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Abstract

Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct 

dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome 

rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to 

soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as 

DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the 

model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, 

and Oxytricha (class Spirotrichea).
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Introduction

Developmentally regulated genome rearrangements 

(DRGRs) involve the elimination of specific DNA sequences 

(from the germline) somatic cell lineages. In most cases, 

this phenomenon is associated with two forms of DNA 

elimination either: (a) chromosome elimination where the 

entire chromosome is lost [1] or (b) chromosome diminu-

tion, a process characterized by loss of chromosome por-

tions through chromosome breakage and repair during the 

developmental transformation from germline to soma [2, 3].

Programmed DNA elimination was first described in 

1887 by Theodor Boveri [4] in the horse parasitic nematode, 

Parascaris univalens. Since then, DRGRs have been identi-

fied in diverse multicellular organisms including nematodes, 

arthropods, hagfish, lampreys [3] and lymphoid lineages of 

vertebrates [5]. However, it appears most pervasive in cili-

ates, an ancient clade of microbial eukaryotes (> 1 Gya; [6]), 

where genome rearrangements lead to the elimination of 

30–95% of the germline genome [7–9]. This review will 

focus on genome rearrangements in the two best-studied 

classes of ciliates: the Oligohymenophorea (including Para-

mecium and Tetrahymena), and members of the Spirotrichea 

(including Euplotes, Oxytricha and Stylonychia).

Ciliates as a model organism

Ciliates are unicellular eukaryotes found in diverse envi-

ronments (fresh/saltwater as well as soil) across the globe 

that emerged more than 1 billion years ago [6]. Due to their 

morphological and morphogenetic characters, the taxonomy 

of ciliates has been ambiguous for a long time. Numerous 

studies have improved the phylogenetic relationship between 

ciliates with the rest of the eukaryotic tree of life, being 

members of the Alveolata (along with apicomplexans and 

dinoflagellates) [10]. Similarly, phylogenomic studies within 

Ciliophora illustrate the great diversity and deep evolution-

ary history despite limited taxon sampling [11]. Even though 

just a handful of the ~ 4500 described ciliate species have 

been studied in-depth [12], they share complex cytoskeletal 

structures, well-developed ciliary structures at the cell sur-

face (for swimming, food uptake and sensing environmental 

signals), the separation of germline and somatic genomes 

into distinct nuclei (nuclear dimorphism), as well as DRGRs 

(reviewed in [13]). Although the majority of studies are 
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limited to the model genera Tetrahymena, Paramecium, 

and Oxytricha, these models have greatly contributed to our 

understanding of biological mechanisms and phenomena 

present in diverse eukaryotic lineages. This includes dis-

covery and description of ribozymes [14], the discovery of 

the first histone-modifying enzyme [15], variant nuclear 

genetic codes [16–20], the initial identification of telomer-

ase and telomere structure [21, 22], numerous examples of 

small RNA-mediated heterochromatin formation [23, 24], 

as well as mechanisms enabling the transcription of short 

DNA fragments [25].

Nuclear dimorphism in ciliates

In multicellular eukaryotes, germline and somatic functions 

are separated into distinct cell types, (e.g. pollen versus leaf 

in plants, spore versus hyphae in fungi, or egg versus skin 

in humans). However, in ciliates, both germline and somatic 

genomes co-exist within a single cell, providing each cell 

with at least one somatic nucleus used for gene expression 

and one germline to propagate the genome across sexual 

generations (Fig. 1).

Each ciliate cell possesses at least one micronucleus 

(MIC) and one macronucleus (MAC); however, their number 

varies between the species (reviewed in [26]). Interestingly, 

all micronuclei present in the cell possess features of typical 

eukaryotic nuclei, (i.e. diploid [27–29], centromeres [30] 

and are transposon rich [30, 31]). The MAC is transcription-

ally active throughout the entire life cycle and possesses 

highly processed chromosomes. These MAC chromosomes 

are gene-rich, lack centromeres and can range in ploidy 

from ~ 2 N in the Karyorelictea to > 13,000 N in the Hetero-

trichea [32–34]. During asexual growth, the hyper-polyploid 

MACs divide amitotically, which lacks mitotic spindles and 

chromatin condensation, separating chromosomes in bulk 

as large masses, which can result in daughter nuclei with 

unequal amounts of DNA. The degree of inequality in the 

segregation of DNA to the two MACs during amitosis can 

be exacerbated under environmental stressors [35, 36]. 

