

Programmed sociality: A software studies
perspective on social networking sites

Taina Bucher

A dissertation submitted to the University of Oslo in accordance with the
requirements of the degree of Doctor of Philosophy in the Faculty of

Humanities

May, 2012

 3

Acknowledgements

This dissertation would not have been possible without the ongoing support of my

family and my partner, and the many great, helpful and inspirational people I have

had the fortune to meet along the way.

First, I must thank my supervisor Anders Fagerjord and co-supervisor Geert Lovink

for their support and helpful criticism. Anders has been an encouraging and positive

advisor, whose calmness and pragmatic advice have helped me keep my feet on the

ground. I am grateful for the dedicated guidance that Geert has shown throughout the

entire project, for his inspiring mentorship, for always pushing my ideas and helping

my feet leave the ground again.

This project has greatly benefited from my two research stays in New York City in

2010 and Toronto in 2011. I am extremely grateful for having had the opportunity to

experience such intellectually stimulating environments and for meeting such

inspiring scholars during these stays. I would like to thank the people who made it

possible, for their generous efforts and hospitality.

Thanks to Alex Galloway and the Department of Media, Culture and Communication

for inviting me to spend a year at NYU as a visiting scholar. New York turned out to

be a as great as one could possibly hope for, much thanks to the inspiring seminars,

conversations and lectures I had the pleasure of attending while at NYU. I would also

like to thank the Faculty of Humanities, University of Oslo, for the financial support

that made this formative part of the project possible.

I am thankful for the hospitality shown by Greg Elmer and Ganaele Langlois in

inviting me to spend the spring of 2011 at the Infoscape Research Lab at Ryerson

University, Toronto. Theirs is a most collegial and collaborative research lab. I would

like to thank Ganaele and Greg and the rest of members of the lab, especially

Alexandra Renzi and Fenwick McKelvey, for making me feel like part of the team.

My work has benefited greatly from the encounter and the discussions I have had with

all of them.

A lot of people have read through previous drafts and sections of this dissertation, and

very generously provided me with helpful comments and advice. Thanks to: David M.

 4

Berry, Patrick Crogan, Jon Inge Faldalen, Sam Kinsley, Fenwick McKelvey, Georg

Kjøll, and the participants of the monthly media aesthetics seminars at the Department

of Media and Communication, University of Oslo. As some of the chapters were

originally written as articles for different journals and conferences, I would also like

to thank the various anonymous reviewers involved for providing useful comments

and suggestions that helped to improve the dissertation.

My fellow PhD’s also deserve a thank you, especially Jon Inge Faldalen, Henry

Mainsah, Cuiming Pang and Gry Rustad who have been there with emotional and

intellectual support at the various stages of the process.

Importantly, I have to thank my informants, the many Twitter third-party developers

and programmers, for their generosity of time and spirit. Thanks also to Alex

Kempton for his help with writing examples of code for the dissertation, as well as

taking time to teach me and answer my questions about software and programming.

I would also like to give my sincere thanks to Ann Kunish for her work with the

language edit of large portions of this dissertation.

Finally, I would like to thank my family and friends, especially my mother Aira

Bucher for her unconditional support and encouragement. Most of all, this dissertation

is dedicated to my partner Georg Kjøll. Thank you for always challenging me, making

my ideas better, for endlessly reading and discussing my work, for coming to New

York and Toronto with me, for listening to me whine about the dissertation always

and again (even for hours the day before your own viva), for making me dinner every

single day, for always making me laugh, for being the best support and friend anyone

could wish for. Thank you Georg, this is for you.

 - Oslo, May 2012

 5

List of tables and figures

Table 1 Sample of interview questions ..88	

Figure 1 Levi's online store. Screen shot from May 9, 2010.100	

Figure 2 EdgeRank formula...122	

Figure 3 The most recent feed settings with default set to 'Friends and pages you
interact with the most'. Screen short from February 25, 2011.123	

Figure 4 Communication stories. Screen shot from September 20, 2011.129	

Figure 5 Facebook welcome. Screen shot April 1, 2011. ..144	

Figure 6 People you may know. Screen shot from November 18, 2011.147	

Figure 7 'See friendship' page. Screen shot from November 7, 2010.153	

Figure 8 Sponsored stories. Screen shot from November 19, 2011...........................157	

Figure 9 Twitter as of November 27, 2006. Source: Internet Archive172	

 7

Contents

Acknowledgements..3	

List of tables and figures..5	

Contents ...7	

Chapter 1. Introduction ..9	

The power of social media ...13	

Towards a diagrammatics of software ...16	

Research questions and structure of the dissertation ...21	

Chapter 2. Theoretical and conceptual context..25	

Software Studies ..26	

Medium theory and the materiality of media...30	

Process-relational philosophy ..36	

Power: A Foucauldian account ..42	

Chapter 3. Perspectives on software ..49	

Software: A shifting nexus of relations ...51	

Code ...52	

Algorithm...58	

Executable and execution ..62	

Practice...64	

Chapter 4. Methodological framework ..69	

Technography: A descriptive-interpretative approach...70	

Letting the software ‘speak’...74	

Interviewing developers...82	

Chapter 5. Open Graph protocol: Arranging attention ..93	

Paying attention to attention ..95	

Arranging attention: The case of the Facebook platform ..97	

A technicity of attention...105	

Chapter 6. EdgeRank algorithm: Becoming (in) visible..113	

Media visibility ..116	

Algorithmic visibility...120	

Rethinking regimes of visibility...124	

Participatory subjectivity ...132	

Chapter 7. Managed relationships: Assembling friendship137	

 8

Revisiting friendship online ...140	

Software-generated friendship ...143	

Towards an understanding of algorithmic friendship ..150	

Chapter 8. The Twitter APIs: Objects of intense feeling...163	

Application Programming Interfaces ...167	

The Twitter APIs..171	

Community of practice ..175	

The construction of collectives: APIs as quasi-objects..182	

Governing innovation ..186	

Chapter 9. Conclusion: Turning the tables on ‘digital humanities’193	

Major contributions..194	

Thinking ahead: Social media and software studies ..200	

References..205	

Appendix 1. List of interviews...221	

 9

Chapter 1. Introduction

This dissertation is about the increased power of code and algorithms in the social

fabric of everyday life. It explores how the software processes and mechanisms of

social networking sites establish certain forms of sociality, specific to how they

produce the conditions for the sensible and intelligible.

It is not even six years ago that I became a member of Facebook, in October 2006,

when the social networking site opened to all Internet users. At that time Facebook

had about 8 million users, today it has 900 million – the numerical equivalent of the

entire Internet population back in 2005. What started as a social networking site for a

closed circle of Ivy League and Stanford students has turned into one of the most

popular places for people on a global scale to gather and spend time online. It is the

place to check for updates on what one’s friends have been up to, form new

attachments, share things, engage in conversations, and get new information.

Ever since Facebook’s opening up to the general Internet population, research on

social media has followed suit and seen a comparable surge to that of Facebook’s user

mass. The result of this is that we now know a great deal about the nature of social

life on Facebook and other social media platforms, for instance how users interact and

form identities online (i.e. Baym, 2010; boyd, 2007). Much less is known, however,

about the material and infrastructural support of social media. How does the software

underlying social media platforms establish the condition of possibility for sociality

online? What power relations exist between software architectures and users?

Although there is more work emerging in this era (i.e. Langlois et al., 2009b), as it

stands, we simply do not know enough about the articulation of power in and through

software embedded contexts of social media.

As José van Dijck observes, platforms like Facebook are not just tools for facilitating

connections; they are also makers of ‘algorithmically configured connections -

relationships wrapped in code - generating a kind of engineered sociality’ (2012: 161-

162).

My project starts out from an observation and recognition of the fact that software

increasingly plays an important role mediating and governing everyday life.

Following from this, the main objective of the dissertation is to develop an

 10

understanding of the ways in which software not just makes sociality possible, but

how software needs to be understood as a key actor in shaping specific ways of

relating to self and others in the context of social networking sites. The intent is to

contribute to a widening of the disciplinary focus of media and communications, by

investigating social networking sites from a software-sensitive perspective.

Specifically, this project is meant to demonstrate how software can be studied as a

key site for an understanding of sociality online.

The chief contributions of this dissertation are: 1) to offer an understanding of the

micropolitics of power in a software dense mediascape; 2) to show how the concrete

ways in which software – specific algorithms, protocols, and features – can be

analysed as producing the conditions for the sensible and intelligible, relying on a

reading of software mechanisms and empirical online interviews with key actors in

the social media industry; and 3) to provide an account of programmed sociality - how

sociality in social networking sites is algorithmically and dynamically shaped around

the pursuit of participation.

The project begins from two interrelated assumptions. The first is that there is a lack

of scholarly attention paid to the materiality and medium-specific features of software

that influence sociality online within the field of media and communications. This

first assumption is based on work I did as a research assistant at the Department of

Media and Communication, University of Oslo, following my master’s thesis on

discourses of participatory culture at the London School of Economics and Political

Science (LSE). In Oslo, I spent several months on an extensive literature review of the

rather broad field of new media use. What I found was an enormous amount of

existing literature on motivation and usage practices pertaining to all kinds of online

and mobile media, with an overwhelming focus on understanding the engagement

with such media from a user perspective. Little work had, however, been done on the

medium itself. Some of the questions that did not seem to find any answers in the

literature had to do with what the structural aspects and the technical mechanisms and

operational logics underlying social media use were.

The second assumption is that software matters and an understanding of which should

form a part of any analysis of how sociality is established online. This assumption

evolved out of my realisation described above, and coincided with some of the first

organised attempts to establish the field of software studies during the spring of 2008.

 11

The efforts to establish software studies as a field of study, drawing on literature and

theories from computer science, sociology, cultural studies, media studies, and literary

studies, immediately resonated with some of the issues I had been considering. So far

a main focus of software studies has been on the importance of delineating and

conceptualising the field itself. While the scope and potential of its application is still

not fully felt, much theoretical, methodological, and empirical work remains to be

undertaken.

The aim of this dissertation is thus two-fold. First, it seeks to introduce a software-

sensitive approach to new media studies. By investigating how power articulates

through software in configuring sociality online, it makes a contribution to the field of

media studies and particularly to scholarship on social media. Here I draw on a

Foucauldian understanding of power as productive, which I will discuss in more detail

in the next chapter. My interest in the ‘productiveness’ of software naturally feeds

into a more theoretical and analytical interest in how scholars within the humanities

and social scientists might begin to make sense of software as an object of study.

Inspired by recent endeavours in software studies and related disciplines, this project

also seeks to contribute to these efforts by offering both a theoretical and empirical

investigation of a particular type of software, namely social networking sites, such as

Facebook and Twitter. To my knowledge, this study is one of the first explicitly

concerned with social networking sites from a software-studies perspective. As such,

this project will necessarily have to undertake some ground clearing of conceptual and

methodological issues as part of an examination of what is essentially seen as a study

of programmed sociality.

In regard to the term ‘programmed’, I wish to draw attention to the way in which

software prescribes certain norms, values, and practices. In addition, I will use

computer scientist John von Neumann’s notion of program, where the term ‘to

program’ means to ‘assemble’ and to ‘organise’ (see Grier, 1996: 52). In terms of

‘sociality’, I refer to the concept of how different actors belong together and relate to

each other. That is to the ways in which groups of entities (both human and non-

human) are gathered into specific forms of collective association, enabling interaction

between the entities concerned (Latour, 2005). Thus, to be concerned with

programmed sociality entails an interest in how actors are articulated in and through

 12

coded means of assembling and organising, which always already embody certain

norms and values about the social world.

By drawing these concepts together, I wish to develop a critical understanding of the

ways in which sociality and subjectivity are shaped in and through the material-

discursive conditions of software in the context of social networking sites.1

Importantly, a central premise here is that sociality is not merely confined to human

relationships in the classic sociological sense. For example, Karin Knorr Cetina

(1997) argues persuasively for an expanded understanding of sociality by including

material objects in what she terms an ‘object-centred sociality’. In this sense, relations

to self and others online are increasingly mediated, processed, and even engineered by

the complex dynamics of software that make up the specificities of the computational

environment. Thus, this dissertation seeks to contribute an understanding of the types

of forces and mechanisms at play in the articulation of sociality online.

Broadly stated, I am concerned with the question of how software signifies and is

suggestive of things, and how software ‘makes sense’ in networked environments. On

the one hand, this question refers to the meaning of software and how software makes

sociality meaningful in specific ways. On the other hand, it asks how one might make

sense of software itself, and how software in turn produced the conditions for the

sensible and intelligible. These are seen as fundamentally intertwined questions that

both need to be considered in order to be able to see what software is, what it does,

and which relations it helps to forge in the context of social networking sites. As

Adrian Mackenzie suggests, ‘perception of materiality and the materialities of

perception figure centrally in relation to software’ (2006: 173). Thus the question of

how software signifies and makes sense has a double logic. The first refers to the

ontological and epistemological dimensions of software itself, which ask for its nature

and how one can make sense of it. While this dissertation will touch upon the

ontological and epistemological dimensions raised by studying software, the focus is

on how software produces new forms of sociality. Social networking sites are not

empty spaces upon which sociality and subjectivation simply occur. Software

contains certain normative and prescriptive structures. What we see and what we can

1 For an explanation of the material-discursive conditions with regards to media technologies
and software, see Chapter 2.

 13

know by using and being on sites such as Facebook and Twitter, is the result of

complex material-discursive practices involving both human and non-human actors.

This project is inscribed within the larger field of media studies; not simply because

of the nature of its empirical objects of study – social networking sites – but also

because software is seen as a medium, that is, as a material basis for mediation and

expression.2 In other words, seeing software as a medium in this sense means that

software is capable of doing things, of expression and communication. Not only does

software act as a vehicle of information, it embodies ways of encoding information

that are articulated differently in text, image, and sound. A core tenet of media studies

is the notion that media are never neutral carriers of meaning; they transform,

translate, persuade, shape, construct, and produce (see for instance Mitchell and

Hansen, 2010). This leads to another important way in which my study on

programmed sociality is firmly grounded within media studies: namely, through its

concern with power.

The power of social media

This dissertation is concerned with the specific case of social networking sites -

bounded web-based software systems that allow users to connect socially and form

networks. While there is no one precise definition of social networking sites (SNS),

boyd and Ellison (2007) have identified three key characteristics: the construction of a

public or semi-public profile within a bounded system; the articulation of a list of

other users with whom they share a connection; and the possibility to view and

2 Media studies offers a rich vocabulary for theorising and understanding software in terms of
its communicative, performative, and encoding capacities. While I will not embark on an
explication of these terms here, it is worth noting how the notion of medium offers a useful
way to view software critically. Rather than seeing software simply as the product of
mechanical (en)coding reminiscent of mainstream computer science (there are of course
notable exceptions to the seeming lack of criticality within computer science; see for instance
Donald Knuth’s ‘The Art of Computer Programming’ (1968)), a media-studies perspective
makes it possible to critique software on a variety of different dimensions, including but not
limited to: communicative (as in who shares what with whom, of what is said or expressed in
what ways), cultural (as in processes of shaping meaning, as sites of public and personal
struggles, or a set of shared collective values), aesthetic (how it provides the condition for
modes of appearance and perception), and technical (as in potential for storage, transmission,
and processing). See for instance Hansen and Mitchell’s Critical Terms for Media Studies
(2010) and Guillory’s ‘Genesis of the Media Concept’ (2010) for good conceptual accounts of
the medium.

 14

traverse their list of connections and those made by others within the system. Social

networking sites hit the mainstream around 2003 with sites such as Friendster and

MySpace. Since then, a plethora of such sites has seen the light of the day, but only a

few still persist. My dissertation is limited to Facebook and Twitter, currently the two

most popular social networking sites.

Facebook and Twitter form part of the wider phenomenon of ‘social media’ and ‘Web

2.0’. Perhaps more so than is the case with the term social networking sites, the

definition of ‘social media’ is still very much under debate. Usually, however, social

media is used as an umbrella term for a variety of web-based software services that

include blogs, wikis, social networking sites, and media sharing sites that leverage on

and makes possible the production of user-generated content. The concept of Web 2.0

on the other hand refers to an idea about the Web articulated by the publisher Tim

O’Reilly back in 2004 and 2005. The notion of Web 2.0 describes a set of principles

and practices defining the Web as a participatory platform, contrasting it to the notion

of Web 1.0, seen as a mere information source (see O’Reilly, 2005; Song, 2010).

Rather than naming an explicit stack of technologies associated with this new era,

O’Reilly proposed Web 2.0 as a new attitude toward, or way of using/leveraging the

Web, most notably in terms of software development and end-user use.

Social media are not merely powerful in terms of their user base. The popularity and

influence of social media attests to their ability to connect people across time and

space. More and more people spend a considerable amount of their time on these

sites. According to a recent report by the Pew Internet, ‘Americans spend more time

on SNS than doing any other single online activity’ (Hampton et al., 2011: 8). The

scholarly debate on the emergence and nature of social media or Web 2.0 can roughly

be grouped in terms of belonging to either a positive or a negative camp. The positive

camp has tended to herald social media as sites of empowerment, by focusing on what

Henry Jenkins (2006) calls ‘participatory culture’, or similarly highlighting the ways

in which users have increasingly become ‘produsers’ (Bruns, 2008). The more

pessimistically-inclined scholars have tended to focus on social media as reinforcing

hegemonic power, by pointing to the ways in which user-generated content and the

vast amount of participation is ‘exploited’ by neoliberal capitalism, where the concept

of ‘immaterial labour’ (Terranova, 2000; Lazzarato, 2004) plays a central role. In

many ways, these debates revisit classic media studies debates on the empowering or

 15

disempowering effect of media on users and audiences. Despite the different

analytical frameworks employed to understand the impact of social media, a common

denominator in research on social media is the concept of participation.

According to O’Reilly (2005), participation is intrinsic to the very architecture of

social media. The ways in which social networking sites enable connections to be

forged, maintained, and performed do not occur on neutral ground. As José van Dijck

argues, ‘the novelty of social media platforms is not that they allow for making

connections but lead to engineering connections’ (2012: 168). Not only do social

networking sites engineer connections, they arguably provide the very material-

discursive conditions for participation itself. This points to the technical side of social

media, to the power of code. Lawrence Lessig (2006) infamously claimed that ‘code

is law’ because it regulates the structures through which things can emerge. Code

influences the ways in which people can move about and navigate on the Web,

affecting what can be said and done online. The regulatory power assumed to be at

work through code highlights the ways in which social media can be understood as an

architectural structural force.

Having briefly established the hypothesis that social media are powerful, not just in

terms of their widespread use, but also in terms of their political-economic context as

well as their material constitution in code and software, a principal research question

can be formulated. While it is taken for granted that social networking sites constitute

and are constituted by power relations, what needs to be addressed is therefore not if

power articulates in these media spaces, but rather how, and with what possible

implications. The overall aim of this study, then, is to examine the ways in which

power articulates through software in the context of social networking sites.3

3 As I am well aware of the notion of ‘articulation theory’ within cultural studies (as
formulated by Stuart Hall, Ernesto Laclau, Chantal Mouffe and others), it is perhaps
necessary here to stress that my use of the word ‘to articulate’ is not meant to signify an
adoption or use of these theories within the context of this dissertation. That said, my choice
of the word ‘to articulate’ indeed seeks to signify some of the ‘nice double meaning’ of the
word, as Stuart Hall puts it in an interview with Lawrence Grossberg (Grossberg, 1986: 53).
In this sense, articulation is used as a term that captures both the meaning of expression and
connection. While this dissertation does not explicitly rely on articulation theory, I rely on its
key insight in terms of being attentive of the ways in which power articulates through
software necessitates an awareness of the fact that the relations forged and elements linked
through software are not ‘necessary, determined, absolute and essential for all time’ (Hall in
Grossberg, 1986).

 16

More specifically: Through which techniques and mechanisms does software

participate in the shaping of sociality online? What kinds of cultural assumptions are

embedded in software, and what do they bring to bear? If we follow Michel

Foucault’s conceptualisation of power as productive,4 we may begin to ask what it is

that software produces, what software is capable of, how it activates relational

impulses; in short, how software operates to shape and govern the conduct of subjects

in the participatory culture of social networking sites.

Towards a diagrammatics of software

This research is organised around four separate but interconnected case studies, each

of which aims for a critical investigation of the nature of programmed sociality by

focusing on exploring the power of software as it operates through the algorithms and

protocols of Facebook and Twitter. My interest in questions of power stems from the

notion that power is increasingly materialised in and through software, as software

and code have become ubiquitous, slipping into the ‘technological unconscious’ of

everyday life (see Lash, 2007; Thrift, 2005). I hold that software has productive

capacities, not merely by mediating the world, but through its delegated capacities to

do work in the world and by making a difference to how social formations and

relations are formed and informed. Situating this dissertation within the still-emerging

field of software studies offers an important and much-needed perspective on social

media that seeks to challenge the hegemony of usage studies, by questioning and

focusing instead on the ways in which software, through its capacities to assemble and

organise can be said to allow for, encourage, or block certain kinds of actions (Fuller,

2008: 7). Setting out to explore power through software seems indeed like a daunting

and perhaps even impossible task. However, it is not my intention to investigate

power as a totalising force that can be located and described once and for all. Rather,

as a diagrammatics, or cartography of power, my case studies are meant as

explorations of the ways in which the power of software operates on many different

levels.

4 I will provide an overview on Foucault’s notion of power in the next chapter. Suffice it here
to say that I do not view power as something repressive, but rather as a relational force
capable of affecting and being affected.

 17

I concern myself primarily with two dimensions of software, algorithms and

protocols. Algorithms are the coded instructions that a machine needs to follow in

order to perform a given task. Protocol refers to a set of conventions governing the

transmission and exchange of messages in distributed networks. Both algorithms and

protocols can be understood as plans of action or rules that govern computational

processes. From a media and communications perspective especially, algorithms and

protocols are important elements when considering networked and software-enabled

media such as social networking sites, as they in many respects prescribe and define

the possible actions within these programmed spaces.

Algorithms not only epitomise the operationality of software; as Mackenzie (2006:

43) suggests, they also participate in defining the orderings of the social field.

Algorithms are at the center of our information ecosystem, where they are used to

sort, filter, suggest, recommend, summarise, map, and list information and content of

the Web according to predefined parameters. Increasingly, we have come to rely on

these programmable decision-makers to manage, curate, and organise the massive

amount of information and data available on the Web, and to do so in a meaningful

way.

As we delegate an ever-increasing amount of tasks to algorithms functioning as

automated decision-makers, it becomes imperative to better understand their

operational logics. Some of the critical questions that arise from this and which will

be further explored in the chapters to come thus include: what role do algorithms play

in Facebook? What kinds of cultural assumptions are in fact encoded? How do

algorithms configure their users? What forms of sociality do algorithms aspire to

emulate? Which associations are made, and what relationalities do algorithms

articulate?

Protocol, as Alexander Galloway (2004) has argued, is not merely a technical

specification regulating how data can be exchanged on a network. Above all, protocol

can be seen as a management style, a technique for managing contingent relations,

affecting not only the technical level, but also the social level.5 Perhaps most

5 The Web involves many different layers of protocol, from the very infrastructural TCP/IP
protocol that regulates the transmission of information on the Internet, HTTP that regulates
the transmission on the Web, the graphical arrangement of objects in browsers through
HTML, to the standardised text encoding protocol of XML (or JSON etc.).

 18

importantly in the context of this study, protocol signifies power, a managerial and

governmental form of power. Like algorithms, protocols have the capacity to order

the social, to make the world hang together in certain ways and not others. They

accentuate relations; make certain things hold together in specific ways.

This raises some interesting questions that will be further explored, including: what is

it that protocols hold together, what are the principles of the connections? If we

consider protocol as Galloway does, as a management style, then what and who is

being managed by whom, and to what effect? And how can we understand the

coordinative work that protocols do?

The case studies are organised around specific algorithmic and protocological

elements that are seen to play a particularly important role in terms of shaping

relations to self and others on Facebook and Twitter. Specifically, I am concerned

with the algorithms employed by Facebook that govern participation on the platform,

including EdgeRank, GraphRank, and the ‘People You May Know’ algorithm (see

chapters 5, 6, and 7). In terms of protocol, understood in the general sense of

connecting code, I will be looking specifically at Facebook’s Open Graph protocol

and Twitter’s application programming interfaces (see chapters 5 and 8, respectively).

Methodologically, I rely on what I call a technographic approach that borrows from

hermeneutics, material and discursive methods including close reading, medium-

specific analysis, textual analysis, and qualitative interviews. The project follows an

associative strategy inspired by Actor-Network Theory (Latour, 2005) and multi-sited

ethnography (Marcus, 1995). This implies tracing the associations provided by the

objects of study, in order to be aware of the connections that they forge and of what

the different actors are capable.6 Following Bruno Latour’s notion that ‘things might

authorize, allow, afford, encourage, permit, suggest, influence, block, render possible,

forbid, and so on’ (2005: 72), the specific articulations discussed as part of the case

studies are thus grounded in the software elements themselves, what they suggest,

allow for, and afford. Thus, each of the chapters seeks to provide insight into the ways

in which power articulates through software, producing new norms of sociality and

6 An actor is here understood in the sense of ANT as any element that makes a difference to
some other elements course of action. I will explicate this in more detail in the next chapter.
What is important here is the fact that actors are not limited to human actors, but also refers to
non-humans.

 19

connectivity. As a whole, this dissertation can be read as a diagrammatics of the

programmed sociality of social networking sites.

Derived from Gilles Deleuze’s reading of Foucault, the concept of diagram signifies a

map of power. Deleuze (2006) suggests that Foucault should be understood as a new

cartographer, someone intent on mapping out the relations between forces, to show

how power produces new realities. Power in this sense is never power-over, but rather

power-through and power-between. Power is not possessed but practiced, passing

‘through the hands of the mastered no less than through the hands of the masters’

(Deleuze, 2006: 60). Diagram is not a static structure of power but rather the function

or operationality of power. Following Deleuze’s assertion that ‘every society has its

diagram(s)’ (2006: 31), what is at stake here is thus a diagrammatics of software,

understood as the cartography of strategies of power. David Rodowick elaborates on

the nature of such mapping:

What is rendered visible and thus knowable in an epoch derives from a
historical dispositif in every sense of the word: architectural (the Panopticon as
a disciplinary plan); technological in the sense of a strategic arrangement of
practices or techniques; but also philosophical or conceptual (1990: 18).

Foucault’s analysis of the architectural, technological, and conceptual nature of

diagrams provides a useful methodological and analytical framework for this study.

While only one of the case studies (Chapter 7) makes explicit use of the architectural

framework offered by Foucault’s writings on the Panopticon, the dissertation overall

draws upon the ideas and analytical cartography reminiscent of Foucault’s writings in

general. An architectural perspective usefully highlights the ways in which spaces are

‘designed to make things seeable, and seeable in a specific’ way (Rajchman, 1988).

This, I argue, offers a useful avenue to analyse software in terms of architectural

structuring, where embedded technical means have the power ‘to incite, to induce, to

seduce, to make easy or difficult, to enlarge or limit, to make more or less probable’

(Foucault quoted in Deleuze, 2006: 59).

The notion that code and software have a regulating power can perhaps better be

understood if we consider it in relation to Foucault’s concept of government and

governmentality. While Foucault used these terms somewhat interchangeably,

especially in his later writings, government broadly refers to the ‘conduct of conduct’,

whereas governmentality can be understood as the modes of thought, or rationalities,

 20

underlying the conduct of conduct (see Foucault, 1982; 2007; 2008; Lemke, 2001;

Rose, 1999).7 For a mapping of power, the notion of government offers an elaborate

concept for the kinds of architectural shaping that Foucault described in Discipline

and Punish (1977), as it points to the multiple processes, measurements, calculations,

and techniques at play in organising and arranging sociality. Governmentality has a

crucial technological dimension, as the conduct of conduct can be achieved through

various technical means.8 As such, governmentality becomes a useful concept that

highlights how software ‘has become a technology of government’, as it ‘consists of

rules of conduct able to be applied to determinate situations’ (Thrift, 2005: 172).

Analytically, this implies a focus on the ways in which software arranges and

organises, its specific techniques and procedures, and the mechanisms used in

processes of individual and collective individuation.9

Through what I call a software sensitive analytics, the architectural and operational

logics of social networking sites are read not so much for their hidden meaning as a

traditional hermeneutics would have it, but for their ‘medium specificity’ (Hayles,

2004). In terms of software, such a mode of critical attention implies an analysis that

takes into account the specificities of algorithms, protocols, code, and features.

Software ‘makes sense’ by producing regimes of visibility (a key category of

governmentality), by making something intelligible and thus knowable. Following

Matthew Fuller, I will attempt to demonstrate some of the ways in which software

exists and can be experienced, ‘to show, by the interplay of concrete examples and

multiple kinds of accounts, the condition of possibility that software establishes’ for

sociality online (2008: 1).

7 For a good discussion on the concept of government and governmentality, see Michel
Senellart’s overview in Foucault, 2007: 499-507.
8 As Bröckling et al. point out, such technical means may for instance include social
engineering strategies embedded in various machines, medial networks, recording and
visualization systems (2011: 12).
9 The dimension of subjectivity was key for Foucault, who used the concept of
governmentality to analyse everything from the production of orderly and compliant ‘docile
bodies’ through pastoral guidance techniques (see Foucault, 1978) and the emergence of
liberalism, in which notions of freedom are produced so as to replace external regulation by
inner production (Bröckling et al., 2011: 5).

 21

Research questions and structure of the dissertation

To recapitulate, this study has two overarching research questions that provide the

overall focus. First, I am interested in the ways in which software signifies and is

suggestive of things, and how it ‘makes sense’ in networked environments, in terms

of producing conditions for the intelligible and sensible. In many respects this is a

question of power relations. Thus, my second question pertains to how and with what

implications power articulates through software in the context of social networking

sites. The core of the dissertation is organised around four case studies that address

issues I see as particularly important in the present context of the programmed

sociality of social networking sites. These investigations look at the ways in which

software codifies modes of attention and constructs regimes of visibility, and how

software manages friendships and catalyses specific developer practices and

discourse. While all of the chapters address the overarching research questions, each

chapter addresses a different body of theoretical concerns and questions.

Chapter 2 situates the project within the fields of software and media studies. It

provides a literature review and overview of previous research, and analytical

perspectives relevant to the thesis. First, it introduces the readers to the field of

software studies by focusing on existing literature that explicitly seeks to understand

social media from a software studies perspective. Second, I situate the thesis within

the branch of media studies that most notably has been concerned with the specificity

and materiality of the medium, focusing on the influence of Marshall McLuhan and

Friedrich Kittler. The chapter furthermore provides an overview of some of the

theoretical perspectives and concepts used to frame the case studies. The thesis builds

on what can be termed a process-relational theoretical framework, including actor-

network theory and assemblage theory. Finally, the notion of power is introduced,

derived from the work of Michel Foucault.

Chapter 3 provides a conceptualisation of software by discussing the nature of

software as code, algorithms, execution and practice. In order to comprehend the

ways in which software signifies and is suggestive of things, and how it ‘makes sense’

in networked environments, I argue for a conceptual understanding of the nature of

software. The argument is frequently made that media studies needs to be more

attentive to matters concerning software. This chapter therefore offers some

perspectives on what I take to be necessary (but not sufficient) conditions of software

 22

that are important to an understanding of programmed sociality. In doing so, this

chapter expands on the literature and field of software studies briefly introduced in

Chapter 2, to provide a more detailed account of some of the prevailing debates and

discourses around software. This chapter thus seeks to address the overarching

research question of how software signifies and suggests certain things by grounding

such an understanding in the materiality, specificity, and affordances of software.

Chapter 4 outlines the research methodology. The chapter introduces the notion of

technography, a way of reading technical objects and ensembles by using hermeneutic

and ethnographic methods. Technography is understood as a descriptive account of

software and its practices, grounded in data attained from multiple sources. In this

thesis, it includes data from auto-ethnographic observations of the social networking

sites, experiments in ‘reverse engineering’, document analysis of technical

specifications, manuals, articles, and engineering talks, as well as online structured

interviews with third-party software developers.

Chapter 5 explores the power of the Facebook’s Open Graph protocol in terms of

governing attention. This chapter thus addresses the question of how software ‘makes

sense’ in terms of its arranging and organising capacities. The discussion is grounded

in a close reading and description of Open Graph. The question is how software is

used to govern attention on and through the Facebook platform? Tracing the

infrastructural developments of the Facebook platform, I argue that there is a shift

from an object-oriented attention economy reminiscent of the ‘like button’, to a form

of anticipatory and personal attention economy produced by the performativity of

algorithms and software-enabled personalisation processes. Not only is the

operational logic of the software anticipatory, it invokes a form of anticipation that

seeks to realise its future. Using the concept of technicity as an analytical framework,

the argument is made that attention needs to be seen as emergent, enabled by the

unfolding power of software to produce the conditions for the sensible, in conjunction

to users.

Chapter 6 explores the notion of regime of visibility on Facebook, which I argue is

algorithmically constructed. It takes Facebook’s EdgeRank algorithm as a case in

point to analyse the ways in which software shapes a characteristic form of visibility

materialised in the News Feed. The question addressed is how we can begin to

understand this kind of algorithmic intervention, through which specific politics of

 23

arrangement, architecture, and designs. In this chapter, I suggest that the logic of the

News Feed works in reverse to Foucault’s notion of surveillance, as developed in

Discipline and Punish. Examining EdgeRank’s operational logic by means of an

experiment of ‘reverse engineering’, the argument is made that participatory

subjectivities are produced not through the instalment of visibility as a constant and

threatening possibility, but rather through what I call the ‘threat of invisibility’,

whereby visibility functions as a reward as opposed to Foucault’s notion of

punishment.

Chapter 7 investigates the formation of friendship online. The question raised is how

the software acts to encourage and support a particular kind friendship on Facebook,

and which possibilities the software offers for friendship performance. In line with

Foucault’s notion that power is first and foremost productive of subjects, this chapter

investigates the sociotechnical shaping of friendship, seen as one of the most

prevailing forms of sociality encouraged by social networking sites such as Facebook

today. In this chapter, I argue that friendship on Facebook exists as a relation between

multiple actors, not only human individuals, and importantly involves algorithmic and

commercial relations of forces.

Chapter 8 examines the power relations permeating Application Programming

Interfaces (APIs). Framed as protocological software objects, the question here is how

the APIs form and hold relations together and how can we understand the

coordinative work that protocols do? Using the Twitter APIs and its third-party

developer ecosystem as my case study in the chapter, I argue that APIs constitute

objects of ‘intense feeling’, which allow not only the flow of information and data,

but also articulate various relations of control and freedom. This chapter presents the

empirical findings of the interview-based research on the Twitter API developer

community, where multiple valences of software as practice and experience are

explored and discussed.

Finally, in Chapter 9, I draw the elements of the dissertation together in order to

outline how we can further develop the notions of sociality and software that I have

presented, and provide suggestions for further work.

 25

Chapter 2. Theoretical and conceptual context

In this chapter, my aim is to outline the literature and theories relevant to the question

raised by software within the context of understanding and studying social media.

Here I concentrate on providing a comprehensive account of the different theoretical

trajectories and fields that are particularly important to this study. This includes an

outline of the growing field of ‘software studies’; an account of more established

ways of viewing media studies in terms of ‘medium theory’, and related concepts

such as the materiality of media and communication; and an account of what can be

termed ‘process-relational philosophy’. Finally, this chapter provides an overview of

the concept of power as it is used throughout the thesis, based on the writings of

Michel Foucault.

Considered together, medium theory, the materiality of media, process-relational

philosophy, and Foucault’s conception of power provide, what I believe, is a fertile

theoretical and conceptual framework for studying software and its practices. As a

nascent field of study, the definition and contours of software studies are still very

much up for grabs. In my view, software needs to be understood as a material-

discursive phenomenon, meaning that software produces conditions for the intelligible

and sensible that are always socio-historically grounded in specific material supports,

or rather, material (re)configurations. I take a non-representational stance in regard to

software in the sense described by Nigel Thrift, in that the non-representational is an

approach to understanding the world in terms of effectivity rather than representation:

not the what, but the how (2008: 113, my emphasis). It implies beginning from the

assumption that media technologies produce specific regimes of power, and that one

useful way to begin to analyse this power goes via the workings of specific

technologies, in order to uncover the ‘systems of rules that govern its functioning in

the first place’ (Gane, 2006: 78). Rather than debunking existing approaches, I will

use this chapter to present what I take to be a constructive and productive method for

the conceptualisation of software studies, which exists at the intersection of

materialist approaches to media, assemblage theory, nonhuman agency, and power

relations.

 26

Software Studies

While still in its infancy as an academic field, software studies constitutes a

particularly important field for situating this study, as it makes an explicit point about

the need to pay attention to the many different scales of software in the analysis of

digital culture and network societies. The concept of software studies first appeared as

part of Lev Manovich’s argument concerning the programmability of new media in

his book The Language of New Media (2001). As Manovich put it:

New media calls for a new stage in media theory whose beginnings can be
traced back to the revolutionary works of Harold Innis in the 1950s and
Marshall McLuhan in the 1960s. To understand the logic of new media, we
need to turn to computer science. It is there that we may expect to find the new
terms, categories, and operations that characterize media that became
programmable. From media studies, we move to something that can be called
“software studies” - from media theory to software theory (2001: 48).

In a more recent account, Manovich points out that the above quotation from 2001 –

which has become a common way of introducing the notion of software studies (at

least from a historical perspective) – is in need of some adjustment. As Manovich

writes in the introduction of his forthcoming book Software Takes Command:10

Reading this statement today, I feel some adjustments are in order. It positions
computer science as a kind of absolute truth, a given which can explain to us
how culture works in software society. But computer science is itself part of
culture. Therefore, I think that Software Studies has to investigate both the role
of software in forming contemporary culture, and cultural, social, and economic
forces that are shaping development of software itself (2011: 6).

This quotation more accurately describes what I believe the notion of software studies

encompasses: namely, the need to shed light on an object long overlooked within

media and cultural studies. In this sense, the emergence of software studies has been

framed in terms of identifying a ‘new object of study and area of practice for kinds of

thinking and areas of work that have not historically “owned” software’ (Fuller, 2008:

2). In Manovich’s terms this means:

10 A first version of this book was published November 20, 2008 online, under a creative
commons licence, and has been available for download here:
http://lab.softwarestudies.com/2008/11/softbook.html. Here I am quoting a July, 2011 version
of the new introduction to Software Takes Command, which is available for download from:
http://manovich.net/DOCS/Manoich.Cultural_Software.2011.pdf.

 27

That all disciplines which [sic] deal with contemporary society and culture –
architecture, design, art criticism, sociology, political science, humanities,
science and technology studies, and so on – need to account for the role of
software and its effects in whatever subjects they investigate (2011: 7).

As software becomes increasingly ubiquitous, affects all kinds of cultural and societal

processes and has a profound effect on how people live their everyday lives, software,

so it is claimed, must be taken seriously as a site for understanding new social realities

and transformations (see Mackenzie, 2006; Manovich, 2008; Fuller, 2008). My

reasons for studying software stem from these realisations. I believe software must be

taken seriously as an object of study that is permeated with the same kind of

meanings, materialities, representations, imaginings, emotions, discourses, identities,

and power relations as any other cultural object and formation. As with any new or

nascent field of study, there is no established way to engage in software studies in ‘the

right way’. On a broader level, therefore, this dissertation can be seen as one possible

way of taking software seriously, of dealing with contemporary media culture through

an account of software that focuses on the protocological and algorithmic level.

In historical terms, 2006 marked the year of the first organised attempt to establish the

field of software studies more formally, with a workshop organised by Matthew

Fuller at the Piet Zwart Institute in Rotterdam. However it was not until 2008 that

software studies emerged in a more institutionalised form. First, a new research

initiative on software studies was established at the University of California, San

Diego, directed by Manovich. There was also a foundational workshop organised by

the Software Studies Initiative in San Diego, and a new MIT book series on software

studies was founded along with the publication of the book Software Studies: A

Lexicon, edited by Fuller.

Framed as inherently interdisciplinary in scope, software studies ‘seeks to create an

expanded understanding of code that extends significantly beyond the technical. It

offers cultural and theoretical critiques to how the world itself is captured within code

in terms of algorithmic potential and formal data descriptions’ (Dodge, Kitchin, and

Zook, 2009: 1285). As such, existing research has examined software in terms of its

mechanisms and expressive capacities (Kirschenbaum, 2008; Wardrip-Fruin, 2009),

philosophical, ideological, and performative underpinnings (Berry, 2011; Chun, 2006;

Galloway, 2006; Mackenzie, 2006), and the effects that software has on cultural

production and everyday life (Fuller, 2003; Kitchin and Dodge, 2011; Manovich,

 28

2008).

While much software studies research is related in some way to media studies

departments, other academic fields have also made important contributions to

bringing issues of software out of computer science departments. Most notable in this

regard is some of the literature emerging from various geography departments in the

UK. For the past decade or so, geographers and social theorists have examined how

software can be said to transform and produce spatiality (Thrift and French, 2002;

Dodge and Kitchin, 2004; 2005; Graham, 2005; Uprichard et al., 2009). These authors

argue that space is automatically produced; everything from air travel and traffic

lights to security systems run on and are operated by various codes and algorithms.11

Digital networks have the capacity to generate ‘software-sorted geographies’

(Graham, 2005), but also create space itself, by providing the conditions for its

effective operations (Dodge, Kitchin and Zook, 2009).

Software studies as a field is continuously growing. In the course of this three-year

research period, software studies has established itself as a field in the fullest

academic sense of the term. This includes the founding of a book series and a

discipline-specific journal; academic courses, although no full-length degrees;

workshops and conferences; and tenure-track openings where expertise in software

studies is specified as a qualification.12 Academic interest in software from a

humanities and social science perspective only seems to be growing, as evidenced by

the emergence of such related fields as platform studies and critical code studies, as

well as by the growing interest and institutional stabilisation of what is now called

11 As Thrift and French note: ‘Increasingly, spaces like cities – where most software is
gathered and has its effects – are being run by mechanical writing, are being beckoned into
existence by code’ (2002: 311).
12 See MIT Press book series on software studies:
http://mitpress.mit.edu/catalog/browse/browse.asp?btype=6&serid=179. Computational
Culture (http://computationalculture.net) is the new journal of software studies. Its editorial
group includes Matthew Fuller, Andrew Goffey, Olga Goriunova, Graham Harwood,
and Adrian Mackenzie. ‘The journal’s primary aim is to examine the ways in which software
undergrids and formulates contemporary life’ (from the about section). The first issue was
published in the fall of 2011. Courses include ‘Software studies’ at the University of
California, Santa Cruz (http://ic.ucsc.edu/~wsack/fdm225/winter2010/schedule.html),
‘Software studies’ at Goldsmiths University, ‘Code, software and serious games’ at Brown
University (http://thefollowingphrases.com/gamesSyllabus2.pdf), ‘Coding culture’ at Utrecht
University (http://mtschaefer.net/entry/coding-culture-2010), and ‘Politics of code’ at New
York University (http://cultureandcommunication.org/galloway/2010fall-
Politics_of_Code_syllabus.pdf).

