course of evolution. Four
functional groups of genes have been identified in the regulation of
apoptosis in the C. elegans (Ced-3, Ced-4, Ced-9 and Egl-1). In
vertebrates, these functional groups are conserved but each group
includes many different genes. The homologous of Ced-3 in
vertebrates is the large family of caspases, which are the direct

effectors of the death program. The homologous of Ced-4 is Apaf-
1 (Apoptotic Protease-Activating Factor) which is the prototype of
a family of pro-apoptotic factors with the role of activating caspases.
Ced-9 in C.elegans inhibits both Ced-3 and Ced-4. In vertebrates
Ced-9  is represented by the large Bcl-2 gene family, which
includes inhibitors of cell death and pro-apoptotic factors. Egl-1 in
C. elegans promotes apoptosis by inhibiting Ced-9. The homolo-
gous of Egl-1 in vertebrates include several members which
repress the anti-apoptotic activity of Bcl-2 (see review by Hurle and
Merino, 2002).

During limb programmed cell death members of the different
groups of apoptic regulators have been identified. As in other
models of apoptosis, the final step of limb programmed cell death
consists of the activation of caspases (Milligan et al., 1995;
Jacobson et al., 1996; Mirkes et al., 2001). Associated with the
pathway of caspases are the pro-apoptotic factors DIO-1 (Death
Inducer-Obliterator-1; Garcia-Domingo et al., 1999), Gas1 and
Gas2 (Growth Arrest Specific; Lee et al., 1999, Lee et al., 2001).
The involvement of Apaf-1 in limb programmed cell death is
supported by the occurrence of a reduced pattern of interdigital
apoptosis and persistence of interdigital webs in mice mutant for
this gene (Cecconi et al., 1998). Bax, a proapototic member of the
Bcl-2 family, is expressed in the areas of cell death (Dupe et al.,
1999) and Bax (-/-)Bak (-/-) double knockout mice display persis-
tence of interdigital webs (Lindsten et al., 2000). In addition,
several antiapoptotic members of this family, including Bcl-2, Bcl-
x and A1, are expressed in the digital rays but not in the interdigital
spaces of the mice autopod (Novack and Korsmeyer, 1994; Carrio
et al., 1996) while the interdigital regions prior to the onset of
apoptosis express Bag-1 which encodes an antiapoptotic protein
which binds to Bcl-2 (Crocoll et al., 2002). Another antiapoptotic
factor, Dad-1 (Defender Against apoptotic cell Death) has been
implicated in the control of limb programmed cell death since
heterozygous mutant mice for this gene display soft-tissue syndac-
tyly (Nishii et al., 1999).

Many additional genes are expressed and regulated in the limb
bud in patterns that overlap with apoptosis. Some of these genes
are associated with events accompanying the apoptotic process,
including the arrest of cell proliferation (Tone et al., 1988) or the lost
of cell adhesion. In other cases their functional significance re-
mains unknown.

The promyelocytic leukaemia zinc finger protein encoded by
Zfp145 gene appears to regulate cell death through a primary
effect on the expression of BMPs (Barna et al., 2000). Several
genes implicated in the control of cell proliferation are involved in
limb programmed cell death. c-Fos (Yano et al., 1996) and Cyclin-
dependent kinase 5 (Zhang et al., 1997) are expressed in the areas
of interdigital cell death. p53 has been implicated in the control of
apoptosis in the mice limb buds exposed to apoptotic treatments
(Moallem and Hales, 1998; Wang, 2001) and is expressed in the
areas of cell death in mice (Dupe et al., 1999). The gene for the FGF
receptor 3 (Fgfr3), which mediates inhibition of cell proliferation is
expressed in INZs and is regulated by treatments with FGFs and
BMPs in the same fashion than apoptosis (Montero et al., 2001).
Msx genes (Msx1 and Msx2), are homeobox-containing transcrip-
tion factors, expressed in the undifferentiated mesoderm of the
limb bud including the areas of programmed cell death (ANZ, PNZ
and INZs, but not OP). In the duck limb, interdigital expression of
Msx genes correlates with the reduced extension of INZ in the
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interdigital webs. Similarly, Msx expression in ANZ and PNZ is
inhibited in polydactylous mutants lacking these areas of cell death
(Coelho et al., 1993 and review by Chen and Zhao, 1998). The
expression of Msx genes is positively regulated by FGFs, BMPs
and RA, in parallel with the pattern of apoptosis induced by those
factors. Furthermore over-expression of Msx-2 in the limb bud is
followed by apoptosis (Ferrari et al., 1998).

The implication of Msx genes in the control of limb programmed
cell death appears to be related with the NF- kB family of transcrip-
tion factors. It has been suggested that c-rel, a member of this
family, is a positive regulator of apoptosis in the developing limb
(Abbadie et al., 1993). At the molecular level, NF-kß members
appear to connect the FGF-signaling pathway with the expression
of Msx-genes (Bushdid et al., 2001).