Moreover, MAC chromosomes are amplified to elevated 

copy numbers [26]. For instance, in Oligohymenophorea, 

each MAC chromosome is present in the equal copy num-

ber, namely,  ~ 45 copies of each 225 chromosomes in T. 

thermophila [37, 38] and ~ 800 copies of each chromosome 

in P. tetraurelia [39, 40]. In contrast, the Oxytricha MAC 

harbours thousands of unique gene-sized nanochromosomes, 

which are amplified to ~ 1900 copies [31]. However, unlike 

Paramecium and Tetrahymena, these nanochromosomes are 

maintained at unique copy numbers, varying between a few 

hundred to  106 copies [26, 41–43].

During vegetative (or asexual) growth, the germline 

remains transcriptionally inactive and divides mitotically 

[44]. This changes during sex or self-fertilisation/autogamy 

(Fig. 2) [45]. At the onset of sex and development, micro-

nuclei undergo meiosis and are fused with a partner haploid 

MIC that gives rise to the zygotic nucleus from which new 

micro- and macronuclei are formed.

Features and origin of internal eliminated 
sequences

The discovery that germline-limited internal eliminated 

sequences (IESs) resemble transposon sequences brought a 

new challenge for scientists trying to understand the mecha-

nisms underlying their elimination. Jacobs and Klobutcher 

[46] observed that IESs in Euplotes crassus possess the 

consensus sequence 5′-TATrGCRN-3′ (Y = pyrimidine, 

R = purine), which resembles terminal inverted repeats 

(TIRs) at the end of their Tec family transposable elements 

Fig. 1  Representative differ-

ences between germline and 

somatic nuclei ciliates
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[46–48] and Paramecium’s Tc1/Mariner transposons 

[46–49]. All IESs found to date in Euplotes and Parame-

cium possess 5′-TA-3′ dinucleotide repeats at each boundary, 

where a single copy of the dinucleotide remains in the new 

macronucleus after excision. Based on these observations, 

Klobutcher and Herrick [47, 50] developed a model for the 

origin of IESs, where transposons initially invade the ger-

mline genome, then spread throughout, and ultimately decay 

over time into the identifiable IESs currently found in ciliate 

germline genomes.

These sequences must be excised during the develop-

ment of a MAC to produce a functional somatic genome. 

IESs are present in all the ciliate germline genomes studied 

to date [30, 31, 48, 51–53], although in varying amounts 

(~ 12,000 IESs in Tetrahymena thermophila [54], ~ 45,000 

IES in Paramecium tetraurelia [48, 51] and > 200,000 

IESs in Oxytricha trifallax [31]. IESs are typically AT rich 

(70–100%) and bounded by pairs of short direct repeats 

(most are 1-8 bp) that help identify the boundaries between 

Macronuclear Destined Sequences (MDSs) and IESs [30, 

31, 48, 52]. Recently, Maurer-Alcalá et al. [53] demon-

strated that MDS–IES boundaries are identifiable by sharp 

changes in GC content. For instance, in P. tetraurelia where 

IES excision is precise, GC content was decreased in close 

proximity to its MDS–IES boundaries. On the other hand, 

in Tetrahymena where almost all IESs are excised impre-

cisely, GC contents are characterized by the great variability 

associated with MDS–IES boundaries within the inferred 

MDS itself [53]. The length and genomic distribution of 

IESs in germline genomes are very diverse, with most IESs 

in Tetrahymena being intergenic and “long” (> 100 bp to 

over 10 Kbp) [55, 56], whereas the IESs in Paramecium and 

Oxytricha often interrupt protein-coding sequences and are 

comparatively short (most < 100 bp) [31, 48].

As IESs often disrupt coding regions for most ciliates, 

they must be accurately excised during development to 

enable expression of the functional genes in the newly 

developed MAC [48, 57–59]. However, in Tetrahymena 

①

②
③a

③b

④

⑤
⑥

SEXUAL CYCLE
Micronuclei

(2n)

Macronucleus

(~800n)

VEGETATIV CYCLE

7

Fig. 2  The Paramecium sexual cycle (autogamy and conjugation). 