 29

digital humanities. That said, software studies is still very much in the margins of

academia. There is disagreement about whether there really is a need for a demarcated

field of study called software studies, or whether efforts should be put into making

knowledge about software an integral part of already-established fields such as media

and communication. In my view, software studies provides a very useful and highly-

needed perspective on how to view media studies in times of ‘computational culture’.

Software studies and social media

While academic research on the productive power of software in configuring sociality

in social networking sites remains scarce, there are a few notable exceptions. In the

following, I will present some of the research that has been especially important in

developing my own work. One particularly important source of inspiration is the

scholarly work associated with the Infoscape Research Lab at Ryerson University,

Toronto (Elmer, 2004; Langlois, 2008; Langlois et al., 2009a; 2009b; Langlois and

Elmer, 2009; McKelvey, 2010; 2011). In particular, I am inspired by the doctoral

dissertation of associate lab director Ganaele Langlois (2008), and the work that

explicitly addresses social media from a software studies and ‘code politics’

perspective (Langlois et al., 2009a; 2009b). In her dissertation The TechnoCultural

Dimensions of Meaning (2008), Langlois provides a critical analysis of media

software (Amazon and MediaWiki), addressing power relations online as articulations

between software, meaning, and subjectivation. While Langlois’ focus on aspects of

meaning-making on the Web as understood from a Guattarian mixed-semiotics

perspective falls outside the scope of my project, the ways in which she approaches

technocultural subjectivation with a sensitivity towards issues of software provides an

important foundation for discussing social networking sites in similar terms. Langlois

sees software as a key actor in the shaping of sociality and subjectivity, where

‘different kinds of meanings are shaped and formed, from the symbolic meanings

created through the interface to the cultural meanings that give form to software itself

and define the practices of users’ (2008: 247). In similar terms, I view software as an

important actor and participant in governing forms of sociality in the context of

Facebook and Twitter.

More generally, my research project responds to a number of calls made by media

scholars in recent years for a better understanding of software in studies of social

 30

media. David Beer’s article ‘Power through the algorithm’ (2009) constitutes one

such influential call. As Beer contends:

Considering how popular Web 2.0 applications like MySpace, Facebook,
Youtube, Delicious, and Flickr have become, there is a pressing need to explore
with some detail this vision of power through the algorithm operating in their
incorporation into users’ lives […] As things stand we simply do not understand
how the material infrastructures of Web 2.0 play out in the lives of individual
users, how the software constrains and enables, how it formulates hierarchies,
shapes the things people encounter, and so on (2009: 999-1000).

Similarly, Niederer and van Dijck argue that ‘non-human actors and coded protocols

are often overlooked in the many optimistic Web 2.0 theories’, and call for a

heightened critical understanding and interrogation of the ‘sociotechnical system that

lies at the core of Web 2.0 platforms’ (2010: 1384). What is needed, they argue, are

analytical skills that take the medium-specific nature of the Web into account when

attempting to understand how the Internet works. In this dissertation, therefore, in part

motivated by these and similar calls, the aim is to examine some of the many ways in

which the material infrastructures of Web 2.0 articulate power through software,

thereby shaping specific ways of relating to self and others online. In doing so, this

dissertation is an attempt to fill what Langlois et al. identify as a knowledge gap;

namely, the ‘need to examine how diverse elements and actors (human and non-

human) are mobilized and articulated in specific ways’ in order to shape sociality

online (2009a: 416-417).

Medium theory and the materiality of media

From a media studies perspective, my interest in software as a structural force that

shapes sociality is clearly indebted to the branch of media studies that has

traditionally been concerned with the materiality of the medium as opposed to its

content. The intellectual trajectory I refer to here began with the Toronto School of

‘medium theory’ (i.e. Innis, 1951; McLuhan, 1994; Ong, 2002; Meyrowitz, 1998) and

its influence on German media theory and especially the writings of Friedrich Kittler

(1999), and extends to more recent efforts from literary theorists who critique the

hermeneutic tradition of interpretation, and argue instead for a focus on the

‘materiality of communication’ (i.e. Hayles, 1999; Gumbrecht, 2004).

 31

The relevance of this trajectory for this dissertation pertains to its focus on theorising

the specificity of media, and its view that the technical apparatuses of media influence

social and cultural changes. The Canadian media theorists of the 1950-1980s,

especially Harold Innis and Marshall McLuhan, are still regarded as the major

reference for directions in media studies called ‘medium theory’. Medium theory

seeks to understand how technology, medium-specific properties, and communication

infrastructures shape and influence social and cultural transformations. While Innis,

originally an economics historian, only produced two books having to do with human

communication, the importance of the ways in which he pioneered the understanding

of how knowledge is formed through the specificities of communication forms (i.e.

writing and orality) cannot be overstated. Innis and McLuhan argue that media

technologies are far from neutral carriers of information and communication. Rather,

media are inherently ‘biased’. While Innis tied the inherent bias of media primarily to

issues of time and space, McLuhan (1994) differentiated bias in terms of what he

called ‘hot’ and ‘cool’ media, depending on the degree of participation they evoked in

the audience. McLuhan is perhaps best known for his many aphorisms that still linger

strongly in many writings and teaching on media and communication, of which ‘the

medium is the message’ elaborated on in Understanding Media (1994 [1964]) is

arguably the best-known.

McLuhan believed that one should favour the form of the medium over its content, as

the medium influences how the message is perceived. Because the content can be so

diverse, McLuhan regarded it as ineffectual in shaping human thought; ‘indeed, it is

only too typical that the "content" of any medium blinds us to the character of the

medium’ (McLuhan, 1994: 9). Importantly, the medium, which in McLuhan’s sense is

to be understood broadly as a human prosthesis or as extensions of the central nervous

system, encompasses everything that has the capacity to ‘change the scale or pace or

pattern that it introduces into human affairs’ (McLuhan, 1994: 8). In other words, the

medium in McLuhan’s sense may encompass everything from railroads to light bulbs.

In the bestseller The Medium is the Massage (McLuhan and Fiore, 1967), McLuhan

used the notion of massage to highlight how the specificity of a medium lies in the

ways in which it impacts the human senses, as in massaging or making us perceive

things in a certain way. The importance of McLuhan’s insights to my understanding

of software – and indeed for software studies in general – pertains to the ways in

 32

which the medium is understood in terms of its effects on sense perception and ways

of knowing the world. In addition, as Mitchell and Hansen point out, ‘understanding

media does not mean just understanding the individual mediums, but rather something

like understanding from the perspective of media’ (2010: xi). This is highly relevant

to my study as well, as I attempt to understand the ways in which sociality is formed

on and through social networking sites from the perspective of the software. In other

words, drawing on a medium-specific approach such as McLuhan’s does not so much

entail a detailed examination of the properties of the medium, but rather implies a

sensitivity towards the ways in which the medium induces specific changes and ways

of relating to the world in general.

This concern with modes of accessing and knowing the world through material means

has been a key theme in more recent post-humanist approaches that have focused on

the materiality of communication. In his book the Production of Presence (2004),

Gumbrecht suggests that media produce specific presences, as in possessing the

power to present what is before our eyes.13 Similar to McLuhan’s thesis, the capacity

to impact on the level of experience by constituting the conditions of appearance

becomes an important theoretical point in investigating the ways in which software

can be said to produce conditions for the intelligible and sensible.

The notion of the medium as the message or ‘massage’ has also been a direct

inspiration for the kind of ‘media materialism’ developed by Friedrich Kittler. In

contrast to McLuhan, however, Kittler did not seek to understand media, but rather to

understand the ‘historical conditions of their emergence and the structures of

communication and understanding they subsequently make possible’ (Gane, 2005: 28-

29). Kittler drew inspiration for his ‘media theory’ from McLuhan, Lacanian

psychoanalytic theory, the information theory of Shannon and Weaver and Foucault’s

work on discourse.14 While Foucault focused on the ways in which institutions form

13 This point is also crucial in Martin Seel’s (2000) reflections on the ‘aesthetics of
appearance’, understood as the condition in which the world is given to us through the
production of a way of appearing, enabled by specific devices and institutions.
14 To call Kittler’s work ‘media theory’ is to some extent a paradox, as Kittler did not see
himself as a media scholar. Kittler even pronounced the death of media with the advent of the
computer and digital technologies, as ‘the general digitisation of channels and information
erases the differences among individual media’ (Kittler, 1999: 1). In Kittler’s view, then, the
concept of the medium loses its significance in connection to the computer, as everything
merely converges into optical fibre networks.

 33

particular ways of communicating and knowing the world, Kittler expanded the

meaning-making capacities of institutions into the realm of technology. In his work

Discourse Network 1800/1900 (1990) especially, Kittler draws up a genealogy

reminiscent of Foucault, showing how different technologies transformed

communicative practices and knowledge in profound ways. For instance, Kittler used

the example of Nietzsche’s typewriter to show how ‘technology transformed the

physical connection of the writer to the text’, thereby not only changing how writing

was suddenly automated, but also altering the ‘materiality of the text itself by

organizing writing spatially through the distribution of discrete rather than continuous

(as in handwriting) signs’ (Gane, 2005: 30). It is in this way, through the specific

technological capacities of storage, transmission, and processing, that the ‘media

determine our situation’ (Kittler, 1999). As Mitchell and Hansen suggest, this radical

proposal should be read more akin to ‘determination’ in a Marxian manner, as the

infrastructure of capital and its influence on the social actor (2010: xxi). Seen in this

way, media technologies ‘form the infrastructural basis for experience and

understanding’ (Mitchell and Hansen, 2010: vii).

The importance of Kittler’s media materialism in this context is the importance of

grounding any analysis of media in a description of technological forms. Despite

Kittler’s hardware determinism and his assertion that ‘there is no software’ (1997), his

concern with control and various ‘instances of disciplining, inscription and

programming, which, tied to varying discursive and technological regimes shape

human and machine subjects’ (Winthrop-Young and Gane, 2006: 9) are important

analytical points. The usefulness of Kittler’s ‘radical post-humanism’ (Gane, 2005)

lies in its emphasis on the technical characteristics of the medium and the ways in

which power is seen to be embedded within the materiality of communication.

Contrary to Kittler’s commitment to hardware and the subsequent abandonment of the

notion of the medium in the age of computation, I do not regard the fact that

everything might eventually be reduced to something else (binary code and voltage

differences) as an argument against the study of software or its specificity. In contrast

to McLuhan, who saw media as devices to enhance the senses, Kittler’s ‘“media” are

first and foremost cultural techniques that allow one to select, store, and produce data

and signals’ (Krämer, 2006: 93). The difference here lies in the fact that Kittler

 34

regards the media as technological a priori, producing the Lacanian real,15 rather than

merely mediating the symbolic order, as McLuhan seems to suggest.

In this dissertation, however, it is not Kittler’s engagement with Lacan that is of most

importance; rather, I will draw on his extension of Foucault’s approach to discourse.

While Foucault failed to develop a rigorous view of the crucial role of technology in

the production of discourse, Kittler felt the technical capacities of the medium were

central to understanding the condition for meaning production. Importantly, Kittler

did not merely study the technical characteristic of a medium, but rather combined it

with historical and textual analysis. Discourse networks is defined as ‘the network of

technologies and institutions that allow a given culture to select, store, and process

relevant data’ (Kittler, 1990: 369). In Kittler’s view, then, the media are essentially

understood as discourse networks. As Jeremy Packer notes in an interview with John

Durham Peters:

I’m much attracted to Kittler’s Foucauldian tale on communication technologies
and media as producing the brute facticity of discourse. Particular media or
discourse networks allow certain statements, whether they be data, sounds,
images, language, etc. to literally be made or not made. I think that’s probably
the most profound extension of Foucauldian thought that I’ve seen in terms of
communication and media scholarship (Peters and Packer, 2012: 43).

The shift from discourse analysis to discourse networks implies an analysis of the

morphology of technical processes, people, texts, and institutions that seek to

‘delineate the apparatuses of power’ (Kittler, 1990: xii). As Langlois pointedly

observes:

15 Kittler adopts the notion of the ‘real’ from Lacan, as that which resists symbolisation.
Lacan operates with three different orders: the real, the imaginary, and the symbolic. The real
is that which exists before or beyond the mediation of language. The symbolic order is
essentially the linguistic dimension, what the subject enters into after having acquired
language. This is the realm of culture, always mediated by a third term. The symbolic creates
reality by cancelling out the real. Reality is that which is named by language and thus can be
talked about. What cannot be said in language is not a part of reality; it does not exist.
Therefore, the real does not exist. See for instance Bruce Fink’s ‘The Lacanian Subject’
(1995) for a good overview on Lacan’s psychoanalytic theory. Kittler uses this to make a
point about positing media as apparatuses that resist symbolisation, thereby having the
capacity to record, store, and produce the real. As Krämer points out: ‘The significant point
here is that analog, technological media are the first to record events that transpire outside of
the audible and visible realms. The real itself is saved by the phonograph, by photography,
and by cinematography, it is transmitted by radio and television, and it is – at least in part –
also even produced’ (2006: 101).

 35

Throughout numerous analyses of specific texts produced through different
media, Kittler expands the concept of mediality through a detailed analysis of
the traces of specific media present in the texts being analyzed. The text, then,
becomes a valuable tool for defining the characteristics of a medium –
characteristics that are not only aesthetic, or cultural, but also experiential. The
analysis of a discourse network, including the texts produced by that network,
allows for a critical reflection on the genealogies of media systems (2008: 65)

In this dissertation, following this kind of media analysis proposed by Kittler (as

inspired by Foucault) allows the medium to be taken seriously as a material-discursive

practice. Discourse is not seen as the opposite of materiality. Rather, discourse is

material and the material is discursive. The material-discursive is here understood

akin to what Karen Barad proposes in her account of agential realism (2003; 2007).

Following Foucault’s notion of discourse, Barad warns against making the

representational mistake of equating discourse simply with language or human

speech. Rather, she argues that ‘[d]iscourse is not what is said; it is that which

constrains and enables what can be said’ (2003: 819). The point, as Barad suggests,

‘is not merely that there are important material factors in addition to discursive ones;

rather, the issue is the conjoined material-discursive nature of constraints, conditions,

and practices’ (2003: 823). It is not that there is discourse on the one hand and

materiality on the other. ‘Discursive practices and material phenomena do not stand in

a relationship of externality to one another; rather, the material and the discursive are

mutually implicated in the dynamics of intra-activity’ (Barad, 2003: 822).

In terms of ‘material media studies’, I am particularly influenced by the work of

Alexander Galloway (2004; 2006) and his material understanding and explorations of

digital technologies and infrastructures. In his book Protocol (2004), Galloway

engages in close readings of how the Internet protocol functions, in order to make an

argument about the transformation of control from centralised to decentralised

networks. In describing his methods, he states that he attempts to ‘study computers as

André Bazin studied film or Roland Barthes studied the striptease: to look at a

material technology and analyze its specific formal functions and dysfunctions’

(Galloway, 2004: 18). The emphasis on protocols as articulations of power becomes

an important case in point when considering social networking sites as well, where

new types of centralised protocols have become powerful actors that shape and

configure sociality, the nature of interaction, and circulation of information.

 36

Process-relational philosophy

Theoretically, this project is inspired by theories that in a recent conference call were

lumped together under the umbrella term ‘nonhuman turn’.16 Rather than taking this

alleged turn at face value, the conference call encourages the naming of the

intellectual and theoretical tendencies in relation to the importance of theorising

objects, things, relations, intensities, affect, processes, and nature within the

humanities and social sciences. Rather than dismissing the importance of the human

aspect, I believe theories that emphasise process-relational and nonhumans offer a

useful way to situate this study of power through software. Thus, in an age where

software ‘represent[s], collate[s], sort[s], categorize[s], match[s], profile[s] and

regulate[s] people, processes and places’ (Kitchin and Dodge, 2011: 10), theoretical

perspectives that might account for media as processual relations are needed.

In the midst of ‘algorithmic culture’, theoretical debates and discourses that seek to

address the changing notion of the object and the mediatic have flourished (see for

instance Parikka, 2011a for a useful overview). While some of the theoretical labels

given to these academic debates are novel (i.e. object-oriented philosophy17 and

speculative realism18), most of the theoretical legacies addressed here relates to what

can be considered a process-relational trajectory, which includes thinkers such as

Whitehead, Deleuze, Serres, and Latour, among others.

While I will not engage in a metaphysical debate about the nature of objects, it is

worth noting how important the notion of the ‘object’ has become in a wide range of

academic disciplines, where objects are seen to exist separate from human subjective

experience. In what is often referred to as the ‘material turn’ in cultural studies, media

studies, sociology, and anthropology, especially since the late 1980s, objects or things

have gained momentum as a matter of concern in and of themselves. Perhaps more so

16 http://www4.uwm.edu/c21/pages/events/conferences.html (accessed February 9, 2012)
17 For a useful discussion of the status of the object, the recent debates in ‘object-oriented
ontology’ (OOO), and ‘object-oriented philosophy’ are quite instructive. Proponents argue
that objects have an existence beyond the relations they forge. See for instance Levi R.
Bryant’s blog ‘Larval Subject’s (http://larvalsubjects.wordpress.com). Graham Harman (who
coined the term ‘object-oriented philosophy’) has written a book about Latour and objects
called Prince of Networks. He too blogs, at http://doctorzamalek2.wordpress.com, another
useful resource.
18 See my blog post on the topic from October 27, 2010: http://tainabucher.com/?p=225.

 37

than anyone else at that time, Arjun Appadurai in The social life of things:

Commodities in a cultural perspective (1986) argued that things do not merely signify

or are suggestive of things by virtue of having meaning transposed onto them by

human signification. Rather, things also have the power to signify, suggest, and make

sense in their own right by virtue of the stories they tell about a social context. While

things and objects have been a matter of concern long before ‘material cultural

studies’, especially in theories concerning commodities and fetishism after Marx, for

our current purposes the ways in which the nonhuman has been conceptualised in

science and technology studies (STS) and Actor-Network Theory (ANT) provide a

first helpful theoretical entry point into situating the study of software and sociality.

Actor-Network Theory: Objects, relations, and agency

Actor-Network Theory was developed in the 1980s as an ‘ethno-methodology’ of

close readings of scientific practices as articulations of heterogeneous networks (see

Callon, 1986; Latour, 1988; Law, 1992). As Latour points out, ‘[i]t was at this point

that nonhumans - microbes, scallops, rocks, and ships - presented themselves to social

theory in a new way’ (2005: 10). ANT argues for a radical symmetry between human

and nonhuman actors, and sees the social and technical not as separate entities that

can be considered independently of each other, but rather as engaging in symbiotic

relationships organised in networks. As such, agency is not restricted to humans.

Rather, ‘any thing that does modify a state of affairs by making a difference is an

actor’; one needs simply to ask whether something ‘makes a difference in the course

of some other agent’s action or not’ (Latour, 2005: 71). The classical ANT view on

objects is that ‘they do not exist “in themselves” but are the effect of a performative

stabilization of relational networks’ (Pels et al., 2002: 11).19 In Latour’s words,

objects are ‘hybrids’ that signify a break with the dualist paradigm of viewing an

entity as either social or technical. Latour’s gun metaphor is exemplary in this regard.

19 As John Law explains, this way of understanding objects in terms of relations is derived
from semiotics, where the significance of a term depends on its relations (2002). The meaning
of an object in this account, then, must be understood as a relational effect. Law provides the
empirical example of the Iberian maritime technology, a network that consists of a
temporarily stable set of objects that stand in relation to each other. An object ‘remains an
object while everything stays in place and the relations between it and its neighbouring
entities hold steady’ (Law 2002: 93).

 38

According to Latour, it cannot be either ‘guns kill people’ or ‘people kill people; not

guns’ (1994: 30). Rather, what needs to be accounted for is the agency of the

combination between the gun and the person. Latour elaborates in the following

manner:

What does the gun add to the shooting? In the materialist account, everything:
an innocent citizen becomes a criminal by virtue of the gun in her hand. The
gun enables of course, but also instructs, even pulls the trigger – and who, with
a knife in her hand, has not wanted to stab someone or something? Each artifact
has its script, its “affordance”, its potential to take hold of passersby and force
them to play roles in its story. By contrast, the sociological version of the NRA
renders the gun a neutral carrier of will that adds nothing to the action, playing
the role of an electrical conductor, good and evil flowing through it effortlessly
(Latour, 1994: 31).

Who then is to be considered the actor in this case? ‘The gun, the shooter? No, it is

something else (a citizen-gun, a gun-citizen) – a hybrid actor’ (Latour 1994: 32).

According to Michael, ‘what Latour aims to do is to show how the new hybrid entails

new associations, new goals, new translations and so on. As one enters into an

association with a gun, both citizen and gun become different’ (2004: 9). Objects in

this sense are ‘enactments of strategies, and actively participate in the making and

holding together of social relations’ (Pels et al., 2002: 11). Crucially, objects in this

relational account are not very stable, despite the fact that they possess temporal

stability. Any new circumstance forges new relations, thereby destabilising the object

while simultaneously generating a new momentary association or gathering, which in

turn gives the object a new shape.20 The relational view on objects in the accounts of

Latour and ANT is highly indebted to the process-relational philosophy of Albert

Whitehead.

Whitehead: Process-relational philosophy

For Whitehead, objects (or ‘actual entities’) are combinations or clusters of relations.

Actual entities are only knowable in their becoming, as opposed to their being. As

Whitehead suggests, ‘how an actual entity becomes constitutes what that actual entity

20 John Law and Annemarie Mol have introduced the concept of ‘fluid objects’ to account for
the ways in which objects flow into new configurations rather than remain stationary (Mol
and Law, 1994). A similar notion of fluidity in objects prefigures in Deleuze, who refers to
the ‘continuous variation of matter’ as objectile (1993: 19). According to Deleuze, the
objectile represents a new kind of object, no longer imbued with a beginning or an essence.

 39

is. Its “being” is constituted by its “becoming”. This is the “principle” of process’

(1978: 23). As with the relational view of Latour, where heterogeneous relations

constitute an object and always implicate other actors, Whitehead sees an actual entity

as a compositional thing. Contrary to Whitehead, however, Latour rejects the notion

of becoming, as there is nothing that would exceed individual actors (Harman, 2009:

101). Arguably, part of the reason Whitehead’s view of objects and process has

become crucial lies in his break with the view of objects in terms of substance and

essence. Indeed, ‘”actual entities” are the final real thing of which the world is made

up. There is no going behind actual entities to find anything more real’ (Whitehead

1978: 18). This has important consequences for the analytical treatment of software,

as it removes the possibility of accessing an underlying truth.

Studying processes and heterogeneous objects themselves, however, is not exactly a

straightforward undertaking. As Mike Michael point out: ‘”Choices” have to be made

as to what to include and exclude in its composition’ (2004: 10). Tracing associations

and making decisions about which relations and which actors to include in the study

of hybrids or actual entities, is ultimately an analytical fabrication. The point is not to

account for ‘the empirical accuracy’ of the hybrid, but rather to employ a

‘heterogeneous perspectivism’, with which one seeks to find evidence of ordering and

disordering from the varying perspectives of the relevant agencies involved (Michael,

2004: 10, 20). This is important when studying such heterogeneous objects as

software, as it would be difficult, indeed impossible, to account for empirical

accuracy. Rather than seeing software as a substance with some kind of essence (for

instance its source code), understanding software in process-relational terms derived

from Latour and Whitehead among others, offers a way to look for the various

material-discursive associations that coalesce to produce new realities. As Whitehead

points out, ‘there is nothing which floats into the world from nowhere’ (1978: 244)21.

21 In order to account for the ways in which actual entities ‘become’ out of something, he
introduces the notion of potentiality and prehensions. ‘Becoming’ is always becoming
concrete out of a multiplicity, as an ‘“entity” – means nothing else than to be one of the
‘many’ which find their niches in each instance of concrescence’ (Whitehead, 1978: 211).

Prehension is a key concept in Whitehead’s metaphysics, and refers to the disparate data,
including energies, emotion, purpose, causation, and valuation, that concrescence or combine
to produce actual entities (Michael, 2004). For Whitehead, actual entities or occasions
become concrete through a process he calls concrescence, that is, the ‘production of novel
togetherness’ (1978: 21). This insistence of the becoming or thickening of an actual entity

 40

Assemblage and the quasi-object

At the core of the nonhuman turn lies not only the importance of acknowledging the

agential capacities of nonhumans, but also, as we have seen, the emphasis on

relationality. Perhaps more so than any other concept, the notion of assemblage has

served as way to account for the ways in which relations are assembled for different

purposes. Deleuze and Parnet view assemblage as a ‘multiplicity which is made up of

many heterogeneous terms and which establishes liaisons, relations between them’,

where the only unity ‘is that of co- functioning: it is a symbiosis, a sympathy’ (2007:

69). The concept of assemblage usefully points towards the ways in which reality and

its specific entities are above all compositions, where different relations are put

together to work as a whole in between contingency and structure, organisation and

change (Deleuze and Guattari, 1987). As Coonfield elaborates in his account of the

Deleuze/Guattarian notion of assemblage, ‘a machinic assemblage is understood not

as a thing, but as a process, an ongoing organizing of multiplicities, of relations

between elements and forces, that produces affects’ (2006: 290). Seen in this way,

assemblages emerge as an entity of connected relations.

What is important to point out is that software should not merely be thought of as an

assemblage in the sense of gathering intact subjectivities and technical objects, but

rather in the sense of its original French meaning of agencement –a process of

assembling rather than a static arrangement (see Packer and Wiley, 2012; Callon,

2007). In this sense, the notion of agencement connects to my notion of programmed

sociality as the ways in which actors are composed and articulated in and through

specific coded means of assembling and organising. As Michel Callon points out,

‘agencement has the same root as agency: agencements are arrangements endowed

with the capacity of acting in different ways depending on their configuration’ (2007:

320). Analytically, this implies a greater emphasis on the ways in which assemblages

of heterogeneous elements are arranged, but also in arrangement (as in an ongoing

assembling), in order to think about what is connected to what, and to what purpose.

Michael Serres’ notion of the quasi-object offers one particularly useful way to

account for the relationality at work in an utterly sociotechnical world. For as Serres

from a multiplicity of possibilities (or potentiality) has had an enormous influence on
Deleuze’s philosophy of the virtual.

 41

proclaims, ‘our relationships, social bonds, would be airy as clouds were there only

contracts between subjects’ (1995: 87). One needs operators that draw people together

in particular relations. These operators or mediators are what Serres calls quasi-

objects. Serres provides the example of the ball to illustrate his notion of the quasi-

object as that which organises the relations that fluctuate in and around it.

A ball is not an ordinary object, for it is what it is only if a subject holds it. Over
there, on the ground, it is nothing; it is stupid; it has no meaning, no function,
and no value. Ball isn't played alone […] The ball isn't there for the body; the
exact contrary is true: the body is the object of the ball; the subject moves
around this sun. Skill with the ball is recognized in the player who follows the
ball and serves it instead of making it follow him and using it […] Playing is
nothing else but making oneself the attribute of the ball as a substance. The laws
are written for it, defined relative to it, and we bend to these laws (Serres, 1982:
225-226).

The example of the ball shows how objects or quasi-objects should be seen as active

participants in social relationships, rather than as passive end-points of human action.

Indeed, the social context would not be possible without the intervention and ‘actions’

of objects. For Serres, then, the ball becomes a means to explain the sociotechnical,

for the ball is not merely a social construction. The ball bends human practices in

different ways, configuring and reconfiguring the relations around it. As Massumi

points out, it is not the player that is the subject of the play; it is the ball (2002: 73).

Therefore, the quasi-object also designates a quasi-subject. As the quote shows, the

ball does not just lie there passively on the ground doing no work in the world. Quite

the opposite: in subtle ways, the ball has the capacity to affect human beings, to make

a difference to the state of affairs. Bodies are bent, giving the players a reason to run

after it or move around it. The game itself becomes an emergent entity that organises

itself around the different potentialities and intensities that coalesce around the ball as

it directs the movement of the players. As Massumi puts it, ‘[t]he ball moves the

players. The player is the object of the ball’ (2002: 73). What a quasi-object does,

then, is to bring relations together in constantly shifting configurations.

Following these theoretical views on the agency of objects,22 software can be seen as

having agency in the sense that it might affect the course of action of other agents.

22 Latour provides the example of the speed bump and the doorknob to illustrate how things
can have agency. Whereas the speed bump makes people slow down, the doorknob enables
people to enter a room.

 42

While software is sometimes seen to possess a full-blown agency, for example in

discourse on artificial intelligence, more often software is understood to have some

sort of ‘secondary agency, that is, supporting or extending the agency of some

primary agency’ (Mackenzie, 2006: 8). In his book Cutting Code, Adrian Mackenzie

concludes that there are two broad patterns at play in the agential relations that occur

in software, one that has to do with ‘involution’ and the other with ‘convolution’

(2006: 182). Drawn from the vocabulary of Deleuze and Guattari, involution signifies

the emergence of a ‘symbiotic field that allows assignable relations between disparate

things to come into play’ (Ansell-Pearson, 1997: 130). In terms of software, then,

agency lies in the fact that it ‘opens up to new possibilities and gives rises to diverse

realities’ (Kitchin and Dodge, 2011: 38). Convolution on the other hand refers to the

compositionality of software, and blurs the starting relation. The fact that many

existing forces and relations are encompassed by software, in effect, blurs the agential

starting points. This complicates the question of ‘who says or does what’ (Mackenzie,

2006: 182). Software can be viewed not merely as an object deprived of agency, but

as being fundamentally imbued with agential capacities. This is perhaps the main

argument for its importance as an object of study.

Power: A Foucauldian account

The fields of media and software studies are united by their concern with questions of

power. When humanists and social scientists seek to understand the operations of

society – what drives society, organises governments, determines knowledge

production, and prompts social change – power is often the concept used to make

sense of these phenomena. In many traditional social theoretical accounts, power is

seen as a kind of repressive force. In one of the most influential of these, Max Weber

defined power as the capacity of people to ‘realize their own will in a social action

even against the resistance of others’ (Wallimann et al., 1977). Power in this sense is

often described in terms of a ‘power-over’, often attached to social structures like

class, ethnicity, and gender. Especially in terms of class, Marxist ideas of power have

had a profound impact on how media scholars have come to view the hierarchical

operations of power as connected to the domination of economy. Broadly stated,

questions of power in a Marxist tradition have used concepts such as ideology and

hegemony to express how certain beliefs are propagated by a ruling class, and

 43

subsequently taken up by lower classes as part of their own belief system. These

notions of power have been highly influential in relation to the political economy of

the media, as they have been particularly well-suited to explain the asymmetries of

power in capitalist societies. Especially in terms of mass communication, the question

of how media influences its audience and readers by means of reproducing dominant

institutional relationships or otherwise inflecting on people’s opinions and behaviour

has been at the fore in many related disciplines concerned with the power of the

media.23

In the context of this study, however, power is not understood as a repressive force.

Rather, following Foucault, power is seen as productive. Foucault understood power

as a relation between forces, not as a thing in and of itself.24 As such, power does not

exist. It persists only insofar as it emerges as part of a relation, when it is put to work.

Power, in Foucault’s terms, is always exercised, and may only be analysed as part of

the structures put in place to guide the possibility of conduct. While power figures as

a central concept throughout most of Foucault’s work, the most pointed summary of

the concept of power can be found in his article ‘Subject and Power’ (1982), where he

writes:

In itself the exercise of power is not violence; nor is it a consent which,
implicitly, is renewable. It is a total structure of actions brought to bear upon
possible actions; it incites, it induces, it seduces, it makes easier or more
difficult; in the extreme it constrains or forbids absolutely; it is nevertheless
always a way of acting upon an acting subject or acting subjects by virtue of

23 Theories of hierarchical and repressive power structures in media and communication
research range from the critical-analytical traditions introduced by the Frankfurt School (i.e.
Adorno and Horkheimer) that sought to explicate the conditions of belief. Some branches of
cultural studies influenced by structuralism and Althusser’s reformulation of the concept of
ideology (i.e. Stuart Hall) have had a profound impact on addressing how media have a power
to construct the real. Within more social science and political communication-oriented media
studies, the concepts of ‘agenda-setting’ (i.e. McCombs and Shaw, 1972) and ‘framing’ (i.e.
Etman, 1993), have been influential in theorising the power of media in a hierarchical
manner. While the former designates the ways in which media influence what people think
about, the latter accounts for how people think about certain issues. This, of course, is a
caricature of how power has been theorised in terms of being understood as a repressive
force, and does not really do justice to the complexity or socio-historical context of these
theories. For example, agenda-setting research merely states that the media function to set an
agenda, rather than actually changing or repressing certain attitudes.
24 The empiricist John Locke already conceived of power in these relational terms. As
Whitehead cites: ‘fire has a power to melt gold [...] and gold has a power to be melted. Power
thus considered is twofold; viz. as able to make, or able to receive […] power includes in it
some kind of relation’ (Whitehead, 1978: 57–8).

 44

their acting or being capable of action. A set of actions upon other actions
(1982: 789).

The notion of power that Foucault has in mind is not so much a thing, then, but a

capacity. It is the capacity of power exercised, the capacity of power relations to

conduct and to lead. As Foucault exemplifies:

The exercise of power consists in guiding the possibility of conduct and putting
in order the possible outcome. Basically power is less a confrontation between
two adversaries or the linking of one to the other than a question of government.
This word must be allowed the very broad meaning which it had in the sixteenth
century. “Government” did not refer only to political structures or the
management of states; rather it designates the way in which the conduct of
individuals or groups might be directed (1982: 789-790).

What is important here is the dual logic of power. Precisely because power is first and

foremost seen as a relation between forces, power operates in specific formations

called diagrams that materialise in the ‘distribution of the power to affect and the

power to be affected’ (Deleuze, 2006: 61). Power in Foucault’s view cannot rightfully

be conceived of as repressive, carrying the force of prohibition. Rather:

What makes power hold good, what makes it accepted, is simply the fact that it
doesn’t only weigh on us a force that says no, but that it traverses and produces
things, it induces pleasures, forms knowledge, produces discourse’ (Foucault,
1980: 119).

Because it is productive, power is necessarily also a constraining force. While it

produces ways of knowing the world, power also limits alternative ways of being and

talking. What is of interest in this study, however, is not so much the silences or ways

of knowing that are ruled out, but the ways in which power is productive, how power

induces and seduces. Following Foucault’s later writings, it is not a question of who

holds the power that should be of concern. Rather, the question is how and in what

ways, through which techniques and procedures the effects of power are produced.

I believe that this two-fold nature of power to affect and to be affected, to enable and

constrain, is the most useful way to investigate the nature of programmed sociality in

such dynamic media environments as social networking sites. The difficulty with the

relational account of power, however, is the absence of any location of power. Power

is nowhere and everywhere at the same time, making it difficult, if not impossible, to

locate power as if it were a thing. In order to get a better sense of how to analyse

power relations, it might therefore be useful to go back to some of Foucault’s earlier

 45

genealogical writings (i.e. 1976; 1977). Here, he locates the operation of power on a

concrete institutional and structural level (i.e. the hospital, the prison, the factory). By

studying such institutional settings, Foucault discussed the ways in which power

operates in an individuating fashion. In this sense, he did not for example use the

figure of the prison as a form of power, but rather as a technique of power, a concrete

architectural way of organising and managing subjects. The productivity of power is

located within specific modern social apparatuses that actively work to fabricate

society and modes of conduct (Gordon, 2001: xix). Power thus operates in the very

practices, techniques, and arrangements of localised institutions.25 As Foucault points

out:

Power has its principle not so much in a person as in a certain concerted
distribution of bodies, surfaces, lights, gazes; in an arrangement whose internal
mechanisms produce the relation in which individuals are caught up (1977:
202).

The point for Foucault was precisely to leave the repressive hypothesis of power

behind, and instead to look at how power relations are productive of the conditions of

possibility. This does not mean that power is somehow ‘harmless’. To the contrary,

the political and potentially harmful aspect of power lies in the apparent neutrality of

the functioning of power. Power as such is much more ubiquitous than the thesis of

repression would hold. Because power transforms, it transforms all the relations that

form part of the diagram. Power is precisely a technique for the transformation of

arrangements whereby different bodies are distributed and circulated in a network of

relations (Foucault, 1977: 146).

Although Foucault focuses more on institutions and does not particularly touch upon

technology as such, technology enters his lexicon in Discipline and Punish

(Rajchman, 1988: 101). The operation of what in this book is called disciplinary

power hinges on a set of mechanisms or technologies, including examination,

observation, and judgement. Taking the architectural form of the prison as the starting

point for his analysis of power, Foucault highlighted the ways in which certain spaces

25 Foucault’s genealogical method is also known as ‘microphysics’. As Gordon writes in the
introduction to the Essential works of Foucault: Power: ‘the microphysical emphasis of the
seventies books was in part, an argument for the primacy of analyses of practices over
analyses of institutions – explaining the origins of the prison, for example, on the basis of
analysis of the changing meaning assigned to the practices of punishing’ (Faubion, 2001:
xxv).

 46

are designed or arranged to achieve a certain goal, permeated through and through by

forces of power that are mutually co-constitutive. For my purpose, the organisational

and governing mechanisms that function through the techniques of power provides a

useful way to investigate the forms of programmed sociality that emerge in and

through social networking sites. An emphasis on a diagrammatics of software allows

for an analytical perspective that focuses on the specific techniques through which the

ways of relating to self and others are produced online.26 The particular usefulness of

Foucault’s architectural vision of the organisation and practices of power in the

context of this study lies in the ways in which power can be located within specific

technologies of government, where power relations become a question of studying

arrangements and distributions of the sensible and knowable.

Towards a productive view of software studies

I began this chapter by stating that software is seen as a material-discursive

phenomena that in a non-representational sense is first and foremost studied for what

it can be said to effectuate. An engagement with software studies in the context of this

dissertation therefore does not seek the what, but rather the how. The question, as

Foucault put it, does not pertain to ‘how’ in the sense of ‘how does it manifest itself?’

but ‘by what means is it exercised?’ (1982: 786). Here, I rely on software studies to

understand the ways in which sociality is mobilised and articulated through software.

The theoretical trajectories presented in this chapter provide a way to view software in

a manner that departs from the classic transmission model of communication. Instead

of addressing software in terms of a causal sender-transmission-receiver model,

viewing software as actants, actual entities, agencement, and quasi-objects allows for

the interrelations and articulations of the machinic and the enuncitative. Here, Karen

Barad’s conception of the material-discursive offers a useful way to understand the

mutual constitution and inseparability between the discursive and the material. Rather

than merely viewing the discursive as a synonym for language, the material-discursive

signifies the ways in which the conditions for the intelligible and sensible are always

26 See Rodowick, 1990; Elmer, 2003; Parikka, 2011b, for useful discussions on the notion of
diagrammatics. Parikka for example writes about an ‘operative diagrammatics’ to the study of
media, where the objects or media technologies themselves are analysed for their inscriptions
and ultimately for the ways in which they can be said to distribute power.

 47

socio-historically grounded in specific material supports, or rather, material

(re)configurations. As she asserts:

Discursive practices and material phenomena do not stand in a relationship of
externality to each other; rather, the material and the discursive are mutually
implicated in the dynamics of intra-activity. The relationship between the
material and the discursive is one of mutual entailment (Barad, 2007: 152).

While my use of Barad’s notion of the material-discursive does not really do justice to

her broader agential realism argument, I think her conception summarises nicely what

both Foucault and later Kittler described in terms of the materiality of regulatory and

discursive practices and ‘discourse networks’, respectively. This dissertation

combines the Kittlerian concern with the operation of media, with the more

McLuhanesque concern of how media create sensoriums. It is important to point out

that I do not seek to fully adopt the theories of McLuhan nor Kittler, but rather use

some of their insights while disregarding others. From McLuhan I adopt his notion of

medium specificity connected to the ways in which different media forms have the

capacity to produce certain sensoriums or conditions for the sensible and intelligible.

From Kittler, I adopt the assumption that media technologies produce specific regimes

of power, and that one useful way to begin an analysis of this power goes via the

workings of specific technologies, in order to uncover the ‘systems of rules that

govern its functioning in the first place’ (Gane, 2006: 78). Thus, the kind of media

materialism I invoke here pertains to Kittler’s method of ‘description and analysis of

technological forms’ (Gane, 2005: 29), used to address the powerful infrastructural

role of media technologies.

Importantly, the theoretical foundations and conceptual frameworks discussed

throughout the chapter emphasise the importance of paying attention to the question

of how media/software operate and produce the conditions for what is intelligible and

sensible. It implies an intermingling of different types of actors, where software needs

to be viewed as a gathering of various heterogeneous relations. Social networking

software combines not only an amalgam of different technologies and infrastructural

orderings such as protocols, algorithms, and code; software, as with Serres’ ball,

brings actors together and organises relationships in particular ways. All these

accounts have in common a desire to overcome some otherwise deeply-entrenched

dichotomies, such as object-subject or nature-culture, and point instead to the multi-

causal relations of the world. Moreover, these theories help explain the ways in which

 48

software moves, circulates, and assembles. The emphasis on the processual and

relational allows a shift in focus, away from an ontological commitment to what

software is, to the question of what software is capable of doing. In writing about the

performativity of code, Mackenzie for instance argues that the Linux operating system

should be understood as an operational object that ‘coordinates the encounters of

specific social actions pertaining to information and communication networks’ (2006:

76). In a similar vein, software assemblages such as Facebook and Twitter should be

understood as operational objects that combine heterogeneous relations in a

continuous and emergent way, configuring and reconfiguring the specific

arrangements of which these relations are a part.