Snail has been implicated in limb apoptosis by inhibiting cell
adhesion (Montero et al., 2001). Snail transcripts are detected in
the limb mesoderm of ANZ, PNZ and INZ. In the duck, where
interdigital cell death is reduced Snail expression is restricted to the
areas of cell death. Moreover, induction of cell death is accompa-
nied by the up-regulation of Snail.

Dickkopf-1 (Dkk-1) is a secreted protein that inhibits Wnt signal-
ing. It is expressed in the limb bud in domains overlapping ANZ,
PNZ and INZ. Furthermore it is regulated by FGFs and BMPs in the
same fashion than apoptosis and its over-expression results in limb
truncation (Grotewold and Rüther, 2002).

Other factors of potential importance in the control of apoptosis,
expressed in the areas of limb programmed cell death include: the
lysosomal membrane glycoprotein, LAMP-1 (Stewart et al., 2000);
tissue transglutaminase (Moallem and Hales, 1996; Dupe et al.,
1999); TNFa-like proteins (Wride et al., 1994); insulin growth factor
(van Kleffens et al., 1998); polyamines (Gritli-Linde et al., 2001);
reactive oxygen species (Salas-Vidal et al., 1998); the Ft1 gene
related to ubiquitin-conjugating enzymes (Lesche et al., 1997) and
testosterone-repressed prostate message-2 gene, (TRPM-2; Keino
et al., 1994).

Phagocytic Removal of Apoptotic Cells

A controversial question about the processes of programmed
cell death concerns the origin of the phagocytic cells responsible
for eliminating the apoptotic corps. In classical studies this function
was assigned to the neighboring healthy mesenchymal cells.
However, Cuadros et al. (1993) found evidence for the involvement
of circulating macrophages in this process. More recently, Wood et
al. (2000) showed that both ‘professional phagocytes’ and local
mesenchymal cells are able to remove the apoptotic cells. Accord-
ing to their findings the circulating macrophages are the main
responsible for the elimination of apoptotic cells, but the neighbor-
ing mesenchymal cells are also able to act as stand-in phagocytes.
Thus, in macrophageless mutant embryos the regression of
interdigital tissue is only slightly retarded, indicating that the
compensatory phagocytosis by local mesenchymal cells is effi-
cient in removing all apoptotic cells. Surprisingly, none of the
engulfment genes, characteristic of professional macrophages are
up-regulated in the non-professional mesenchymal phagocytes
suggesting that these cells activate a distinct molecular cascade
for recognition, engulfment and digestion of apoptotic cells.

Interdigital Tissue Regression

An important feature, often forgotten, concerning the areas of
interdigital cell death is that these areas constitute zones of full
tissue regression (Hurle et al., 1986). The interdigits prior to the
onset of cell death is covered by ectoderm and consist of a core of
mesodermal cells rich in blood vessels and a complex extracellular
matrix scaffold. In the avian embryos, the degenerative process
occurs only in the mesodermal cells, but in subsequent stages the
extracellular matrix is totally disintegrated (Fig.2E; Hurle and
Fernandez-Teran, 1983), the blood vessels regress (Fig. 2 A-C;
Hurle et al., 1985) and the ectodermal tissue become detached into
the amniotic fluid (Fig. 2 D-E: Hurle and Fernandez-Teran, 1983).
The molecular basis underlying this complex process of tissue
regression awaits clarification but most evidence point to a major

Fig. 2. Before the onset and during INZ.  (A-C) Limb buds microinjected
with indian ink to show the progressive regression of blood vessels in the
third interdigit of chick leg buds prior to the onset of INZ (A), during INZ (B)

and at the end of the degenerative process (C). (D,E) Longitudinal sections
of the third interdigit during INZ (D) and at the end of the degenerative
process (E). Note in (E) that blood vessels are no longer present in the
interdigit, the ectoderm is in the course of being detached into the amniotic
sac (arrowheads) and the extracellular matrix appears in large clumps
located between the degenerating mesodermal cells (arrows).
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role of the extracellular matrix. According to this interpretation
syndactyly has been found both in mice lacking the laminin α5
chain (Miner et al., 1998) and in mice null for fibrillin 2 gene
(Arteaga-Solis et al., 2001). It is also likely that matrix
metalloproteinases in coordination with their tissue inhibitors exert
an important role in remodeling the interdigital matrix. Stromelysin-
3 is expressed in the developing limb bud and in other processes
involving apoptosis (Lefebvre et al., 1992; Dupe et al., 1999) and
tissue inhibitor of metalloproteinases-3 (TIM-3) is specifically ex-
pressed in the interdigital regions prior to cell death (Zeng et al.,
1998).

Other factor of potential importance for the regression of the
interdigital tissue may be the involvement of Slit2 gene in prevent-
ing the incorporation of axons into the interdigital regions (Yuan et
al., 1999).
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