(1) A vegetative cell with diploid micronuclei and polyploid macro-

nucleus. (2) Meiosis of the micronuclei and beginning of old macro-

nucleus fragmentation. (3a) Mitotic division of one remaining micro-

nucleus (seven out of eight micronuclei degenerates) leading to the 

production of two identical gametic nuclei. (3b) Alternatively, during 

conjugation, exchange of haploid nuclei occurs. (4) Zygotic nuclei 

formation through the fusion of two haploid products. (5) Two sub-

sequent mitotic divisions of the zygotic nuclei. (6) Differentiation of 

the two mitotic products into new macronuclei. (7) Caryonidal divi-

sion/separation leading to the formation of two cells each containing 

two micronuclei and new macronucleus as well as fragments of old 

macronucleus
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thermophila nearly all of the 7350 well-described IESs 

(of the ~ 12,000 total IESs) are excised imprecisely, due 

to variable MDS–IES junction sites. The potential del-

eterious impacts of this imprecision are likely mitigated 

by the genomic distribution of these IESs, which are pre-

dominantly found in intergenic (6182; 82%) or intronic 

(1168; 16%) regions [30, 60–62]. In contrast, only the 

excision of transposon-like sequences and minisatellites in 

Paramecium is imprecise [63], whereas the ~ 45,000 IESs 

nestled within or near protein-coding sequences are pre-

cisely excised during macronuclear development, although 

small numbers of IESs are excised at alternative MDS–IES 

boundaries [40, 48, 64]. Overall, imprecise elimination 

results either in the fragmentation of micronuclear chro-

mosomes into shorter acentromeric macronuclear chro-

mosomes to which telomeric repeats are added, or to the 

imprecise re-joining of flanking sequences [63].

Previous work in Paramecium and Tetrahymena have 

shown that the pointer sequences present at both ends of 

IESs, influences the efficacy of IES excision. Analyses of 

Paramecium’s IESs have demonstrated that single base-

pair-mutations in the conserved terminal repeat of IESs 

lead to their retention during development [65–67]. Addi-

tionally, for some Paramecium IESs, flanking sequences 

are necessary for excision [68]. For example, the removal 

of a portion of the 72 bp flanking region of one end of a 

small 28 bp IES in Paramecium reduced the efficiency of 

excision, and complete removal of all wild-type sequences 

adjacent to the TA abolished excision [68]. Recently, it has 

been shown a small subset of Paramecium’s IESs shares a 

common 5 bp motif that is implicated in their sRNA-inde-

pendent excision [69]. In Tetrahymena, flanking sequences 

are known to have a significant role in the elimination of 

a number of IESs [70, 71]. Together, Lia3p and Lia3-Like 

1 (LTL1) regulatory proteins interact with flanking regu-

latory sequences to determine MDS–IES boundaries for 

several IESs for excision [72–74]. These data highlight the 

importance of both IES pointer sequences and their flank-

ing regions in identifying MDS–IES boundaries.

Another variable that influences IES excision/recognition 

in Paramecium is its length. Swart et al. [75] indicated that 

the frequencies of IES sub-terminal bases change with IES 

length. Moreover, it has been shown that small IESs (shorter 

than 150 bp) are less sensitive to sRNAs depletion [76], 

suggesting that some IESs are more difficult to recognize/

excise and require additional information (from the sRNAs) 

for their accurate excision.

Developmentally regulated genome 
rearrangements

Although the mechanistic details behind ciliate DRGRs dif-

fer between even closely related taxa (i.e. P. tetraurelia and 

T. thermophila), the basic principles of this phenomenon are 

conserved (Table 1). In the developing macronucleus, rapid 

DNA synthesis takes place and interstitial DNA sequences 

such as transposons, minisatellites and IESs are excised. 

Afterward, the hundreds to thousands of broken chromo-

some ends created during excision are rejoined through non-

homologous end-joining mechanisms [77–79], followed by 

de novo telomere addition, and finally chromosome ampli-

fication (Fig. 3). The end result is the production of a new 

functional somatic nucleus that contains the streamlined 

transcriptionally active chromosomes that maintain cell. 

This section is devoted to describing these phenomena in 

more detail. 

Role of small noncoding RNA in programmed 
genome rearrangements

An important breakthrough in our understanding of the 

regulation of DNA elimination was unravelling the involve-

ment of noncoding RNA (ncRNA) in this complex epige-

netic process. Briefly, the MIC is bi-directionally transcribed 

Table 1  Differences between the genome reorganization processes among ciliates

a One locus showing unscrambling [181]

Paramecium tetraurelia Tetrahymena thermophila Oxytricha trifallax

MIC chromosomes ? 5 [37] ?