This means software can be seen as an actor that has the capacity to modify a state of

affairs by making a difference. These agential capacities of software clearly point to

the concept of power. Relying on Foucault’s understanding of power posits software

not as a deterministic force, but rather as a ‘force relation’. Understanding how power

articulates through software thus implies a sensibility towards the ways in which

software in the broadest sense pushes, urges, and compels other actors to do

something. It might be important to point out that using a Foucauldian understanding

of power does not mean using the term in one single way, as if there were something

called Power with a capital P. Rather, the usefulness of Foucault’s concept of power

in understanding the relations between software and subject as it plays out in social

networking sites, stems from at least two important characteristics: 1) power is above

all productive, and 2) the notion that power operates and can be exercised through

specific techniques and procedures, architectural forms and technologies.

Before we can continue to study the technical structures of software-mediated

processes, we need to gain a better understanding of the nature of software itself. As

Manovich importantly reminds us, ‘if we don’t address software itself, we are in

danger of always dealing only with its effects rather than the causes: the output that

appears on a computer screen rather than the programs and social cultures that

produce these outputs’ (2011: 3). In the next chapter, I therefore explore the

multifaceted nature of software by engaging with some of the previous work in

software studies and related fields.

 49

Chapter 3. Perspectives on software

The stuff we call “software” is not like anything that human society is used to
thinking about. Software is something like a machine, and something like
mathematics, and something like language, and something like thought, and art,
and information…but software is not in fact any of those other things. The
protean quality of software is one of the greatest sources of its fascination. It
also makes software very powerful, very subtle, very unpredictable, and very
risky (Bruce Sterling quoted in Galloway 2004: 166).

Software is a term that is easy to use but very hard to explain. Most people have an

intuitive understanding of what software is. It is often defined with reference to an

example, such as that of a particular program, like Microsoft Word. Dictionary

definitions, being more general, emphasise how software is this thing that tells the

computer what to do, where the existence of software can be formally traced to a

textually-scripted source code. Perhaps were we to leave it at this, software would not

seem that difficult to comprehend, nor that interesting to study. But source code alone

cannot be credited for making the Word program show up on users’ computer screens,

and once we start asking questions about the nature and ways of software, the issue

proves to be more complicated. What exactly is doing the instructing? What are the

necessary elements that need to be in place for something to be called software?

When, where, and how is software?

While this chapter will not provide answers to the metaphysics of software, I suggest

that it is exactly this type of question that is important to ask if we are to adequately

understand the material-discursive condition of social networking sites. If software is

simply analysed as instructions that tell a computer what to do, it is not enough to say

that social networking sites are software. If we are to appreciate and address the

questions asked in the beginning of this dissertation, what is needed is a better

understanding of the multidimensionality, operational logic, and variegated nature of

software.

In the following account, I will follow Adrian Mackenzie and his belief that software

has a ‘variable ontology’, that ‘suggests that the essential nature of the entity is

unstable’ (2006: 96). The variable ontology of software means that ‘questions of

when and where it is social or technical, material or semiotic cannot be conclusively

answered’ (ibid.). While there are good reasons to be concerned with the question of

 50

what software is, here it provides a better basis for understanding what software can

do, or at least what it is capable of doing in principle.

Thus, before one can analyse the ways in which software constitutes a powerful force

in social networking sites, there is a need to be more explicit about software itself.

One of the core tasks of software studies, in my view, is precisely to address software

as a concept. If the humanities and social sciences have something important to offer

to the study of software, it lies in the analytical and critical attitude so deeply

entrenched in these fields. The theoretical and methodological tools of these sciences

– disciplines that focus on meaning and culture – can complement the structural

formalism of computer science with a view of software that highlights its existence as

a symbolic and cultural formation.

Such critical work is already well underway (see Chun, 2011a; Fuller, 2003;

Mackenzie, 2006; Manovich, 2008). In this chapter, I draw on this body of literature

in order to be better equipped to understand the ways in which software organises and

arranges sociality on social networking sites.

It is important, however, to remember that the aim of such a review is not to end up

with a definitive account of the nature of software, or to define what software is, in

and of itself. The ontological questions with which I am concerned are first and

foremost a means by which to address the epistemological issue; namely, how can we

as media scholars study and understand software fruitfully and productively?

In order to appreciate what software does, I take it to be necessary to first say

something about the multiple ways in which it exists. I will do this by focusing on

four different levels, or conceptualisations: software as code, algorithms, execution,

and practice. I treat these as necessary conditions of software, but I do not make the

stronger claim that they are necessary and sufficient. I do not suggest that software

can be reduced to these four levels. I do claim, though, that these four elements of

software are either salient or important enough to merit a discussion and review of

what they are, and of how and indeed whether they can be studied. An analysis of

software as code, software as algorithm, software as execution, and software as

practice thus makes up the conceptual foundation for the chapters to come.

 51

Software: A shifting nexus of relations

Software is essential to the functioning of new media. It is deeply embedded in the

systems and infrastructures that make up today’s media environments. As such,

software encodes the world in important ways. Yet, software is often understood from

a purely instrumental perspective, as a stable tool that can be used to accomplish

certain tasks. Seen in this way, merely as a functional entity, as a set of instructions

telling a machine what to do, it is perhaps not surprising that software has not been at

the centre of attention of the social sciences and humanities. After all, as Wendy Chun

points out, even the common-sense dictionary definition of software has reduced it to

a set of instructions. She goes on to point out the problem with such definitions:

[…] which treat programs and procedures interchangeably, erase the difference
between human readable code, its machine readable interpretation, and its
execution. The implication is thus: execution does not matter - like in
conceptual art, it is a perfunctory affair; what really matters is the source code
(2011b: 100).

What is needed, according to Chun, is a distinction between the different layers and

functional aspects of software. Neither the source code nor its executable layer is

software’s essence. Seen in this way, software does not merely instruct machines, but

also the conduct of those who use the machines. This is not to say, however, that

software instructs in a deterministic way. By means of its execution, software

becomes suggestive of things, in that it enables and constrains certain kinds of action.

In this sense, software can be understood in terms of the concept affordance.

The perceptual psychologist J. J. Gibson (1986) originally coined the term affordance

to designate a way to describe the relational dynamics between animals and the

environment. According to Gibson, ‘the affordances of the environment are what it

offers the animal, what it provides or furnishes, either for good or ill’ (1986: 127).

Affordance is not an inherent property of the environment, but emerges relative to the

animal. For example, while the cave ‘means’ shelter for one type of animal, it might

be perceived as a trap for another. Depending on the context, then, the environment

shifts meaning accordingly. Similarly, we could say that software ‘means’ different

things, depending on the context. The concept of affordance usefully highlights how

the materiality of the environment (whether natural or software-mediated) can be

understood in terms of how it signifies possibilities for action rather than determines

actions.

 52

Here I adopt what can be seen as an expanded view of software, where software needs

to be seen, following Adrian Mackenzie, as a ‘shifting nexus of relations, forms and

practices’ (2006: 19). Paradoxically, such an expanded view does not make software

more comprehensible, in that it can be seen to lead an event-like existence, actualising

in multiple ways, thereby retaining an openness to reinvention (see Fraser, 2006:

130). This however does not imply that software needs to be seen as entirely novel in

its constitution and operation. An understanding of software will still benefit from an

account of both the conditions that prevail, and the novelty of its composite nature.

This chapter is therefore concerned with some of the prevailing conditions of

software, and asks how these conditions can be studied and understood as the impetus

for new forms and constellations.

Code

Code, or source code, is the very backbone of software, given that software runs on

code. Code is ‘usually understood as the concretisation of general algorithms

instantiated into particular programming languages in plain text files’ (Berry, 2009).

Source code reads as a description of a process, a sequence of commands telling the

computer what to do. These text files are constructed using programming languages,

which read as a mix of English keywords and mathematical formulas with various

numbers, symbols, and idiosyncratic spacing. For example, below is a piece of code

written in Java, built to compute all kinds of three letter combinations ranging from

A-Z, AAA, AAB, AAC, etc.27

public class Permutation {

 public static void main(String[] args){

 char[] permutationArray = new char[3];

 permute(permutationArray, 0);

 }

27 My thanks to Alexander Kempton for writing this little piece of program for me.

 53

 static void permute(char[] permutationArray, int x){

 for(int i = 65;i<91;i++){

 permutationArray[x] = (char)i;

 if(x<2){

 permute(permutationArray, x+1);

 }

 else{

 String permutationString = new

String(permutationArray);

 System.out.println(permutationString);

 }

 }

 }

}

This source code, written as a human-readable file in a higher-level language, to be

computable, must be translated into another format if it is to be read by a machine.

This usually happens with the help of a ‘compiler’, a software program that turns the

original source code into ‘object code’, reading simply as a sequence of 0 and 1s.

Alternatively, if the code is written in a language used for web development, such as

JavaScript or PHP, the code is not compiled but rather translated ‘on the go’ by an

‘interpreter’.28

Code exists primarily at two layers, the uncompiled (source code) and the compiled

(object code) layer. Source code usually refers to the uncompiled, non-executable,

human-readable commands to a computer as represented in these plain text files.

Code is what instantiates and describes software. For this reason, one way to begin to

28 Both compilers and interpreters fulfil the same basic function – they translate source code
into machine-readable code. Whereas a compiler translates the entire code into an executable
program, the interpreter translates the code line-by-line.

 54

understand software is to engage with its source code in some way. Indeed, as

Mackenzie asserts:

[W]hat software does and how it performs, circulates, changes and solidifies
cannot be understood apart from its constitution through and through as code.
Code even defined in the minimalist technical sense as a “rule for transforming
a message from one symbolic from (the source alphabet) into another (the target
alphabet)”, cuts across every aspect of what software is and what software does
(2006: 2-3).

While there is no denying that understanding the workings of source code is a

prerequisite for an understanding of software more generally, how the scholar can and

should engage with the actual code is an open question. Opinions diverge on this issue

within software studies. There are those who claim that code and the interpretation of

code need to be at the heart of the study of software, an approach particularly evident

in the notion of critical code studies (see especially Marino, 2006; but also Berry,

2011).29 On the other hand, there are those who do not feel that the study of software

benefits from the study of source code – an opinion to which I subscribe. However,

given the role source code plays in (partly) determining and constituting software, and

the salience of the notion of ‘software as code’, a neglect of code in software studies

needs to be motivated and justified. I will therefore explicate my view on code, and

outline three main difficulties faced by those who argue that code reading should form

part of a software approach to social media. I argue that there is a need to make a

distinction between the importance of code and the need for code literacy and code

29 The nascent field of critical code studies, mainly focused around a group of US-based
electronic literary scholars, has been concerned with debating how to analyse source code
using hermeneutic methods. As Mark Marino, one of the founders of this subfield, says: ‘I
would like to propose that we no longer speak of the code as a text in metaphorical terms, but
that we begin to analyze and explicate code as a text, as a sign system with its own rhetoric,
as verbal communication that possesses significance in excess of its functional utility’ (2006).
In recent years there have been several organised attempts by Marino and others to debate and
discuss the interpretation of code. The first critical code working group was arranged online
(through the social networking platform Ning) during winter 2010, and lasted for several
weeks. Every week there was a new theme for discussion, spurred by an invited comment or
presentation by a leading scholar in the field. During early 2011, the discussions were
continued through a HASTAC-hosted discussion forum, which attempted to ‘develop and
practice the reading methods and interpretive moves that can be used to read code’ (see
http://hastac.org/forums/hastac-scholars-discussions/critical-code-studies). Most recently,
during February 2012, a second critical code studies working group took place online (still by
invitation or membership only), with weekly round-table discussions and examples of code
critiques. I’ve participated informally in all these events, mostly as an observer, but have
occasionally also participated in the discussions by posting comments.

 55

readings as an appropriate methodology for understanding sociality on social

networking sites. I claim that acknowledging the importance of code does not

necessarily commit one to a practice of code reading when analysing sociality on the

web.

The meaning of code

To say that code can be read as text implies that code has meaning in and of itself.

However, there is a danger of projecting too much meaning onto something that

arguably is a seemingly static unambiguous sign system. To suggest that code can be

read as text seems to suggest that source code is to programming language what text

is to natural language. Language, whether programmable or natural, can be seen as a

carrier of meaning, but an important difference between the two resides in the fact

that programming languages do not have the properties of ambiguity, polysemy, or

vagueness, as natural languages do. The implication of this is the following: source

code is isomorphic, in that there always is a 1:1 relation between a piece of code and

what it signifies in a given language. The following example is written in the open

source programming language Processing:

void setup() {

size(400,400);

}

void draw() {

background(200);

fill(255,200,0);

noStroke();

ellipse(200,200, 200,200);

}

 56

This code simply means ‘draw an orange circle’, and nothing else. It cannot, in

another context, be read as ‘draw a green square’. It does not lend itself to

interpretation. The same cannot be said of natural languages, where a statement such

as ‘he is here now’ can mean a number of things, depending on the context. Nothing

analogous to such context sensitivity can be found in the case of programming

languages.

Whereas natural languages are sites for the struggle of meaning, programming

languages are precise, mathematical, and functional. Natural languages are prone to

ambiguity, which leaves texts written in natural language open to interpretation.

Reading the sentences of programming languages, by contrast, does not leave room

for such interpretation, as a syntax string of code, written in a particular language, can

only mean one thing. As Florian Cramer (2008) stresses, programming languages are

nothing more than human languages for machine control, characterised by their purely

syntactical rather than semantic natures. Computer-control languages therefore do not

carry any meaning beyond being a purely cultural-social convention to assign

symbols to machine operations. According to this view, software has no semantic

denotation. Meaning in natural languages is something that humans acquire with

reference to the world, while meaning in programming languages is something

derived from, and inscribed by, the programmer.

The isomorphic relationship between code and its meaning aside, there are ways in

which the apparent singularity of code can be contested, and code can be seen as

‘meaningful’. For example, one might, reading the way a code is written, infer the

identity of the coder and his or her style of programming. Code may also be analysed

with reference to the specific software development paradigm that is being used (i.e.

structured programming, object-oriented programming)30 and the development

methodology used (i.e. agile software development, extreme programming).31 Code

can also be read for its elegance. As Matthew Fuller points out, the notion that

30 For an account of structured programming see for instance Dahl, O. Dijkstra, E.W. and
Hoare, C.A.R. (1972). For more on the object-oriented approach see Crutzen, C., Kotkamp, E.
(2008).
31 See Anders Løvlie’s PhD dissertation for an interesting overview and appropriation of agile
methods into media studies. Løvlie, A. (2011). Also, the agile manifesto detailing some of its
principles. http://agilemanifesto.org. For an account of extreme programming, see Chapter 7
in Mackenzie, A. (2006). Cutting Code.

 57

programs can possess the quality of elegance makes it possible to evaluate software

on the grounds of how the problem is approached (2008: 87-92).32 In addition, David

Berry offers a comprehensive account of some of the ways in which code can be

approached in The Philosophy of Software (2011). In response to the question of what

exactly to look for in code, which lines should be read, etc., Berry suggests that one

may analyse the commentary sections of code in a discursive fashion. As Berry points

out, ‘these textual areas are used to demonstrate authorship, list collaborators and

document changes’, offering a kind of historical record and narrative of the code in

question (2011: 54).

While these ways of looking at code do not preserve the aforementioned parallel to

literary interpretation, they do indicate that there is potential value in reading code in

and of itself. Holding source code to be the ‘proper text’ of software, though, seems

to imply further difficulties in regard to causality and signification. As Chun has

forcefully argued, the belief in source code as the source or logos of software turns

source code into a fetish. Source code only becomes source after the fact, and should

therefore be treated more as a re-source than as the cause for computation (Chun,

2011a).

Chun appears to claim that there is a tendency among critical software scholars to see

source code as something that provides the truth about and essence of software. In

many respects, efforts to locate an understanding of software in reading and

interpretations of the source code raises more questions than it answers. What exactly

is there to interpret in code? Does the analyst need the entire code, or just a few lines?

Which lines would be the most relevant or representative and why? What constitutes

worthy code? What about the source code of proprietary systems, such as Facebook?

It is no doubt important for new media scholars to understand the concept of code, the

ways in which it is constructed, and how it operates in order to be able to appreciate

the kind of work that software does, or is capable of doing. I do not believe, however,

that reading source code will bring us closer to an understanding of sociality in

networked software-mediated spaces, for the reasons outlined above. In addition to

32 Elegance, as first proposed by Donald Knuth in Literate Programming, can be measured by
four criteria: the leanness of the code; the clarity with which the problem is defined; spareness
of use of resources such as time and processor cycles; and implementation in the most
suitable language on the most suitable system for its execution (Fuller, 2008: 87).

 58

the isomorphism of code and its meaning and the methodological problems associated

with the selection of a unit of analysis, there is a further problem connected to the

access to code, especially in regard to proprietary software services and black-boxed

code. As Lev Manovich points out:

The attraction of “reading the code” approach for humanities is that it creates an
illusion that we have a static and definite text that we can study […] But this is
an illusion, and we have to accept the fundamental variability of the actual
“software performance” (2012: 18).

Far from dealing with static text, the study of social networking software is

fundamentally the study of something that is inherently dynamic and changing,

depending on users’ actions. Manovich elaborates: ‘Especially in the case of large-

scale commercial dynamic web sites such as amazon.com, what the user experiences

as a single web page may involve continuous interactions between dozens or even

hundreds of separate software processes’ (Manovich, 2012: 17).

Taking these insights seriously may lead the scholar in another direction, towards the

specific architecture that produces the conditions for these interrelations between code

and user. Rather than study source code in order to understand how software signifies

meaning in the context of dynamic web sites such as Facebook, we should, then, take

a closer look at algorithms.

Algorithm

Computer programs are essentially algorithms, understood as a set of instructions for

solving a problem or completing a task. These instructions are not given at random,

but follow a carefully-planned sequential order. Algorithms are frequently described

as and compared to recipes, or as a step-by-step guide that prescribes how to obtain a

certain goal, given specific parameters.33 Every source code is comprised of

algorithms, in the sense that programming languages are languages designed to write

algorithms. The Java code cited earlier, for instance, seeks to produce all possible

three letter combinations using the letters A-Z. The algorithm, then, is all the various

steps given to the computer in order to reach this desired output.

33 In this sense, algorithm signifies a universal idea. As Jean-Luc Charbert writes in his book
A History of Algorithms: ‘Everybody today uses algorithms of one sort or another, often
unconsciously, when following a receipe, using a knitting patterns, or operating household
gadgets’ (1999: 1).

 59

The algorithm is ‘independent of programming languages and independent of the

machines that execute the programs’ (Goffey, 2008: 15). The same type of

instructions can be written in the languages C, C#, or Python, and still be the same

algorithm. This makes the concept of algorithm particularly powerful, given that what

an algorithm conceptualises is an assumption inherent in all software designs about

order, sequence, and sorting. It is the actual steps that are important, not the wording.

In addition, the steps specifying the algorithm are usually just one of many possible

solutions to the same problem. For any computational process, the algorithm must be

rigorously defined, i.e. specified in such a way that it applies in all possible

circumstances.

The algorithmic recipe is not exactly like a recipe for a tomato sauce, though. It is

much stricter in the sense that the steps provided are conditional; they must be

followed in exactly the way prescribed in order for the program to work. That is, ‘any

conditional steps must be systematically dealt with, case-by-case; the criteria for each

case must be clear (and computable)’ (Scriptol, 2012). Unlike the tomato sauce

recipe, the computational notion of algorithms hinges on the principles of iteration,

recurrence, and recursivity.

Some of the common techniques used to express these instructions in a programming

language, such as Java, are various control flow statements and the grouping of code

into subroutines. In the Java code below, we see some basic examples of these

techniques. Here I will quickly guide the reader through the example with a

description of what the algorithm does, by providing a ‘commentary code’ indicated

by the //.

// In programming languages such as Java, code is structured into classes, which
constitute blueprints from which objects can be created. In this program, the
Permutation class contains all the code.

public class Permutation {

// The main method is the first method that is called when the program is run.

 public static void main(String[] args){

// Here, an array (a list with space in memory for a specified number of data items of a
specified type) is created, in this instance a list with space for three character items.

 char[] permutationArray = new char[3];

// Here we start the function call.

 60

 permute(permutationArray, 0);

 }

static void permute(char[] permutationArray, int x){

// Here we start a for-loop, which repeats instructions a specified number of times.

 for(int i = 65;i<91;i++){

// We start by adding the value of an array into the variable x. The first loop will start
at 0 with the value A(65). We start by adding a value into x of the permutationArray.
In the first call of the function/method/subroutine, x will be 0, and in the first iteration
of the loop the value entered into the array will be A (which has a numerical value of
65).

 permutationArray[x] = (char)i;

// Here we start an if-then-else control flow statement. If x<2 means that the
statements in the if clause will only be executed as long as x is less than 2. We start at
0, and then we then move onto the next number the next time the function is called.
This is the basic concept of a recursion, the process of repeating the same procedure
until a specified state is reached. When we have arrived at x = 2, the recursion stops
with the ‘else clause’, by not calling the permute function again. The three letter
combinations starting with ‘A’ will be displayed, and the loop continues with ‘B’.

 if(x<2){

 permute(permutationArray, x+1);

 }

 else{

 String permutationString = new
String(permutationArray);

 System.out.println(permutationString);

 }

 }

 }

}

Because of its abstract nature, the notion of an algorithm is difficult to grasp. Google

maps directions is one example of how to think about an algorithm. Say you want to

get from point A) Oxford circus, to point B) Trafalgar Square. You query Google

maps in order to get the walking directions. What Google feeds you is a detailed

 61

description of how to get from point A to B. In six steps, it will tell you where to turn

right, where to turn left, and how many miles each of the proposed steps will take

until you finally arrive at Trafalgar Square. However, the algorithm could potentially

guide you through a completely different walking route, as there are almost infinite

ways of walking from Oxford Circus to Trafalgar Square. Given that there are a

number of different priorities and parameters that could influence which route will be

the most relevant for your purpose, the steps contained in the algorithm will

necessarily have to take these conditions into consideration when deciding how to

take you from A to B. For example, should it be the most time-effective route or the

one with less traffic? In the case of Google maps, the right solution, according to the

algorithm, is to give you the most time-effective route. But perhaps time-efficiency is

not your highest priority; perhaps you would have preferred to take the most scenic

route. In this case, an altogether different algorithm would be needed – one that

Google does not provide. The point is that while the goal is still getting from A to B,

the solution provided depends on the specific circumstances, assumptions, and

priorities embedded in the algorithm.

Algorithms, then, are implemented to control the flow of actions. As Wendy Chun

points out, an algorithm is a ‘strategy, or a plan of action – based on interactions with

unfolding events’ (2011a: 126). Algorithms act in response to inputs of data, which

produce an outcome of structured data. I used Google maps to illustrate the basic

logic of how algorithms function, but algorithms themselves are at work in almost

every web site and platform today. The impact of algorithms can hardly be overstated,

as they are used to sort, rank, recommend, suggest, classify, predict, and cluster items,

data, things, and people. Functioning as associative devices, algorithms have the

power to organise and arrange relationships in important ways. Yet, their presence

and influence on the current information ecology is rarely discussed within media

studies. In this dissertation, I will demonstrate how the conceptualisation of software

at the level of the algorithm offers a particularly fruitful way to examine the

programmability of sociality in social networking sites (see Chapter 6 on visibility

and the EdgeRank algorithm in particular).

 62

Executable and execution

Software is both text and procedure. Software runs and executes, meaning that code

has an executable existence. In its executable form, software has the capacity to

become visible as part of graphical user interfaces. Source code constitutes one side of

software; the other side involves the procedural operation of code. As Wendy Chun

points out, however, the action that makes code executable is not a trivial action. The

source code and the executable are not mathematically identical, but rather logically

equivalent. For example ‘some programs may be executable, but not all compiled

code within that program is executed; rather, lines are read in as necessary’ (Chun,

2011a: 24).

Transforming source code into an executable file is not a one-step process. It usually

follows multiple steps, which include translation as well as the involvement of other

software programs, such as compilers and linkers. The ‘object file’ created by the

compiler, is an intermediate form and not directly executable. In order for a program

to be executed, another device called a linker must combine several object files into a

functional program, or .exe files.34 Whilst the technicalities are not the main issue

here, what it important to point out are the different levels of existence at play when

talking about software.

Software is quite literally the gathering or assembling of different code files into a

single executable. While software might appear to be a single entity, it is

fundamentally layered, and dependant on a myriad of different relations and devices

in order to function. Its structure can be compared to that of an onion; a computer

system comprises ‘many distinct layers of software over a hardware core’ (Ceruzzi,

2003: 80). It consists of an ‘[a]pplication on top of operating systems, on top of

device drivers, and so on all the way down to voltage charges in transistors’ (Chun,

2011a: 3).

Conceptualised as execution, software does something. It performs the encoded

instructions, thereby making things happen. This apparent ability to make things

happen has been one of the focal points for scholarly discussion of software within the

34 In a program written in the programming language C, the different steps can usefully be
illustrated by the program’s file-naming convention. The source code file ends in ‘.c’, the
object code ends in ‘.obj’, and the executable files end in ‘.exe’.

 63

humanities. In particular, these debates have conceptualised software as language,

seeing its force in terms of the performative and performativity of code (see

Galloway, 2006; Hayles, 2005, Mackenzie, 2005; Mackenzie and Vurdubakis, 2011).

Derived from J. L. Austin’s account of language, the concept of the performative

refers to the notion that language and speech not only express things about the world,

but also have the power to act upon that world (Austin, 1962). In Austin’s account,

certain speech acts (illocutionary acts) have a performative function, meaning that

they do what they say.35 In other words, performatives are statements that instigate

their utterance. To claim that code is performative, then, implies a functional analogy

between code and natural language. In a much-cited passage, Galloway argues that

‘code is a language, but a very special kind of language. Code is the only language

that is executable […] it is the first language that actually does what it says’ (2004:

165-166). In a similar vein, N. Katherine Hayles argues that code has a strong

illocutionary quality:

Code has become arguably as important as natural language because it causes
things to happen, which requires that it be executed as commands the machine
can run. Code that runs on a machine is performative in a much stronger sense
than that attributed to language.

This performative notion of code posits the meaning of software in terms of its

function or executability – at the level of the machine. As Galloway puts it, ‘code

essentially has no other reason for being than instructing some machine in how to act’

(2006: 326).

While debate about the extent of which software may usefully be compared to

language is theoretically and conceptually interesting, it does not bring us much closer

to understanding how software can be said to do work in the world – beyond causing

changes in machine behaviour. The usefulness of the performative legacy lies not in

terms of code’s effects on the machine, but rather in the ways in which the concept

has been elaborated upon and reconfigured into the notion of performativity. Whereas

the strictly linguistic notion of performative assumes a distinction between language

and force, the concept of performativity does not. Performativity, as it has been

35 This is to say that propositions may constitute the objects to which they refer. For example,
in saying ‘I promise’, the promise is enacted by means of uttering the words; it is saying and
doing at the same time. Likewise when the pastor declares ‘I pronounce you husband and
wife’, the act is performed by declaring the words.

 64

elaborated on in much critical and cultural theory during the past two decades or so

(see Butler, 1990; Callon, 1998; Pickering, 1995), designates a way to depict the

world not as an already existing state of affairs, but rather as a doing – ‘an incessant

and repeated action of some sort’ (Butler, 1990: 112).

As Mackenzie (2005) has argued, the conduct and practices of code work in a similar

way. By performing its encoded instructions, software enacts the acts that it

represents. As such, software hinges on the kinds of ‘looping effects’ that Ian Hacking

(1995) talks about: positive feedback effects that sustain the entities they postulate.36

The performativity of software not just pertains to the linguistic relation between

different layers of code as ‘doing what it says’, but more importantly, to the ways in

which software contributes to framing the world in certain ways.

This way of conceptualising software as execution provides a productive way to study

software as an active participant engaged in ‘ways of worldmaking’ (Goodman,

1995). In the chapters to come I will address the ways in which software produces the

conditions it merely perpetuates to describe, and how it becomes the condition and

occasion for further action (see Chapter 5 on attention, 6 on visibility, and 7 on

friendship). As an operational and performative object, software, as Mackenzie points

out, ‘coordinates the encounters between specific social actions pertaining to

information and communication networks’ (2006: 76), something that will be further

explored in Chapter 7, and Chapter 8 on APIs.

Practice

Just as, for example, literature is not only what is written, but all cultural
practices it involves—such as oral narration and tradition, poetic performance,
cultural politics - software is both material and practice (Cramer, 2005: 122)

In this final section, I draw attention to the ways in which software needs to be

understood as practice. As I have already suggested, the executable level of software

points towards one such conceptualisation of software as practice, in the sense that

multiple processes and actors constitute software into an operational form. Here, I

36 While Hacking talks about ‘human kinds’, or the social construction of the social, through
the ways in which new ways of classifying people also changes how people can think about
themselves, the self-perpetuating logic is also evident in the ways in which software performs.

 65

take practice to refer to the various ways of doing that software implies, including the

production and use of software. As Adrian Mackenzie claims, ‘software is a

neighborhood of relations whose contours trace contemporary production,

communication and consumption (2006: 169). Not only is software produced through

maintenance, problem solving, and upgrading. Software, then, is seldom produced

once and for all. In fact, if we use the word ‘program’ as von Neumann and his

colleagues used it, to describe the ways in which software constitutes a practice

become even more apparent. A program, then, is not so much a bounded object, as it

is an activity, the developing result of continuous assembling and organising.

The production of software involves a plethora of actors and the interests and

struggles between these. Software always implies an originator, whether or not ‘the

originator is a programmer, webmaster, corporation, software engineer, team, hacker

or scripter, and regardless of whether the originator’s existence can be forgotten,

sanctified or criminalized’ (Mackenzie 2006: 14). While the notion of the solitary

programmer and hacker is still a common way of framing software as practice, in

most cases, the production and practice of software involves a process of collective

manufacture (Kichin and Dodge, 2011). We can see these two sides of software

production strongly represented in the way the history of software is written. Two

types of myths are particularly salient: on the one hand, the myth of individual

programmers and the narratives about collective programming methods, paradigms,

and organisation on the other. Software often involves many different layers of

production, phases, places, management, and organisation. Perhaps the most-

discussed and extreme version of software as a collective manufacture can be found in

the case of Free, Libre and Open Source software movements (FLOSS).

Importantly, software rarely constitutes a one-off event or finished product, but rather

needs to be seen as an ongoing effort, a process of becoming. As such, software can

be considered a project. As projects, software requires care, maintenance, updates,

revision, and work. The continuously evolving, developing, and transforming

landscape of software poses a challenge not only to the producers and users of

software, but also to the researcher wishing to study it (something I will touch upon in

the next chapter). For programmers, the challenge consists of trying to keep up with

the latest developments, including new programming languages, code libraries, and

development environments (Kitchin and Dodge, 2011: 35; Mackenzie, 2006).

 66

It is important to point out that software as practice refers not merely to the

production of software by a programmer, but also to end-user practices. Users play an

important and much-debated role in software development – from the beginning of

product development, to the testing of the end product (see Halonen, 2007). But users

also play a much more immediate role and participate in the ongoing development of

software. In the case of algorithmically-driven sites such as Facebook, user practices

are crucial to the development and maintenance of the underlying coded systems, as

they constantly feed the system with new data. As Mukund Narasimhan, software

engineer of Facebook, tellingly suggests: ‘Everything in Facebook is a work in

progress’. The models Facebook uses to design the system are evolving because the

data is changing. This means that the exact ways in which the algorithms work are

also constantly tweaked, because of the fact that everything else changes (Facebook,

2011a). For end users, one might say that this mutability of software constitutes an

ethics of constant care. The many changes of the Facebook platform carry with them a

responsibility on behalf of the user to stay up-to-date and make the necessary

adjustments suggested by the software.37

Software as practice also refers to what might be termed a phenomenology of

software, in terms of how software is a matter of lived experience and makes a

difference to people’s everyday lives. Software functions in a traversal way; it cuts

across the boundaries of what is commonly taken to be its formal existence. As

practice, software needs to be understood through its fundamental interconnectedness

to everyday life, rather than as an object that is detached from it. While the

conceptualisation of software as practice cross-cuts the discussions to come in a

mostly implicit manner, Chapter 8 explicitly addresses the ways in which software

constitutes a conflictual field of lived experience.

37 In Chapter 5, I will discuss some of the most salient changes to the Facebook platform over
the past years. It is not the changes in and of themselves that will be of interest in that chapter,
but rather the ways in which the protocological infrastructure organises attention. However,
through the work of documenting the amount and nature of the changes to the Facebook
platform, it can be argued that changes in the software affect practices in fundamental ways.
For example, one of the recent platform changes called the ‘Timeline’ should not only be
thought of as a complete redesign of the personal profile feature, but also as a change that
completely transforms the conditions for self-presentation.

 67

Concluding remarks

In this chapter, I have argued that software needs to be seen as a shifting nexus of

relations that comprises certain prevailing material and cultural characteristics.

Simply conceptualising software as a set of instructions that tell the machine what to

do fails to take into account the variable ontology of the thing that we understand by

software. Software should not be seen as mere code, nor can it simply be reduced to

algorithms or executable output. Understanding software implies an understanding of

the interaction and contestations of numerous actors, both human and nonhuman.

Thus, it is important to understand not only how software embodies different

relations, but also how it has the capacity to be productive and generate further

relations (Fuller, 2003: 63). This “expanded” notion of software ultimately points to

the ways in which software can fruitfully be conceptualised and analysed by

considering not only its material existence, but also through the various ‘forms of

contestation, feeling, identification, intensity, contextualizations and

decontextualizations, signification, power relations, imaginings and embodiments that

comprise any cultural object’ (Mackenzie, 2006: 5).

The purpose of this account of the nature of software has been to introduce a way to

understand software that can serve as a framework for the chapters to come. In

addition, I have been motivated by a desire to provide a fuller, more explicit

understanding of the key theoretical notion behind software studies: software itself.

The complexities revealed by a close analysis of the concept of software, results in

there being a number of methodological challenges scholars will encounter when

studying software from a humanities perspective. In the next chapter, I grapple with

some of these, outline how they may be dealt with, and introduce the methodological

framework and methods I apply in my analysis of Facebook and Twitter.

 69

Chapter 4. Methodological framework

In this chapter I introduce my methodological approach to the study of how software

fosters sociality on social networking sites. I call this approach ‘technography’.

Broadly speaking, I approach the complex ways in which software organises, shapes,

and assembles sociality in the context of social networking sites in a way that is

similar to anthropological methods of ethnography. This is to say that technography,

as I use the term here, is a way of describing and observing technology in order to

examine the interplay between a diverse set of actors (both human and nonhuman). In

contrast to ethnography, with its focus on ‘documenting people’s beliefs and practices

from the people’s own perspectives’ (Riemer, 2009: 205), technography has

technology as its perspective; specifically, the norms and values that have been

delegated to and materialised in technology. Here it is important to point out that

technography should not be thought of as method distinct from ethnography, but

rather as a mode of inquiry into the meanings embedded in the mechanics of

technology that make use of ethnographic methods. The main difference between

ethnography and technography lies in the researcher’s perspective. While the

ethnographer seeks to understand culture primarily through the meanings attached to

the world by people, the technographic inquiry starts by asking what the software

itself is suggestive of.

While technography constitutes the main approach of chapters 5, 6, and 7, which

focus on the programmed sociality of Facebook, I also rely on more ‘traditional’

media ethnography in Chapter 8, which deals with the Twitter APIs. In order to create

an understanding of the ways in which power articulates through software, I believe a

combination of perspectives, methods, and sites of analysis provides fertile ground for

a diagrammatics of software in social networking sites. Thus, my methods are not

confined to a structural analysis of Facebook mechanics, but importantly include the

perspectives of human actors who work with software on a daily basis. The following

chapters form responses rather than definite answers to my research questions. I

follow Matthew Fuller’s assertion in his introduction to the software studies lexicon:

‘The purpose […] is not to stage some revelation of a supposed hidden technical truth

of software […] but to see what it is, what it does and what it can be coupled with’

(2008: 5).

 70

Empirically and analytically I follow a grounded approach, where the theoretical

reflections are developed from the data collected and the field of study.38 In my

descriptions of the workings of software processes and mechanisms embedded in

social networking sites, my analytical focus is on how the operations make a

difference to the ways in which collective associations form and unfold in the context

of these software-mediated spaces. The data used in this dissertation is drawn from

various empirical sources, which include auto-ethnographic observations of the sites,

online interviews with software developers, aggregated data concerning the software

mechanics of the sites, and analysis of relevant text sources concerning the sites (i.e.

blogs, technical specifications, mailing lists, developer talk, manuals etc.).

In this chapter, I will first outline my understanding of technography as a

methodological framework useful for the analysis of the micropolitics of power

through software. In the second part of the chapter, I provide an account of the

various methods used, including the reading and analysis of the operational logic of

software and online interviews.

Technography: A descriptive-interpretative approach

How to make sense of the convoluted nature of software, of the ways in which it

signifies and produces the conditions for the intelligible and sensible? As with human

cultures, there is no single answer or way of going about researching the power of

coded systems. Just as there is a need for media and communication scholars to

become more attentive to the ways in which software makes a difference in mediation

and communication today, there is a need to expand the discussions regarding the

most appropriate methods and means for researching the subject-software continuum.

Here, I propose one possible research strategy – technography - that fuses well-known

38 There are different kinds of grounded research approaches; the basic principles are however
the same – the gradual accumulation of new data/readings that builds on the coding and
interpretations from the foregrounding round of data collection/readings. The Grounded
Theory methodology (Glaser and Strauss, 1968), for example, is a common strategy used
within the social sciences, whereby the research process is guided by the constant comparison
of data collected in order to ensure well-founded coding categories. See also Charmaz (2006)
for a good overview on Grounded Theory. In a similar vein, hermeneutic approaches often
used within the humanities also hinge on processes of iterative interpretations, where ‘readers
gradually work out the categories of understanding in order to arrive at a coherent
interpretation’ (Bruhn Jensen, 2012: 29).

 71

methods from the humanities and social sciences to make sense of ways in which

software shapes social life online.39 I see technography as a descriptive-interpretative

approach to the understanding of software, rooted in a critical reading of the

mechanisms and operational logic of technology.

If ethnography can be understood as a way of understanding cultural practices in the

context of everyday life, technography adds technology to the equation by making it a

prefix. We would thus say that technography is a way of understanding techno-

cultural practices in the context of everyday life. Technography makes use of

ethnographic methods, so why not just say ‘ethnography of technology’, as other

authors have done (see Kien, 2008)? There are two reasons for this. First, I want to

refrain from using ‘ethno’ at all, as what I am interested in is not so much the people’s

own belief systems or lifeworlds, but rather the ‘lifeworld’ of technology. In other

words, I am interested in what can be learned from the connective and associational

logics of algorithms and protocols themselves. I ask what the software can be said to

be suggestive of, and which underlying assumptions, norms, and values are embedded

in the technologies used in everyday life. Therefore, a second reason for dropping the

reference to ethnography is to emphasise the importance of engaging in descriptive-

interpretative studies of technology, without necessarily having to include particular

users’ voices or belief systems. Just as technology becomes meaningful when users

are studied for their practices involving technology, the user is always already implied

when studying technical mechanisms and functions.

My understanding of technography is indebted to methodologies such as Actor-

Network Theory, virtual ethnography (Hine, 2000; 2011), the ethnography of

infrastructure (Leigh Star, 1999) and multi-sited ethnography (Marcus, 1995). My

main motivation for using the term technography rather than ‘techno-ethnography’ or

‘ethnography of technology’ is to point to the structural, material, and architectural

39 While the term technography has been used by others, my understanding of the term differs
from the two or three occurrences of the term that I was able to come across in a literature
search. Technography has previously been described as an ‘ethnography of technology’
(Kien, 2008), as a research strategy aimed at uncovering the constructed nature of
technoculture (Vannini and Vannini, 2008), and as a way to explore artefacts in use (Jansen
and Vellema, 2010). My understanding comes closest to that of Vannini and Vannini, who
describe it in terms of a more general attitude towards the attempt to understand the structural
aspects of complex technocultural layers. However, as I will detail in this chapter, I use
technography in quite a literal sense, making the descriptions of technology the basis for an
interpretation of how software organises sociality on social networking sites.

 72

aspects of media and software as opposed to the ethnographic spirit of inquiry so

deeply entrenched with understanding cultural practices (see Hine, 2011). Rather than

seeking to describe and observe people, as the etymology of ‘ethno’ implies,

technography provides a more accurate description of what I set out to do: namely, to

observe, describe, and interpret software on its own material-discursive terms.

From Actor-Network Theory and ethnography I borrow the emphasis on description.

One of the key research strategies of ANT is to provide detailed descriptions of the

intermingling of human and nonhumans constitutes, where specific sociotechnical

events are explored for the plethora of actors involved (Latour, 2005: 128). Viewing

software as an event shifts attention from what it is to what it does, to the difference it

makes between a before and an after by its capacity to question something, render

something problematic, or makes it possible to feel, perceive, act, or know differently

(Mackenzie, 2005: 388).

In this dissertation, I utilise a number of data-collection techniques that are typical of

ethnographic research, including observation, writing ‘field notes’, and interviewing

and reading available reports and records. As Rimes explains it, ethnography is

always eclectic in its employment of multiple methods and techniques, as what counts

as relevant information is not given in advance (2008: 209). Similarly, what counts as

relevant sites for data collection with regards to describing the relationships between

software and subjects on social networking sites is not a given. Software exists on

many levels, meaning that it cannot be easily tracked or accessed. An alternative to

researching bounded sites or objects is to ‘follow the thing’ (Marcus, 1995) or the

‘actors’ and ‘associations’, as Latour suggests (2005).

Thus, I have examined software as it exists on many different levels, not only as part

of a more or less concrete thing, but also as part of the many associations and sites

through which it appears. In this dissertation, I have found software at the level of

algorithms, protocols, APIs, programmers, blogs, media reports, technical

specifications, recorded engineering talks, conference papers, developer discourse,

mailing lists, buttons, user interfaces, information feeds, features, and functionalities.

Marcus developed the notion of ‘multi-sited ethnography’ as an exercise in mapping

terrain that moves across many different sites, as opposed to the ‘traditional single-

site mise-en-scene of ethnographic research’ (1995: 99). Influenced by postmodern

 73

thinking such as Foucault’s power/knowledge and Deleuze and Guattari’s rhizome, a

multi-sited ethnography in Marcus’ terms takes as its starting point that the social is

never fixed, but rather is the product of temporarily stabilised connections between

heterogeneous elements. In this sense, any attempt at understanding how power

articulates through software must take the distributed and multi-situated nature of

software into account. The diagrammatics, or cartography of power, is thus designed

around the various ‘chains, paths, thread and conjunctions’ in which the objects of

study form a presence (Marcus, 1995: 105).