MAC chromosomes 188 [39, 40] 225 [38] 15,600 [43]

Nanochromosomes No No Yes [43]

Unscrambling No Noa Yes [178]

IES percentage 30% [48] 30% [179] 90% [31]

IES location Genic and intergenic regions [48] Intergenic Regions [90] Genic and intergenic regions [180]

Small RNA source MDS and IES [25, 81] Biased towards IES [111] MDS [83]

Small RNA target IES [81] IES [80] MDS [82, 83]

DNA methylation 6 mA (P. aurelia) [132] 6 mA [131] 5mC, 6 mA [127, 135]



4619Programmed genome rearrangements in ciliates  

1 3

producing long transcripts that are processed into small 

RNAs. In Paramecium and Tetrahymena (cl: Oligophymeno-

phorea), these sRNAs then “scan” the parental MAC. Those 

sRNAs corresponding to the parental MAC are lost, lead-

ing to the enrichment of MIC-matching sRNAs [23, 76, 80, 

81]. However, in Oxytricha and Stylonychia these sRNAs are 

produced from transcripts derived from the parental MAC 

genome and are putatively involved in protecting MDSs in 

the MIC rather than identifying IESs for elimination (as in 

Paramecium and Tetrahymena) [82–84]. This reflects the 

extreme differences in germline genome content as ~ 30% of 

the germline genome is eliminated in Oligohymenophorean 

ciliates versus ≥ 95% of the germline in spirotrichs. These 

sRNAs pools ultimately help delineate MDSs and IESs, 

although details differ among even “closely” related spe-

cies (e.g. Paramecium and Tetrahymena).

Small RNA-mediated programmed genome 
rearrangements in Oligohymenophorea

The first insights that DNA elimination relies on homol-

ogous RNA molecules originated from work in Oligohy-

menophorean ciliates (i.e. Paramecium and Tetrahymena). 

During prophase of meiosis, the MIC is bi-directionally 

transcribed [85] by RNA polymerase II [86], generating 

large MIC-based transcripts. These transcripts are then 

processed into small “scan” RNAs (scnRNAs are 25 nt in 

Paramecium and 25–29 nt in Tetrahymena), by Dicer-like 

ribonucleases (Dcl1 in Tetrahymena and Dcl2 and Dcl3 

in Paramecium), that “scan” for homologous sequences in 

the parental MAC genome (Fig. 4a) [76, 81, 87–89]. Ini-

tial experiments suggested that scnRNA production from 

MIC-derived transcripts, represented relatively equal rep-

resentation of IES and MDS regions [23]. However, recent 

work in Tetrahymena shows two “pulses” of sRNA produc-

tion, which are associated with enriched transcription and 

processing of IES sequences [90]. Interestingly, the biased 

production of Tetrahymena scnRNAs is predominantly from 

type-A IESs (per-centromeric and telomeric regions of the 

MIC chromosomes) [91].

After production in the micronuclei, scnRNA duplexes 

are transported to the cytoplasm where they are loaded onto 

the PIWI family proteins, (Twi1p in Tetrahymena [23, 80] 

or Ptiwi1/9 complex present in Paramecium [92, 93]) which 

are then transported to the parental macronucleus (Fig. 4b). 

There, the genome “scanning” effectively removes the 

MAC-matching sRNAs, enriching for micronuclear-limited 

scnRNAs from the initial population. These MIC-enriched 

scnRNAs are transported to the developing macronucleus 

to guide DNA excision (Fig. 4c). Interestingly, it has been 

suggested that Paramecium’s scnRNAs bind to longer RNA 

transcripts, rather than directly to DNA, in both the old and 

new MAC [94, 95]. In both Tetrahymena and Paramecium, 

there is a second wave of sRNAs that aid in ensuring the 

accurate identification and excision of IESs [76, 91]. In Tet-

rahymena, these “late scnRNAs” are produced from both 

types of IESs [Type-A and Type-B (located at the chromo-

somal arms)] in cis. These late scnRNAs are loaded onto the 

Twi1p and Twi11p complexes, which further guide hetero-

chromatin formation in trans and ensure the elimination of 

all IESs copies [91]. However, in Paramecium, excised IESs 

are eventually circularized, with smaller IESs concatenated 

together prior to circularization [25]. These IES concatem-

ers act as the transcriptional template for iesRNAs, which 

further ensure the precise and accurate excision of IESs [25]. 

These secondary iesRNAs are produced after IES excision 

in Paramecium, whereas Tetrahymena’s “late” scnRNAs 

are produced prior to any IES excision [96]. Compared to 

Fig. 3  Macronuclear differentiation process is shown on Parame-

cium example. a Imprecise elimination of repeated sequences like 

minisatellites and transposons followed by re-joining of the flanking 

sequences or de novo telomere addition. b Precise excision of inter-

nal eliminated sequences (IESs) possessing two TA repeats at each 

boundary one copy of which remains after excision



4620 I. Rzeszutek et al.

1 3

Tetrahymena where early and late scnRNAs are produced 

by the same Dicer-like ribonuclease (Dcl1), Paramecium 

iesRNAs are produced by Dcl5 [76]. As in Tetrahymena the 

primary scnRNAs and secondary iesRNAs are associated 

with distinct Piwi proteins, Ptiwi01/09 with scnRNAs and 

Ptiwi10/11 carries the iesRNAs [93]. Together, the primary 

and secondary sRNAs ensure the faithful elimination of 

all copies of IESs present in the developing MAC genome 

leading to the production of a new functional macronucleus 

(Fig. 4d).

Small RNA-mediated programmed genome 
rearrangements in Spirotrichea

DNA elimination in Oxytricha (Spirotrichea) is quite dis-

tinct from the distantly related Oligohymenophorea. While 

Paramecium and Tetrahymena generate scnRNA in the 

parental MIC, Oxytricha’s, 27-nt-long small RNAs derive 

from the transcription of the parental macronucleus rather 

than the germline [82, 83]. In addition to that, these 27mers 

have been shown to associate with PIWI homologs called 

Otiwi1 (hence called PIWI-interacting RNAs, piRNAs). The 

injection of 27 nt piRNAs corresponding to IESs into devel-

oping Oxytricha leads to the retention of those IES in the 

new somatic genome [83]. These data, combined with the 

apparent parental MAC origin of the piRNAs, suggest that 

they are responsible for identifying macronuclear destined 

sequences (MDS) to protect against excision, rather than 

targeting IESs for excision, as in Tetrahymena and Para-

mecium. Interestingly, as in Paramecium, Oxytricha also 

circularizes some excised TE and non-repetitive germline-

limited sequences that are also actively transcribed [97, 98]. 

This presence of development-specific extrachromosomal 

circular DNA was originally described in Euplotes (cl: 

Spirotrichea) [99, 100], although the circularization pro-

cess and content appears to differ between Oxytricha and 

Paramecium. If these circularized products of excised IES 

and transposon-like Tec elements in Euplotes lead to the 

production of small RNAs remains undetermined. Despite 

the differences in sRNA sources and targets, ciliates have 

evolved a relatively efficient and low-energy cost means to 

distinguish soma and germline.

DNA unscrambling

In addition to delineating somatic and germline-limited 

DNA, macronuclear development in Oxytricha requires 

a very spectacular form of DNA rearrangement called 

unscrambling [26, 31, 101]. In the germline, MDSs can also 

be disordered and/or found on both strands of DNA (i.e. 

“inverted”) and may even originate from distant germline 

loci (Fig. 5) [31]. An extreme example is DNA polymerase 

α in O. nova, O. trifallax [102, 103] and S. lemnae [104], 

which is broken into more than 40 MDS present at two 

distinct loci separated by > 3 kbp. Work in Oxytricha has 

demonstrated that DNA unscrambling is directed by long 

RNA templates derived from the parental macronucleus 

[105–107]. These long template RNAs, in conjunction with 

unique pointer sequences, act as a reference aiding in the 

accurate reordering of MDSs [108, 109]. The accuracy of 

Fig. 4  The scanning model in Paramecium. a Bi-directional tran-

scription of the parental micronuclear genome during meiosis and 

scnRNA production by Dcl2/Dcl3. b Scanning process between 

scnRNA and transcript of somatic DNA. c scnRNA targeting IES 

for excision by PiggyMac. d Concatenation and circularization of 

excised IESs. Transcription of excised and circularized IESs to pro-

duce dsRNA. dsRNA cleavage by Dcl5 to produce iesRNA ensuring 

elimination of all copies of IESs. Old macronucleus degradation and 

development of the new macronucleus
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DNA unscrambling is incredibly sensitive to these template 

RNAs. For example, microinjection of alternately unscram-

bled templates (e.g. swapping the order of MDSs) leads to 

the production of macronuclear chromosome resembling the 

introduced template [105]. Furthermore, RNAi knockdown 

of these long RNA templates results in aberrant or reduced 

rearrangements of MDSs in the resulting chromosomes 

found in the new MAC [105].

Histone modi�cation in DNA elimination

As in other eukaryotes, histone modifications play an inte-

gral role in the effective silencing of transposable elements 

and germline-limited DNA. In Tetrahymena, heterochroma-

tin-specific marks, H3K9me3 and H3K27me3 are present 

in the MAC or both MIC and MAC, respectively [24, 87, 

110–112]. Accumulation of H3K9me3 and H3K27me3 in 

the MAC is catalysed by histone methyltransferase Ezl1p, 

whereas Ezl2p is responsible for H3K27me3 in the MIC 

[111, 113]. As in other eukaryotes, small RNAs are involved 

in guiding the deposition of these conserved marks [110]. 