I adopt the view that technical objects and elements afford meanings and possibilities

for action, based on how they work and function. My methods are therefore

influenced by approaches to media that explicate the need to read and interpret

technology based on its materiality and procedurality. Here, I refer to Galloway’s

(2004) close reading of Internet protocols, Ian Bogost’s (2007) analysis of the

‘procedural rhetoric’ of computer games, Noah Wardrip-Fruin’s (2009) notion of

‘operational logic’, and N. Katherine Hayles’ (2004) media-specific analysis. These

approaches suggest a way of attending to the materiality of media by looking at the

ways in which the techniques and procedures both constrain and enable certain forms

of being together and forming attachments. For example, much in the way Galloway

‘attempts to read the never-ending stream of computer code as one reads any text,

decoding its structure of control as one would a film or novel’ (2004: 20), I have

attempted to look at the software specificities of Facebook and Twitter in order to

explore how sociality is governed and organised on the platforms.

This is similar to the strategy proposed by Latour, where technological mechanisms

should be read directly in terms of deciphering its inscriptions (see Mackenzie, 2002:

211). As Mackenzie exemplifies:

Such a reading is possible because various traces and semiotic systems cluster
around technical artefacts and ensembles. Different codes, protocols and
conventions compose much of the infrastructure involved in computation, for
instance. These layers of inscription mark the diverse negotiations which a
technical object embodies (ibid.).

Inspired by notions of specificity and technical inscriptions, the case studies in the

following chapters are organised around specific software objects and the social ties

that are built through them (see Latour, 2005: 80). I look at how a particular

technology functions in order to get at the ways in which technical mechanisms

 74

manage, modulate, and distribute possibilities for action and interaction on social

networking sites. Seeing software as an event connects in various ways to the

theoretical framework sketched in Chapter 2. Ultimately, I believe, software can be

mapped by examining the ways in which it creates new forms and constellations ‘that

catalyze previously existing actors, things, temporalities, or spatialities into a new

mode of existence, a new assemblage, one that makes things work in a different

manner and produces and instantiates new capacities’ (Rabinow 1999: 180).

Letting the software ‘speak’

Technography as it is developed in this dissertation focuses on letting the software

actors ‘speak’ by following the ethnographic principle of description. I suggest that

software speaks by means of what it is capable of doing, its technical specificities, and

the ways in which it forges relationships. My use of the verb ‘to speak’ should not be

taken as an attempt to anthropomorphise software, but rather as a way of taking into

account the descriptions offered by technologies. As Bruno Latour puts it, ‘specific

tricks have to be invented to make them [technology] talk, that is, to offer descriptions

of themselves, to produce scripts of what they are making others –humans or non-

humans – do (2005: 79).

What kinds of descriptions does software offer? How does software speak? On a basic

level, software itself is a description. Software/code is the only language that does

what it says. Galloway states that software is self-referential. In this sense, no specific

tricks have to be applied to make software ‘speak’, as its production already exists as

an output to be studied on the level of the graphical user interface. The executable

layer of software translates into visual outputs on our computer screens, which

constitutes an important site for the study of software.

When embarking on this research, I realised how quickly these sites change, how

often the layout and interface design changes, how many new features and

functionalities are added, and how quickly some of them disappear again. The

technical field implied by a technography is just as ‘messy’ as the cultural field that is

of interest to the ethnographer. This means that technical objects and elements are not

static things, but rather are characterised by mutability and conflicting views and

practices.

 75

Confronted with ever-changing and mutable platforms, the need for documentation or

taking field notes becomes crucial. To this end, I have regularly taken screenshots of

my Facebook homepage, the news feed in particular, and documented new features,

functions, and changes. These fragmentary snapshots of Facebook proved to be a

useful way to document the mobile and dynamic nature of the site. This method of

documentation – providing detailed descriptions of the field with systemised

screenshots and note-taking – has much in common with the taking of ethnographic

field notes, and has proved to be a valuable way to track and map the ontogenetic

nature of the medium and software of these social networking sites.

On another level, information about what software is capable of doing exists as part of

technical specifications that detail certain functionalities and design choices. How and

what specific software, algorithms, or protocols are supposed to do is often described

as part of technical specifications, engineering papers, recorded industry talks, media

reports, patent applications, blog posts, etc. As such, these types of software

descriptions form crucial sites for a technograpic approach to data collection in the

context of this dissertation.

The many social media industry blogs dedicated to chronicling the lives of sites such

as Facebook and Twitter have proved to be particularly important sites for collecting

data relevant to an understanding of the structural aspects and mechanics of social

networking sites. As Alice Marwick (2010) points out in her dissertation on the San

Francisco technology scene, social media industry blogs form an important part of the

cultural formation of ‘social’ software, as they document the important interactions

and events that take place around powerful tech companies. Blogs, including

Mashable.com, Techcrunch.com, and Readwriteweb.com, thus constitute important

elements in the ‘neighbourhood of relations’ that Mackenzie suggests describe the

complex and circulatory existence of software in general (2006: 171). Therefore,

these blogs are not only useful sources of secondary data, but rather must be seen as

part of the software assemblage itself. Thus, one important tracking strategy used in

this dissertation is to follow news about Facebook and Twitter by regularly reading

said blogs.

In addition to blog posts about Facebook and Twitter’s ‘lives’ as software, the

different studies draw on diverse materials of ‘software descriptions’ that have

informed my understanding of the technical mechanisms behind Facebook and

 76

Twitter. These include technical specifications, policy documents, engineering and

developer talks where the specific logics of systems are discussed and presented,

protocols and standards, API documentations on Facebook and Twitter developer and

engineering sites, general technical information about Internet infrastructure from

Request for Comments (RFC) as well as the World Wide Web consortium (W3C),

mailing lists, and online forums.

Black box – White box

Letting the software speak in order to read it in the way ‘one reads any text’

(Galloway, 2004: 20) is not without its problems. One of the main obstacles in any

attempt to read the underlying software principles of social networking sites pertains

to the seemingly ‘black-boxed’ nature of these systems. The black box is an opaque

technical device of which only the inputs and outputs are known. It is an entity whose

functioning cannot be known, at least not by observation, as the blackness of the box

obscures vision, challenging any preconceived ideas about what can and cannot be

known.40 Because the software that underlies some of the biggest media companies

today, including Google and Facebook, is what constitutes the assets and values of

these companies, the logic of how they are connected naturally remains a highly-

guarded trade secret. Today, algorithms are the equivalent of the secret ingredients of

Coca-Cola.

My methodological approach to the problem of the black-boxed nature of my objects

40 The concept of the black box has a very interesting history, stemming from an atmosphere
of extreme secrecy, as part of the military and war machinery of WWII. Historically, the box
refers quite literally to the entity containing hidden radar equipment. Electrical engineers
confronted with a black box had to deduce its workings and functionality from an observation
of the relationship between input and output. In tracing the genealogy of the black box, von
Hilgers (2009) describes how the black box initially referred to a ‘black’ box that had been
sent from Britain to the USA as part of the so-called Tizard Mission, which sought technical
assistance for the development of new technologies for the war effort. This literally black box
that was sent to the radiation lab at MIT contained another black box, the magnetron. During
wartime, crucial technologies had to be made opaque in case they fell into enemy hands.
According to Peter Galison, this culture of secrecy, or ‘radar philosophy’, became a vital
engineering technique and also played a key role in the emergence of cybernetics. Galison
(1994) describes how the notion of the black box offered Norbert Wiener and his colleagues a
way to conceptualise and design complex man-machine systems (i.e. the AA predictor). As
we can see, the concept of the black box is inherently linked to secrecy, interpretation, and
prediction, as it during wartime became crucial to be able not only to interpret the enemy’s
messages and technologies, but also to predict the enemy’s next move.

 77

of study has been to compile data aggregated from auto-ethnographic observations of

the interface, with the available information about the mechanics of the sites. I

suggest that combining data from the two levels at which software makes itself

known, identified above as its execution on the interface and the descriptions of its

workings contained in external textual sources, provides a useful way of opening up

the black box. This is closely linked to what Ian Bogost calls a ‘white box’ analysis,

where one uncovers the computational procedural expressions crafted through code.

When neither code nor the exact codified rules of operations are available for direct

analysis, methods of accessing the operational principles of systems without

extrapolating code need to be developed. Bogost draws on the distinction between

what in actual software development is called back-box analysis and white-box

analysis to explain his approach:

To watch a program’s effects and extrapolate potential approaches or problems
(in the case of testing) in its code is called black-box analysis. Such analysis
makes assumptions about the actual operation of the software system,
assumptions that may or may not be true. To watch a program’s effects and
identify actual approaches or problems in its code is called white-box analysis
(or sometimes, glass-box analysis). Such analysis observes the effects of the
system with a partial or complete knowledge of the underlying code that
produces those effects. Some white-box analysis can be performed without
direct access to code. Examples include architectural descriptions from
conference presentations about development techniques […] Publicly
documented hardware and software specifications, software development kits,
and decompiled videogame ROMs all offer possible ways of studying the
software itself (2007: 62-63).

My approach resembles this notion of white-box analysis, in that my reading of

software is based on descriptions and observations of the system at the level of the

interface, complemented with knowledge of the architecture and underlying

functionalities, obtained from available external documents. For example, in the next

chapter (5) on attention, I deal with questions concerning the power of Facebook’s

Open Graph protocol, primarily by extrapolating from various empirical sources that

describe the workings of the system. Drawing on a range of materials that describes

how the Facebook platform functions – its underlying design principles and the

components of the underlying infrastructure – provides the grounds for analysing

 78

what the software can be said to be suggestive of, and how it organises and distributes

the sensible and intelligible.41

Chapters 6 and 7, which deal respectively with visibility and friendship on Facebook,

hinge on a similar approach to the analysis of the functional and operational aspects of

the platform. Assembling a plethora of empirical textual sources, and detailing and

describing the systems studied allows for an understanding of software based on its

properties, mechanisms, and operations.42 Akin to ‘media specific analysis’, the

Facebook platform is analysed for the kinds of prescribed norms, values, and practice

that are grounded in its properties and affordances, and the possibilities for actions

provided by the system.

Analytically, I draw on Ian Bogost’s reading of video games as systems of

‘procedural rhetoric’ and Noah Wardrip-Fruin’s concept of ‘operational logics’.

Methodologically, both Bogost and Wardrip-Fruin argue for an approach to digital

41 Here I use technical descriptions from the following sources: The Open Graph protocol
specification (ogp.me); Facebook Developer blog (developers.facebook.com); Facebook
Engineering (www.facebook.com/Engineering); Conference presentations and recorded talks
that explain and describe the architecture of Facebook, as retrieved from various databases,
including www.infoq.com, www.ieee.org, and dl.acm.org; Facebook Tech Talks video
archive, especially ‘Extending the graph tech talk’ (see Facebook, 2011a) and ‘Hacking the
Graph Tech Talk’ (see Facebook, 2010); blogs, including: Techcrunch.com, mashable.com,
readwriteweb.com, arstechnica.com, insidefacebook.com, and allfacebook.com; online
forums, including Stackoverflow and Slashdot; and the Facebook group dedicated to debating
issues concerning the Open Graph. I am a member of this group, and have followed the
discussions on a regular basis.
42 In Chapter 6 I focus on documents that describe the Facebook News Feed and the
EdgeRank algorithm. Here I draw on many of the same sources described in the previous
footnote, (the same blogs, forums, and databases). In addition, I draw on the video broadcasts
of the technical sessions of the 2010 Facebook developers conference, especially the session
called ‘Focus on the feed’, in which Facebook engineer Ari Steinberg talks about the details
of EdgeRank. Moreover, social media marketing sites provide helpful sources with regard to
technical details, as they often must convince new customers of the need to buy their services
based on some new technical reality. Companies such as the EdgeRank Checker
(edgerankchecker.com) have sprung up to boost users’ visibility on Facebook’s news feeds.
These types of company websites thus offer a source of additional information about some of
the technical workings.

In Chapter 7, I rely on the same kind of source materials as used in chapters 5 and 6 (i.e.
blogs, conference papers, tech talks, databases). Thus, Chapter 7 repurposes the technical
information about the Open Graph protocol explored in Chapter 5, and EdgeRank in Chapter
6. In addition, the chapter looks at the workings and design principles of people-finding
algorithms and the ‘Friend of a friend’ (FOAF) approach. As this is a well-known approach
within computer science, conference papers describing FOAF in the context of social
networking provide a particularly important source.

 79

media that does not hinge solely on digging underneath the screen to address the

programmability and expressivity of systems, but rather focuses on the ways in which

the software operates. The notion of ‘operational logics’ refers to the behavioural

aspects of digital systems, to the ways in which digital media are capable of

‘expressing a position through their shapes and workings’ (Wardrip-Fruin, 2009: 4).43

In a similar vein, Bogost’s notions of ‘procedural rhetorics’ emphasises the need to

understand the expressions of computational systems, in order to uncover how the

systems form and author certain arguments. According to Bogost, procedural rhetoric

is the art of persuasion through rule-based representations and interactions, tied to the

core affordances of the computer (2007: ix).

Reverse engineering

In Chapter 6, I combine my descriptive-interpretative technographic approach with a

more experimental mode of ‘reverse engineering’. According to Eldad Eilam,

‘[r]everse engineering is the process of extracting the knowledge or design blueprints

from anything man-made’ (2005: 3). In that sense, even my overall technographic

approach could be considered reverse engineering, in that it aims to identify how a

thing works in order to extrapolate its signifying effects. As Eilam further elaborates:

Reverse engineering is usually conducted to obtain missing knowledge, ideas
and design philosophy when such information is unavailable […] Traditionally,
reverse engineering has been about taking shrink-wrapped products and
physically dissecting them to uncover the secrets of their design […] In many
industries, reverse engineering involves examining the product under a
microscope or taking it apart and figuring out what each piece does (2005: 3-4).

While the concept of reverse engineering refers for the most part to actual methods

applied in the field of software engineering, I use the term in a more metaphorical

sense. Whereas software engineers use methods of code breaking, disassembly, and

43 In his doctoral dissertation, where he originally developed the concept of operational logics,
Wardrip-Fruin (2006) points out that we do not have to know how to design software (or even
how to read code) to pay closer attention to software and how it works. What is needed is a
consideration of the rhetorical nature of the software processes that generate the text that
becomes accessible on our screens. The question for Wardrip-Fruin is how to understand
digital systems by focusing on process. Reading code will not do, he asserts, as it would
merely reproduce a kind of media studies based on fixed objects (Wardrip-Fruin, 2006: 6).
Instead, an understanding of processual media requires taking various layers of the systems
into account, and interrogating how they operate and interoperate.

 80

decompilation – to name some of the techniques of reverse engineering – my

approach remains on the interface level and has nothing to do with software

development per se. As I am interested in exploring the power of software in the

organisation of collective life in social networking sites, I decided to look more

closely at what I take to be one of the most important sites where sociality currently

plays out, namely Facebook’s News Feed.

At the time of my research, the News Feed was divided into two separate feeds, the

‘Top News’ feed and the ‘Most Recent’ feed.44 Melody Quintana, a specialist on

Facebook's user operations team, described the difference between the two feeds in a

Facebook blog post thus: ‘Top News shows popular stories from your favorite friends

while the Most Recent shows you all updates from as many as 250 friends’ (2010).

While Top News is based on an algorithm that aggregates the content users will

supposedly find most interesting and displays the posts as a sorted feed where the

apparently most relevant stories come first, the purpose of the Most Recent feed is to

display all posts that happen in near real-time.

In order to explore the operational logic of the algorithmically-driven News Feed, I

conducted an experiment of reverse engineering, based on a structured comparison of

the contents of the two feeds during separate time periods. The fact that there were

two separate feeds provided a unique opportunity to explore their workings in relation

to each other. Given that the Most Recent feed displayed all updates by friends, the

contents of the two feeds could be examined to explore which posts were considered

important enough by the algorithm to be displayed on the Top News feed. During

April 2011, I began to use screen shots as a method of inquiry to record the ever-

changing platform and feeds. Several times a week during April, June, and September

2011, I took screen shots of my entire Top News feed, counted the amount of posts,

and compared it to the amount of posts published on the Most Recent feed during the

same time period. While I did not take screen shots of the Most Recent feed, as it was

simply too time consuming, for every Top News analysis I went to the Most Recent

feed to compare and contrast.

For example, I made lists using a computer spreadsheet, where I tried to identify the

‘ranking’ and location of the same post in both feeds. I would compile a list of the top

44 As of September 20, 2011, the two feeds were collapsed into a single feed.

 81

20 posts published on my Top News feed at a given point in time, and look for the

same posts and their place in the Most Recent feed. My coding scheme for the

analysis was based for the most part on knowledge of the workings of the EdgeRank

algorithm that govern the Top News feed, which I had been gathering successively

over the course of one year prior to the experiment. During Facebook’s annual

developer conference f8 in April 2010, Facebook revealed important technical details

about the design principles of the EdgeRank algorithm for the first time, outlining

some of the main factors used. Based on this information and other documents that

reported on the mechanisms and operations of the feeds, I compared the content of the

feeds in terms of time decay, nature of the post (what kind of post and how many

Comments and Likes the post had generated), and who had posted it (whether a friend

or company Page).

This experiment of reverse engineering offered a useful approach to the seemingly

black-boxed nature of the Facebook system, and revealed Facebook as more of a

‘grey box’ than a total ‘black box’. Inspired by the early cybernetician W. Ross

Ashby, the task is not necessarily to know exactly what is inside the box, but to ask

instead which properties can actually be discovered and which remain undiscoverable

(see Ashby, 1999). While the exact workings of the algorithm and the platform

remain unknown, many useful details are still available. I believe that assembling and

bringing together the information extracted from the interface and the text documents

offers a useful methodological approach to understand the workings of software.

Ultimately, I see the experimental mode of inquiry as a ‘trick’ in the sense of Latour,

in terms of making the software ‘speak’, or offer a description of itself. Finding ways

of making technology reveal itself – letting it speak – constitutes a way to engage in a

reading that takes as its starting point the kinds of things that technology itself can be

said to signify and suggest.

One of the difficulties, however, with trying to extract the design principles and

underlying logic of how the system works, is the uncertainty associated with the

mutability and ontogenetic nature of the software. As the algorithms of Facebook are

fundamentally individualised and personalised, auto-ethnographic observation of the

interface is confined to the ‘me-centric’ view of the researcher’s own account and

 82

network.45 My observations and attempts at reverse engineering the technical

blueprints are always already skewed towards the subjective view of the researcher.

Facebook adds a whole new dimension to the methodological challenges typically

faced by ethnographers in terms of attempting to understand culture from the insider’s

view. In the case of Facebook, the medium fundamentally follows the researcher and

not merely the other way around. Therefore, one’s view is always already obscured by

the fact that Facebook, by virtue of its algorithmic logic, functions as a shadow. In the

age of ‘algorithmic culture’, seeing is not just filtered through our own ideas as Rimes

(2009) suggests is the case in typical ethnographic research, but is also filtered

through the prescribed logic of the systems that we seek out to study.

Interviewing developers

In order to gain insight into the multiple ways in which power articulates through

software, approaching software at a micro-level of lived experience was central. As

one of the premises of software studies is to understand software at the multiple levels

of existence, I decided to approach people who arguably ‘know’ software –

developers and programmers. For the purpose of assembling data about the ways in

which power articulates through software in social networking sites, I conduced 20 e-

mail interviews with web developers who use the Twitter application programming

interfaces (see Appendix 1). I had two main reasons for conducting interviews with

software developers. First, as there is an overwhelming focus on end-user research in

social media studies, I wanted to look at other actors who play a crucial role in that

media ecology. While there has been much talk of the ordinary user becoming a

‘produser’ of participatory culture, other produsers remain absent in many respects

from such discussions and discourse. In terms of advocating a software perspective on

social networking sites especially, focusing on the alternatives and overlooked actors

is imperative. In the final chapter of this dissertation, I turn away from my previous

focus on Facebook, in order to look at another interface and other produsers of social

media – the application programming interfaces (APIs) and the third-party

developers. Given the crucial role that APIs and outside developers have played in the

dissemination and growth of social networking sites, remarkably little attention has

45 See Langlois et al. (2009a) for more on the notion of me-centricity and Facebook research.

 83

been paid to these actors in previous research (for a notable exception see Cramer and

Fuller, 2008; Langlois et al., 2009a; 2009b). Taking the micro-blogging service

Twitter as my case, I look at how software signifies and is suggestive of things by

examining the APIs as a location of power relations. In this sense, I find a qualitative

and interview-based methodology to be an appropriate way of getting at some of the

experiential and meaning-making capacities of software.

Secondly, I wanted to talk to third-party developers in order to ‘make sense’ of

software in the context of Web 2.0. Approaching end users about their lived

experiences with software might not be as fruitful, as social networking sites are not

primarily experienced as software, but rather as media or communication platforms

more generally. From a software studies perspective, what is of interest are the ways

in which software as socio-material production has a profound impact on everyday

life (Kitchin and Dodge, 2011: 13). A crucial site for such an inquiry into the sociality

produced by software, I believe, are the originators and producers of software

Although the production of media is regarded as an important site of analysis within

media studies, the cultures of code and programming have not yet gained much

scholarly attention in social media studies.46 What is needed is therefore a better

understanding of the ways in which software participates not just in configuring end

users, but also the lived experiences of programmers and developers, and how the

assemblages of commercial Web 2.0 platforms and code underpins new forms of

governance that both control and empower new creative opportunities for software

production (Kitchin and Dodge, 2011: 111).

Informants and interview questions

Third-party developers are particularly interesting actors in the context of social

networking sites, as they are both users and producers of software. Being in close

contact with the underlying logic of the software of some of the currently largest

media companies, third-party developers arguably have a unique position from which

to reflect on and ‘know’ software. Unlike software engineers and developers actually

46 Here it needs to be pointed out that there is one notable exception in regard to the lack of
attention to cultures of code in cultural and media studies. This is the rich scholarship on free
and open source movements. See for instance David Berry’s ‘Copy, Rip, Burn’ (2008) and
Gabriella Coleman’s scholarship.

 84

employed by these companies, third-party developers are free to talk about software

and its perceived functionalities. Initially, I tried to get in touch with developers

employed by Facebook or Twitter, but my attempts were largely unsuccessful. When I

did receive replies, they made it clear that as developers, they were not allowed to

disclose anything about the companies, let alone discuss technical details. When

beginning to research the developer communities around Facebook and Twitter, it

quickly became clear that the Twitter community was generally more open and

accessible than for example the community surrounding the third-party development

happening in conjunction with Facebook.47 A combination of Twitter’s long history of

offering APIs for application development in contrast to Facebook’s rather recent

opening up of their API in 2009, as well as the existence of a very active mailing list

for Twitter developers as opposed to the anonymised Facebook developer site,

resulted in my choice to look more closely into the Twitter developer ecosystem. I

became a member of the Twitter developer mailing list called ‘Twitter Development

Talk’ (hosted on Google groups) in July 2010, and started recruiting informants from

the list in August of the same year.

While I approached many more Twitter third-party developers and also received

answers from more than 20 participants, what I will here refer to as a corpus of 20

informants consists of those developers who either got back to me with a more or less

elaborate one-off answer to my questions, or with whom I entered into several rounds

of questions and answers. Following the principles of grounded theory methodology

(see Glaser and Strauss, 1968), my approach has been to gradually accumulate new

data that built on the coding and interpretations from the initial round of data

collection. Thus, the interviews follow a step-by-step process that offers the

possibility to move back and forth between the various levels of analysis and data

collection. The interviews were conducted mainly during two time periods, with the

first set of e-mails sent back and forth during August and September 2010, and the

second during May and June 2011. With the help of the Twitter developers’ Google

group, I gathered names and e-mail addresses of random developers participating in

47 This inaccessibility of the Facebook third-party developers was not due to the developers
themselves, but was related to the architecture and structural support of the developer forums
hosted by Facebook. Whereas the user names of developers who were discussing issues
concerning the Twitter API could in many cases be identified by a functional Gmail address,
there was no easy way to identify and contact the Facebook developers.

 85

the discussions and sent out an interview request. Most of the developers I approached

responded fairly quickly, and many agreed to answer my questions. As most of the

developers preferred to communicate with me via e-mail (as many of them were

online much of the time anyway), the interviews were conducted using e-mail.

With the exception of two of the developers, the informants were all male. This was

for the most part due to the fact that the overwhelming majority of participants who

posted messages to the Twitter Development mailing lists were male. While I did not

ask specifically for any background information from my informants, many of them

disclosed information about their persona in the answers they gave. In terms of age,

there were some significant variations, ranging from high school teenagers to people

aged 50 or older. This age span also reflected the level of experience the informants

had with computer software and programming. Whereas one of the high-school-aged

developers I interviewed had for the most part taught himself web development

languages such as PHP and scripting languages such as Javascript – both crucial

languages in terms of Web 2.0 – the informants who grew up during the 1980s had

learned languages such as BASIC and Logo. This is not to say that the younger

informants were somehow less experienced than the informants who had been around

software for quite a while, merely that they had different experiences. The age

variation also reflected a variation in professional background, including (but were

not limited to) students with high school- and/or college-level educations, young

professionals with a web-development-related day job, but not necessarily one that

involved the Twitter API, a PhD in biochemistry, the author of programming books, a

university faculty member, CEOs of software companies, the project manager of a

European Union project, an American visitor to CERN, and hobby app developers.

The informants also differed in terms of their level of involvement in the third-party

developer community. Some had only posted on the mailing list once at the time I

contacted them to ask them to participate in my study, while others were very active

members who posted up to several times a day during certain periods.

Initially, I sent out four to five sets of questions to the developers who agreed to

participate, so as not to overwhelm them with too many questions or ask for too

much. In many cases, the e-mail exchanges extended into several rounds of discussion

that provided an opportunity to ask follow-up questions and to enter into discussions

on topics that were of particular interest to individual informants. The questions I sent

 86

out in the initial round were organised in three major themes or sets of questions.

They covered a wide variety of issues, including programming practices and questions

pertaining to software and the real-time web (see Table 1).

For example, a first set of questions concerned Twitter and the developers’ personal

interests in and motivations for using the Twitter APIs. I also asked more detailed

questions about the nature of an API and the technical specifications of Twitter in

order to learn about the technical issues behind software.

A second set of questions examined the developers’ own experiences with

programming in a Web 2.0 environment, and asked about how they got into

programming. These questions were important for contextualising the developers’

entry points into the social media industry, and for understanding their personal

narratives and interests in programming, especially as they pertained to web

programming and Twitter specifically.

A third set of questions sought to obtain the programmers’ views on software. These

asked them simply to explain the nature of software. In reviewing the literature on

software studies, it quickly became clear that the concept of software is notoriously

difficult to pinpoint. At the risk of asking a foolish or naïve question, I wanted to hear

from the software producers themselves, and let them reflect on the nature of software

and what it means to them. Interestingly, the answers I received differed as greatly as

those to any other question.

A fourth set of questions, sent out to developers in August and September 2010,

specifically addressed the theme of the real-time Web and temporality in relation to

Twitter. After the first round of coding however, APIs and their role in social media,

and the dynamics of the Twitter developer community crystallised as particularly

important and interesting topics. I therefore decided to shift focus of my questions

from the real-time Web to the theme of APIs in the second interview period, in 2011.

While questions concerning the impact and role of APIs were also brought up in

relation to programming practices and software, APIs and the developer ecology

became the core focus of most of the interviews, and were included in some manner

in all the question sets.

The interviews were already fully transcribed and were coded and analysed in

accordance with the grounded theory approach (Glaser and Strauss, 1968). The

 87

coding scheme, comprised of categories and sub-categories, was developed using

open and axial coding.48 As the transcriptions were already quite structured, I decided

to do the coding manually, as opposed to using software. I printed out all the

interviews and began to identify and name phenomena found in the transcripts by

writing notes in the margins. I repeated this process two or three times for each

interview, at different points in time, iteratively refining the codes to comprise a more

stabilised coding scheme. Finally, these axial codes were analysed to identify the core

themes in the data sets. When writing Chapter 8, I frequently went back to the

interviews and carefully chose quotes carefully, in many instances refining the code

labels in their entirety.

Sample of interview questions:

Twitter

• What is your interest in using the Twitter API?
• What kind of projects are you interested in developing using the Twitter API?
• Could you tell me a bit more about the technology behind Twitter? How

would you explain its main technical features?

Programming practice

• What kind of programming skills do you have, or think is needed in web
programming today?

• How did you get into programming?
• In what ways do you think programming and the job of programmers have

changed with the introduction of social media, if at all?
• Could you elaborate on how you go about writing code? What are the typical

steps you take when developing an application using the Twitter API for
example?

Software

• How would you describe software to someone who is not a programmer?
• There is a new academic field called software studies, which tries to study

software from a humanities perspective, as something that has a profound
impact on culture and society. Does it make sense to you to “understand”
software in these terms? What comes to your mind when thinking about the

48 Analysis of data in Grounded Theory methodology follows two or three main stages: open,
axial, and selective coding. Open coding refers to the initial stages of making sense of the
data by naming, labelling, and categorising the data. In axial coding, the data is put together
in new ways by making connections between the categories identified in the open coding.

 88

impact of software on everyday life?
• Some people say that software is simply the same as the source code. Would

you agree, or what in your opinion defines the nature of software?

APIs and community

• How would you describe the impact of APIs and what they have done for
developers and programmers?

• What exactly is an API? How would you define an API?
• To what extent do web programmers interact more with APIs than with

‘backend’ programming?
• I’ve noticed there is a thriving Twitter developer community out there,

especially in the Google group. How important is this community to you?
• How important do you think third-party developers have been to Twitter’s

success?

Table 1 Sample of interview questions

Reflections on using e-mail interviews

The purpose of qualitative interviews is to obtain a more in-depth and nuanced

understanding of the phenomena being studied (Kvale, 1996; Rubin and Rubin, 1995).

Qualitative research interviews can take different forms, from structured to loose and

informal conversations. In my case, conducting more or less structured e-mail

interviews proved to be a purposeful method for gaining a better understanding of

coders and coding practices in the context of social networking sites. As all the

informants recruited were based abroad, mainly in the United States, but also the UK

and other European countries, conducting the interviews online seemed like the most

viable option. When approaching my informants, I quickly learned that e-mail was the

preferred medium for these conversations. Given that my informants were

programmers who often spent a considerable amount of their time in front of the

computer, e-mail was a quick and efficient way to talk/write about their experiences

with code and coding. Conducting the interviews using e-mail allowed participants

more time to think through and reflect upon the issues that were being addressed, and

to tailor the conversations and subsequent e-mails to the interests and previous

answers of the individual informant. Of course, other media could have been used for

the interviews, such as the telephone, video calls through Skype or instant messaging.

The combination of ease, flexibility on behalf of both interviewee and interviewer, the

 89

advantage of e-mails as transcriptions, and the informants’ clear preference for e-mail

provided the main reasons for my choice of e-mail as my method of communication.

It is not always clear that using e-mail to ask a few questions should be considered an

interview, and not for instance a web survey. Following Edgar Burns (2010), who has

written on e-mail interviews as qualitative research, we can say that while a web

survey takes on a more or less standardised format with the same questions sent to a

large number of people, e-mails can better extend the one-off event of a survey, and

be personalised and tailored to the specific background and interests of the informant.

E-mails, in contrast to a web survey, allow for multiple rounds of questions and

follow-ups.

While there are many obvious benefits with using e-mail interviews, there are many

limitations as well. First of all, the quality and length of answers are not always as

‘good’, in the sense that the answers provided can be quite brief. In many cases, I did

not receive as many elaborate answers as I would have wished. While nearly everyone

I contacted got back to me with some kind of response, the length and quality of the

individual answers varied greatly. Sometimes the respondents would answer by

writing only one or two sentences, while others would write several lengthy

paragraphs. In addition, conducting the interviews via e-mail allowed for only a

limited opportunity to turn the interviews in a desired direction. In this kind of

interview context there were no opportunities to interrupt or adequately follow up by

probing for more information during the answering process. While I sent out many

follow up questions, this was not a guarantee that the questions were really answered.

In some cases, the developers would provide lengthy and elaborate answers that were

quite technical in nature, often containing information that could also have been easily

acquired by a regular Internet search. Indeed, some developers answered questions

about technical specifications by simply copy and pasting from a Wikipedia article.

However, as I pointed out earlier, the sample that consists of twenty informants does

not include those respondents, who only answered in a very general or brief manner.

Burns (2010) points out another drawback with using e-mail for interviews. This

pertains to the fact that ‘[e]mail interviews do not provide body language and other

contextual cues for the interviewer’. There is also the potential risk of

miscommunication and misunderstandings, due to the fact that the respondents cannot

ask for instant clarification on the questions posed. As such, conducting e-mail

 90

interviews requires a great deal from the interviewer in terms of how to pose the

questions. The questions need to be understandable, precise, and clear. In cases where

I attempted to ask more complicated questions that were not as straightforward, I

needed to think about how to contextualise them. For example, how do you

contextualise ontological questions about the nature of software without scaring off

the developers, or simply receiving a copy-pasted Wikipedia answer? In some cases, I

started off by providing more context in order to make sure that the respondents had a

better chance to understand what I was trying to get at. For example, because I was

interested in having a conversation about software from the viewpoint of developers, I

introduced one of my questions by providing some general background about the

notion of software studies. Only then could I ask how they felt about software or

would explain it to a non-programmer. Another way to contextualise questions about

the nature of software was to first pose a problem or apparent contradiction and ask

them for their own opinions or solutions. For example, one interesting theme that

emerged was the distinction between source code and software in general. In order to

get the programmers to ponder this distinction, I would pose the question in terms of a

contradiction, and ask them for their own view or opinion on whether software could

be reduced to its source code.

Despite the obvious shortcomings of e-mail as an interview method, I believe using e-

mail to collect information and personal narratives from well-placed sources

(informants) offers an appropriate methodological approach to gain important insight

into the field of study. Especially in terms of interviewing programmers, e-mail turned

out to be a very useful means of communication, as this is a group of people already

very accustomed to communicating electronically. As it turned out, the medium of e-

mail was just the right choice for talking to programmers, as many were most

comfortable with using this written form of communication and appreciated the

flexibility it provided in terms of being able to take one’s time to answer and respond

at their own convenience. Importantly, interviewing informants about their own

thoughts and experiences with programming and software, showed how software

becomes meaningful, how it has the capacity to produce meaning in different

contexts.

 91

Concluding remarks

In the end, doing technography as understood in the context of this dissertation is all

about specifying how sociality is constructed and sustained in and through coded

objects and processes. Technography then, is seen as a methodology appropriate for

studying how technical structures and mechanisms embody the potential for shaping

collective associations and cultural outcomes.

In the next three chapters I turn to the concrete case of Facebook, demonstrating the

usefulness of the technographic approach. I will be concerned with how the software

processes and mechanisms underlying the platform actually work and what the

operational logic of specific protocols and algorithms are, in order to analyse how

these coded architectures can be said to be suggestive of specific ways of assembling

and organizing sociality.

In the next chapter I turn to the ways in which the Facebook platform has changed

over the years, focusing particularly on the technical modes of connectivity manifest

in Facebook’s Open Graph protocol. Through a detailed reading of the specific

affordances of the protocol and the practices it engenders, I will focus on the

technosocial structure of Facebook as an attention apparatus.

 93

Chapter 5. Open Graph protocol: Arranging attention

Facebook is currently the second-most accessed web site in the world.49 Its mission

statement is to help users connect and share with the people in their lives. Facebook is

not just a helping hand though; it is a business that hinges on attracting, capturing, and

keeping attention for the sake of commercial profit. While Facebook certainly enables

connections to be forged by facilitating a space for users to come together and share

the things they care about, it is important to keep in mind that these are

simultaneously engineered connections and spaces of designed experiences (see van

Dijck, 2012). In this first investigation into programmed sociality, it is important to

develop a critical understanding of the coded means and technical mechanisms

through which this connectivity is shaped on Facebook for the purpose of capturing a

certain kind of attention – that of participation.

In this chapter, I develop an understanding of what I call a technicity of attention in

social networking sites. I hold that these sites treat attention not as a property of

human cognition exclusively, but rather as a sociotechnical construct that emerges out

of the governmental power of software. Specifically, I take the Facebook platform as

a case in point, and analyse key components of the Facebook infrastructure, including

its Open Graph protocol and its ranking and aggregation algorithms, as specific

implementations of an ‘attention economy’. Here, my understanding of attention

economy is informed by the etymology of the word economy, as ‘household

management’, in order to illuminate a discussion on the ways in which attention is

organised and managed within a localised mediated context.

My aim is to take a step back from the proliferating anxiety-ridden discourse on

attention and the media, a discourse that has recently emerged as part of the so-called

‘neurological turn’ (see Carr, 2010; Wolf, 2007).50 The use of recent neurological

49 See Alexa.com, last checked April 24, 2012.
50 See Anna Munster’s (2011) ‘Nerves of data: the neurological turn in/against networked
media’ for a good discussion on the neurological turn. Writers like Nicholas Carr have been
quite visible within popular media discourse on the topic of attention during recent years,
presenting a somewhat technologically determinist argument about a loss of concentration
being the result of an increased level of multitasking generated by networked media.

 94

research to justify arguments about an apparent shift in cognitive capacities brought

about by new information technology has recently emerged as a clear tendency among

critical media theorists and philosophers (see Hayles, 2007; Stiegler, 2010). While

these efforts make a considerable contribution to a humanistic understanding of the

interrelation between the brain and behaviour, the micropolitics of power involved in

the media are often sidestepped as an object of analysis in favour of the impetus of

e.g. fMRI scans. In this chapter, I therefore counteract this tendency by focusing on

the specific algorithmic and protocological mechanisms of Facebook, looking at the

ways in which they enable, shape, and induce attention in conjunction with users.

This chapter addresses the capacity of attention not as a type of spectatorship, but

rather as a mode of participation that is subject to a form of ‘governmentality’

(Foucault, 1991). According to Foucault, governmentality refers to the rationalities

that underlie the ‘techniques and procedures for directing human behavior’ (Foucault,

1997: 81). Following work on the ‘technological’ aspects of government (see Lemke,

2001; Miller and Rose, 2008), this chapter provides an account of how Facebook

operates as an implementation of an attention economy directed at governing modes

of participation within the system.

Specific governments may entail different rationalities used to guide the conduct of

people (see Foucault, 2007). Building on this idea, I argue that the technical

rationalities – what I here refer to as technicity – used to govern participation on

Facebook are realised in at least three different ways. These organising principles can

broadly be said to correspond to: 1) an automated, 2) an anticipatory, and 3) a

personalised way of operating the implementation of an attention economy on

Facebook.

My analysis of Facebook focuses on the specific infrastructural arrangement of

participation, as materialised in the Open Graph protocol and underlying algorithms.

To do so, I rely on the technographic approach outlined in the previous chapter. This

involves a reading of the technical inscriptions and affordances involved in the

composition of the Facebook infrastructure. I draw on both specific technical

documents and popular commentary related to the Open Graph protocol and

algorithmic logic of Facebook as a way of grounding the analysis in the specificities

of the software medium itself.

 95

The goal of this chapter is to explore how software, through protocols and algorithms,

has the capacity to govern and manage users. I contend that the concept of technicity

provides the media theorist a way in which to understand how specific material

arrangements such as Facebook enable, capture, and augment awareness and

participation relative to users.

Paying attention to attention

The topic of attention has always been important for media and communication

research. In fact, one may claim that in many ways the field of media studies

developed as a direct consequence of academic concerns over the relations between

media technology and attention. Questions concerning how attention is captured,

formed, and retained have been an important part of media theory since at least the

mode of ‘distraction’ was identified as central to understanding cinema as a mass

cultural art form (Benjamin, 1999; Kracauer, 1995). As a result, attention has been a

key theme in everything from film and television research (see Dayan, 2009;

Newman, 2010) and news and journalism to public relations (Bernay, 1947).51

There is a tendency within media studies to conceptualise attention solely as a faculty

of perception, where attention is more or less reduced to the notion of visual attention

(Wise, 2012:165). This emphasis on perception and visual attention arguably stems

from the ways in which attention is commonly understood in the psychological and

cognitive sense. According to psychologist Harold Pashler:

Two primary themes or aspects characterize the phenomena people allude to
with the term attention: selectivity and capacity limitation […] One is that
conscious perception is always selective. Everyone seems to agree that, at any
given moment, their awareness encompasses only a tiny proportion of the
stimuli impinging on their sensory systems […] The second phenomenon to
which causal usage of “attention” alludes is our limited ability to carry out
various mental operations at the same time’ (1998: 2).

In line with Pashler’s characterisation, attention is widely understood as the process of

selecting information for further mental processing, and/or as a mental capacity that

51 In terms of television research, Michael Newman offers an interesting historical account of
how discourses of attention have played a key role in forming both the agenda for much of
reception studies as well asand had very real implications on the programming practices of
television production. A key concern within the literature identified by Newman, has been the
variability of ‘attention span’ by age.

 96

describes the degree of focus directed at something. As such, it is perhaps not

surprising that discourse on media and attention in the age of the Internet, with its

hyperlinked structure and abundance of available information, has been concerned

with how networked power may lead to a lessening of the cognitive capacity for

directing attention. It is specifically in regard to the Internet that findings from recent

neurological research have been brought to bear, with N. Kathrine Hayles’ claiming

that these show there to be a ‘generational shift in cognitive styles’ between ‘deep’

attention and ‘hyper’ attention (2007: 187).52 The ubiquity of information enabled by

the Internet, coupled with the notion of the brain as a limited information-processing

machine, has furthermore provided the basis for what some scholars have described as

a new type of attention economy (Goldhaber, 1997; Franck, 1998).

The notion of the attention economy has been used to designate the increased

competition for people’s attention in an age of information overload. When

information increases, the attention to make sense of it decreases. Given this kind of

information environment, the fight for consumers and their attention becomes more

critical. As a result of a complex market system where scarcity is not bound to money,

but rather to time and attention, efforts to attract this currency intensify. With a few

notable exceptions (e.g. Lazzarato, 2006; Lanham, 2006), media research on attention

has adopted the prevailing and dominant views on attention as they are articulated

within psychology and neuroscience.

The question lingers, therefore, of how a conceptualisation of attention as endowed

with value, distributed and organised (as ‘the attention economy’) would operate, if

we as media researchers were to start with the medium itself, as opposed to taking our

point of departure in what fMRI scans tell us about the brain. By shifting the focus in

this manner, I do not mean to say that humanities scholars should be unconcerned

with the ongoing developments within cognitive science and psychology. Nor do I

wish to deny that attention should be seen as a property of human cognition. Rather, I

52 Hayles makes the distinction between the two types of attention in the following manner:
‘Deep attention, the cognitive style traditionally associated with the humanities, is
characterized by concentrating on a single object for long periods (say, a novel by Dickens),
ignoring outside stimuli while so engaged, preferring a single information stream, and having
a high tolerance for long focus times. Hyper attention, by contrast, is characterized by
switching focus rapidly between different tasks, preferring multiple information streams,
seeking a high level of stimulation, and having a low tolerance for boredom’ (2007:1).

 97

suggest that something is needed to complement the notion of attention as a purely

cognitive property, and note the lack of an analytical tool that may help us understand

how attention is rooted in and constrained by the medium itself. To fill this gap, I

offer an account of technicity, understood as the ‘productive power of technologies to

make things happen, in conjunction with people’ (Kitchin and Dodge, 2011) and as

the ‘coconstitutive milieu of relations between the human and their technical

supports’ (Crogan and Kennedy, 2009: 109),53 as a means of analysing attention as it

arises out of the software-subject continuum in the context of Facebook.

In this chapter, I will therefore not answer the question of what attention is, but rather

show how software has the capacity produce and instantiate modes of attention,

specific to the environment in which it operates. Importantly, though, the productive

power of technology, as it is signified by the concept of technicity, does not operate in

isolation or as a unidirectional force. It should, rather, be understood as a relational

force. Taking such a perspective allows the theorist to see attention as an emerging

property of sociotechnical relations.

Arranging attention: The case of the Facebook platform

In 2007, Facebook launched the ‘Facebook platform’. Access to valuable user data

was provided, and third-party developers were offered the opportunity to deeply

integrate with the Facebook website. In many ways, the launch of the platform

signalled a first step towards Facebook not merely becoming the most popular online

social networking service, but also as a model for the infrastructure of the social web

itself. By opening up its core to applications, Facebook provided access to what it

calls the social graph – ‘the real connections people have’ (Geminder, 2007). During

the second f8, Facebook’s annual developer convention, in 2008, Facebook

introduced ‘Facebook Connect’, a product that prompts the expansion of users’

Facebook identities to other parts of the web. Facebook Connect made it possible for

users to register on external websites using their Facebook ID. In a telling press-

release entitled ‘Facebook expands power of platform across the web and around the

world’, Facebook Connect was presented as a way to leverage the power of

53 I am not explicitly using technicity in the sense of ‘originary technicity’ as Derrida and
Stiegler do, although the position I am taking with regard to software is sympathetic to the
metaphysical view on the aporetic relationship between humans and technology.

 98

information feeds (Facebook, 2008). By connecting Facebook to external websites,

users’ actions on these websites (provided they had used their Facebook account to

sign in) would subsequently be fed back to Facebook as data.

Subsequently, during the fourth f8 in 2010, Facebook released what Chief Technology

Officer Bret Taylor recently described as the most profound change to their platform

since its launch in 2007 – the Open Graph (Taylor, 2011).54 Designed to facilitate

connections between people and things, Open Graph consists of a protocol, an

application programming interface (API), and social plug-ins, including the now-

pervasive ‘Like’ button. The Open Graph protocol describes a way to build a semantic

map of the Internet. Technically, Open Graph is implemented through RDFa, a data

model for mapping that allows webpage owners and application developers to mark

up human-readable data with machine-readable indicators (see http://ogp.me). For

instance, a website such as the Internet Movie Database (http://www.imdb.com) can

be semantically linked up to Facebook’s core service by adding some metatags into

the html of the imdb site. This mark-up code turns external websites and digital

objects into Facebook graph objects.

The Open Graph protocol allows Facebook to track and process user data across the

web with the use of social plug-ins. These plug-ins function as small ‘hooks’ that

provide meaning to nodes (i.e. webpages, movies, books etc.) that were not

meaningful to Facebook before being linked to the larger infrastructure provided by

Open Graph. With the help of these hooks, all kinds of entities can be given a social

network presence. The purpose of the Open Graph is thus to create links between

various nodes that extend beyond the core site of Facebook.com, whether the link is

established between two users or between a user and a webpage. Importantly, this

map of connections allows the data that flows between actors to be tracked and

processed more easily, since all the data created in and through these articulations is

fed back to Facebook.com. Essentially, Open Graph constitutes a centralised

infrastructure that generates value by decentralising social action. This data-intensive

infrastructure is powered by the implementation of ‘Like’ buttons, which allows for

the registration and tracking of user actions tied to external sites. The ‘Like’ button

54 More information about the Open Graph protocol and its specifications can be found at
http://ogp.me and http://developers.facebook.com/docs/opengraph

 99

thus functions as a storage and transmission device, capturing the attentional data of

user activity.

What happens when a user clicks the ‘Like’ button? First, a connection between two

nodes in the graph is established. In the case of the movie on IMDB, this articulation

occurs between the Facebook node and the movie node. Subsequently, this tiny piece

of interaction is made visible or potentially visible in a variety of ways, and in many

different locations. Let us say that I ‘like’ the movie The Matrix on imdb.com. The

action of liking gets translated into a piece of data on Facebook, where The Matrix is

now archived as one of my favourite movies. In addition, the action of ‘liking’

generates a story on my personal wall saying ‘Taina likes a link’, along with a post of

the actual link and picture of the movie. User actions thus follow the user, as opposed

to the actual webpage on imdb.com, for example. This is important in at least two

ways: it makes it possible to aggregate data about the user, and provides a persistent

link between the user and her favoured concepts, whenever such concepts appear on a

webpage. As Bret Taylor of Facebook suggests, ‘the Like button offers users a

lightweight and consistent way to share the things and topics that interest them’

(2010). Clicking the ‘Like’ button thus signifies approval of something — a

convenient way for users to tell their networks that a particular piece of content is

worth their attention. ‘Liking’ things across the web has thus become an important

and time-efficient way of doing ‘identity work’, an easy way to show who the user is

and what he or she cares about. The fact that ‘liking’ collapses all affects into one

metric tied to the Facebook ID of a particular user, makes it possible to aggregate

valuable data for advertisers, and for Facebook to learn as much about the user as

possible.

In the attention economy of the web as a whole, where user attention is a valuable

commodity due to the vast information and products available (Goldhaber, 1997),

Facebook has become a key actor in the competition for ‘eyeballs’. As Facebook

suggests, ‘the average media site integrated with Facebook (with the ‘Like’ button or

other plug-ins) has seen a 300% increase in referral traffic’ (Sullivan, 2011). A crucial

concept for understanding the idea behind Open Graph is what Facebook refers to as

the social context. ‘Social contexts’ are the people and friends who have already

interacted with a piece of content that a user is interacting with. Through the Open

Graph, Facebook makes it possible for external websites and brands to socially

 100

contextualise the content they display. So when visiting IMDB or another website that

has integrated with the Open Graph, users will be able to see how many people have

liked it or recommended the content, and which of his or her friends have also like it.

Figure 1 Levi's online store. Screen shot from May 9, 2010.

According to Facebook, when social context is provided, the amount of engagement

goes up dramatically (Facebook Engineering, 2011). For example, the jeans brand

Levi’s, one of the first brands to integrate with the Open Graph, has apparently seen a

‘40 times increase in referral traffic from Facebook after implementing the ‘Like’

button in April 2010’ (Sullivan, 2011). In the type of attention economy promoted by

Facebook, the value of information is based on friends. As Gerlitz and Helmond

(2011) have argued, there seems to be a move away from the link economy based on

 101

the authority of links regulated by search engines, to a ‘Like economy’ regulated by

the wisdom of friends. While Facebook has become an important mediator for brands

in the competition for attention, the way Facebook has positioned itself is less about

the quantity of impressions, or ‘eyeballs’ than the apparent ongoing engagement of

recognisable users and their network of friends. I will later return to this notion when

discussing what I argue constitutes a move from a public to a personalised attention

economy.

The Facebook platform constitutes an ‘assemblage’, in the sense that it brings

together various heterogeneous elements to produce and distribute flows of attention

(see Deleuze and Guattari, 1987). The Open Graph protocol, the API, and the ‘Like’

button cannot function effectively independently of each other. Together, however,

these infrastructural and medium-specific elements provide a foundation for the

organisation and measurement of users and their connections. Seen in this way, the

Facebook platform has become an infrastructure that works invisibly in the

background to shape forms of social activity. As Edwards points out, infrastructures

always ‘promote some interests at the expense of others’ (2002: 191). I argue that the

infrastructure of Facebook is built around the logic of creating, capturing, and

processing attention. The entire system hinges on attention in a very specific way.

Facebook not only captures attention in terms of recording already-existing attentional

data embedded in links and clicks, but also creates and ‘interferes’ in the production

of attention by suggesting the types of content that deserve users’ attention.

The most important repercussion of the ‘Like’ button lies in the potential of the ‘like’

action to become visible on other users’ News Feeds. If a user’s action of ‘liking’

something on or off Facebook is algorithmically calculated as relevant, it will appear

in the Facebook News Feeds of some of that user’s friends. Not everything that is

‘liked’ across the web actually makes it on to users’ News Feeds. The sorting

mechanism that ultimately decides what is to be shown on Facebook users’ News

Feeds and when it is to be shown, is the EdgeRank algorithm. Filters have, of course,

long been integral to the management of information and attention through

information technology. The psychologist Herbert Simon, who coined the term

‘attention economy’ in a 1971 paper, suggests that the design goal of information

processing systems should always be to provide users with only the information they

 102

need to know, a principle that in turn emanated from the decision-making under

pressure paradigm of early cognitive simulation (see Crogan, 2011).

This is the programmatic purpose of the EdgeRank algorithm. It selects and ranks the

information that it calculates users need to know. Herein lies the power of the

algorithm in a digitally-mediated culture: to ‘enhance’ the plethora of collected data in

order to ‘identify patterns and trends’, and to use this information to ‘profile, model,

predict and simulate people and situations’ (Kitchin and Dodge, 2011:103). EdgeRank

augments, supports, and governs attention by simulating the cognitive function of

attention as a sense-selecting mechanism. The ‘art of government’ underlying

EdgeRank can be said to hinge on what Rancière has called the ‘distribution of the

sensible […] defining what is visible or not in a common space’ (2004: 12-13).

According to Rancière, ‘the distribution of the sensible reveals who can have a share

in what is common to the community based on what they do and on the time and

space in which this activity is performed’ (2004: 12). Seeing algorithms in this way

points to the ways in which software embodies a politics (see Winner, 1986). Thus,

the politics of algorithms and their governmental power refers to the ways in which

algorithms are ‘making decisions […] about who to deal with and how to deal with

them’ (Beer, 2009: 989). The power of EdgeRank, then, pertains to its gatekeeping

function, it decides what information to present to which user, and in what ways.

As the name suggests, EdgeRank is a ranking algorithm designed to pass judgement

on the relative importance of ‘edges’, understood as the links between two nodes in

the graph. The higher the algorithm ranks a piece of content in terms of significance,

the more visible that shared content becomes (see Tonkelwitz, 2011). Attention can

thus be encoded as information. As users continuously connect with new nodes (i.e.

photos, movies, webpages, other users), novel connections are forged on an ongoing

basis. By updating the social graph – that is, by adding connections within the schema

– all sorts of activity happens on Facebook. When a user comments on a friend’s

photo, for example, the user makes a connection or generates an ‘edge’ from him or

herself to the friend’s photo. Evidently, News Feed only displays a subset of stories

(or edges).

Every time connections are forged, Facebook assigns a value to that ‘edge’, to

determine whether or not it should be displayed in a friend’s News Feed. This value is

based on three main factors: affinity, weight, and time decay (see the next chapter for

 103

a more detailed description on the logic of EdgeRank). These values are assigned to

units of information and the forms of interactions taking place within the auspices of

Facebook, to determine how interesting the story would potentially be for particular

users. For instance, if one user frequently checks another user’s profile, the ‘affinity’

between the former and the latter is ranked higher. This is applied in the calculations

of the algorithm as it generates the first user’s News Feed and makes it more likely

that the second user will feature within that feed. ‘Weight’ refers to the type of ‘edge’,

whether the connection established between two nodes is a ‘like’, a comment on

someone’s photo, or an uploaded video.

Social media marketing firms have suggested that Facebook ‘weighs’ comments as

more substantial than a ‘like’, and that visual media content including photos or

videos is more strongly weighted by the algorithm (Walter, 2011). ‘Time decay’

simply refers to the age of the ‘edge’. As with other modes of attention economy,

such as the curation of search results, Facebook regulates access to information based

on ‘relevance’ metrics that prioritise popularity. However, while the authority of a

link on Google is shaped by the accumulation of inbound links, and as such depends

on public attention, popularity measures such as ‘affinity’ in EdgeRank are dependent

on the programmatic profile of particular users. For instance, if a user does not show

interest in the pictures of a particular Facebook friend, the system will assume that the

user has no interest in this contact at all.

During the f8 conference in September 2011, Facebook introduced further and

significant changes to the platform and the ways in which attention is organised.

These changes included a completely new profile design called the ‘Timeline’; a real-

time feed called ‘Ticker’; an updated version of the Open Graph protocol, with a

greater emphasis on applications; and a new algorithm called ‘GraphRank’,

responsible for managing user interaction with applications. Whereas the 2010

version of the Open Graph allowed for connecting to the rest of the web by ‘liking’ it,

the updated version apparently allows for connecting to ‘anything one wants in any

way one wants’, in the words of Facebook founder Mark Zuckerberg (2011). No

longer confined to ‘liking’ things, Facebook introduced new verbs such as ‘read’,

‘watch’, and ‘listen’ into its logic. This allows users to share the fact that they are

listening to music or reading an article, instead of simply sharing something they

‘like’.

 104

The most significant change, however, lies in what Facebook calls ‘frictionless

sharing’. No longer must users explicitly click the ‘Like’ and ‘Share’ buttons, or copy

and paste links into their status updates. Frictionless sharing refers to authorising a

Facebook ‘app’ only once in order to let it automatically share a user’s interactions

with it every subsequent time he or she ‘reads’, ‘listens’, ‘run’, ‘watches’, ‘cooks’ etc.

using that particular app.

Through ‘Ticker’, the real-time feed on the right-hand column of the Facebook

homepage, users are now able to see a constant stream of information about what their

friends are currently doing on Facebook or with Facebook-connected apps. For

example, as a result of the Open Graph-enabled ‘frictionless sharing’, every time a

user listens to music using the Spotify application (and has authorised the app to

communicate with Facebook) a story is published on Ticker informing that user’s

friends that ‘X is listening to Y’.

With a new emphasis on seamless application integration with the Facebook platform,

new kinds of activities are increasingly given priority and weight on the News Feed.

In order to sift through and organise the proliferating user activity with apps,

Facebook introduced the GraphRank algorithm, which is responsible for measuring

and finding all the ‘interesting patterns’ that emerge from the uses of apps. The

function of GraphRank ‘is to figure out what activity is most interesting’ to a

particular user (Taylor, 2011). Adding to the already heavily-personalised News Feed,

‘GraphRank is designed to give more prominence to engaging activity […]

GraphRank isn’t a global score, but a personalized view of you and your friends’

taste’ (Taylor, 2011). GraphRank is specifically tailored to aggregate app interactions

and display these through various summaries or reports.

While Facebook remains interested in users’ specific interactions with objects,

GraphRank as an attention economy shifts the focus away from a ‘Like’-centric and

conventional object-oriented attention economy towards a trend-centric and

anticipatory attention economy. In order to elaborate on this and the increased

customisation and personalisation of attention, I now turn to a conceptualisation of

‘technicity’ as a means to help frame an understanding of how Facebook’s

infrastructure articulates a specific attention economy.

 105

A technicity of attention

Media technologies play a crucial role in the formation of attention, both enabling and

constraining awareness. As the philosopher Bernard Stiegler suggests: ‘whatever a

given society’s form may be, one of its most distinctive features is the way in which it

forms attention’ (2010: 19). Digital media have profoundly broadened the scope of

awareness in terms of expanding users’ spatiotemporal registers. To speak of the

technicity of attention offers a way to view the ways in which processes and practices

of attention are grounded in a sociotechnical milieu. The concept of technicity has

most prominently been developed in the continental philosophical tradition by Martin

Heidegger, Gilbert Simondon, and Bernard Stiegler respectively. As a result, as James

Ash points out, technicity has at least three meanings: ‘as a persuasive logic for

thinking about the world; as a mode of existence of technical objects; or as an

originary condition for human life itself’ (Ash, 2012: 189).

Technicity becomes a useful concept for an understanding of attention in digital

culture, as it captures the power of articulating technologies and users in ‘localized

assemblages of practices’ (Mackenzie, 2002: 12). Technicity understood as a kind of

‘technical mentality’ (see Massumi, 2009; Simondon, 2009) points to the ways in

which technologies embody ‘mentalities’ or modes of framing the relations between

living and nonliving processes in order to achieve certain ends. Here, I suggest

furthermore that technicity can be thought of as a mode of governmentality that

pertains to technologies. How then can we begin to understand the articulation of

software and users on Facebook as productive of governing attention in particular

ways? I will turn to this question in the remainder of this chapter by focusing on what

I take to be three particular characteristics of the technicity of attention on Facebook:

automated attention capture, a way of managing attention that is anticipatory in

nature, and a move from ‘public’ to ‘personalised’ attention economies.

Automated attention management

Increasingly, the techniques put in place to assign meaningful value to information

operate on the level of what Nigel Thrift (2004, after Clough, 2000) has called the

‘technological unconscious’. This form of unconsciousness, can be understood as the

powerful operations of software putting its mark on the conditions of existence, where

 106

living and nonliving processes are increasingly being programmatically addressed,

correlated, and anticipated in unseen and unknowable ways. This unconsciousness is

however not to be understood as imaginary, but rather in terms of the actual

computational processes that run in the background, beneath and beyond what is

perceivable to users via the interfaces of the computer.

On Facebook, software sits in the background ‘paying attention’ to user activity. It

records, stores, and processes the data, constantly tweaking its models relative to how

the data and hence the graph changes. The ways in which software is increasingly

employed to process data in near real-time in order to ‘distribute the sensible’ -

defining what is visible or not in a common space – can be seen as a mode of

governmentality based on ‘automated management’ (Kitchin and Dodge, 2011).

According to Kitchin and Dodge, automated management is the regulation of people

and objects through processes that are automated, automatic, and autonomous (2011:

85). Faced with an algorithmically-sorted social networking system like Facebook,

users do not merely browse the content that they find interesting; the ‘interesting’

content increasingly finds them.

The development of the Facebook platform, beginning with the ‘Like’ button and

fully actualised with GraphRank, paradoxically makes social media less participatory

through the notion of ‘frictionless sharing’. When the user no longer must explicitly

push buttons, paying attention shifts from an active to a more passive mode. In this

sense, one could argue that the conventional object-oriented way of conceptualising

attention as a cognitive capacity directed at a specific object needs to be rethought, in

an age of digital culture where software is capable of registering massive amounts of

behavioural data ‘without any active involvement, decision to initiate or even

awareness on our part’ (Hansen, 2012: 53). The apparent shift from spectatorship to

participation as a measure of attention need not even be tied to intentional or active

participation as in explicitly clicking a ‘Like’ button. Rather, as the development of

the Open Graph for apps and ‘frictionless sharing’ attests, every potential user action

is turned into an attention signal, marking a shift from an attention economy based on

active/explicit to passive/implicit participation. The new Open Graph protocol creates

an attention economy based on the leveraging of users’ passively-created activity

data. As more and more services become connected to Facebook – through easy-to-

 107

add HTML mark-up, for example – life becomes ever more measurable and thus

governable.

Anticipating attention

Through means of automated management, Facebook is always already oriented

towards the future. As Facebook-engineer Bosworth (2007) suggests, in a rather

anthropomorphic way, the News Feed algorithm sifts

[…] through the enormous volumes of information about our friends on
Facebook and picks just the best pieces to show us. While we eat it is keeping
track of whom we seem to be keeping an eye on recently as well as
remembering whom we have cared about in the past […] it needs the
information to do a better job picking stories because it thrives on people
finding its stories useful and entertaining.

It is this always already anticipatory logic of the decision-making software that

significantly drives the technicity of attention in digital culture.

According to Bernard Stiegler, anticipation is formed through the relationship

between present and past experiences that have been externalised into specific

material forms (2010: 18). The data-driven logic of Facebook makes the platform

what Stiegler terms a ‘mnemotechnic’ – a form of ‘technical remembering’ – that

allows for a mode of government that has the capacity to take into account the

probability of subjects’ actions (see Stiegler, 1998; Lazzarato, 2007). Algorithms are

anticipatory in their very ‘operational logic’ (Wardrip-Fruin, 2009), meaning that

anticipation is inscribed into the very mechanics and rules of the system, as evidenced

by the basic control-flow statement used to set up the calculable pathways. A program

will execute a certain section of code only if certain conditions are met. Otherwise, it

takes an alternative route, which implies that particular future circumstances are

already anticipated by the conditional construct of the if-then statement. The ways in

which algorithms operate is thus reminiscent of what Ben Anderson calls an

‘anticipatory action’, which constitutes a ‘seemingly paradoxical process whereby a

future becomes cause and justification for some form of action in the here and now’

(2010: 778). Importantly, the way in which attention is managed on Facebook is not

just anticipatory, in prompting participation, but rather a form of self-perpetuating

anticipatory action that seeks to realise its own future.

 108

In this sense, the introduction of GraphRank as the rationale for an attention economy

could be seen as a self-fulfilling prophecy, as it seeks to actualise its predictions

through its presentation and mechanisms to reward participation. The GraphRank

algorithm continuously surveys users’ interactions with Facebook-enabled apps in

order to find the most interesting patterns. Once these patterns are found, they are fed

back to users via the News Feed. Consequently, even more users will apparently act in

the way that the algorithm predicts. The operational logic of the Facebook algorithms

thereby works endlessly to produce a desired social order that these algorithms have

themselves predicted in the first place. Attention is both a measure for predicting the

future and something that prevents another future from happening. Every action taken

by users on Facebook or Facebook-connected apps contributes to support of the trend-

centric logic of Facebook. For Facebook, it is not the one song you listened to this

morning on Spotify that is important. What is important is whether you listen to this

song every morning, or how many other songs by the same artist you have listened to.

The aggregate of these individual actions is what is important, as the pattern that

emerges out of repetition and difference is what conditions predictability. At the same

time, users’ various clicks, ‘likes’, and sharing on Facebook inhibit other possible

futures from happening.

Attention is thus used as a mechanism to both predict and inhibit the future,

corresponding to what Lazzarato describes as the ‘actualisation of power relations’

through processes of integration and differentiation (2006: 174). The process of

integration, following Lazzarato, explains how power relations gradually, step-by-

step, become actualised through a logic of aggregation. This, too, is the goal of

GraphRank, which seeks to calculate the trajectory of an object by aggregating bits of

information into larger patterns or tendencies. On the other hand, as Lazzarato points

out, ‘the actualisation of power is not only integration, it is also differentiation: power

relations are exercised to the extent that there is a difference between forces’ (ibid.).

This is the logic of GraphRank: as a direct response to user actions, it gives you more

of what you have already paid attention to, at the expense of difference. This

algorithmic logic is thus subject to a kind of performativity, as a ‘formula that

progressively discovers its world and a world that is put into motion by the formula

describing it’ (Callon, 2007: 320).

 109

From public to personalised attention

In contrast to the discussions of whether Facebook is a public or private sphere, I

suggest that Facebook in many respects installs a ‘community of those that in fact

have nothing in common’ (Lingis, 1994). Although I use this expression in a literal

sense to denote the ways in which the heavy personalisation of Facebook makes every

user an island in and of himself, one could certainly make an argument about the sort

of community of belonging that is stripped of any common sense of identity (a

discussion that has been prominent within political philosophy for some time). In

many ways, it makes sense to conceptualise Facebook not as a community founded on

an idea of a same or shared identity, but rather as the relations formed across multiple

identities that share only the fact that they have nothing in common (see Agamben,

1993; Esposito, 2010). Facebook prides itself on being the world’s largest social

network – a community of friends – however, every user on Facebook is in fact

separated from everyone else. No two News Feeds, profiles, or networks of friends

are alike. As we have seen, EdgeRank and GraphRank are fundamentally geared

towards generating a personalised view, tailored specifically to the ‘likes’ and tastes

of individual users. These algorithms constitute important attention-selection

mechanisms conditioned by user data and the ‘wisdom of friends’. Since liking web

content has been rendered as content for News Feeds by the Open Graph protocol,

friends’ endorsements have become an important factor in shaping what is considered

‘newsworthy’ in the context of Facebook’s algorithmically-curated News Feed.

The ways in which the software works as an algorithmic logic thus have a profound

impact on the governance of visibility and invisibility in digital culture. However, the

logic of this algorithmic curation of information on Facebook does not follow the

principle of public attention associated with the function of media more typically

(Webster, 2011). There is simply no ‘public’ to be addressed, because everything on

Facebook is filtered in terms of the identity of specific users. This is evidenced by the

ways in which EdgeRank changes what it shows to specific users on the News Feed

based on their behaviour. As with any other information filtering and processing

system, EdgeRank works by collapsing bits of information into comparable numbers

to create calculable relations and differences.

However, there is a slight difference between the News Feed as a personalised

attention economy, and other ‘algorithmic cultures’. Whereas a system such as

 110

Amazon.com, for instance, is driven by the logic of users like you – designing user

identity based on how many other people like you have paid attention to a certain

book – the basis of Facebook is that nobody is like me. If everything in Facebook is

tied to the user, the value attached to specific information and forms of interaction is

specifically adapted to the needs, interests, and preferences of the individual. In

anticipation of generating more activity and engagement on the platform, Facebook

customises visibility by measuring and monitoring what are calculated to be

meaningful relationships. Whether we are talking about the Open Graph as an

infrastructure for providing ‘social context’ or the pervasiveness of the ‘Like’ button,

every user action is inevitably ‘glued’ to and associated with friends’ tastes and likes.

After all, as Facebook engineer Bosworth has suggested about the News Feed, it

‘knows who we keep an eye on and who we have cared for in the past’ (2007).

Conclusion: How software makes sense

In this chapter, I have argued that the capacity for attention in digital culture needs to

be understood as a relational construct between users and their technical supports.

Arguably, who or what is paying attention online, and to whom and with what effect

is not easy to detect in an environment of automated decision-making agents.

However, as the notion of governmentality implies, attention governs and is governed

in concrete material contexts and assemblages. Protocols, algorithms, and buttons do

not merely mediate modes of paying attention, but also shape the conditions of the

sensible. The techniques and procedures used to direct users’ conduct and attention on

Facebook involve assigning ranks to different nodes and edges; aggregating data into

meaningful patterns; lowering the barrier for authentication systems in third-party

apps to enable ‘frictionless sharing’; and the marking-up of external webpages so as

to support the automated management of people and objects. An exploration of

technicity thus highlights the ways in which attention emerges from a given

constellation of technical elements and living bodies.

In this chapter, Facebook has been used to examine the ways in which attention is

articulated in a medium-specific context. Deliberately disregarding the current focus

on brain scans in media studies, this chapter has addressed some of the ways in which

attention is organised around ‘technologies of government’. Rather than drawing upon

data from brain scans to support an argument about the co-constitute nature of

 111

attention, I have attempted to ‘scan’ the medium through a reading of the Facebook

infrastructure. In so doing, my speculative scan focused on the development of the

Open Graph protocol and ranking algorithms, demonstrating how attention is

managed by Facebook to propagate a certain social order of continued participation. I

have thereby suggested that there is a need to put greater emphasis on the ways in

which attention is actually put to work, not just rhetorically, as part of popular media

discourse about the media’s effects on our brains, but through an engagement with its

technicity – how software ‘makes sense’,55 how it is productive of new ways of

attending to the world.

The protocological power explored in this chapter, however, is but one important

infrastructural mechanism producing the condition for the sensible and intelligible on

Facebook. Importantly, the Facebook experience is designed and delimited by its

algorithmic architecture, particularly the EdgeRank algorithm, which is responsible

for deciding what content to show users’ as part of the News Feed. In the next chapter

therefore, I will focus explicitly on power of the EdgeRank algorithm, and the ways in

which the algorithm can be said to construct a regime of visibility geared towards the

pursuit of participation. 56

55 ‘Makes sense’ in this context is meant to express the notion that software produces
sensation and awareness, where ‘sense’ is used as a synonym for the senses/sensible and for
the more affective meaning of attentiveness and awareness.
56 Chapter 5 is based on a peer-reviewed article, published in a special issue of Culture
Machine (2012) on ‘Paying Attention', edited by Patrick Crogan and Sam Kinsley. I am
grateful for the editors’ helpful comments on earlier versions of this chapter.

 113

Chapter 6. EdgeRank algorithm: Becoming (in) visible

In the previous chapter I illustrated how the Facebook infrastructure, its protocols and

algorithms, can be seen as a technology of government, geared towards shaping the

conduct of its users. In order to unpick the ways in which users are governed and to

what possible ends, I framed my discussion of the shaping power of communication

infrastructures in relation to attention. Rather than trying to understand Facebook in

terms of attention, my aim was to understand attention from the perspective of the

software. By analysing the various techniques and procedures of the Facebook

platform, specifically in terms of the Open Graph protocol, I was able to point to

some of the ways in which attention is organised and managed by the platform.

Contrary to for example television, with its focus on drawing collective or public

attention towards certain events or situations (see Dayan, 2009), the Facebook

infrastructure is geared towards the construction of personalised attention. The ways

in which the coded systems of Facebook are set out to work, architected and managed,

not merely turns attention into a data shadow of individual users but also enrols users

into active, or should we say passive, producers of attention. In this sense, I argued

that attention, in the medium specific context of Facebook, should not merely be

understood as a form of spectatorship but rather as a form of conduct. As such, the

behaviour of users, their multiple actions of clicking, ‘liking’, commenting etc. are

utilised by the platform as tokens of attention. The attention economy implemented by

Facebook thus follows a data-driven logic, whereby the technical infrastructure,

techniques and procedures guide the user to generate data in a certain way that

subsequently provides the source for the formation of attention – always already

tailored to each specific user.

In this chapter, I want to pick up on the important role that algorithms play in

governing the conditions of the intelligible and sensible on Facebook. While users

feed the software system with raw data, the techniques and procedures to make sense

of it, to navigate, assemble, and make meaningful connections amongst individual

pieces of data is increasingly being delegated to various forms of algorithms. If it is

true that algorithms are increasingly taking over the logic of news editors and content

managers on the Web, how can we begin to understand this kind of algorithmic

intervention into what can be said to constitute one of the most important sites for

 114

news today – Facebook’s News Feed? What are the principles and logics of this

algorithmic form of ‘news’ editing? Whom or what does the algorithm governing

News Feed ‘want’ us to pay attention to?

While attention was used as a way to address the driving force of the Facebook

platform as an infrastructure in the previous chapter, visibility forms the main focus of

this chapter. Indeed, one of the core functionalities of the media pertains to making

something or someone visible. As Marshall McLuhan argued, media are precisely the

‘extensions of man’ because they aid humans to see and sense things that they

otherwise could not. Sound for instance is made visible by the wings of an airplane

when they break the sound barrier (McLuhan 1964: 24)57.

In this sense, visibility becomes a medium-specific property, where different media

have the capacity to produce different modalities of visibility. Of course it can be

argued that making sound visible presumably was not the main intention of the

airplane designers. But as we are reminded of, technologies have a politics. They are

designed to do certain things, according to a specific logic. Sometimes the effects that

technologies generate are intentional, and sometimes they are not. As I will show,

although technologies are not deterministic in the sense that everything is calculated

upfront, generating intentional consequences, they are heavily controlled and

regulated. This, of course, is one of the key operating principles of the media industry,

controlling who or what is made visible to whom, when.

The regime of visibility associated with Web 2.0 connects to the notion of

empowerment, as social media are commonly thought of as having greatly expanded

the chances of users and citizens to have their say, of being recognised as subjects

with a voice. On the other hand, ubiquitous computing with increased deployment of

surveillance technologies has often been associated with a sense of disempowerment.

The increased surveillance potential of new media technologies are often depicted

negatively. However, surveillance all too quickly gets equated with the capacity of

technology to map, track and store biometric and affective data for the controlling of

bodies in time and space. This chapter argues for the importance of revisiting the idea

of the technical and architectural organisation of power as proposed in the writings of

57 Remember that for McLuhan media should be understood quite broadly, so everything that
somehow extends the human nervous system needs to be considered a medium.

 115

Foucault, by highlighting an analytics of visibility, rather than merely transposing the

concept of surveillance onto new objects. Becoming visible, or being granted

visibility is a highly contested game of power in which the media play a crucial role.

While Foucault did not connect his theory of visibility specifically to the media, the

framework he developed in Discipline and Punish (1977) helps illuminate the ways in

which the media participate in configuring the visible as oscillating between what can

and should be seen, and what should not and cannot be seen, between who can and

cannot see whom. Examining new modalities of visibility thus becomes a question of

how rather than what it is made visible, through which specific politics of

arrangement, architecture and designs.

In this his chapter I investigate the notion of mediated and constructed visibility

through a close reading of the News Feed and its underlying operational logic, the

EdgeRank algorithm. I argue that Foucault’s idea of an architectural constructed

regime of visibility as exemplified in the figure of the Panopticon makes for a useful

analytical and conceptual framework for understanding the ways in which the sensible

is governed in social networking sites. The intention is not so much to offer a definite

account of the role played by Facebook in capturing the world in code, but to open

avenues for reflection on the new conditions through which visibility is constructed

by algorithms online. Especially in a state of pervasive visuality we need to take a step

back and ask not for the visual manifestations and representations of bodies in code,

but of the actual configuration of such manifestations in and through the media, that is

how visibility is constructed, through which technical measures?58

To explore the ways in which algorithmic architectures dynamically constitute certain

forms of social practice around the pursuit of visibility, the first section of this chapter

gives an account of how previous research has conceptualised the issue of mediated

visibilities. I then move to the case study, providing a detailed description of the

known operational principles of the EdgeRank algorithm. The third section revisits

the Foucauldian analytics of visibility, arguing that the algorithmically defined

58 It seems that media studies has been mostly preoccupied with the issue of visuality
understood as ‘modes of expression’, rather than visibility understood as something that goes
beyond the merely visual, as something that designates a general mode of awareness about
someone or something (Daniel Dayan’s work is instructive in this regard).

 116

visibility constructed through EdgeRank functions as a reversal of the regime

instantiated by the Panopticon.

Media visibility

The media represent key mechanisms in the sorting, classification and ranking of the

social field. In the context of the mass media, selecting and granting visibility has

been described extensively using terms such as framing (Entman, 1993; Goffman,

1974), gatekeeping (Lewin, 1947) and agenda setting (McCombs and Shaw, 1972)59.

The media industry is built around parameters of visibility. Without wanting to

illuminate, to expose or inform publics about something previously unknown, there is

no apparent need for the media. As John B. Thompson points out,

Visibility is shaped by the distinctive properties of communication media, by a
range of social and technical considerations (such as camera angles, editing
processes and organizational interests and priorities) and by the new types of
interaction that these media make possible (2005: 35-36)

Whereas print could be managed by political powers to control visibility in a desired

way, the auditory quality of radio allowed for a distinct kind of intimacy. Later,

television with the use of camera angles and close-up frames could render even the

most detailed facial expressions and mannerisms of public personas (Thompson,

2005). Different media forms thus instigate different forms of visibility. The printing

press is a carefully managed space of visibility organised through human editorial

practices. Radio constructs a form of visibility that operates through sound rather than

images, exemplifying the notion that visibility should not be confused with visuality.

 Television, like film, exemplifies the various technical means of arranging and

organising attention. It does so by constructing certain regimes of visibility through

the deployment of angles, shots, frames, time and spatial techniques. While

Thompson is more concerned with mediated visibility, in terms of its social

repercussions on political life, his genealogy of different media forms and the kinds of

59 One of the core news values indeed is about the showing or exposing something or
someone. Investigative journalism is all about exposure and making previous invisible aspects
come to light. Framing allows for showing in a specific way and thus act as representational
devices. Frames are lenses through which interpretation and meaning-making can occur. In
the context of mass media, the concept of frames has been widely used to describe the ways
in which the media contribute in constructing social phenomena by encouraging certain ways
of interpreting while silencing alternative interpretations.

 117

visibility they instigate also support a view on visibility as medium specific. To use

Marshall McLuhan’s famous truism, the medium is the message, which is also to say

that it is the medium that make the messages visible in the first place, governing

visibility in a certain direction. Media as selection, sorting and framing mechanisms,

ultimately point to the fact that media visibilities are never neutral; it is always about

making the content meaningful.

With the advent of the Internet and the Web, the medium specificity of the

architectural organisation of visibility, i.e. what can be seen and heard, to a large

extent became a question of software. Many scholars have rightfully observed that the

Internet has indeed contributed to new forms of visibilities; for instance, in facilitating

the visibility of ‘counter publics’ exemplified in anti-globalization and the Zapatistas

movements (Dahlberg, 2007) and the visibility of everyday citizenship (Bakardjieva,

2009). However, inquiries into mediated visibilities need to go beyond the visual and

linguistic signification in accounting for ways of appearing online. Following a

software sensitive approach usefully directs attention to the ways in which software

functions as a sociotechnical actor capable of influencing users’ practices and

experiences on the Web. As David Beer has argued, Web 2.0 is fundamentally

governed by the various sorting and filtering algorithms determining what the user

encounters online (2009).

The chief actor in the digital ranking game of relevance is Google with its PageRank

algorithm, developed by Sergey Brin and Larry Page in 1998. PageRank effectively

ranks and shows websites based on an underlying assumption about relevance and

importance. As Graham and Zook point out,

PageRank was modeled after academic citation literature as an objective means
to measure the worth of a webpage, i.e. it assumes that the number of hyperlinks
to a webpage provide some indication of the importance or quality of that page
(2007:1323).

PageRank determines the importance of a webpage for a given search term based on

the amount of incoming links by other websites and their perceived authority. While

PageRank is still the major technological component used to ‘give back exactly what

the user wants’, there are now over 200 different signals or factors that determine the

 118

importance of a webpage (Google, 2012)60. Importantly, PageRank and the other

signals used to algorithmically determine importance are constantly changed and

tweaked. Importance is by no means a static measure as what counts as important is

dynamically defined in relation to the quality and amount of content coming online

and indexed by Google. According to Google, they make roughly 500 changes to their

search algorithm in a typical year (Google, 2011a). For example, one major

algorithmic change in Google was the so-called ‘Panda’ update implemented in

February 2011, where variables were changed to find and give more presence to

‘high-quality’ sites (see Google, 2011b). Panda was particularly noticeable as the

update affected some 12 per cent of all Google queries. Moreover, in November 2011,

another quite noticeable update was implemented, an algorithmic response to the

proliferation of real-time data flows. Attempting to provide users with ‘fresher’

results, the algorithmic update resulted in 35 per cent of the searches being impacted

(see Google 2011c).

These automated and calculable processes have largely influenced the ways in which

people access information on the Web. Algorithms, such as the ones deployed by

Google, fundamentally shape knowledge and meaning making practices online. It has

become a truism that what does not show up on Google does not exist. The power to

determine the logics through which information about a given topic gets on top of

search results allows the algorithms to control and regulate the political economy of

the Web. A combination of linguistic cues in the keywords of search strings along

with patterns of query reformulations, relationships with html metadata tags, link

structure and authoritativeness of the sites constitute key elements of the technical and

social architecture of how search engines work (Granka 2010). As Pasquinelli (2009)

notes, PageRank has become the most important source of visibility on the Web

today. While Google and PageRank have received a lot of scholarly attention (see for

instance Hagittai, 2007; Hellsten et al., 2006; Introna and Nissenbaum, 2000) the

other powerful source of visibility on the Web today – EdgeRank – has to my

knowledge hardly been critically scrutinised at all.

60 As Google explains in their about section on technology: ‘Co-founder Larry Page once
described the “perfect search engine” as something that “understands exactly what you mean
and gives you back exactly what you want.” We can’t claim that Google delivers on that
vision 100 per cent today, but we’re always working on new technologies aimed at bringing
all of Google closer to that ideal’ (accessed March 12, 2012)

 119

Studying algorithms

Despite society’s increasing dependency on algorithms, they ‘are rarely discussed in

themselves and rarely attended to as objects of analysis’ (Mackenzie, 2007:93). But

what does it mean to critically scrutinise the EdgeRank algorithm? How to critique

Google, Amazon, Facebook, or someone else's algorithms when they remain black-

boxed and essentially ‘wired shut’ (Gillespie, 2007)? As I have already touched upon,

I suggest that we may approach algorithms by means of what Bogost (2007) refers to

a ‘white-box analysis’, by being attentive to the ‘operational logic’ of the algorithm.

This implies a reading of the software with only a partial knowledge of the underlying

code that produces the effects. Although we cannot always actually get under the

bonnet of algorithms and computational processes, we might begin our investigations

by asking the following: what are algorithms suggestive of? What kind of

assumptions do they seem to embody? Which possibilities do they open and close?

What kind of connections are being constructed, and how are these associations are

made? To what do they seem to draw attention? What are they supposed to assist

users (both human and nonhuman) in accomplishing? What is their vision of

relevance and importance? And finally, what do the algorithms set out to govern?

As the world is increasingly infused with algorithms, there is a need to better

understand the politics they embody. Algorithms give the impression of neutrality, yet

they are carefully crafted and put into play by engineers. As Tarleton Gillespie argues

– using the Twitter trend algorithm as a case in point – there is often a tension

between what we expect algorithms to be and what they in fact are (2011). For

example, despite the fact that the Occupy Wall Street protests received so much media

coverage and provoked so many Twitter discussions, why were not the widely-known

hashtags #occupywallstreet and #occupyboston ‘trending’? Importantly, ‘the

algorithms that define what is “trending” or what is “hot” or what is “most popular”

are not simple measures, they are carefully designed to capture something that the site

providers want to capture’ (Gillespie, 2011). The connections, recommendations,

suggestions, and associations made by algorithms need to be addressed by questioning

why certain items are related to each other, and to what possible end. Such an

endeavour is in line with with a Foucauldian-inspired diagrammatics of power. It is

precisely because algorithms are associative devices, with the capacity to construct

 120

certain connections at the expense of others, that there is a need to question the logics

underlying their articulations.