After deposition, specific marks are subsequently recog-

nized by chromodomain-containing effectors. In particular, 

Tetrahymana’s Pdd1p (a homolog of HP1) accumulates 

on IESs, binding to methylated histones [114, 115] and is 

proposed to aid in recruiting Tetrahymana’s domesticated 

PiggyBac transposase (Tpb2p) for their excision [116]. 

Additionally, recent data indicated that RNAi-dependent 

Polycomb repression pathway is important for controlling 

transposable elements in Tetrahymena [117]. Disruption of 

the Polycomb repression pathway (knockout of DCL1, EZL1 

and PDD1) results in the activation of TE transcription as 

well as the germline mobilization of TE [87, 110]. Moreo-

ver, numerous other histone modifications in Tetrahymena 

have been identified and may play roles in its DRGR [118, 

119]. As in Tetrahymena, histone-specific marks such as 

H3K27 and H3K9 trimethylation are mediated by Ezl1 in 

Paramecium [120] and associated with chromatin assembly 

factor 1 subunit C-like protein (PtCAF-1) [121]. However, 

the developmental roles of these marks remain unclear.

As in Oligohymenophorea, heterochromatinization has 

been observed in Spirotrichea. During development, ger-

mline chromosomes are polytenized, with large blocks of 

observable heterochromatin prior to DNA elimination and 

fragmentation into thousands of unique gene-sized nano-

chromosomes [122]. In Stylonychia, this process is linked 

to the differential expression of a suite of histone H3 vari-

ants and subsequent post-translational modifications (PTM) 

[123–125]. For instance, H3K27me3 was shown to accumu-

late at the MIC-specific sequences prior to excision [126], 

while H3.7, acetylated at lysine-32, specifically associate 

with MDSs [123]. Moreover, knockdown of Piwi impacts 

the expression of histone H3.3 during macronuclear devel-

opment in Stylonychia, implicating that H3.3 incorporation 

into nucleosomes is ncRNA-dependent [123]. Unfortunately, 

little is known about the roles of histone modifications and 

variants among other spirotrich ciliates, in Oxytricha and 

Euplotes.

DNA modi�cation in IES elimination

Besides marking IESs for elimination through histone modi-

fications, chemical modifications of germline DNA may also 

play a role in ciliate DRGRs. 5-Methylcytosine (5mC) has 

been identified on some germline limited sequences (e.g. 

transposons and satellite repeats) in Stylonychia and Oxy-

tricha [127, 128] as well as in aberrant DNA rearrange-

ments and parental DNA undergoing degradation [127]. 

Fig. 5  Unscrambling process in 

Oxytricha 
3

4

2 MIC

1

1

MAC

- MDS – Macronuclear Destined Sequences

- IES – Internal Eliminated Sequences

- pointers

- telomeres

ó
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Additionally, azacytidine and decitabine (DNA methyl-

transferase-inhibiting drugs) induce demethylation of both 

somatic and germline DNA during DRGRs, further implicat-

ing 5mC as a specific marker for DNA elimination/degrada-

tion [127]. Moreover, 5mC in Stylonychia correlates with 

gene activity as well as with chromatin structure during 

macronuclear differentiation [129]. However, recent work 

in Paramecium was unable to detect any evidence for 5mC 

modifications, suggesting that these modifications may only 

be involved in the DRGRs of spirotrich ciliates [130].

While the function of 5mC DNA modifications and their 

phylogenetic distribution in ciliates remains unclear, the 

only widely conserved DNA modification is 6N-methylade-

nine (6 mA) [131–135]. Data from Tetrahymena shows that 

6 mA is only present in the transcriptionally active MAC and 

is preferentially enriched in the consensus sequence 5′-AT-

3′ [133, 134]. 6 mA modifications also localize to linker 

DNA regions downstream of the transcription start site (TSS 

of Polymerase II transcribed genes) and directly influence 

nucleosome positioning [133, 136–138]. Tetrahymena’s 

MT-A70 homologue ATM1 (6mA DNA methyltransferase) 

is required for the normal growth and development of the 

cell following sex [139]. Interestingly, the enzyme MTA1c 

(DNA methyltransferase) responsible for 6mA modifications 

in Oxytricha disfavours nucleosome occupancy, contrary to 

Tetrahymena [135]. Beh et al. [135] suggest that decreased 

nucleosome occupancy is due to dA:dT base pair destabili-

sation by 6mA, which decreases the DNA melting tempera-

ture. However, the exact mechanism remains undetermined.

Unfortunately, while DNA modifications during MAC 

development are present, exactly how they might direct 

IES excision and/or MDS protection requires further 

investigation.

Transposases required for DNA excision

Transposase domestication has occurred throughout the 

eukaryotic tree of life, and can be linked to important 

DRGRs, such as those in ciliates and those involved in V(D)

J recombination in animals [140, 141]. In Paramecium and 

Tetrahymena, IES excision is performed by a domesticated 

PiggyBac (PB) transposase (PiggyMac (Pgm) and TPB2 in 

Paramecium and Tetrahymena, respectively) [142, 143]. 

Excision of IESs in Paramecium by Pgm generates a 4 bp 

overhang at 5′ends centred around the "TA" dinucleotide 

pointer sequence showing the same geometry as those cata-

lyzed in vitro by PB transposases [142, 144]. While Pgm is 

believed to carry out the physical excision, Paramecium pos-

sesses five accessory Pgm-like domesticated transposases 

(PgmL1-PgmL5) that interact with Pgm individually, with 

PgmL1 and PgmL3 directly involved in Pgm’s ability for 

precise IES excision [145]. Compared to Paramecium’s 

PiggyBac transposase, that possesses a sequence specificity 

(5′-TTAA-3′) [142], Tpb2p in Tetrahymena possess less 

stringent sequence specificity, as most of the IESs it excises 

are not flanked by any common motif [50, 62]. In Tetrahy-

mena excision of the > 10,000 Tpb2p-dependent IESs is 

imprecise [116, 143]. Tetrahymena also possesses multi-

ple transposase proteins, such as Lia5p (domesticated PB 

transposase) which localizes on IESs and facilitates Tpb2p-

dependent IES elimination [114, 146] and is required for 

chromosome fragmentation in Tetrahymena [146]. In con-

trast to the most abundant IESs in Tetrahymena, the exci-

sion of 12 particular IESs (possessing TE features, such as 

terminal inverted repeats and the 5′-TTAA-3′ cutting site) is 

precise and depends on Tpb1p and Tpb6p [147, 148].

In Oxytricha, IES excision is triggered by telomere-bear-

ing element (TBE) family transposases [149], which belong 

to a superfamily of transposase genes that possess a com-

mon DDE catalytic motif [150]. Analyses of the Oxytricha 

MIC genome found that complete and partial copies of Tc1/

Mariner transposons constitute around 13% of the germline 

genome [151]. Compared to the Paramecium’s and Tetrahy-

mena’s transposase-related proteins, TBEs in Oxytricha are 

encoded in the MIC genome itself, rather than the somatic 

genome [152], and cut with a 3 nt 5′ overhang at an ANT 

recognition site [98]. Similar to members of the Oligohyme-

nophorea, Oxytricha possesses multiple transposases, all of 

which have a necessary role in its development [149].

Chromosome fragmentation

Chromosome fragmentation is one of the major events that 

occur during macronuclear development in ciliates. The 

most extreme chromosome fragmentation takes place in 

ciliates with gene-sized chromosomes (e.g. Euplotes, Sty-

lonychia, and Oxytricha) where their MIC chromosomes 

are fragmented into > 15,000 unique MAC chromosomes 

[43, 153]. Given the incredibly short size of these nano-

chromosomes (averaging ~ 2.8–3.2 Kbp in Oxytricha and 

Stylonychia [43, 153]), most (~ 90%) encode just a single 

open reading frame (ORF) [43, 154]. While less dramatic, 

the five MIC chromosomes present in T. thermophila are 

fragmented into ~ 225 multigene MAC chromosomes 

(from < 100–1500 Kbp) [155], whereas in P. primaurelia, 

MIC chromosome fragmentation gives rise to 50–1000 Kbp 

MAC chromosomes [156].

For some ciliates, the fragmentation of the MIC genome 

does not occur randomly, but at specific chromosome break-

age sequences (CBS) in the germline [157]. In Euplotes 

crassus, a conserved 10 bp consensus sequence (Euplotes-

chromosome breakage sequence; E-CBS: 5′-HATT GAA 

aHH’, H = A, C or T) directs a staggered double-strand 

break (DSB) at a precise distance and orientation, which 

provides the substrates for telomere addition [158–160]. 

In Tetrahymena, a conserved 15 bp chromosome breakage 
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sequence (CBS: 5′-WAA ACC AAC CYC NHW-3′, W = A/T; 

Y = T/C; H = A/T/C; N = G/A/T/C) is necessary for chromo-

some fragmentation and telomere addition [30, 161–164]. 