Algorithms, then, embody and carry with them assumptions about the situations on

which they are supposed to act. A software-sensitive approach to the question of

mediated visibility thus needs to take into consideration the embodied assumptions

and values of the algorithms at play. In PageRank, there are a number of assumptions

built into the algorithm – about the nature of relevance, for instance. As we will see,

EdgeRank too carries with it a number of assumptions about what constitutes

relevancy, or ‘interestingness’, as Facebook calls it. Although displaying interesting

content on users’ News Feeds remains the end goal, the steps that go into determining

the path to this goal depends on a plethora of different factors. Unlike the Google

maps example provided in Chapter 3, where measuring the distance between point A

and B constitutes more or less stable variables (as geographical points do not change),

interestingness in Facebook cannot be measured as easily.

Algorithmic visibility

News Feed and the EdgeRank algorithm

At the time of writing this, Facebook’s primary feature is the ‘News Feed’, forming

part of the first page that users access when logging on to the site. As of August 2011,

the ‘News Feed’ makes up the centre column of a user’s home page and represents a

constantly updating list of stories from ‘friends’ and ‘Pages’ that a user has a

relationship with on Facebook61. The News Feed is further divided into two different

versions, the default ‘Top News’ and the ‘Most Recent’ feed. According to the

Facebook help centre, the difference between the two is that ‘Top News aggregates

the most interesting content that your friends are posting, while the Most Recent filter

shows you all the actions your friends are making in real-time’ (Facebook 2011,

emphasis added).

61
	 Facebook changed its interface and News Feed design on 20 September 2011. This chapter

is based on a study of the News Feed before these changes occurred and refers to how the
feeds worked and looked between April-August, 2011.
	

 121

Akin to the algorithmic logic of search engines, Facebook deploys an automated and

predetermined selection mechanism to establish relevancy (here conceptualised as

most interesting), ultimately demarcating the field of visibility for that media space.

As Kincaid (2010) explains, every item that shows up in your News Feed is

considered an ‘Object’ (i.e. status update, uploaded picture). Every interaction with

the Object, for instance through a ‘Like’ or a Comment, creates what Facebook calls

an ‘Edge’. EdgeRank, the algorithmic editorial voice of Facebook, determines what is

shown on users’ Top News by drawing on different factors relating to the Edges. At

least three different components are key to determining the rank of an Edge:

(1) Affinity. This pertains to the nature of the relationship between the

viewing user and the item’s creator. Here the amount and nature of the

interaction between two users is measured. Sending a friend a private message

or checking his or her profile on a frequent basis heightens the users’ affinity

score to that particular friend.

(2) Weight. Each Edge is given a specific ‘weight’, depending on how popular

or important Facebook considers it to be. Therefore, not every Edge gets

weighted the same. Some types of interactions are considered more important

than others. Arguably, a Comment has more importance than a Like.

(3) Time decay. Probably the most intuitive component relates to the recency

or freshness of the Edge. Older Edges are considered less important than new

ones.

EdgeRank is calculated based on the multiplication of the Affinity, Weight and Time

Decay scores for each Edge (see figure 2). Becoming visible on the News Feed,

appearing in that semi-public space, depends on a set of inscribed assumptions on

what constitutes relevant or newsworthy stories. How many friends are commenting

on a certain piece of content, who posted the content, and what type of content it is

(e.g. photo, video, or status update) are just some of the factors at work in determining

the rank of an Edge. The higher the rank, the more likely it will be that an Object

appears in the user’s feed (Kincaid, 2010).

 122

Figure 2 EdgeRank formula

The algorithm is based on the assumption that users are not equally connected to their

friends. Some friends thus ‘count more’ than others. The friends that count more are

those with whom a user interacts with on a frequent basis, or on a more ‘intimate’

level; say by communicating with a friend via ‘Chat’ rather than on the ‘Wall’. This

point becomes especially evident when considering the most recent changes to the

operational logic of the News Feed. During February 2011, Facebook changed the

settings and options for the ‘Most Recent’ feed. Two basic settings were

implemented, a seemingly unfiltered one, showing stories from ‘All of your friends

and pages’ as well as a filtered one displaying only ‘Friends and pages you interact

with most’.

 123

Figure 3 The most recent feed settings with default set to 'Friends and pages you interact with the

most'. Screen short from February 25, 2011.

It was not so much the fact that Facebook changed the News Feed feature yet again

that brought about much public outcry on the matter, but the fact that Facebook had

changed the default setting of the Most Recent feed to ‘Friends and pages you interact

with most’ so that the feed most users believed to represent every update from every

friend in a real-time stream, in fact became an edited one, much like the Top News

filter. Perhaps what caused the most controversy was the fact that this change in

default occurred without Facebook notifying its users’ about it. The option to change

the default was tucked away at the bottom of a drop down menu next to the ‘Most

Recent’ tab in the ‘Edit Options’ tab (see figure 3). This change in default caused a lot

of content to be hidden away from users without their knowledge. Users who had

noticed the change would ask about where all their friends had gone, warning others

about the fact that the changes ‘mean that you are not seeing everything that you

should be seeing’ (Hull, 2011). There are at least two interesting assumptions

apparent in this. First, there is an idea about what should be visible. Second, there is a

notion that Facebook acts ideologically in that the platform is hiding something from

people’s view. But what is it that you should be able to see? Clearly, there is a

discrepancy between what users think they should be seeing and what Facebook

thinks users should be seeing.

The EdgeRank algorithm is furthermore geared towards highlighting certain types of

Edges while downgrading others, where the type of interaction becomes a decisive

factor. Chatting with someone on ‘Facebook Chat’ presumably counts more than

 124

‘liking’ someone’s post. There is a certain circular logic embedded in the algorithm.

In order for you to like or comment on a friend’s photo or status update they have to

be visible to you in the first place. Any time a user interacts with an Edge, it increases

his or her affinity towards the Edge-creator. For instance, we can assume that

comments outweigh ‘likes’ as they require more individual effort. The weight given

to certain types of Edges, moreover, is likely to depend on the internal incentives that

Facebook may have at any given point in time. If the objective for Facebook is to

promote a certain product, for instance the ‘Questions’ feature or ‘Places’,

interactions with these features will probably be ranked higher than others. This is

understandable. News Feed is the best way to increase awareness of new (or

neglected) features and functionalities.

The algorithm is not merely modelled on a set of pre-existing cultural assumptions but

also on anticipated or future-oriented assumptions about valuable and profitable

interactions that are ultimately geared towards commercial and monetary purposes.

As I argued in the previous chapter, the anticipatory logic inherent in the functioning

of these algorithms are not primarily geared towards confirming some pre-existing

cultural logic but rather to model a mode of government that has the capacity to take

into account the probability of subjects’ actions. By looking at the ways in which the

specificities of the Facebook platform, exemplified here through the EdgeRank

algorithm, enables and constrains ways of becoming visible online, we can begin to

rethink regimes of visibility that hinge on and operate through algorithmic

architectures. In doing so this chapter expands on Foucault’s idea of ‘panopticism’ as

it provides a useful and still highly relevant analytics for understanding the ways in

which visibility is technologically structured.

Rethinking regimes of visibility

Panopticism

Foucault operates with two basic notions of how things are made visible or shown,

exemplified in his notion of the spectacle and surveillance. It is not just a matter of

what is seen in a given historical context, but what can be seen and how the realm of

the seeable and sayable is constructed in order to make a particular dispositif of

visibility appear. As Thompson (2005: 39) explains, whereas the spectacle designates

 125

a regime of visibility in which a small number of subjects are made visible to many,

surveillance mechanisms, on the other hand, are connected from the 16th century

onwards to the emergence of disciplinary societies, in which the visibility of the many

is being assured by a small number of subjects. Surveillance as a mode of visibility

was famously exemplified in the architectural arrangement of the Panopticon.

Adapting the figure of the Panopticon from Jeremy Bentham, Foucault sought to

explain the regulatory force of power inherent in specific architectural compositions.

The idea of the Panopticon designates an architectural vision of a prison, a circular

building with an observation tower in the middle. The principle of this architectural

vision is thus to render the subject, whether ‘a madman, a patient, a condemned man,

a worker or a schoolboy’ (Foucault, 1977:200), in a state of permanent visibility. As

Foucault explains: ‘All that is needed, then, is to place a supervisor in a central tower’

in order to create the impression that someone might be watching (ibid.). More so

than actually placing a prison guard in the tower, the purpose of the architectural

design is to create a space where one can never be certain whether one is being

watched or not. As Foucault elaborates:

Hence the major effect of the Panopticon: to induce in the inmate a state of
conscious and permanent visibility that assures the automatic functioning of
power. So to arrange things that the surveillance is permanent in its effects, even
if it is discontinuous in its action; that the perfection of power should tend to
render its actual exercise unnecessary; that this architectural apparatus should be
a machine for creating and sustaining a power relation independent of the
person who exercises it; in short, that the inmates should be caught up in a
power situation of which they are themselves the bearers (1977:201).

The uncertainty associated with the possibility of always being watched, inevitably

leads the subject to adjust his or her behaviour accordingly, so as to behave as if they

indeed would be permanently observed. Surveillance thus signifies a state of

permanent visibility. The novelty of Foucault’s notion of visibility, constructed by the

specificities of the historical contingent architectural apparatus, lies precisely in

highlighting the technical organisation of power. As Foucault points out, the

Panopticon is not a dream building: ‘it is the diagram of a mechanism of power

reduced to its ideal form […] it is in fact a figure of political technology’ (Foucault,

1977:205). Power, we may recall, ‘has its principle not so much in a person as in a

certain concerted distribution of bodies, surfaces, lights, gazes; in an arrangement

whose internal mechanisms produce the relation in which individuals are caught up’

 126

(Foucault, 1977:202). By highlighting the diagrammatic function of panoptic

surveillance, Foucault provides a forceful analytical framework for understanding

different modalities of visibility and the mechanisms by which it is being arranged.

As Rajchman points out in his discussion of Foucault: ‘Architecture helps ”visualize”

power in other ways than simply manifesting it. It is not simply a matter of what a

building shows ”symbolically” or “semiotically”, but also of what it makes visible

about us and within us’ (1988: 103). Conceiving of visibility as an organisation of

power in both a negative and a positive sense, Foucault shows that ‘spaces are

designed to make things seeable, and seeable in a specific way’ (Rajchman, 1988).

Prisons, hospitals and social networking sites are essentially spaces of ‘constructed

visibility’. The realm of visibility created by the panoptic architecture did not work

primarily through a certain iconography, nor a visual semiotic regime, but first and

foremost through the technical structuring of a way of being, implementing an

awareness or attentiveness to the constant possibility of inspection. To highlight

visibility as a system, a diagram, is to highlight the ‘distribution of individuals in

relation to one another, of hierarchical organization, of dispositions of centres and

channels of power’ (Foucault, 1977:205). It is precisely this notion of a material or

technical structuring of visibility that seems especially interesting and relevant in

terms of new media. The spaces designed by the (im)material conditions of the

software are similarly designed to make things visible, and thus knowable in a

specific way.

Threat of invisibility

The mode of visibility at play in Facebook, as exemplified by the News Feed and its

EdgeRank algorithm differs from that of disciplinary societies in one particularly

interesting way. The technical architecture of the Panopticon makes sure that the

uncertainty felt by the threat of permanent visibility is inscribed into the subject, who

subsequently adjusts its behaviours. While one of the premises of the panoptic

diagram pertains to even distribution of visibility, in which each individual is

subjected to the same level of possible inspection, the News Feed does not treat

individuals equally. There is no perceivable centralised inspector that monitors and

casts everybody under the same permanent gaze. In Facebook there is not so much a

‘threat of visibility’ as there is a ‘threat of invisibility’ that seems to govern the

 127

actions of its subjects. The problem is not the possibility of constantly being observed,

but the possibility of constantly disappearing, of not being considered important

enough. In order to appear, to become visible, one needs to follow a certain platform

logic embedded in the architecture of Facebook.

There is now a whole industry being built around so-called ‘News Feed Optimisation’

akin to the more established variant, search engine optimisation. Marketers, media

strategists, PR firms all have advice on how to boost a brand’s visibility on Facebook.

A search for ‘EdgeRank’ on Google reveals that the first twenty returns are almost

entirely by social networking marketing or otherwise e-commerce related businesses.

While many individual users may not be aware of the algorithmic politics behind the

News Feed, this has become one of the main concerns for businesses and

organisations that want to reach their desired audience. According a market report:

’Making it to that News Feed is crucial. No matter how interesting a brand’s content

program, visibility is required to get users to interact with it’ (Shahani et al., 2011: 2).

Similarly, Taylor suggests that: ‘Facebook’s EdgeRank holds all power of visibility’

(2011).

The threat of invisibility should be understood both literally and symbolically.

Whereas the architectural form of the Panopticon installs a regime of visibility

whereby ‘one is totally seen, without ever seeing’ (Foucault, 1977:202), the

algorithmic arrangements in Facebook install visibility in a much more unstable

fashion: one is never totally seen or particularly deprived of a seeing capacity. As is

the case in the Panopticon, the individual Facebook users can be said to occupy

equally confined spaces. Like the carefully and equally designed prison cells, the user

profile represents a schemata that ‘provide fixed positions and permit circulation’

(Foucault, 1977:148). Just as with the concrete machines (i.e. military, prisons,

hospitals) described by Foucault, it is not the actual individual that counts in

Facebook. This is why spaces are designed in such a way as to make individuals

interchangeable. The generic template structure of Facebook’s user profiles provide

not so much a space for specific individuals but a space that makes the structured

organisation of individuals’ data easier and more manageable. The system, then, does

not particularly care for the individual user as much as it thrives on the decomposition

and recomposition of the data that they provide. However, whereas the architecture of

the Panopticon makes all inmates equally subject to permanent visibility, EdgeRank

 128

does not treat subjects equally, it prioritises some above others. Whereas visibility, as

a consequence of the panoptic arrangement, is abundant and experienced more like a

threat imposed from outside powers, visibility in the Facebook system arguably works

the opposite way. The algorithmic architecture of EdgeRank does not automatically

impose visibility on all subjects. Visibility is not something ubiquitous, but rather

something scarce.

In order to see how many of the Most Recent posts actually made it to the Top News I

conducted an experiment of what could be considered a process of ‘reversed

engineering’ (see Chapter 4). Over the course of several months (March-September,

2011) I used my own personal Facebook profile to compare the contents of the Top

News to that of the Most Recent. The most intensive investigation took place during

April, 2011 where I did the comparison a couple of times a week and took screen

shots of the entire Top News feed and manually counted the posts in the Most Recent

feed. I took the oldest story published in the Top News and compared it to the amount

of stories published in the Most Recent feed up to the same time stamp.

On a randomly selected day in April 2011, this amounted to 280 stories/updates

published on the Most Recent feed, as opposed to 45 posts appearing in the Top News

feed within the same timeframe. At first glance, only 16 per cent of the possible

stories seem to have made it to the Top News. As time decay is one of the three

known factors of EdgeRank, it is safe to assume that there is a higher probability of

making it into the Top News the closer to real-time the story is published. In fact, my

experiment showed that if a story/update was published within the last three hours,

there was between 40 to 50 per cent chance of getting onto the Top News. In addition

to selecting from the total amount of updates generated by friends from the real-time

stream, Top News also displays its own tailored news stories that are not displayed in

the Most Recent feed. These stories I call communication stories, as they construct a

story out of two friends’ recent communicative interaction (see figure 4).

	

 129

	

Figure 4 Communication stories. Screen shot from September 20, 2011.

Communication stories in Facebook typically take the form of ‘X commented on Y’s

photo’ or ‘X likes Y’s link’. Taking these tailored stories into the equation, a better

estimate for the 45/280 ratio would be a mere 12 per cent chance of getting in the Top

News. No matter how meticulous the counting and comparing between the two feeds,

the exact percentage of stories making it to the Top News remains somewhat obscure.

Like Google’s PageRank the exact workings and logics of EdgeRank includes more

factors than what is publicly known. While Affinity, Weight and Time Decay are key

components of the algorithm structuring the regime of visibility in News Feed, it is

safe to assume that other factors will affect the ranking and selection of Edges as well.

What becomes apparent is that algorithms, especially those working at the heart of

‘data driven’ companies like Facebook and Google, occupy a peculiar epistemological

position where some components are known while others are necessarily obscured.

Algorithms are fundamentally relational, in the sense that they depend on some kind

of external input (data) in order to function. Algorithms do not just represent a rigid,

pre-programmed structure, understood as ‘recipes or sets of steps expressed in

 130

flowcharts, code or pseudocode’ (Mackenzie, 2006: 43). They are also fluid,

adaptable and mutable. This means that EdgeRank is not something that merely acts

upon users’ from above, but rather that power arises from its interrelationships with

users. How EdgeRank will process the data that I provide, therefore, fundamentally

also depends on me, as well as on my relationships with my ‘friends’. For instance,

Top News dynamically updates depending on how many times I visit Facebook,

which makes it difficult to make a general claim about the percentage of stories

making it to the Top News. On a random day in September 2011 I compared the same

Top News feed before and after checking the Most Recent feed, which at that time

counted over 300 new posts62. What I found was a change of about 34 per cent in

stories displayed between the two instances of checking Top News63. After having

checked the Most Recent feed then, 16 of the 47 posts in the Top News feed had

immediately changed.

The quite noticeable change in stories displayed can be explained by referring back to

the workings of EdgeRank. In the first round of checking my Top News, EdgeRank

seemed to put more emphasis on the ‘time decay’ mechanism knowing that it had

been a while since I had last logged in to Facebook. After checking the Most Recent

feed however, Facebook ‘knew’ I was ‘up to date’ again, replacing 16 of the previous

posts with ones that EdgeRank had calculated to apparently be of greater ‘interest’ to

me. All the 16 new stories displayed in the second round of checking had been posted

between 12-23 hours from the time of checking and were either of the

‘communication story’ type or stories that had generated several Likes and Comments

by others. While the algorithmic architecture works dynamically, thereby making

analysis of its workings difficult, we can treat them as a particular way of framing the

environments they work upon (Mackenzie, 2007). We may thus say that EdgeRank,

acting as a gatekeeper of user-generated content, demarcates visibility as something

that cannot be taken for granted. The uncertainty connected to the level of visibility

62 The Most recent feed used to have a counter next to it indicating the amount of new stories
that had been posted and published by a user’s Facebook connections since the last time they
had checked the feed. The counter only went as far as 300 new posts, so any amount above
the limit would just be indicated as ‘+300’. Usually, my most recent feed would reach this
limit only after one or two days of not checking.
63 In September 2011 I did this kind of comparison between my Top News feed before and
after checking the Most Recent a couple of times and every time there was a considerable
change in stories displayed between the first and second time of checking.

 131

and constant possibility of ‘disappearing’ in relation to the ‘variable ontology’ of

software, frames visibility as something quite exclusive. Becoming visible on the

default News Feed is thus constructed as something to aspire to, rather than feel

threatened by.

Visibility as a reward for interaction

In Facebook becoming visible is to be selected by the algorithm. Inscribed into the

algorithmic logic of the default News Feed is the idea that visibility functions as a

reward, rather than as punishment, as is the case with Foucault’s notion of

panopticism. A different Top News sample from the experiment reveals the

following: of 42 posts displayed, only three of the stories published by my ‘friends’

came without any form of interaction by others (that is, without any Likes or

Comments). Eleven stories published were by pages that I had liked, none of which

had generated more than one ‘like’. Out of the remaining friend stories, 15 were status

updates with comments and/or ‘likes’, and 10 were of the tailored type where friends

had either commented or ‘liked’ someone’s uploaded photo, video or shared link. My

Top News was filled with stories that obviously signify engagement and interaction.

Although distribution of the specific types of stories published varied over the course

of the two months, stories without significant interaction seemed to be filtered out.

The fact that there were almost no stories by friends that prevail on the Top News

without any form of engagement by others strengthens the impression about the

algorithmic bias towards making those stories that signify engagement more visible

than those that do not.

As already mentioned, Top News displays its own tailored stories that do not appear

in the Most Recent feed. The months’ worth of tracking my Top News showed a

significant favouring of the form ‘X commented on Y’s photo’ followed by ‘X likes

Y’s photo’. This suggests that photos are an important currency for getting on the Top

News, as are friends’ interactions with these photos. In fact, Facebook is now the

largest photo-sharing site on the Web, which it arguably would not have been without

making interactions with ‘friends’ photos a particularly salient and visible form of

social activity. Most of these types of stories are characterised by having many others,

friends or friends of friends, also commenting or ‘liking’ the post. Of all the 45 stories

published on my Top News another day in April 2011, 17 were communication

 132

stories. What most of these 17 communication stories had in common was a high

degree of interaction. For example, a typical story would say: ‘Anna commented on

Claire’s photo’ along with ‘11 people like this’ and ‘View all 14 comments’. Not only

does Facebook tailor specific stories for the Top News feed, these stories also receive

a significant amount of visibility as opposed to other types of Edges. On average,

communication stories made up a third of my entire Top News, with variations

between 24 and 40 per cent. Since, on average, a third of the Top News stories do not

appear in the Most Recent feed, the amount of stories making it into the Top News are

even less than originally thought. While there is a higher chance of getting into the

Top News if the post was published within the past three hours, continuously

interacting on Facebook seems to be a better bet for becoming visible.

Participatory subjectivity

The threat of invisibility on Facebook, then, is not merely a symbolical phenomenon,

but also literally quite real. While the regime of visibility created by Facebook may

differ from the one Foucault described in terms of surveillance, understood as

imposing a state of permanent visibility, discipline is still part of the new

diagrammatic mechanisms. While it has become commonplace to argue for the

transition of a disciplinary society into a control society after the post-industrial fact

described by Deleuze (1992), I do not see a necessary contradiction between the

disciplinary diagram and software-mediated spaces. Discipline simply refers to a

diagram that operates by making the subject the ‘principle of (its) own subjection’

(Foucault, 1977:203). Discipline denotes a type of power that economizes its

functioning by making subjects responsible for their own behaviour. As such,

‘discipline 'makes' individuals; it is the specific technique of a power that regards

individuals both as objects and as instruments of its exercise’ (Foucault, 1977:170). It

imposes a particular conduct on a particular human multiplicity (Deleuze, 2006: 29).

It is important here to highlight that Foucault developed the notion of disciplinary

power in order to account for the duality of power and subjectivation – effectuated by

‘training’ subjects to think and behave in certain ways and thus to become the

principle of their own regulation of conduct. Through the means of correct training,

subjects are governed so as to reach their full potentiality as useful individuals

(Foucault, 1977:212). Foucault identified three techniques of correct training;

 133

hierarchical observation, normalising judgement and the examination. In this sense we

could say that EdgeRank exercises a form of disciplinary power as dicipline in

Foucault’s words, ‘fixes; it arrests or regulates movements; it clears up confusion; it

dissipates compact groupings of individuals wandering about the country in

unpredictable ways; it establishes calculated distributions’ (1977: 219).

For Facebook, a useful individual is the one who participates, communicates and

interacts. The participatory subject evidently produced by the algorithmic mechanisms

in Facebook follows a similar logic to those techniques of correct training at work in

sustaining disciplinary power. First, the very real possibility of becoming obsolete

inscribed by the ‘threat of invisibility’ arguably constitutes a desire to participate.

Here we can see the double logic inherent in Foucault’s understanding of power, as

both constraining and enabling. While visibility is constrained by the failure to

conform to the inherent logics of participation, visibility is also produced and enabled

by the same logic. As Foucault asserts: ‘What is specific to the disciplinary penality is

non-observance, that which does not measure up to the rule, that departs from it’

(1977: 178). Not conforming to the rules set out by the architectural program is thus

punishable. That is, not participating on Facebook will get you punished by making

you invisible.

Secondly, making it appear as if everybody is participating and communicating by

emphasising those stories that generate a lot of comments and likes provides an

incentive to like or comment as well. Simulation creates an impression, and it is

precisely the power of impressions that Foucault thought was a driving force in the

governing of the self. As Hoffman elaborating on Foucault’s notion of disciplinary

power explains: ‘Disciplinary power judges according to the norm. He depicts the

norm as a standard of behaviour that allows for the measurement of forms of

behaviour as “normal” or “abnormal”’ (2011: 32). By creating the impression that

everybody participates, Facebook simultaneously suggests that participation is the

norm. Normalisation, according to Foucault, created a ‘whole range of degrees of

normality indicating membership of a homogeneous social body but also playing a

part in classification, hierarchization and the distribution of rank’ (1977:184).

EdgeRank, by functioning as a disciplinary technique, create subjects that endlessly

modify their behaviour to approximate the normal. Because interaction functions as a

 134

measure for interestingness, practices of liking, commenting and participation become

processes through which the subject may approximate this desired normality.

Thirdly, the participatory subject created by the algorithm hinges on an underlying

idea of popularity. Displaying Edges with a high degree of interaction clearly

remediates some well-known cultural assumptions and mass media logics – popularity

fosters further popularity. There is thus a circular logic to the way in which visibility

is organised on Facebook. Being popular enhances the probability of becoming visible

and thus increasing the probability of generating even more interaction. Being

confronted with communication stories that encourage the user to ‘view all 14

comments’, ‘view all 9 comments’, and acknowledge that ‘Christina and 7 others like

this’ enhances the impression that visibility is granted to the popular. EdgeRank by

emphasising the perceived popularity of Edges, also reinforces a regime of visibility

that runs counter to much of the celebratory Web 2.0 discourse focusing on

democratisation and empowerment. While Facebook is certainly a space that allows

for participation, the software suggests that some forms of participation are more

desirable than others, where desirability can be mapped in the specific mechanisms of

visibility, as I have suggested throughout this chapter.

Conclusion

Given the 800 million Facebook users who get affected by the ways in which

algorithmic automated processes decide whether their content deserves to get on the

‘top’, it is surprising how little attention the infrastructures of Web 2.0 have received

by media scholars at large. Taking up David Beer’s call for the need to explore and

describe ‘power through the algorithm’ (2009: 999), I have examined Facebook’s

EdgeRank as a form of disciplinary diagram, ultimately engaged in the material

structuring of visibility. Drawing upon Foucault’s architectural framework as a way to

analyse the ways in which the Facebook space is ‘designed to make things seeable,

and seeable in a specific’ way (Rajchman, 1988), this chapter has argued that

mediated spaces are never neutral with regards to the construction of specific regimes

of visibility. Space, as Kitchin and Dodge argue, is constantly brought into being as

an incomplete solution to an ongoing relational problem (2011:71). This is also

reminiscent of algorithms as ‘proposed solutions to problems’ (Mackenzie 2006:46).

Algorithms, like space, are ontogenetic – in becoming - simply because the problems

 135

that require a solution continuously change. While the problem of showing the most

‘interesting’ content remains, what constitutes interestingness depends on the given

context, as I have shown in my discussion of EdgeRank. This ontogenetic nature or

the ‘variable ontology’ of software and algorithms constitute an argument for an

ongoing research commitment to platforms like Facebook and its sociotechnical

components. Facebook is never finished. As scholars we need to be vary and attentive

to the ways in which our research objects change in an ongoing fashion. Many of the

characteristics associated with disciplinary power described by Foucault, such as the

function of enclosure, creation of self-control and the training of human multiplicity,

are apt characterisations of the kind of enclosed architecture of Facebook and the

subtle demands for participation and interaction. However if we follow Foucault in

his understanding of surveillance as a form of ‘permanent visibility’, then, this notion

fails to capture the algorithmic logic of creating modalities of visibility that are not

permanent but temporary, not equally imposed on everyone and oscillating between

appearing and disappearing.

While it is true that Foucault described organisations of power within a rather fixed

technological and architectural form, the idea that architectural plans structurally

impose visibility does not seem to come in conflict with the unstable and changing

arrangements characteristic of new media. On the contrary, with reference to

Foucault’s concept of panopticism, the aim of this chapter has been to argue for the

usefulness of applying an analytics of visibility to (im)material architectures.

Following Foucault’s assertion that ‘the Panopticon must be understood as a

generalizable model of functioning; a way of defining power in terms of the everyday

life of men’ (1977:205), I think that a diagrammatic understanding EdgeRank

provides a constructive entry point for investigating how different regimes of

visibilities materialise. 64

64 An earlier version of Chapter 6 has been published as ‘Want to be on the top? Algorithmic
power and the threat of invisibility on Facebook’ (2012), in New Media & Society, 14 (7):
1164–1180.

 137

Chapter 7. Managed relationships: Assembling friendship

In this chapter I will continue my investigations into programmed sociality by

including and expanding on the kinds of actors involved in producing new forms of

sociality. Whereas the previous chapter concentrated exclusively on the power

articulated through EdgeRank, this chapter takes a broader range of software actors

into account to explore the powerful subjectifying effects that software gives rise to. I

showed how the regime of visibility established on Facebook hinges on a form of

algorithmic power that meter out which information is highlighted and overlooked,

which associations are made or unmade, which resources are ranked high or low. I

argued that EdgeRank contributes to the production of a form of participatory

subjectivity that is subject to a compulsion to popularity generated by the algorithm.

Participation on Facebook, I argued, can be understood in terms of the fear of

becoming obsolete, what I called the ‘threat of invisibility’. This chapter seeks to

further explore the contexts, workings, and implications of algorithms and other

software processes by way of critically investigating the dynamics of ‘friending’, of

self-other relations and the collective associations formed by human and non-human

entities. In doing so, this chapter outlines the ways in which Facebook is organised

and structured around sociality, which the platform conceptualises as ‘friendship’. Not

only is friendship the name given to the social connections between users on

Facebook, the individual subject is fundamentally addressed and positioned as friend.

The immense popularity of Facebook in recent years has been echoed by much

academic research investigating issues of friendship on social networking sites (see

for instance Lewis and West, 2009; Tang, 2010; Vallor, 2011). Most research,

however, remains user-focused, investigating friendship as a pre-existing social

category transposed into the realm of social networking sites. Yet, the configuration

of friendship online is fundamentally technologically-driven and commercially

motivated. Investigating the meaning of friendship in social networking sites therefore

needs to include a critical understanding of the various technocultural processes

(Langlois, forthcoming) shaping sociality online. Everything from setting up a profile

on Facebook, connecting with other users and maintaining a network of friends

requires an intimate relation with the software platform itself. Algorithms assist users

in finding friends, supposedly ‘know’ user preferences and habits so that ones

 138

‘important’ friends can be made more visible, help users ‘remember’ people from the

past and prompt users to take certain communicative and relational actions. As van

Dijck points out, ‘what is important to understand about social network sites is how

they activate relational impulses’ (2012: 161). Not only is it important to understand

that relationships are activated online, but also how they are being activated. By

whom, for what purpose, according to what mechanisms? Understanding the contours

of close social relationships is not just important from a general sociological point of

view. How users in engaging with social relations online simultaneously closely

interact with the machine, importantly illuminates the sociotechnical dynamics of

programmed sociality.

Social networking sites are essentially designed and programmable spaces that

encourage the user to carry out specific actions. This chapter addresses the

sociotechnical ways in which Facebook wants friendships to be activated. The aim is

to examine the specific mode of friendship produced in and through the Facebook

‘assemblage’. Taking the position that technology is not neutral, I argue that one must

look at the specific ways in which sociality is wrapped in code, processed by

algorithms, and afforded by various software features and functionalities. Here I

specifically draw on perspectives from ANT and assemblage theory (see Chapter 2)

that open up a space for seeing the range of actors involved in shaping sociality

online, as well as the various processes and materialities at play in configuring how

users are made to relate to themselves and others as friends.

Taking Facebook as a case study, this chapter focuses specifically on the role played

by different software actors in the configurations of friendship online. As Facebook

on a material level is software, its structural conditioning of friendship can be

understood by paying attention to the materiality of cultural expressions that are

embedded within various software processes, algorithms, and protocols. Part of the

argument thus involves questioning the traditional view of friendship as something

that occurs between two human beings. Contrary to the notion that ‘friendship clearly

exists as a relation between individuals’ (Webb, 2003: 138), what I want to argue is

that friendship on Facebook exists as a relation between multiple actors, not only

human individuals, importantly involving algorithmic and commercial relations of

forces. As already implied, users do not only forge connections with ‘friends’ via

online platforms; the platforms themselves also contribute to the creation of these

 139

social connections. Thus, as I will show in an examination of the Facebook platform,

a plethora of actors, including non-humans, compete in defining the nature and

meaning of friendship today: what it is, can, and should be, for whom and between

whom. The question then, is how we understand the form of sociality called

friendship, if we allow for a broader range of actors to play a decisive role in defining

and forming these relationships? As we will see, developing an understanding of the

sociotechnical dimension of friendship necessarily also entails paying attention to the

apparent disconnect between established definitions of friendship and Facebook

‘friending’.

However, rather than engaging with the existing polemics of whether ‘Facebook

friends’ is good and bad, or whether we are dealing with real or unreal friendship (see

Briggle, 2008; Cocking and Matthews, 2001), this chapter asks for the specific mode

of friendship constituted and reinforced by the software platform that is Facebook. I

propose the concept of ‘algorithmic friendship’ as a way of understanding the ways

in which algorithms and software have become active participants in our networked

lives and information ecosystems, forming the ways in which users are made to relate

to self and others. This chapter is structured as follows: first I briefly revisit some of

the existing research on friendship online, before commenting on the kind of

analytical perspective used to understanding the difference that non-human actors

play in configuring friendship on Facebook. Although much of this theoretical

framework was detailed in chapter 2, I think it is useful to remind the reader of some

of the important insights from actor-network theory and assemblage theory in order to

help frame the subsequent analysis and discussion of friendship.

The main part of the chapter looks at the different elements of friendship on Facebook

by focusing on the role played by software actors in processes of initiating,

maintaining, and performing friendship. The purpose is to show how sociality online

needs to be understood on its own technocultural terms, meaning that social relations

online cannot merely be understood from an ‘offline’ perspective. By being attentive

to the intervention of algorithms and various software features we can begin to see

how sociality online is not something that exists outside of software, but rather how

software always already participates in its configuration.

 140

Revisiting friendship online

There have been numerous accounts during the last decade on the nature of digital

connections, interpersonal relations and the quality of life online. This emphasis on

the social nature of media use is not at all surprising given the fact that friendship in

many ways constitutes the guts of social media, so to speak. That is, the very concept

of social media implies the production and performance of friendship. Issues that have

been widely addressed within new media research on friendship online include: the

qualitative differences between offline and online friendships (Buote et al., 2009;

Parks and Roberts, 1998), the meaning of friendship in social networking sites (boyd,

2006; Lewis and West, 2009), impression management and interpersonal

communication (Tong et al., 2008; Lüders, 2009) and social capital (Ellison et al.,

2007). Internet research prior to social media (before 2004 roughly) fostered much

research on the quality of online friendships, producing statements such as, ‘Though

we think internet “friendship” is quite inferior to non-virtual friendship, we do not

think that it is necessarily bad in itself, and indeed for some people it clearly provides

an important good’ (Cocking and Matthews, 2001:224).

With the rise of social networking sites, the rather gloomy accounts of inferior online

friendships set against the more truthful and genuine ‘real-life’ friendships lost some

of its grips, as research showed that what had been taken as a radical disconnect in

fact complemented each other. Especially the scholarship of danah boyd and her

ethnographic work on teenagers and social networking sites, showed how most online

friendships have an offline counterpart, meaning that people tend to become friends

with people online with whom they are already have an offline connection with (as

opposed to establish new friendships) (boyd 2006). As such, ‘online and offline are

not separate worlds—they are simply different settings in which to gather with friends

and peers’ (boyd, 2010). Boyd also makes a distinction between ‘friends’ and

‘Friends’, where the latter refers to the more loosely defined friendships on social

networking sites. Because these sites conflate the range of possible social relations to

the category of friend only, users end up having hundreds of ‘Friends’ without

necessarily adopting the traditional meaning of the term. According to boyd, users

simply override the term ‘Friend’ to make room for a variety of different relationships

(2006:4).

Social media and especially Facebook have altered the ways in which friendships are

 141

performed and the practices surrounding friendship. As documented by boyd (2010),

new friendship-driven practices are not just shaped by the social, cultural, and

economic conditions that surround people, but are inherently configured by the

technology supporting and underlying these practices. Take the concept of ‘friend

lists’ for instance. As boyd points out,

One of the ways in which social media alter friendship practices is through the
forced—and often public—articulation of social connections. From instant
messaging “buddy lists” to the public listing of “Friends” on social network
sites, teens are regularly forced to list their connections as part of social media
participation. The dynamics surrounding this can directly affect friendship
practices (2010:93-94)

Boyd describes the important, but often overlooked, interconnection between software

features and the culture and social practices that surrounds it. As many writers of

software studies have pointed out, analysis of contemporary culture needs to pay more

attention to the various software features and functionalities and the kinds of practices

that the software afford in understanding how culture works in software society

(Lovink, 2007; Manovich, 2011). While the introduction of ‘friend lists’ as an

organising feature of social networking sites may seem banal at first sight, the ways in

which such technical affordances articulate new modes of sociality needs to be

questioned. What is implied by the fact that millions of young people all of a sudden

become accustomed to sorting their social connections in publicly displayed lists?

Why do these lists automatically come with counters that keep track of the number of

friends? And why does the Facebook user not have a choice to turn off the number

counter as part of the software settings? The kind of sociality enabled and produced

by social networking sites arguably needs to be critically scrutinised along these lines

if we are to make sense of these new kind of technocultural practices.

It can be argued that young people growing up these days barely remember a time

without the concept of sending out so-called ‘friend requests’, ‘poking’ or ‘linking’

their friends status updates on Facebook. What we need to keep in mind, though, is

the arbitrariness and constructedness of such functionalities and features. Not very

long ago these software functionalities did not exist, now they are part of the cultural

mainstream. As Lovink reminds us, the more people are online, ‘the more important it

is to understand that the technical architecture of the tools we use is shaping our social

experiences’ (2007: 214). Boyd (2010) uses the example of the MySpace feature ‘Top

 142

Friends’ to highlight the often quite curious and forced ways of governing usage

practices, in this case to decide and showcase who their actual close friends are. While

MySpace might have designed the feature to make it easier for users to keep track of

their friends, the meaning and implications it has for users might become quite the

opposite, complicating matters and turning these online spaces into sites of ‘social

drama’. As boyd points out, ‘the Top Friends feature is a good example of how

structural aspects of software can force articulations that do not map well to how

offline social behavior works’ (2010:103).

While boyd importantly puts the power of software on the social media research

agenda, I am not aware of any studies that have tried to understand the production of

friendship by focusing on the structural aspects of software and boyd’s focus remains

largely focused on the ethnographic and user side of things. In this chapter I therefore

want to take up the challenge of trying to understand friendship from a software

studies perspective. Rather than drawing on users self-accounts like boyd, this chapter

seeks to question the kind of sociality structured by software by way of comparing it

to traditional held conceptions of friendship.

Assemblage as an analytical framework

In order to critically investigate the nature of friendship on Facebook, one must also

investigate Facebook itself. Facebook is not just a simple website or social

networking platform, a blank canvas upon which sociality is allowed to take place.

Rather, as website and platform, Facebook constitutes an assemblage of various

relations and actors, including people, technology, software processes, social

practices, and values. This view of the Facebook platform as a sociotechnical entity,

or assemblage, resulting from heterogeneous relations between a diverse set of actors,

is one that builds on a relational account of the human-technology dyad. The concept

of assemblage usefully points towards the ways in which reality and its specific

entities are, above all, compositions of diverse elements that when put together have

the capacity to act (see Deleuze and Guattari, 1987). The concept of agency

underlying the analytical framework surrounding friendship used here echoes ANT

(see Latour, 2005), in that everyone and everything can be an actor, as long as the

action influences or provokes an action by someone or something else. The critical

approach employed does not attempt to debunk previously held conceptions of

 143

friendship online, but rather examines the ways in which friendship is being

assembled in specific ways.

For my purposes, framing Facebook as an assemblage helps viewing the platform as a

‘process, an ongoing organizing of multiplicities, of relations between elements and

forces, that produces affects’ (Coonfield, 2006: 290). This is to say that Facebook, by

organising heterogeneous relations in a specific way, constitutes a productive force: it

makes new relations possible. The concern is not so much with what the assemblage

is, but rather with what it can do, and what it is capable of.

Here I draw on Foucault’s conceptualisation of power as productive, and particularly

the notion that power is productive of certain ways of becoming a subject (Foucault,

1982). In rather subtle ways, buried underneath the signifying surfaces of the

computer interface, embodied in abstract protocols, written in calculable documents

and wired materials, software engages in processes of subjectivation. Seen this way,

Facebook constitutes a platform for the production of ‘computer-aided subjectivity’

(Guattari, 1989: 133). With regards to new media, a critical understanding of the

production of subjectivity as fundamentally intertwined in technical and institutional

mechanisms (Foucault, 1982; Guattari, 1996: 197) provides a necessary framework

for considering programmed sociality in and through social networking sites. Seeing

friendship as an assemblage provides a lens through which the power of software to

produce new modalities of subjectivation can be analysed. Thus, what is of

importance here is to be open to the diverse range of actors and relations that come

together to make something called friendship meaningful. How does the ‘machine’

operate to produce a distinct form of friendship? That is, how is friendship articulated

within the software-subject assemblage of Facebook?

Software-generated friendship

This chapter focuses on exploring the relationships between software and users, that

is, on questioning how the friend as a social category with a specific field of cultural

values, norms and practices is configured in and through software. In the following, I

will explore some of the features and experiences that define the process of software-

assisted subjectivation in Facebook, as manifest in the specific way in which

friendship is established. The various friendship experiences discussed below are not

 144

meant as an exclusive list of human-machine becomings in and through Facebook.

Rather the different steps and stages, including the registration process, the making of

a profile, finding friends, as well as initiating, maintaining, and performing friendship

should be read as various ways in which friendship becomes infused and augmented

by software. In the process of experimenting with the various software features and

functionalities related to Facebook friendship, my observations are based on my own

personal Facebook profile registered on my real name, as well as a dummy profile

that I set up in order to trace the Facebook-experience from the start. The dummy

profile was created on April 1, 2011 in order to record the various steps and ongoing

efforts made by Facebook to turn the user ‘Carola Andrea’ into a friend and active

participant of the platform. I will begin my examination of ‘algorithmic friendship’ on

Facebook by starting with what happens once a user registers and constructs his or her

user profile.

One of the first things I did with the dummy profile ‘Carola Andrea’ was to add some

friends. Thus I asked ten of my own friends to add ‘Carola Andrea’ as their Facebook

friend. Facebook immediately took what little information they had about Carola and

her new friends to help her fill out her profile (see figure 5). As such Carola was

encouraged to take her friend Georg Kjøll’s example to expand her profile.

Figure 5 Facebook welcome. Screen shot April 1, 2011.

 145

Upon registering on Facebook, the user is instantly faced with the imperative to add

friends. Compared to what can be referred to as a Aristotelian conception of

friendship, as something rather precious that one cannot have with many people at

once (Aristotle, 2004: 168), Facebook promotes the total opposite. One of the first

suggested steps in the sign up process is to connect one’s e-mail account with the new

Facebook account, in order to allow for the synchronisation of existing contacts. In

many cases the software already knows the new user. Based on the logic of the

database, there is a great chance that Facebook already has some data stored related to

the new user. With over 800 million Facebook users one might in fact exist on the

platform by virtue of others having provided data about you, whether knowingly or

unknowingly. Although one might think that ones Facebook-existence starts with

setting up a profile, most users are ‘ghosts in the machine’ just waiting to come alive.

This ghostly existence may for instance take the form of being ‘tagged’ in photos

uploaded on Facebook by others, or ‘checked into’ places with others. Once a user has

confirmed his existence by signing in, he is prompted to start filling in the template of

the personal profile.

The profile is illustrative of promoting what Lisa Nakamura has described as ‘menu

driven identities’ (2002). Nakamura discusses the logic of online forms that give little

room for constructing identity in other ways than those already defined by the system.

A menu driven identity, according to Nakamura, is a form of stereotype, making it

easier to categorise, classify and sort people. As much as these stereotypes may have

worrisome social, cultural and political implications (Nakamura discusses this in the

context of race), the template driven identity promoted by Facebook and other social

networking sites has a much more goal oriented purpose. Users’ identities need to be

defined within a fixed set of standards in order to be compatible with the algorithmic

logic driving these software systems. If users could freely choose for themselves who

and what they wish to say about themselves, there would be no real comparable or

compatible data for the algorithms to process.

As anyone who has tried signing up on Facebook without adding friends can attest to,

what drives Facebook are the friendships forged between users. How friendships are

forged depends primarily on two separate, but interrelated, aspects, findability and

compatibility. That is, how accessible and findable are you, and how compatible are

you as a friend to others and vice versa. Default and privacy settings are important

 146

features in regulating the desired flow of connectivity facilitated by the database of

‘friends’. Users may choose and customise their privacy settings on Facebook,

indicating and regulating the amount, nature and access to specific types of personal

information. The platform itself configures personal profiles for connection by setting

the default in the basic privacy settings of users personal profiles to ‘everyone’. The

privacy settings explicitly state that changing the defaults will ‘prevent you from

connecting with your friends’; conversely by keeping the default you will ‘help’ your

friends from all spheres and passages of life ‘to find you’. These privacy and default

settings demarcate Facebook as a friend-collecting tool, geared towards optimising

the friend recommendation algorithms for social graph enhancement.

Friending

One important mechanism for finding friends is the ‘People you may know’ (PYMK)

feature that operates on a ‘friend of a friend approach’ (Chen et al., 2009). Friend of a

friend (FOAF) is a common algorithmic technique for modelling friend

recommendations online. This algorithm is based on the idea that if Anna is a friend

of Tina and Alice is a friend of Tina, Anna could be Alice’s friend too. As researchers

on the data mining team of MySpace tellingly declared: ‘Similar to real life, finding

good friends is not easy without the help of good recommendations’ (Moricz et al.,

2010:999). A good and potential friend, according to the FOAF algorithm, is one that

already shares a friend with you. Thus, the probability for someone to be

recommended as a friend to another user increases the more friends these two people

have in common, conceptualised in the attribute ‘mutual friends’. Whereas most

philosophical accounts of friendship view shared activity as the basis for friendship

(Helm 2010), Facebook can be argued to put shared friends at the centre of friendship

formation. The deployment of ‘mutual friends’ as a compatibility measure is clearly

an important rhetorical strategy used in Facebook to suggest and amplify friendship

initiations. Mutual friend counts appear on many different levels throughout the

system. For instance, one encounters mutual friend displays whenever one goes to a

friends’ user profile, whenever one hovers over a friends’ hyperlinked name with the

mouse and whenever one receives a ‘friend request’. Within the PYMK feature these

mutual friends arguably play a decisive role in signifying compatibility for

friendships.

 147

Figure 6 People you may know. Screen shot from November 18, 2011.

Along with the smiling faces or otherwise flattering visual self-presentations manifest

in the profile pictures, the mutual friend count functions as an implicit argument for

why it makes sense for a user to add the other as a friend. Here we may begin to see

the subtle ways in which algorithms can be considered actors in the sense that they

prompt action, do things, or in Latour’s sense: ‘make a difference’ (2005:154).

Finding friends and forging connections is made easier with the help of algorithms.

How many friends you have in common is used as the primary measure for friend

compatibility. Once a user has found a certain number of existing friends and added

them to their network, being on the platform becomes more meaningful.

It is again, interesting to note how the number of friends constitutes the basis for

‘leading a good life’ on the Facebook platform, in stark contrast to the Aristotelian

idea of human flourishing realised through ‘virtue friendship’, where genuine

friendship is about quality not quantity and loving the friend for the friend’s own sake

(Aristotle, 2004). On Facebook, the most direct way apparently realizing a ‘good life’,

or meaningful existence, goes through the accumulation and number of friends. This

is the law of network effects upon which social networking sites hinge. The more

people are using it, the more useful it gets.

 148

While the probability for someone to be recommended as a friend to another user by

the algorithm increases the more friends these two people have in common, the

number of ‘mutual friends’ also increases the probability of users accepting friend

requests – even by strangers. In order to test the PYMK feature with the ‘Carola

Andrea’ profile, I conducted a small experiment in ‘friending’ (adding people to ones

network). On November 9, 2011, Carola, the dummy profile I set up, sent out friend

requests to 40 random and unknown Facebook users (20 female and 20 male). The

names were chosen using common American and Canadian female and male first

names and the most common surnames. Facebook was then searched for these

common anglophone names, and a friend requests were sent to the user who figured

on the top of the list. After three days, six out of 20 people had accepted my friend

request. After about five days, 13 users, or 32 per cent, had accepted my friend

request.

On November 14, 2011, I sent out new friend requests, this time to friends of Carola’s

new friends. I used the PYMK tool to select two friends of the first seven people who

had initially accepted Carola’s friend requests, as these were the ones that the PYMK

algorithm was geared towards. Selecting one random female and one random male

friend of each of these initial seven friends, altogether 14 new friends requests were

sent out saying we had ‘1 mutual friend’. After a few days 10 out of 14 people, or 71

per cent had accepted my friend request. Finally I sent out 10 new friend requests on

November 21, 2011, again using the PYMK tool. This time I selected one person who

had both the first set of accepted friend and the second set of accepted friend in

common, so that the friend request would say ‘2 mutual friends’. All of these 10

people I sent a friend request to accepted it after a few days. Though the number in

my study was small, it is possible to claim that the mutual friend indicator indeed

increases the chance of positive ‘friending’. While 1/3 of people accepted without a

mutual friend, more than 2/3 accepted with only one mutual friend, and in this case

everyone accepted with two mutual friends. It is also interesting to note how, out of a

total 33 people who accepted Carola’s friend request, only 6 decided to ‘unfriend’

her.65

65 Only 1 user out of the initial 40 sent Carola a private message asking if they actually knew
each other. I responded to this user telling her that I in fact was a researcher who wanted to
see how users respond to friend requests and to test the PYMK tool. I used the opportunity to

 149

Performing friendship

How does the platform orchestrate friendships once formed? What possibilities for

developing and performing friendship does the software offer? There are two

principle features designed for engaging in practices of friendship on Facebook - the

personal profile and the News Feed. Algorithmically driven, the News Feed displays

an edited view of what one’s friends are up to in an order of calculated importance,

with the most important updates on top of the feed. The mechanisms at work in

displaying the most interesting news about a user’s friends and their actions, as I have

already discussed in the previous chapters, are the EdgeRank and the GraphRank

algorithms. Whereas EdgeRank passes judgement on the importance of every

interaction related to the Facebook platform, Graph Rank, as will be recalled is a sub-

set of EdgeRank geared specifically towards aggregating meaningful patterns out of

users’ interactions with applications. Every action and interaction connected to

Facebook, be it a status update, comment on someone’s photo, or ‘like button’

clicked, may become a story on someone’s News Feed. Not every action, however, is

of equal importance, nor is every friend for that matter. As such, algorithms are key to

sorting the amount of data produced on the platform at any given time and to

organising it into a meaningful stream of information for the respective user.

Everything and everyone that shows up in the News Feed have already gone through a

selection process guided by the EdgeRank algorithm, which essentially decides

‘which of the things your friends say should show up in your News Feed’ (Madrigal,

2010). Friendships on Facebook are continuously measured, examined, and

augmented by the software. EdgeRank does not just decide which stories should show

up, but also which friends. As such, ‘the secret-sauce algorithm is able to mystifyingly

keep that dude from high school from continuously popping up in your timeline’

(Blue, 2010). The power of the algorithm becomes apparent in its capacity to make

certain people more visible than others. Thus we might say that the underlying

software always already intervenes in the practices of friendship by selecting which

friends a user should pay attention to.

ash her about her personal policy towards accepting friend requests on Facebook. Her
response: ‘I always check if the person has mutual friends’.

 150

The power of EdgeRank lies not just in its capacity to define certain regimes of

visibility in terms of assigning greater weight to edges that generate a higher degree of

user participation. The productive power of algorithms also becomes suggestive of

how friendships in their ideal form should be performed. As such, Facebook

conditions the range of possibilities and modes of becoming a friend as governed by

algorithmic forms of visibility, configuring the ways in which friendships are allowed

to unfold within the boundaries of the platform.

One of the basic tenets of friendship as we know it from outside social media, is that it

requires maintenance. Individuals must continuously work on developing and

nourishing friendship, requiring a repeated decision to keep faith and mutual

reinforcement (Derrida, 2005: 15-16; Webb, 2003: 122). In a context where the

average Facebook user has 130 friends (Facebook, 2011), maintenance becomes hard

and time consuming. However, several software mechanisms are put in place to help

users nourish their friendships. For example, the now-pervasive ‘like button’

constitutes an important actor for expressing and articulating friendship. Initially, the

‘like feature’ was introduced as a social endorsement feature. No longer having to

comment on a friends status update about a nice restaurant or new job saying things

like ‘awesome’ or ‘congrats’, Facebook made paying attention to friends a one-click

sentiment. As a token of ‘phatic communication’ the ‘like feature’ signifies the most

cost-effective way of maintaining and performing friendships on Facebook.

Similar to how the ‘like’ feature can be said to activate important relational impulses,

many other features on the Facebook platform are geared towards activating

presumably important aspects of friendship performance. For instance, the friend

birthday reminder feature counts as one of most important activators, as it spurs

interaction on an ongoing basis. Having shown how various software actors interfere

with and augment the various dimensions of friendship as it articulates on the

Facebook platform, I now turn to the ways in which algorithmic friendship relates to

more traditional accounts of friendship.

Towards an understanding of algorithmic friendship

Software, I argue, configures friendship online in a number of new and interesting

ways. By encoding values and decisions about what is important, useful and relevant,

 151

and what is not, software restricts certain activities by making others possible or

impossible (Lessig, 1999). As I have shown, this becomes apparent when considering

the multifaceted ways in which software elements, including the database, interface,

privacy settings, algorithms, and code, to use Latour’s formulation of nonhuman

agency: ‘authorize, allow, afford, encourage, permit, suggest, influence, block, render

possible and forbid’ possibilities for action (2005: 83). How then, can we understand

the conceptualisation and construction of friendship via the Facebook assemblage?

One of the basic assumptions underlying the constitution of friendship in Facebook is

the idea of sameness or similarity as a foundation of friendship. For example, the

‘People you may know’ algorithm introduces (or reintroduces) people to each other,

based on a rather safe conception of similarity. The friend of friend approach thus

‘represents a subtle form of limiting access to difference’ (Elmer, 2004: 40). This

logic hints at the politics of software in that an algorithm always selects and reinforces

one ordering at the expense of others (Mackenzie, 2006:44). On the one hand, the

PYMK algorithm conforms to traditional conceptions of friends as people who are

somehow like us. On the other hand it also critically challenges a widely cited

definition of friendship as ‘voluntary relationships, largely free of structural

constraints and based on equality’ (Allan, 1989:1). Users are constantly encouraged

and prompted to take certain actions, including befriending people. The ‘people you

may know’ feature contained on users left-hand column functions as a constant

reminder that there might be even more friends out there waiting to be added as

friends. While the traditional notion of friendship highlights the voluntary and

durational aspect of becoming friends and becoming friends anew, the software, one

may claim, encourages and functions as a suggestive force that ‘pushes’ users to

connect with the people he or she may already know according to the algorithm.

The subtle ways of software can thus be seen in the ways in which algorithms and

databases pushes, reminds and (re)introduces users to each other. This is not to say

that friendships on Facebook are not of a voluntary nature. Rather, the software assists

in making friendships happen in the first place. Let’s for a brief moment return to the

notion of the ghostly Facebook existence mentioned earlier, and the ways in which the

software may already know the user, even before signing up for the first time. This

kind of ‘technical remembering’, what Stiegler calls ‘tertiary retention’ (1998), can be

seen in the way that synchronising one’s Facebook account with an existing e-mail

 152

account allows the user to remember long lost social connections. When signing up on

Facebook, users are prompted to import existing contacts by providing information

about their e-mail accounts. Facebook will then provide information about who of the

user’s social connections are already on Facebook, subsequently suggesting that he or

she adds them to their social graph. The accumulation of subjects into the Facebook

database also feeds into the friend finding algorithm, constituting the grounds on

which people are assessed for their compatibility as friends. Software thus enables

remembering.

People we do not think about, people we might not remember or people we might not

necessarily consider friends, continuously show up in the right hand column of our

personalised News Feeds. A professor from another department, an acquaintance from

ones student days, or simply a distant cousin on ones mother’s side of the family are

all candidates for possible new friendship connections dug up from the database by

the PYMK algorithm and other memory aids. In an otherwise timeless system,

Facebook seeks to simulate memory to promote a sense of community, commitment

and responsibility. Various software features are put in place in order to activate

friendship impulses.

For example, in late October 2010, Facebook introduced a feature called ‘See

friendship’ that offers a way to ‘view’ the connection a user has with another

Facebook user on an aggregated ‘Friendship page’ (see figure 7). This page can be

found by following a link from underneath ‘relevant Wall posts’ (Kao, 2010). The

‘See friendship’ tool gathers data shared by two Facebook friends, including photos in

which both are tagged, wall posts and the comments exchanged between them, events

that both have attended in the past, how many friends they have in common, liked

topics to ‘tell the story of friendships’ (Kao, 2010). This aggregated data generated by

the digital traces left by users’ online activity is subsequently visualised in the same

manner as a regular Facebook user profile. This peculiar software-aggregated view of

two friends’ shared history on Facebook ultimately aims to ‘bring back memories,

conversations and times spent together’ (Kao 2010).

 153

Figure 7 'See friendship' page. Screen shot from November 7, 2010.

The Friendship page is a form of information visualisation that seeks to generate

interaction and more activity. The page provides both a view of the apparently long

lost digital traces of a friendship, and allows for more browsing and activity through

software features such as the ‘Browse Friendships’ and ‘Photo Memories’, that are

placed in the left-hand column of the page. Through features like this, Facebook seeks

to induce and simulate the emotional and intimate connections seen as a defining

feature of friendships. As Facebook friends are not a set of distant strangers but rather

people we already know, there is a certain responsibility on behalf of users to nurture

and maintain these relations. The system supports this by prompting users to say

hello, write on a new friends’ wall, etc. What becomes apparent is how the software

does not leave the users alone. Rather, Facebook needs to be seen as an active agent

participating in the performance of friendship.

Traditionally, friendship has been thought of as an exclusive social relation. As

Aristotle suggested, ‘it is impossible to have friendship, in the full sense of the word,

for many people at the same time, just as it is impossible to be in love with many

people at the same time’ (2004: 168). Above all, friendships are seen as requiring the

time of continuous nurture and care (Aristotle, 2004; Derrida, 2005), meaning that

 154

friendships are not static relations, but constantly evolve over time. Requiring

ongoing affective engagement, folded in different temporalities and rhythms of

repetition, memories and anticipation, the nature of friendship is fundamentally

ontogenetic, or always in becoming.

Arguably, the ontogenetic nature of friendship becomes nowhere as apparent as it

does within the context of Facebook. Users willingly and repeatedly like, comment on,

and tag each other, creating the flow of attention needed to give the impression of

continuous commitment. As EdgeRank is geared towards interaction, users who do

not participate get downplayed, while users who frequently comment, like, and share

are made more visible. In curious ways, Facebook reinforces the exclusivity of

friendship and the classic conception of quality over quantity. However, contrary to

the Aristotelian virtue ethics, quality in Facebook is measured on the basis of

quantity. Therefore, it is the amount of engagement on the platform that becomes

decisive for whether or not a user is regarded as a ‘good friend’ by the algorithm, and

thereby made visible. The paradox here is that while EdgeRank reinforces the notion

that we may only engage in a handful of friendships at any given time, it does so by

encouraging users to accumulate friends. On another level, though, exclusivity is done

away with completely.

Exclusivity and the notion that we must choose how to divide our time between

friends, is inscribed into the EdgeRank algorithm itself. As already suggested,

software aids us in deciding with whom to spend our time and on whom to focus our

attention. Herein lies the power of the EdgeRank algorithm to determine users’

presence on News Feed. Friends embody different levels of interestingness, governed

by algorithms. EdgeRank ‘distributes the sensible’ by revealing who can have a share

in the community of friends, based on what they do (measured in the amount and

nature of participation), the time spent on the various friendship practices (measured

in frequency and recency), and the space in which the activity took place (some

spaces are given more weight, such as talking to each other via Facebook chat or

messages).

We can see another paradox with regards to exclusivity if we consider Facebook

friendship in light of another traditional conception of friendship, as one of a private

and intimate relation between two persons (Hays, 1988: 395). Far from being a

private and intimate relation, the Facebook architecture is set up in such a way as to

 155

make friendships public, as something that engages the whole network. Friendships

are not exclusive to two people, as they have become a matter of the network.

Friendships on Facebook are on display and made to engage friends, as well as friends

of friends. However, Facebook needs to balance the private and public aspects of

friendship. While designed to engage the network, Facebook also hinges on users’

having a sense of intimacy, so as not to flatten out the meaning of the friendship

relation. Maintaining the notion of friendship as something to be cared for and

nurtured is therefore extremely important for a commercial social networking

platform like Facebook, where friends are a valuable currency.

Precisely because friendships signify something exclusive, a social relation that

implies trustworthiness, friends can be used for commercial purposes. The semantic-

technical expansion of Facebook to other parts of the Web, through the

implementation of the Open Graph protocol and the ‘Like button’, is based on the

perceived commercial value of friends. Liking content across the Web provides

valuable data about people’s affinities. The data captured by a ‘Like button’ is above

valuable in the sense of providing a means of accessing people’s friendship networks.

As such, the Open Graph and the 'Like button’ directly intervene in the production

and circulation of meaning, by framing friendship as a currency that can be used for

commercial purposes.

When liking content across the Web, a link to Facebook is established, making the

action into a potential story on the News Feed. Again, not every friends’ affinities and

likings are of equal important to every user. Through the close interconnection and

interoperability between protocols, code and algorithms on Facebook, the software

‘decides’ whose ‘likes’ might be worth more. Exactly how valuable a ‘like’ can

become depends on the EdgeRank.

The ‘Like button’ also thrives on the assumption of sameness or similarity, meaning

that users desire or like the same things that their friends do. Tellingly, one of the

largest consumer trend firms in the world highlighted what they called the ‘the f-

factor’ in their May 2011 trend report (Trendwatching, 2011). The f-factor refers to

the power of friends in consumers’ purchasing decisions today. The report bases its

claim precisely on the assumption that we trust our friends and think like our friends,

turning friends into the most relevant recommenders. For example, the assumption of

sameness embedded in the ‘like button’ is amplified by the jeans company Levi’s,

 156

when they tout what they call ‘like-minded shopping’, or the travel site

Tripadvisor.com, which refers to ‘trusted hotel reviews’ produced by Facebook

friends.

Moreover the commercialisation of friendship can be seen in the move towards using

friends as ads. Through a feature called ‘sponsored stories’, Facebook generates ads

out of friends’ online actions. Displayed on users’ right-hand News Feed column,

‘sponsored stories’ blends in with the rest, turning ‘friends’ actions into promoted

content’ (Parr, 2011). When John, for instance, likes Starbucks on a website that is

semantically connected to Facebook, a story can be published on his friends News

Feeds, saying that he endorses or recommends the brand. As such, businesses and

organsations can leverage on the principle of word of mouth, arguably representing

the most powerful way of recommending things.

 157

Figure 8 Sponsored stories. Screen shot from November 19, 2011.

 158

Friendships on Facebook, then, are shaped through the particular ordering of the

social – the distribution of the sensible – in and through software, and especially the

algorithms orchestrating News Feed. Friends embody different levels of

interestingness as a consequence of the social sorting mechanisms taking place at the

level of the algorithm. Users are given the impression of constant activity, as those

friends whose updates are most frequently commented upon are given priority over

those whose updates are only rarely commented upon. Thus, the algorithmic logic

based on popularity prioritises ‘important’ people. Facebook rewards the ‘influencers’

with visibility on the basis that they attract a lot of interaction.

The probability of attracting the attention of others will in turn increase the more

connections one has. The more friends, the better the chances of receiving comments

or likes on ones actions on Facebook. The more interaction a user is able to generate,

the greater the probability of becoming visible on friends’ News Feeds will be.

Collecting and accumulating friends is therefore not just a peculiar feature of online

social networking, but also a necessity for getting on the News Feed. Not only does

accumulating friends enhance a user’s chance of becoming visible on the News Feed;

it also enhances the chance of becoming a potential friend to someone else. That is, a

‘user with a wider social circle has a higher probability of friendship overlap and

therefore may be recommended frequently to many different users’ (Daly et al. 2010,

302). The politics of algorithmic friendship becomes evident when one sees that the

probability of being a recommended friend increases with a user’s popularity, and that

it diminishes as a user has fewer friends. What the friend-of-friend algorithm

essentially suggests, is that a desired friend is the person who frequents diverse social

networks and has as many friends as possible.

What friends are for

Social networking sites are inherently about friendship. However, as this chapter has

shown, Facebook does not merely facilitate friendship by providing a platform for

existing friendships; it is also a ‘friendship maker’ (Wellman, 2004). Online

friendship thus needs to be understood as a socio-technical hybrid, a gathering of

heterogeneous elements that include both humans and nonhumans.

In an increasingly software-mediated world, a sensibility towards the active role of

 159

non-human actors creating forms of sociality becomes imperative. Thinking of

friendship as an assemblage – a relational process of composition – has offered me a

way to critically scrutinise how software participates in creating, initiating,

maintaining, shaping, and ordering the nature of connections between users and their

networks. What, then, does the software suggest about the articulation of friendship

on Facebook? What are friends really for? To conclude the chapter, I would like to

draw attention to three points of divergence between more broadly held conceptions

and cultural ideas of friendship, and the ways in which friendship is produced by the

software.

First, friendships on Facebook are never only between two individuals. Rather, we

need to think of online friendship as a relationship involving a plethora of actors, both

human and non-human. Users do not simply send out ‘friend requests’ or accept them;

software actors like the PYMK algorithm increasingly assist users in making these

kinds of decisions. While friendships are still about selecting and making decisions

about whom to devote one’s time and attention to, these decision-making processes

have increasingly been delegated to algorithms. It turns out, then, that Derrida’s

question about what a future would look like if decisions could be programmed (2005,

29), has found at least one answer in the sociotechnical construction of friendship on

Facebook.

The programmability of friendship importantly helps orchestrate the various

temporalities of the notion. For Derrida, friendship entails two primary modes of

temporality - constancy and anticipation - understood respectively as ‘the repeated

renewal of a decision to ‘stick with it’’ and as ‘the future that will be opened, which

could not have occurred without the friend’ (Webb, 2003:122 & 136). Arguably, the

quality of constancy is augmented, supported and induced by the software system.

The software helps users ‘remember’ everything from friends’ birthdays, friends’

most ‘memorable status updates’, and the shared history of a friendship as manifest in

the ‘see friendship’ function.

The algorithmic configuration of friendship hinges on the anticipatory logic of

friendship. In the Friendship assemblage of Facebook, friends are used as key

variables to calculate the probabilities of future actions on the platform. Friends’

preferences and actions thus constitute important information for the algorithmic,

data-driven logic of Facebook. As the Facebook engineer Narasimhan puts it in a

 160

recent tech talk, ‘recommendations are essentially a function of who you know and

what they like’ (Facebook Engineering, 2011).

Secondly, friendships on Facebook break with some of our most engraved cultural

assumptions about friendship, in terms of depending on shared and reciprocal

activities (see Lynch, 2005: 189). Friendships in many philosophical accounts, are

thought of as relationships that hinge on shared activity, reciprocity, mutual contact

and joint pursuits (see Aristotle, 2004; Telfer, 1991). While the publicity of friendship

on Facebook in some respect qualifies as a form of shared life, the algorithms suggest

otherwise. True, the initiation of friendships on Facebook, with the help of the PYMK

algorithm and ‘friend request’ feature, hinges on the notion of reciprocity.

However, when it comes to performing friendship on Facebook, the cultural logic of

reciprocity and mutual contact are undermined by the operational logic of EdgeRank.

For example, the fact that my friend Anna shows up in my news feed does not imply

that I also show up on hers. As Josh Constine reports, ‘your average Facebook post

only reaches 12 per cent of your friend’ – ‘you’re not unpopular, it’s just the nature of

the news feed’ (2012). Because of this, one needs to be wary about treating the News

Feed as a kind of public sphere, or common space of living together in the sense of

Aristotle. In a algorithmically regulated space like News Feed, access to the

community and the right to have a say and be heard, is increasingly defined by a

person's popularity, sociality and social status. Friendship on Facebook turns into the

kind of illusion that Derrida (2005) speaks about, in that it many ways functions

unidirectionally, as opposed to reciprocally. In other words, while news feed may

produce the ‘illusion’ that I have an ‘active’ relationship with my friend Julie by

making her repeatedly visible on my news feed, Julie might for all I know feel the

opposite. While for Aristotle, reciprocity is the glue of all friendship (Vallor, 2011),

friendships on Facebook needs no glue; they function themselves as glue. As

Facebook expands by the help of the Open Graph protocol into other parts of the

Web, friendships are the glue between Facebook and external websites. In a

networked society, friendships become attached to a user’s digital persona that they

cannot escape.

Thirdly and finally, we can claim that, contrary to the notion that friendship is

something in which we freely choose to engage (Allan, 1989), friendships on

Facebook loose some of its voluntary character. As the presence of the other cannot

 161

be escaped in an environment of nodes and edges, the connections we forge with

other people may have real consequences, as the conditions of the intelligible and

sensible is increasingly calculated on the basis of who our friends are, what they have

done and how many of them there are. In this sense, the Facebook friend resembles

the philosophical idea of the friend as a ‘second self’ (Aristotle, 2004: 189) to a

certain extent. However, whereas the Aristotelian conception of ‘second self’ hinges

on respect, love and wishing a friend well for the friend’s own sake (Aristotle, 2004:

162), the Facebook friend as a ‘second self’ needs to be understood in a much more

literal sense.

Whatever action a user’s Facebook friend performs on the platform, say ‘checking-in’

at a restaurant or ‘liking’ a brand, it will automatically get associated with the user. A

user’s digital identity is thus collapsed with that of his or her friends. The implications

of this can be seen as far-reaching, given that friends become a primary means

through which the production and occlusion of information can be ‘programmed’.

Contrary to a conception of friendship as something created between equals and free

of structural constraints, friendship in the age of ‘programmed sociality’ needs to be

understood as a process of sociotechnical negotiations between users and software.

Recognising the importance of software as a participant in friendship relations raises a

question about the potential control of these relations. What and whom friends are for,

thereby becomes one of the most pressing questions in media research today, as

friends on Facebook increasingly constitute the economic cement of our current

information ecosystem.

In this chapter I have shown how software intervenes in the formation of friendship

and how software therefore needs to be considered as an important actor alongside

humans in the construction of sociality online. The Facebook platform not only

activates certain relational impulses framed in terms of friendship, the platform also

hinges on the fact that these relationships are maintained and cared for in manners that

purport ongoing participation. In the next chapter I continue my investigations into

the ways in which software can be said to act as a catalyst for participation. Whilst I

have focused entirely on the Facebook platform up until now, in the next chapter I

turn to the case of Twitter and its application programming interfaces (APIs). I see the

Twitter APIs as a particularly fruitful site at which software can be analysed for its

capacity to ‘hang or concatenate relations together’ (Mackenzie, 2006:11). Thus, the

 162

aim of the next chapter is to investigate the circulatory and contested existence of

code through the case of the Twitter API by paying attention to the multiple

participants involved, their interests and desires. What kinds of relations are assumed

to be desirable and whose interests are emphasised, and devalued? 66

66 An earlier version of Chapter 7 is forthcoming in Television & New Media. The article
‘The Friendship Assemblage: Investigating programmed sociality on Facebook’has been
published online before print, August 24, 2012.

 163

Chapter 8. The Twitter APIs: Objects of intense feeling

One of my claims thus far is that software is a slippery and convoluted thing. In the

previous three chapters I have been concerned with Facebook and the ways in which

software participates in the shaping of particular attentive and participatory

subjectivities and ways of being together, through what the platform calls friendships.

Through what I have called a technographic approach, different modalities of

programmed sociality have been examined, mainly by examining forms of

protocological and algorithmic power. In this last chapter, I turn to the case of Twitter

and its thriving third-party developer ecosystem organised around the platform’s

application programming interfaces (APIs). Seen as protocological software objects,

the question here is how the APIs form and hold relations together and how can we

understand the coordinative work that protocols do?

When faced with things that are variable and slippery in nature such as software, one

way to proceed is to consider the multiple concerns that software encompasses. In this

chapter, I therefore explore a more specific example of such a convoluted gathering,

the Twitter application programming interfaces (APIs). Not only are APIs interesting

objects to study in and of themselves; largely ignored by media and communication

studies, the Twitter APIs offer a way in which to study the means by which software

gathers different actors, and how ‘code hangs or concatenates relations together’

(Mackenzie, 2006: 11).

The Twitter APIs and its third-party developer ecosystem have arguably played a

decisive role in the popularity and success of Twitter as a microblogging system. APIs

are ‘specifications and protocols that determine relations between software and

software’ (Cramer and Fuller, 2008: 149). Many social networking sites and Web 2.0

platforms provide APIs so that developers and other interested users may access and

use some of the data and functionality that the software has to offer. APIs have made

it possible for developers to build new software products on top of already-existing

software. As a consequence, we have seen the rise of so-called mashups, web

applications that combine data and functionality from two or more sources/software

programs, not to mention the explosion of apps, software applications designed to run

on smartphones and tablet computers.

 164

In this chapter I will investigate the Twitter APIs as entities that gathers multiple

actors, interests, and ideas – not always in ways that stabilise the entity, but rather as

conflicting relations that make software a contested and very visible object. I will

argue that Michel Serres’ concept of the quasi-object provides a helpful analytical

framework in which to understand how APIs catalyse new modes of collective

associations. Serres uses the term quasi-object as a way to describe the ways in which

sociality is played out in conjunction with objects, how objects act as catalysts for

various social relations and actions (Serres, 1982; 1995). Seeing APIs as reminiscent

of quasi-objects helps to see how software plays an influential role in organising and

regulating the playing field of sociality in the context of Twitter.

Specifically, I focus on the third-party developer ecosystem as a means to explore

what I see as an important site at which collective associations of humans and

nonhumans coalesce around matters of code and software. Empirically, I draw on

material I have collected that is related to the Twitter APIs, including documents,

online observation, and online interviews with some of these developers (see Chapter

4). Although I have chosen to quote selectively from the interview material, all of it

has been crucial for gaining an understanding of the ‘blips’ of software that the

developers themselves seem to care about; that is, the contested site of the Twitter

APIs. ‘Blips’, as Matthew Fuller sees it, are certain events in software, operations, and

regimes ‘at which interrelations, collaborations and conflicts can be picked out and

analyzed for their valences of power, for their manifold capacities of control and

production, disturbances and invention’ (2003: 32).

Seeing APIs as blips or events in software implies an understanding of APIs as

agential. APIs are thus understood as actants that have the capacity to shape how

people live their lives. As Kitchin and Dodge suggest, ‘software divulges and affords

agency, opens up domains to new possibilities and determinations’ (2011: 39). How,

then, can we begin to understand the ways in which the Twitter APIs make a

difference to the everyday lives of programmers, how they produce different relations

and experiences, and how they participate in shaping the material-discursive spaces of

social networking sites? One way of approaching these complex questions is to

acknowledge the manifold relations that permeate APIs, or as Mackenzie suggests,

‘the forms of contestation, feeling, identification, intensity, contextualizations and

 165

decontextualizations, significations, power relations, imaginings and embodiments’

(2006: 5).

In my e-mail interviews with third-party developers who work with the Twitter

platform, it became evident how affective and culturally ‘invested’ software really is.

Borrowing Mackenzie’s words, I argue that the Twitter APIs constitute an ‘object of

intense feeling’ (see Mackenzie, 2006: 71). The Twitter APIs do not merely draw

programmers together into communities of practice, alliances, and collaborations,

ultimately enlisting different actors to engage in different types of work. The APIs

also regulate the playing field in regard to what can happen where and when, what can

be built technically, and policy-wise by constituting an infrastructure for innovation.

APIs constitute the condition of possibility for many new coding practices and

cultures on the Web, a situation that is perhaps most clearly illustrated by the many

apps that make use of social networking data. APIs are also productive of new

subjectivities and forms of governance around software development in an age of

‘cultural work’ (Gill and Pratt, 2008). APIs are mobilised by social media companies

as governmental techniques oriented towards creating and controlling the boundaries

of cultural production, as manifest in third-party software development and its

subjective processes.

While it is not my primary concern here to dwell on questions of labour or creative

work, the broad range of scholarly work on what has been described as the ‘new

conditions of the creative industries’ certainly provides an important backdrop for

understanding the processes of innovation and software development in the context of

social networking sites (see for instance Ashton, 2011; Banks and Deuze, 2009; Gill

and Pratt, 2008; Neff et al., 2005). According to these commentators, cultural work in

neoliberal societies is increasingly structured around the discourse of enterprise

(Ashton, 2011: 315). For du Gay, enterprise culture became the predominant business

paradigm during the 1990s. Enterprise culture promotes values such as self-reliance,

personal responsibility (for instance for acquiring the right skills, or for one’s own

failures and successes, etc.), and risk-taking (Marwick, 2010: 298; du Gay, 1996).

Rather than investigating the extent to which such discourses are reproduced or

whether web developers live up to such claims about enterprise culture, I concur with

Gill and Pratt in their claim that we need to pay more attention to ‘the meanings that

cultural workers themselves give to their life and work’ (2008: 19). As such, this

 166

chapter locates an understanding of the productive power of software in an analysis of

the Twitter APIs and its developer community, and investigates the types of

connections APIs are able to forge, and the possibilities for actions that are offered.

Following Mateas and Wardrip-Fruin, the question is how software means something

in different contexts and how to account for specific processes of meaning making

(2009: 4). Here, I want to approach this question by following some of the strategies

proposed by Marcus in his description of a multi-sited ethnography (see Chapter 4;

Marcus, 1995). The aim is not so much to make general claims about the ways in

which software is meaningful, but rather, as Mackenzie observes, to help us

understand the encounter between discourses and processes of software production,

and a group of actual programmers (2006: 143). In this sense, Marcus’ account of a

multi-sited ethnography, as introduced in Chapter 4, offers some useful tools for

tracing the various ‘chains, paths, threads, conjunctions and juxtapositions’ of the

Twitter APIs. These strategies involve 1) ‘following the people’, as in the Twitter

third-party developers, 2) ‘following the thing’, as in the APIs themselves, their

ontology and their circulation into different sites and locales such as online discussion

threads and technical documentations, and 3) ‘following the conflict’ – meaning

specific sites or occasions where the objects of study become particularly visible,

debated, and contested. With the help of Latour, the point of departure for such an

associative inquiry is to examine the multifaceted ways in which the Twitter APIs

‘might authorize, allow, afford, encourage, permit, suggest, influence, block, render

possible, forbid, and so on’ (2005: 72).

This implies not merely viewing APIs as ‘specifications and protocols that determine

relations between software and software’ (Cramer and Fuller, 2008: 149), but also in

the sense of the quasi-object, as protocols that shape the relations between multiple

actors, including humans and nonhumans. If, as Mackenzie suggests, ‘much hinges on

how code hangs or concatenates relations together’ (2006: 11), the question becomes

how the Twitter APIs hold relations together and which principles of connections are

perpetuated. What are the APIs capable of, and how do they activate certain relational

impulses?

 167

Application Programming Interfaces

In order to understand the concept of application programming interfaces, it might be

useful to point out how APIs are instantiations of basic software engineering

principles (de Souza an Redmiles, 2010). APIs are the interfaces that make it possible

for different software modules to interact. The principle of ‘modularity’ in software

design refers to the ways in which software is usually made up of various components

or modules. This reduces the complexity of systems, and makes the software more

manageable (see Baldwin and Clarke, 2000).67 Lego bricks may serve as a helpful

analogy here. Lego bricks are modules that can be put together in an indefinite

number of ways and reused at will. Not all Lego bricks fit together, but when they do,

they work together – or interoperate – to build everything from simple to complex

structures. In much the same way as Lego allows for different parts of a construction

to be built separately, the division of code into modular units makes it possible for

programmers to develop parts of a software system independently, and to work in

parallel. Most importantly, modularity makes it possible to separate concerns, through

what Parnas (1972) called ‘the principle of information hiding’. As de Souza and

Redmiles exemplify, the principle of information hiding holds that ‘software modules

should hide implementation details that are likely to change and expose only aspects

that are less likely to change’ (2010: 446). APIs, then, are a common instantiation of

the principles of modularity and information hiding that enables two software

components or applications to ‘talk’ to each other.

67According to Baldwin and Clarke (2000), the first modular design of a computer system
was IBM’s System/360 introduced in 1964. The implications were huge. For the first time,
rather than software being locked down to a particular hardware platform, it could now be
used across the different machines. Before the System/360 was introduced, programming and
machine operability were tied to the specific design of a particular machine, which meant that
knowledge of how to operate and program one machine was not necessarily transferable to
other machines. Because the designs were so specific, it also meant that ‘each new system had
to be designed from scratch’ (Baldwin and Clark, 2000: 171). For instance, as Campbell-
Kelly points out, ‘in 1960 IBM had no fewer than seven software-incompatible computer
architectures. Unique operating systems and utilities had to be developed for these platforms,
and each language processor had to be recoded’ (2004: 95-96). IBM’s efforts with
System/360 were based on the recommendations put forward by the SPREAD Task Group,
established by the company to tackle the growing discontent among IBM’s customers with
the locked-in design approach and the incompatibility with other systems. In effect,
interoperability and modularity became important design principles on all levels of the
computer system.

 168

In this chapter, I am concerned with a specific type of API, the web-based ‘open

APIs’ that have become an important element of many Web 2.0 platforms today.

Whereas the general concept of an API involves methods for interacting with a piece

of software, an open web-based API refers to the kinds of methods that allow for

programmatically accessing data and functionality via HTTP. The term ‘open’ might

be a bit misleading, as these services do not open up their databases completely, but

rather offer data in a highly controlled and regulated way. ‘Open’ alludes to the ways

in which these APIs are made publicly available. Importantly, the general concepts of

an API and ‘open APIs’ differ with regards to their genealogies. Whereas the former

grew out of software engineering, the latter came out of a specific business context.

As Bodle points out, open APIs became an important business strategy for Web

companies ‘soon after the dotcom bubble peaked in March 2000’ (2010: 325). ‘Far

from a risky business strategy, opening APIs was considered a sustainable business

move to encourage the growth of a supportive ecosystem of third party developers,

which could increase the value of a platform or web service’ (ibid.).

The API directory site Programmable Web currently (March 2012) lists 691 different

mashups built using Twitter APIs. For example, there is TweepsMap, an application

that leverages both the Twitter and Google APIs to analyse the geographical location

of a Twitter user’s followers, and plots them on a Google map. Or, paper.li, which

mines a user's tweets and the tweets of that user's friends to find the top stories, and

displays them as a daily newspaper. In my interviews with Twitter developers, three

broad methods and reasons for using the APIs could be discerned: the specialised

method of using Twitter data and functionality to build some kind of niche

application; the general method that allowed access to as much of the data contained

by Twitter as possible, often to build clients, or for data-mining and visualisation

purposes; and what could simply be called a personal method to leverage the data. In

the case of my informants, the specialised and generalised methods often went hand in

hand with some kind of commercial motivation or desire to eventually make a

successful business out of their software. For example, Jeremy uses the Twitter API to

build a site that analyses tweets related to the travel industry only, while Jacob has

developed and maintains a general Twitter client for Mac OS X. Oliver, moreover,

describes the opportunities he saw in the API as follows: ‘I thought there was an

unfilled niche, namely [a] lack [of] twitter clients with multimedia capabilities (i.e.

 169

attaching photos, videos) on low-end phones’. The personal method, on the other

hand, mainly speaks to using data out of self-interest. In this sense, Eric, another of

my informants, got into the Twitter API because he wanted to republish tweets about

Formula 1 – his favourite sport – on his own website, so as to ‘provide a kind of live

action and a basis for a discussion’ with other fans.