While the E-CBSs in Euplotes are ultimately retained in 

the MAC [158–160], in Tetrahymena the CBSs themselves 

are germline-limited and are eliminated with 4–34 bp of 

flanking DNA on both sides [165]. Interestingly, in Tetrahy-

mena, fragmentation of the germline at the CBSs gener-

ates 33 non-maintained chromosomes (NMCs) [30, 164, 

166, 167]. Unlike the typical “large” (> 100 Kbp) somatic 

chromosomes in the MAC, these NMCs are generally short, 

ranging from 30 to 80 Kbp and have a limited life-span, 

either being degraded prior to de novo telomere addition or 

lost by ~ 120 asexual divisions [166]. While a majority of the 

NMCs harbour functional ORFs (some of which are actively 

transcribed) [30], it remains unclear what their role, if any, 

might be in the post-sexual life cycle or the transition from 

sexual immaturity to maturity.

De novo telomere addition

The presence of DNA double-strand breaks (DSBs) is 

mostly known to be associated with the induction of repair 

machinery [Non-Homologous End Joining (NHEJ) or 

Homologous Recombination (HR)]. The relatively large 

number of DSBs associated with chromosome fragmenta-

tion during development in ciliates generates a large number 

of chromosomes whose broken ends are “healed” through 

de novo telomere addition. As in other eukaryotes, ciliate 

telomeres consist of tandem repeats at the 5′and 3′ends of 

their chromosomes, such as 5′-GGG GTT TT-3′  (G4T4) in 

Oxytricha and Euplotes [168], 5′-GGG GTT -3′  (G4T2) in 

Tetrahymena [22] and 5′-GGG GTT -3′ or 5′-GGG TTT -3′ in 

Paramecium [169, 170].

Although chromosome fragmentation is a very repro-

ducible and relatively precise event, de novo telomere addi-

tion does not typically occur at precise nucleotide position 

(the exception being E. crassus [158]), generating micro-

heterogeneity among the amplified chromosome copies in 

the developing macronucleus. In Oxytricha and Tetrahy-

mena, telomere addition sites have been found to be clus-

tered within regions ≤ 30 bp, [165, 171–173], whereas this 

is often ~ 1 to 2 Kbp in Paramecium [169, 170]. However, 

in E. crassus, there is no heterogeneity and telomeres are 

added at the same nucleotide positions in all macronuclear 

copies [158]. Additional heterogeneity can arise from the 

use of alternative chromosome fragmentation sites in Para-

mecium and Oxytricha. In Paramecium, the ends of some 

MAC chromosomes can be generated at alternative telomere 

addition sites separated by 2–13 Kbp. Each of the regions 

shows heterogeneity in the telomere’s positions [170, 174, 

175]. While most of the chromosome fragmentation in 

Oxytricha results in gene-sized chromosomes, the use of 

alternative fragmentation sites (or failure to fragment) can 

result in macronuclear chromosomes encoding additional 

ORFs [154, 172, 173].

The exact mechanism of de novo telomere addition 

remains poorly understood. Data performed on Tetrahymena 

suggested the involvement of the telomere end binding hom-

ologue Pot2p in de novo telomere addition that exclusively 

localizes to CBSs during chromosome fragmentation [176]. 

Recent work from Stylonychia has shown that microinjection 

of RNA templates carrying variable telomeric repeats into 

the developing macronucleus leads to modified telomeres in 

vegetative cells suggesting that de novo telomere addition 

depends on a telomere-containing transcript derived from 

the parental macronucleus [177]. However, to understand 

this process in more detail, further work needs to be done.

Conclusions

Ciliates are a diverse group of organisms that have deeply 

contributed to our recent knowledge about the regulatory 

role of epigenetics in development. Identification of sRNA 

pathways as well as histone modifications that mediate 

DNA elimination is providing a greater understanding of 

the genome reorganization process in ciliates while shed-

ding new insight into the evolution of epigenetic processes 

across eukaryotes. While we have a basic understanding of 

the overall genome reorganization process, numerous out-

standing questions remain open. How are IES regions identi-

fied and preferentially transcribed to produce sRNAs in the 

meiotic MIC? What, if any, role is there for retaining IESs 

in the MIC? How has this process evolved across the ciliate 

phylogeny? Further comparative analyses of somatic and 

germline genomes, and the associated DNA elimination pro-

cess, will be instrumental in answering these questions and 

will ultimately shed light on the variety of RNA-mediated 

epigenetic pathways and the dynamic regulation of genome 

function and structure.
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