The first company to offer a peek into its database was eBay, in 2000, followed by

Amazon with the launch of Amazon Web Services in 2002. The idea was quite simple

and reminiscent of long-standing efforts within free and open-source software

development; namely, to outsource research and software development efforts to a

potentially indefinite number of software developers. As Roush suggests, outsourcing

software development in Amazon’s case was essentially about letting others find

‘cleverer ways of using Amazon’s data than Amazon itself’ (2005: 28). Thus, as CNN

reported, ‘by opening up parts of their platforms early and voluntarily, Amazon and

eBay, and others increase their chances that developers and businesses will organize

around their systems’ (Schonfeld, 2005). This ‘counterintuitive business strategy’, as

Roush (2005) described it, started to take off in 2005 when Google launched its Maps

API. The outsourcing rationale can be seen clearly in Google’s own announcement at

the launch: ‘If you like Google Maps, but think you could do something better, now's

your chance’ (Taylor, 2005). Today, most Web 2.0 companies offer APIs so that

third-party developers can build new applications on top of their platform. For

instance, the photo-sharing platform Flickr has one API, Youtube has two, and

Facebook has as many as eight different APIs. Not only do APIs offer a way for

programmers to more easily access some of the data that these companies have, but

APIs have also become a useful way for these companies to extend their reach and

growth across the Web. Perhaps most importantly however, as Bodle points out, APIs

have established conditions for online sharing and participation, setting the

boundaries for the competition over the control of social media flows (2010: 326).

Open APIs are interesting objects of study for a number of reasons. First, APIs

constitute one of the most important software elements of Web 2.0. The whole notion

of participatory culture is arguably built around the idea of users sharing and

generating content online. APIs are responsible for the ways in which content

becomes shareable across different websites and applications. Having played a

decisive role in the success and growth of social media, APIs continue to be important

 170

today as they lie at the very heart of the growing ‘app space’ powered by smart

phones. Second, the opening up of software through APIs has had a profound impact

on the nature of web programming and software development. By offering a way for

outsiders to interact with the software service and data that is provided, APIs have

opened up important new job and coding opportunities for programmers. Thus, APIs

can be seen as affordances of sorts, providing possibilities for action by being

suggestive of how they can and cannot be used, and ultimately governing

participation in particular ways.

Despite the important role they play in the context of social media, very little

academic research exists on APIs from a media and communications or software

studies perspective. One notable exception here is Robert Bodle’s (2010) article ‘The

Regimes of Sharing’, to which I have already referred. To a large extent, the existing

academic literature on APIs comes from the field of computer-supported cooperative

work and HCI, and is for the most part focused on practice and design. As de Souza

and Redmiles point out, this research is aimed at ‘how to design APIs (Michi, 2009),

how to evaluate their usability automatically (de Souza and Bentolila, 2009) or

manually (Ellis et al., 2007), how to use APIs based on examples (Xie and Pei, 2006)’

(2009: 447). In addition to the academic context, APIs have been widely discussed in

the popular business and technology press (see for instance Kirkpatrick, 2008; Metz,

2012; Parr, 2009).

Following Galloway’s (2004) notion of protocol as a management style, APIs can be

seen as the management style of social networking data, governing access to and flow

of these data, and organising the practices of coders and coding around these data. As

we will see, APIs can be viewed as being comprised of a set of techniques for

managing contingent relations that affects not only the technical level to which they

pertain, but importantly influences how sociality is programmed or managed. This

chapter is thus an attempt to help close the gap in the academic literature on APIs, and

specifically in regard to the construction of collectives and sociality around these

pervasive software objects. Given the powerful role APIs play in enabling the flow of

data and information on the Web today, it becomes imperative for media scholars to

engage with the many convoluted ways in which APIs bring together relationships of

capital, control, and freedom.

 171

The Twitter APIs

In this section, I turn to the specific case of the Twitter API. I will provide general

background, and elaborate on how Twitter connects to the business logic described

above. I then describe some of the technical specifications of the APIs, before

considering the community of practice surrounding them in more detail. Drawing on

data from interviews with Twitter third-party developers, the aim is to explore some

of the ways in which APIs create meaning, and how they reveal and afford new

possibilities and opportunities for action.

The microblogging service Twitter was launched in July 2006, and quickly became a

favourite application in the social media industry (i.e. marketers, technology bloggers,

industry people, and early adopters).68 Twitter initially started out as quite a simple

tool with only one basic feature, the stream, and one function, the possibility to write

a status update. The purpose was to prompt people to disclose their thoughts and

activities in real time by providing an answer to the question: ‘what are you doing?’.

68 This is evidenced by the amount of press coverage Twitter received early on, as part of the
mainstream media, but most importantly from authoritative technology blogs such as
ReadWriteWeb, TechCrunch, and Mashable. Twitter also won the annual SXSW Web award
in 2007, only six months after it launched.

 172

Figure 9 Twitter as of November 27, 2006. Source: Internet Archive

In September 2006, only two months after its launch, Twitter published its Twitter

API and made it publicly available. The message on the Twitter blog was quite clear:

‘we’ve exposed some of the inner workings of Twitter so engineers who want to

creatively extend our functionality can do so’ (Twitter, 2006). This move, to open up

their service to outside developers via an API, has been crucial to the success of

Twitter as a company, software service, and social networking site. The idea of letting

anybody with enough programming skills have a go at their API to access data and

functionality became a key business strategy of Twitter, and a decisive factor for the

growth and popularity of the service. As Biz Stone, one of the service’s three

founders, declared in an interview September 2007:

The API has been arguably the most important, or maybe even inarguably, the
most important thing we’ve done with Twitter. It has allowed us, first of all, to
keep the service very simple and create a simple API so that developers can
build on top of our infrastructure and come up with ideas that are way better
than our ideas (Ammirati, 2007).

As we can see, the philosophy of letting others come up with good ideas and

innovations popularised by companies like Amazon, eBay, and Google also became

an important strategy for Twitter. Twitter’s sparse beginnings as a web service

 173

quickly grew into an ecology of third-party applications and mashups. As

ProgrammableWeb recapitulates:

Twitter’s growth can be attributed to the Twitter API, which allowed the
company to be on every mobile platform before it had an internal team building
mobile apps […] Even Twitter’s search engine was built on Twitter’s API.
Originally called Summize, it was Twitter’s first acquisition way back in 2008.
The product, which was better than anything built internally at Twitter, is also
available via the Twitter Search API (DuVander, 2012).

Almost from the very beginning, API usage generated much more traffic to the main

site than did end-user engagement. In 2007, Twitter API traffic amounted to 10 times

that of the Twitter site (Musser, 2007), while this number had reportedly increased to

20 times the main site by 2009 (Lennon, 2009). In 2010, ProgrammableWeb reported

that a staggering 75 % of Twitter traffic came from third-party applications

(DuVander 2010).

Little by little and steadily over time, Twitter has acquired the most popular third-

party apps and clients that developers were making, and they were often made part of

the Twitter core service. As Tony, one of my informants, elaborates when I ask him

about the nature of software development in the age of open web-based APIs:

Software companies have to develop a very small part of the software and they
get millions of developers FOR FREE (almost) all around the world, creating
new improvements to the original software. The companies can even
incorporate those modifications into the software if they become important
enough, and the cycle keeps going round!

The story of how Twitter ‘developed’ a search tool as part of their core functionality,

is a good example of Twitter’s early reliance on the third-party ecosystem. Twitter

had been working on a search tool called ‘Track’, which did not turn out to be the

success they had hoped for. According to Twitter cofounder Ewan Williams, this was

partly because they had released it too quickly, and had not figured out a sustainable

systems architecture for it at the time (see Arrington, 2008). Instead of trying to fix

the problem in-house, Twitter made a deal with Summize, the most popular third-

party search tool on the market at that time. Twitter made the search tool part of its

code, continued to offer the open API for search that Summize had originally

provided, and employed all five Summize software engineers as part of the Twitter

team (Arrington, 2008). Similar patterns of acquisition have occurred with other

hugely popular third-party apps and clients, including the acquisition of Tweetie, a

 174

Twitter app for the iPhone in April 2010, and Tweetdeck, the most popular desktop

client next to Twitter itself, in May 2011.69

Technical specs

Currently, Twitter has three different APIs: two REST APIs including one for search,

and one for streaming. The REST API, which stands for ‘Representational State

Transfer’,70 provides a way for developers to access and manipulate Twitter’s core

functionalities, such as the posting of tweets, viewing a user’s followers, and sending

and retrieving messages. The search API lets the developer search for certain data by

keywords, username, or location, as well as view historical trends. Finally, the

streaming API pushes data to partners in near real-time. Basically, ‘open APIs provide

information to third-party applications through ‘calls’, a technique of retrieving data

on a server in the background, without disrupting the display and function of a web

page’ (Bodle 2011: 322). The API documentation provides a list of methods that the

third-party developers may use in order to build their own apps, websites, and clients

on top of the functionality and data offered by the respective platforms. Twitter's APIs

are based off the HTTP standard. REST outlines a convention that ensures the API

follows a consistent set of rules in accordance with HTTP (see Kincaid, 2010b; Parr,

2011a). The REST API gives endpoints that may be used to read timelines, post

tweets, and implement numerous other functions. For example, the timeline resource

provides nine different ways in which programmers can GET/receive a collection of

tweets. Some of the other functions offered by the API include checking which users

are members of which lists, receiving detailed information about the relationship

70 Technically, web-based open APIs usually conform to one of two consistent architectural
frameworks for implementation, REST or SOAP. Simple Object Access Protocol (SOAP),
developed by Microsoft in 1998, is one of the most widely-used frameworks for building web
services. While SOAP is a W3C-recommended web architecture standard, Representational
State Transfer (REST) is not considered a standard so much as a style for designing
networked applications by using simple HTTP. REST has to a large degree replaced SOAP as
a standard for communication with other Web services over networks, which can mostly be
explained by its simpler and more implementation-friendly nature. REST accepts many
different message formats in contrast to SOAP, which is entirely bound up to XML as a
standard message format. According to ProgrammableWeb, as of February 14th, 2012, 71 %
of all APIs now use the REST protocol, compared to only 18 % using SOAP. See
http://www.programmableweb.com/apis.

 175

between two users, and receiving the 20 most recent favourite statuses by particular

users.71

Importantly, APIs are highly-controlled gateways to data. Offering an API does not

mean that all the data stored by a service such as Twitter is freely available to anyone

who is technically literate enough to make a few HTTP requests. API calls are usually

limited, to prevent full access to the data trove and to keep API management under

control. In Twitter, the majority of GET requests are rate limited, while POST

methods are not.72 Basically, the API controls the types of applications that can be

built, and, by imposing rate limits, the extent to which data can be accessed and

repurposed by third-party developers. While the limited access to Twitter data is free

of cost to any interested party, access to the full ‘fire hose’ of data is only provided to

a few select partners, such major search engines and the like. For data analysis

purposes, more specific access can be bought from either of Twitter’s two data

provider partners, Gnip and DataSift.

Community of practice

One of the striking aspects of Twitter is the community of practice that has formed

around their APIs from the very beginning. At the time these interviews were

conducted (August 2010 - August 2011), the Twitter third-party community was for

the most part gathered in the ‘Twitter Development Talk’ Google group. The Google

group was established March 2007 to provide a place where third-party developers

and other API users could come together to discuss issues connected to the Twitter

APIs. The discussions could revolve around purely technical difficulties or be more

normative and deliberative in character, for instance discussions of Twitter’s terms of

service and developer rules. As of August 2011 the group counted 12237 members,

with an average of almost 700 messages posted per month during the first half of

2011. At most, the group received 2240 e-mail messages (August 2009), and steadily

became somewhat less active from October 2010 and onwards. In July 2011 the

71 For Twitter’s API documentation, see: https://dev.twitter.com/docs.
72 For more info on Twitter’s rate limits and their policies, see:
https://dev.twitter.com/docs/rate-limiting.

 176

Google group was closed, superseded by Twitter’s own efforts to establish a

community forum at dev.twitter.com – Twitter’s own developer site.

Developer communities are an important aspect of programming in general.73 Most of

my informants do not develop software using the Twitter APIs as their main source of

income, although many of them have day jobs related to programming and the Web.

In many cases, being a third-party developer implies tinkering with the APIs during

one’s spare time, after working hours. Thus, having other developers to talk to and a

place to exchange information, debate and discuss the API, and ask for support and

help is essential. As Jeremy, one of my informants, points out:

Every developer community usually gathers in one or more places to
interchange knowledge. That interchange is essential to the progress of
programming. In this case, as in many others, the Twitter Google Group
concentrates much of this activity.

Code in this context becomes a social object, something that moves in and out of the

computer, into mailing lists and discussion forums and other discursive spaces.

Indeed, software is seldom a solitary effort. Most software can be considered

projects in every sense of the word. As projects, software involves numerous actors,

including programmers, managers, company CEOs, business partners, venture

capitalists, imagined users, test users, discourse, technologies, programming

languages, mathematical formulas, and so forth.

According to my informants and the discourse within the Google group, the Twitter

third-party community draws together developers with different skill sets and

technical knowledge. There are those who have hardly any previous programming

experience, as well as developers who consider themselves to be highly literate and

knowledgeable in regard to code and coding.

73As has been pointed out especially with regards to free/libre/open-source software (FLOSS),
programmers have many ways of gathering (online) to express, share, and circulate ideas
about code and coding. As Kelty for instance suggests: ‘Geeks live in specific ways in time
and space. They are embodied and imagining actors whose affinity for one another is enabled
in new ways by the tools and technologies they have such deep affective connections to’
(2008:77). In fact, the cornerstone of developing FLOSS projects hinges on a certain idea of
community, as collaborating on making the code better is what drives the ideology of both
free software and the open source movement. These collaborative efforts and the communities
around them in many ways grew out the Internet itself, affording coordination and
collaboration through mailing lists, chats, and so forth (see Kelty, 2008: 213-214).

 177

Consider Peter, one of my informants who had been a very active participant in the

Twitter developer group (when it still was hosted as a Google group).74 In one of our

e-mail exchanges, he describes himself as extremely well-versed in programming,

with skills in various languages. In his words: ‘my "talent", as people call it, is the

fact that I can learn any programming language within three days, and have a proper

application ready in seven’. For him, programming is arguably a very important part

of his identity, and he spends a lot of his spare time (after school) on developing

projects on a hobby basis. At the time of my first interview with him in October 2010,

he had just gotten into developing web applications using the Twitter API. Ten

months later, in July 2011, he had already developed several apps and clients, and

helped many other developers with their apps as well.

Many of my informants seemed to agree that the Twitter API is easy to use and

requires little programming experience. As Rob sees it:

Twitter's API is extremely simple to use, developers can access it using almost
any language or skill set. Compiled, scripted, even client side JavaScript may be
used to interact. This is one of the reasons it's so popular in my opinion, there
are thousands of applications available to interact with it.

Because the Twitter APIs are relatively well-documented, easy to use, and because of

a thriving developer community, the APIs are accessible to many different people,

from complete novices to expert programmers. This is in part due to Twitter’s use of

the REST framework and other widely-used interoperable web standards.

While all of my informants have their own unique backgrounds and motivations for

getting into programming and for using the Twitter API, many of them were

remarkably consistent in the ways they talked about code and the experience of being

a programmer. During my interviews with the third-party developers, it became clear

how much time, effort, and emotion is being invested in programming practices.

Developing software, whether small apps or bigger projects, requires a considerable

amount of time spent tinkering, practicing, failing, and succeeding. The emotional

74 Peter also represents what can be seen as the typical ‘geeky’ bedroom path to programming.
When I asked him how he got into programming, he answered: ‘Fun, work, boredom, filling
my time, everything. It all started when I was eight and a magazine I read had a five-page
tutorial about HTML. When I was 12, I knew PHP properly, 13 Java and Visual Basic, and by
now (17) I don't know [of] a single language which I don't understand (while there are a lot I
don't know, I do know that they are essentially all the same)’.

 178

register associated with programming expressed in many of the interviews ranges

from hope, happiness, and desire to frustration, anger, and hopelessness. Above all,

my informants’ spoke of the need for patience and persistence, that coding is all about

enjoying solving problems. As Alex, one of the informants, explained when I asked

him to elaborate on his programming experience:

Over the years I've read a lot, wrote a lot of bad code and made mistakes.
Mistakes are the best things that can happen to a programmer, because it
eradicates one more wrong way to do something.

Many of my informants have been programming since they were teenagers. Some

have grown up with the rise of the personal computer as an important part of their

identity formation. Software means a great deal to these people, as it is part of who

they are and what they have become in life. Here, I would like to draw on one

particular story that Jacob, one of the informants, told me, as it illustrates how

important the computer and programming can become for some, changing the lives of

the people it touches. One of the questions that I asked the informants was how they

got into programming and what it meant to them. This is Jacob’s story:

My school was in a poor neighborhood and didn't have any computers or plans
to get them. There was pretty much no hope for someone in my economic strata
in the US to see or touch a computer for another 10 years. But then in 1981
when I was 10 years old, Apple donated two computers and paid to have a tutor
train the top 10 math students in my school to do basic things like play games
and use a word processor. The top two students of the original 10 were taught to
program. Me and my friend Jake were the top two. We were taught Logo, Basic,
and some COBOL. Both of us went on to get degrees in EE/CS, design
microchips, and write software.

Although Jacob did not go on to study computer science at a higher level, but rather

electrical engineering, he says that:

Software has always been my hobby. In the early days, electronics and software
were more closely linked. Software seemed like a way to play with electronics
that didn't cost anything. For a poor kid, that was really important. I couldn't
afford to buy more solder ;-)

Passion and/or profit: The discursive regime of API-related programming

As mentioned, while my informants differed in terms of their individual backgrounds

and skill levels, as a community of practice they used very similar ways of talking

about the Twitter APIs and perceived opportunities. Broadly speaking, many of my

 179

informants used words and terminology that can be said to be reminiscent of what can

be labelled a discourse of enterprise, and what might perhaps at first glance seem to

be the opposite thereof, namely a discourse reminiscent of a ‘hacker ethic’. However,

it became apparent that these are not necessarily opposing discourses, but rather

complementary. We can see this dual aspect in Rob’s description of his reasons for

using the Twitter API:

My interest in Twitter is purely fascination with their API. I like to dig into
things and find out how they work, what's going on behind the scenes, and see
what I can do with it that might be of value to others. I'm focused on trend
tracking and run promotional material for businesses that want to expand their
presence on Twitter without having any technical knowledge.

On the one hand, third-party developers (referring both to some of my informants and

the Google group discussions) repurpose a discourse of self-reliance and personal

responsibility. Consistent with what can be labelled a neoliberal ideology,75

understood as the widespread employment of market concepts in all spheres of

society, many third-party developers seem to dream about inventing the next ‘killer

app’. On the other hand, developers talk about their love for programming, about

passion and a pure interest in tinkering with technology. This, as already alluded to,

can be understood in light of what Steven Levy has called the ‘hacker ethic’, as ‘a

philosophy of sharing, openness, decentralization, and getting your hands on

machines at any cost - to improve the machines and to improve the world’ (2010: ix).

Following discussions about the API in the discussion forums of the Google group

reveals a similar tendency. For example, in a thread entitled ‘Introduce yourself!’76

developers use terminology consistent with both neoliberal/enterprise/entrepreneurial

discourse and hacking/tinkering/passion. In this thread, developers introduce

75 While the concept of neoliberalism originated from a specific historical context of
economic and liberal thought – German post-war liberalism as manifest in the ‘Freiburg
school’ on the one hand and the liberalism of the Chicago School on the other – neoliberalism
has become somewhat of an all-encompassing catchphrase used by many academics for
everything that is seen as negative about the current political and capitalist landscape. For a
good overview and outline of the concept of neoliberalism, see Lemke (2001). My use of the
concept with regards to the developer community is meant as a way to express the ways in
which developers make frequent use of market concepts and economic criteria when talking
about their lifeworlds. As Lemke explains, neoliberalism generalises the scope of economics,
where ‘social relations and individual behavior is deciphered using economic criteria’ (2001:
8).
76 See Twitter Developer Talk: http://groups.google.com/group/twitter-development-
talk/browse_thread/thread/d6bd8f0a9b242717 (last accessed February 16, 2012).

 180

themselves by way of saying things like ‘I hope I can make money from it’ on the one

hand and ‘Yahoo engineer by day, Twitter hacker by night’ on the other.

These discourses, then, should not necessarily be seen as opposing, but rather as

belonging to the same ‘discursive regime’ in the sense of Foucault (1977). As Kitchin

and Dodge explain, ‘a discursive regime is a set of interlocking discourses that sustain

and reproduce […] a particular set of sociospatial conditions (2011: 19). Moreover,

discourses work together to ‘persuade people to their logic; to believe and act in

relation to this logic’ (Kitchin and Dodge, 2011: 262). Rather than representing

opposing ways of situating oneself with regards to software, I suggest that the

discursive power of APIs both conditions and disciplines. Here, the love for

programming and hacking becomes convoluted into the governmentality of

neoliberalism, or a kind of ‘enterprise culture’ (du Gay, 1996). As scholars expanding

on Foucault’s ideas of governmentality have pointed out, neoliberal discourse in many

ways becomes the driving force for passion as well, making work/leisure boundaries

less important (see Miller and Rose, 1990).

In this sense, we could say that hacking constitutes but one path to self-fulfilment,

where the values of personal responsibility, accentuated by neoliberal discourse,

materialise in various practices of hacking and tinkering. That is, love for what one is

doing, or what Foucault (2007) called ‘pastoral power’, is used as a driving force for

the reinforcement of API programming as a form of ‘entrepreneurial labour’ (Neff et

al., 2005). While many of the third-party developers use their spare time to tinker with

the Twitter API out of interest, or to help out other developers who ask questions on

the mailing list, ultimately this form of passionate or ‘affective labour’ also becomes

the key resource in an economy geared towards perpetual innovation. By reinforcing

concepts of pleasure and desire in discourses around the Twitter API, we can see

‘how pleasure itself becomes a disciplinary technology’ (Gill and Pratt, 2008: 17).

Pleasure and the passion for programming can thus be seen as key techniques of

‘government’ in the sense of directing or guiding the conduct of third-party

programmers (see Foucault, 1997).

Third-party developers do not only produce their own applications, nor do they only

engage in passionate work, coding for fun. As a community, these developers and

programmers also participate in producing the underlying Twitter service itself. As

much of the discourse surrounding Twitter suggests, the developer ecosystem has

 181

contributed greatly to the success of Twitter. As Nick puts it in one of his e-mails, ‘I

think third party developers were really pretty essential to Twitter’s success’.

Similarly, Carl says,

I don’t think Twitter would have taken off without an API. It allows third party
developers do things with Twitter and tweets that Twitter as a company did not
initially think of.

Carl and Nick aptly describe the double articulation of power manifest in web-based

open APIs. On the one hand, as Kitchin and Dodge point out, APIs have lowered the

barrier to entry, empowering more people to be creative. As they say, ‘software offers

a growing proportion of people with a set of tools to do work in the world’ (Kitchin

and Dodge, 2011: 133). On the other hand, APIs have become one of the greatest

resources for commercial Web 2.0 platforms, by leveraging on coding practices and

developer ecosystems in a fashion similar to the kind of voluntarism seen in FLOSS

projects. While the communities of practice surrounding the Twitter API are certainly

reminiscent of the kinds of collaborative efforts found in free and open source

software development, in the age of the interoperable API, innovation is encouraged

on the subservient systems as opposed to on the source code of the core system. Tony,

an informant, elaborates on this new form of governance in the following way:

Basically they are taking, what is probably their biggest direct cost,
PROGRAMMERS, and dilute that cost amongst a huge base of programmers
that not only code for less but also provide the largest source of new ideas for
their software. They are making sure they stay in the retail software game as it
evolves.

The management style (or protocol) that Tony talks about in many ways reflects what

Luc Boltanski and Eve Chiapello have described as ‘the new spirit of capitalism’.

Looking at the changes in management discourse and the emergence of the ‘firm as

network’, Boltanski and Chiapello suggest that:

[t]he integrated large firm […] cannot improve its performance in all tasks
simultaneously. It must therefore keep in-house only those operations where it
possesses a competitive advantage – its core business – and outsource the other
operations to subcontractors who are better placed to optimize them. It
maintains close and enduring ties with these subcontractors, continually
negotiating terms and conditions, and exercising control over production
(Botlanski and Chiapello, 2005: 75).

While Boltanski and Chiapello write specifically about new management techniques

and the proliferation of outsourcing services, the ways in which APIs organise

 182

participation and coding certainly reads in a similar way. In this sense, Twitter can be

seen a networked firm, and its developer ecosystem as the subcontractors. Similar to

how Boltanski and Chiapello describe the new spirit of capitalism, Twitter continually

negotiates the terms and conditions for what can happen, where and when, and

exercises control over software production. However, we should be wary of reading

too much exploitation into these relations, as sometimes can be the case with

academic discourses around creative, affective, or immaterial labour.77 Rather, the

dynamics seem to evoke the twinning of freedom and control that underlies the

Internet as a whole (see Galloway, 2004; Chun, 2006). As Wendy Chun argues,

‘control and freedom are not opposites but different sides of the same coin’ (2006:

71). Control does not oppress, but rather enables openness. For Galloway, the kind of

control realised through protocols is different than one might first think, as it is a ‘type

of control based on openness, inclusion, universalism, and flexibility’ (2004: 142).

While control is the foundation of both freedom and the Web, Chun also points out

that freedom exceeds control (2006: 291).78 As much as protocological power

regulates or controls, it also produces users’ needs and desires. In the case of the API,

we could say that the love of programming is used as a type of control. At the same

time and beyond exploitation, the API offers a potential for new subjectivities and

socialities. The following section introduces the concept of the quasi-object, in order

to consider the productive power of the Twitter APIs as a catalyst of specific

collective associations or programmed sociality.

The construction of collectives: APIs as quasi-objects

Application programming interfaces are protocols in every sense of the word. Not

only do APIs regulate how data can be exchanged between two software programs,

77 Here I am thinking especially of some of the discourse that has emerged around the ways in
which the digital domain has mobilised the widespread use of ‘immaterial labour’ as a means
of capitalist exploitation. See for instance Hardt and Negri’s ‘Empire’ (2000), or Terranova’s
‘Free Labor’ (2000) and ‘Network Culture’ (2004).
78 While a detailed analysis of Chun’s argument is beyond the scope of this chapter, it needs
to be pointed out that it is a bit more complicated than it seems. Chun draws upon Jean-Luc
Nancy in her conceptualisation of freedom as the condition of possibility. Accordingly,
freedom is conceptualised as the beginning. As power, freedom as initiality allows existence
to emerge. Because freedom is nothingness, or precedes us, it exceeds control. See pp. 290-
297 in Chun’s Control and Freedom.

 183

they also direct netspace, code relationships, and connect life forms (Galloway, 2004).

I argue that APIs bring actors together in particular relations that point to the

regulatory powers of protocols as important diagrams for organising and governing

participation on social networking sites. It is not that APIs are simply there for users

and software developers to gather around. Rather, following the French philosopher

Serres, APIs can be understood as quasi-objects that play an active role in configuring

social relations. According to Serres, the quasi-object makes the collective (1982:

225).

A huge inspiration to the development of Latour’s relational Actor-Network Theory,

Serres sought to describe the ways in which social bonds are never only between

subjects, but always already imply the participation of objects, or rather quasi-

objects.79 As discussed in Chapter 2, Michel Serres offers the example of a ball to

illustrate his point about the productive force of objects. In a rather poetic fashion,

Serres elaborates on the capacity of the quasi-object to bend human practices:

Around the ball, the team fluctuates quick as a flame, around it, through it, it
keeps a nucleus of organization. The ball is the sun of the system and the force
passing among its elements, it is a center that is off-centered, off-side,
outstripped […] The object here is a quasi-object insofar as it remains a quasi-
us. It is more a contract than a thing, it is more a matter of the horde than of the
world (1995: 87-88).

Serres uses the ball in a rugby game to illustrate how there would be no social

gathering, no game, without the ball. It brings the players together in constantly

shifting configurations. As the quasi-object passes through social formations, it also

forms relations among the participants. The example of the ball has subsequently been

taken up by others to explain the nature of collective and individual individuation,

most notably in the writings of Brian Massumi and Pierre Lévy. In Massumi’s reading

of the quasi-object, the ball is the game’s catalyst; it attracts and arrays the players

and defines their roles in the game (2002: 71-73). Importantly, the quasi-object seen

as a kind of contract or agreement also regulates the field of potentiality. Following

this line of thinking, we can begin to see how APIs are not just products of social

79 The term quasi designates the quasi-object as something more than objects. The quasi-
object is not determined by its properties, but through the way it moves about, tying relations
together. As Brown points out: ‘This is more than a simple object. It is “quasi” object since it
is undetermined, its particular qualities are unimportant. Its [sic] standing comes from the way
it moves as a token. It is this movement that holds together the players’ (2004: 394).

 184

formations, but rather constitute the loci of a range of organisational activities.80 The

API as protocol or contract ‘outlines the playing field for what can happen, and

where’ (Galloway, 2004: 167). The question then becomes how we can begin to

understand the playing field that the Twitter API regulates. What kinds of relations

are assumed to be desirable, and whose interests are emphasised or devalued?

Understanding the playing field of the Twitter API

As contracts, APIs both promise to deliver something and regulate the relations

between the parties involved. Every developer who wants to use the API to access and

repurpose the data in a third-party application or website needs to conform to a set of

rules. According to these rules, Twitter has the right to terminate or shut down any

third-party app that does not comply with the rules. Importantly, the rules describe

‘what type of innovation is permitted with the content and information shared on

Twitter’.81 The contract also states that ‘Twitter may update or modify the Twitter

API, Rules, and other terms and conditions, including the Display Guidelines, from

time to time’. This makes the Twitter API a risky thing, as developers lose important

control over their products when they make their applications reliant on the APIs.

Importantly, APIs carry with them an assumption about what constitutes innovation

and desirable coding practices. APIs thus occupy an interesting position of double

articulation, involving control and freedom, threat and opportunity simultaneously.

APIs not only open up access to data and software functionalities, but also a field of

possibility for capital, creativity, and coding. As Carl, an informant, points out: ‘our

company would have a hard time existing without the Twitter API’. Jacob, another

informant, pointedly suggests: ‘my business relies on them’. Indeed, for many of the

developers, the Twitter APIs constitute the condition of possibility for their

applications and businesses. In this sense, the APIs act as catalysts, not merely for

apps and businesses, but also for becoming a programmer. If the 1990s, as Kitchin

and Dodge suggest, underwent a certain democratisation of technology where

software contributed to a burgeoning of ‘back bedroom’ creativity through desktop

80 Harris (2005) points out that this is precisely the approach ANT would take, to place the
notion of quasi-objects at the heart of understanding social organisations (p. 173).
81 See ‘Developers Rules of the Road’: https://dev.twitter.com/terms/api-terms (accessed 15
February, 2012).

 185

design and home recording setups (2011: 121), the last decade of burgeoning APIs

has dramatically opened up new possibilities for creativity through ‘mashups’ and

apps. Tony talks about this, when I asked him how he perceived the impact of APIs:

I believe APIs are a great thing because they have let people with ideas, come
one step closer to being able to put those ideas to work, by not having to know
too much about programming.

Of course, as we have seen, APIs are not simply objects that beget the third-party

programmer. While these coded systems and programmable interfaces to web services

allow for a much greater access to data, APIs need to be seen as designed spaces, like

any other user interface. As designed spaces, APIs are suggestive of certain kinds of

actions, and afford certain kinds of coding practices. In this sense, APIs also close the

very same possibility space, by acting as a gatekeeper and regulator. APIs demark

function, they control access to data, determine the boundaries for innovation, and

define what can and cannot be done. In my interview with informant Jack, he

elaborates on the dual existence of control and freedom, opportunity and threat:

There's been a huge wave of "just open it up and see what happens" that we're
just at the beginning of understanding. The implications of which will shudder
some businesses, while allowing some to flourish. What the underlying API
supports, or doesn't, indeed is defining social media as we know it. APIs define
what we can build, policy-wise, as well as technically, and subsequently the
products we build/use/consume, which in turn obviously affect culture and
socialization in general.

Like Serres’ quasi-objects that have the capacity to change and affect the relations

between actors as they pass through and circulate across different assemblages, the

Twitter API stabilises some relations while destabilising others. Indeed, as Jack

suggests, what the underlying API does or does not support defines social media as

we know it. Who is affected and in what ways depends on the positions of the actors

involved. To invoke the example of the ball and the game again: while the API is

indeed the focus of every player on the field, the ‘relationship between the players is

defined by how they position themselves with regard to ball’ (Brown, 2004: 394).

Some have a better chance at winning, while others are at risk of losing.

If we take the ball analogy one step further, we might begin to see the many ways in

which the ball signifies both opportunity and threat, not as a thing that just lies there

on the ground, but as something that in conjunction with the player has the capacity to

induce action and movement. In a similar vein, we could say that the Twitter API

 186

does not do anything in and of itself. Like the ball, the API signifies and prompts

action. The API is there to be used. Like the ball, the API seems to suggest ‘play with

me!’ ‘Be creative!’ At the same time, ‘play’ through the API is rule-bound. The API

documentation and Developer Rules provide the structure of the game, regulating

what can and cannot be done. As in the ball analogy, there is always the risk of being

tackled. In Serres words, ‘with the ball, we are all possible victims; we all expose

ourselves to this danger and we escape it’ (1982: 227).

How can we understand this in terms of the playing field created through the Twitter

API, and what are its risky opportunities? I will elaborate on these questions in the

next section, where I discuss a specific case of controversy in terms of Twitter’s

restrictions and regulation of their APIs, and the effects on the third-party developer

ecosystem that played out during March 2011.

Governing innovation

In this section, I turn to a more specific case in which the Twitter API underpins

freedom and control, opportunity and risk. I argue that the ways in which the Twitter

API seems to concatenate relations – that is, define the playing grounds for what can

happen and where it can happen – hinge on parameters of governance that have the

regulation of innovation as its goal. As de Souza and Redmiles point out, the

protocological aspects of an API imply a certain division of labour, rules, and

conventions that need to be attended to if we are to understand its powers beyond the

obvious design and usability issues that have been the focus of previous API research

(2009: 447). The specific rules and conventions underlying an API constitute a

necessary framework for how user data can be accessed in terms of privacy concerns.

As long as the participants are content, the governmental mode of managing the actors

involved within the playing field remains more or less unproblematic. However,

when the regulatory nature of these conventions becomes a matter of contestation, the

divisions of which de Souza and Redmiles speak become particularly visible.

Employing sites of ruptures as a means of getting closer to otherwise invisible objects

or phenomena is a well-known strategy within the philosophy and sociology of

technology (see Heidegger, 1977; Latour, 2005). Mackenzie seems to suggest that one

way of understanding software and its transformative capacities is to look for the

ways in which software becomes visible as sites of contestation (2006: 3). Mackenzie

 187

identifies some of the differing ways in which software becomes visible through

specific debates and discourses that turn it into a highly invested object, as for

example was the case with Apache webserver or the Y2K bug (ibid.).

In a similar vein, I will now turn to the governance of innovation implicated by the

Twitter APIs. In doing so, the following section takes a closer look at one particularly

contested and debated case of API controversy. The case of Twitter directly speaking

out and ‘prohibiting’ development of certain Twitter clients became a much-cited and

debated issue, both among developers themselves as well as within the broader social

media industry (see Arthur, 2011; Siegler, 2011).

It’s not personal, it’s business: Twitter ‘prohibiting’ third-party clients

While Twitter has openly encouraged third-party development from the very start and

used considerable resources to build stable and consistent APIs, eventually there came

a time when too much innovation turned into a potential threat on the part of the core

service. That is, too many similar systems were suddenly on the market, competing

with each other for the same users. For Twitter, the ecosystem that it had so eagerly

supported became a potential threat; the plethora of subsystems that had been

generated using the Twitter APIs suddenly threatened to make the core service

obsolete. As a result, Twitter decided to tell the ecosystem of developers to stop

building new third-party clients. On March 11, 2011 platform manager Ryan Sarver,

acting as a spokesperson for Twitter, posted a message on the Twitter Developer Talk

list, where he urged developers to stop making new Twitter clients, and claimed

developers were confusing the user experience of Twitter.82

The message was that too many developers were apparently doing the opposite of

innovation, namely making more of the same, merely producing replicas of Twitter

itself. As Sarver put it, ‘consumers continue to be confused by the different ways that

a fractured landscape of third-party Twitter clients display tweets and let users

interact with core Twitter functions’. He argued that users should have the same

82 Ryan Sarver’s post was titled ‘Consistency and ecosystem opportunities’ and was posted
March 11, 2011. The message quickly turned into a discussion thread where it received 92
replies within the following three weeks. See http://groups.google.com/group/twitter-
development-talk/browse_thread/thread/c82cd59c7a87216a. The quoted comments below are
taken from this thread.

 188

experience of Twitter regardless of which clients or applications they use. Looking at

this from the perspective of the previously-introduced game analogy, one sees that the

playing field appeared to have gotten out of hand; the rules were not as apparent

anymore, and too many players had begun playing the game on their own terms. The

rules needed to be straightened out; it needed to be made clear who had the power to

define the rules and conventions of the playing field.

While the game welcomed every player at the start, the time had come to take out the

team. Who were the valuable players, and who seemed to do more harm than good?

Ryan Sarver’s message to Twitter’s developer ecosystem provided a clear indication:

Developers ask us if they should build client apps that mimic or reproduce the
mainstream Twitter consumer client experience. The answer is no. If you are an
existing developer of client apps, you can continue to serve your user base, but
we will be holding you to high standards to ensure you do not violate users’
privacy, that you provide consistency in the user experience, and that you
rigorously adhere to all areas of our Terms of Service.

This quote clearly shows the risky territory created by the APIs. Developers will be

held to ‘high standards’ so as not to violate the Twitter terms of service (TOS) or

users’ privacy. However, the boundaries are unclear. When is something considered a

breach of privacy or a violation of the TOS? When is a specific mashup or app

considered to be ‘good enough’, a true innovation? The reactions following Twitter’s

prohibition of third-party clients illustrate some of the feelings, intensity and

significations passing through code like any other cultural object (Mackenzie, 2006:

5). Immediately, someone ironically posted the following message in the discussion

thread: ‘Wow. Thanks for getting so many people interested in Twitter. Now get lost.

This is appalling.’ Another developer provided an apt summary of what now seemed

to be at stake for the developer community: ‘All third party Twitter developers, no

 matter what they make, are now walking on eggshells, constantly at risk of offending

Twitter's ideas of how users should interact with Twitter’. Yet another developer’s

reaction shows the potential risk that API changes have for software developers:

‘You've just scared the bejesus out of me because I don't know if I'm suddenly

verboten or not. Five months of work shot to hell?’

The case of the Twitter client prohibition illustrates the risk of programming using an

API. As Schroeder observes in a blog post on Mashable:

 189

Is it too dangerous to build an application on an API you can’t control? Whether
it’s Twitter or Facebook or Digg or any other web service that provides a public
API, creators of third party applications are always at risk that their efforts will
simply be erased by some unpredictable move on the part of the company that
controls the API (2009).

While the tenet of a good API is stability, APIs do change. Sometimes it is the API

itself, as in the actual calls or methods for fetching data. When this happens, apps that

make use of these methods instantaneously die off if they do not make the necessary

amendments. This means that programming using the API of a web service requires

ongoing attention on behalf of the third-party developer. While some of my

informants thought that the possibility of change was in fact positive, as it made them

improve or update the apps to keep up, others felt rather frustrated by this level of

insecurity. Developers and API providers alike see the APIs as contracts. Just as the

providers expect developers to adhere to the rules of the road and the TOS, the

developers expect the APIs to remain stable. Changed APIs imply significant extra

cost for third-party programmers. In some cases, changed APIs imply a complete

waste of time, and perhaps more dramatically the loss of a business. This is exactly

what happened to one of my informants, Jacob. When I asked him about his

interactions with the Twitter API, he replied:

I'm no longer interested in contributing anything to Twitter's API. Their hostile
stance toward developers like me has been very discouraging, not to mention
costly -- they killed my business, it has cost me many thousands of dollars.

Jacob, who had been working on a Twitter client for a long time, said the Sarver

incident finally killed his business. In his opinion, Twitter had gradually become more

hostile towards their once-profitable ecosystem. They had made it more difficult to

interact with the APIs, both in technical and legal terms. In relation to the Sarver case,

Jacob explained:

This is the third major change in authentication system in less than two years.
Each requires a significant amount of engineering. Each frustrates users. And
with each Twitter offers their own in-house app, free and without headaches.

While most of my informants seemed to have a positive attitude towards Twitter,

holding the company up as a prime example of a successful and sympathetic start-up,

there was also a sense that they, as a community of developers, had somehow been let

down. The community thrived in the days of the Google group, but this changed once

Twitter itself hosted the forum.

 190

Peter, who was a very active member of the Google group community, thinks, ‘the

community we had has simply died’. As he elaborates:

The "original" community is now simply e-mailing questions directly to
Twitter, or have [sic] stopped developing. Only a very small group of them still
uses dev.twitter.com, knowing that they don't get an answer anyway.

Jacob echoes the sense of decline of the community:

I think the group was much more vital in previous years. It seems to me now it's
less of a community now and more often a PR channel and dev support forum.
In previous years there were many more community contributions from third
parties. And those contributions were encouraged much more. Now there are
few and Twitter is openly discouraging to many types of third part development

While we can sense some level of resentment in this quote, Jacob is also quick to add:

That said, the engineers within Twitter have always been very nice to me
personally. I've had the opportunity to meet many of them in person and they're
really great guys. This bipolar nature indicates that the hostility is coming from
elsewhere, perhaps management? Or maybe the money guys? I don't know.

My intention is of course not to assign blame to any one party for something that

arguably is part of the game. Rather, it is to point at the game itself, its players (read

various participants), positions (in relation to the API), desires, and motives. The

playing field controlled by the protocols of the Twitter API also enable and make the

game possible in the first place. On the one hand, the APIs have opened up new

possibilities for creativity and innovation. On the other hand, the same freedom comes

with a loss of control.

Consistent with neoliberal logic, third-party developers have to be highly flexible

subjects, willing to take the risk that this kind of cultural work entails. However, as

the notion of APIs as ‘objects of intense feeling’ attests to, the costs – both personal

and professional – can sometimes be too high. For someone like Jacob, the

implications might simply mean losing the game, because of the ways in which the

quasi-object of the API moves in unidentified ways. While APIs have arguably

become the basic building block of the social Web, cases like the Twitter third-party

client prohibition shows that ‘sometimes applications might be building their services

on a foundation of sand’ (Higginbotham, 2011).

 191

Conclusion

As we have seen, APIs shape, control, and enable practices of sharing, transmission,

and innovation in multiple ways. On the one hand, APIs provide the condition of

possibility for what is increasingly talked about in terms of ‘big data’, the

proliferation of data managed and produced on the Web today. APIs make it possible

for different actors to share and use this data, enabling new services and software to

come into existence. For many of the third-party developers I interviewed, APIs are

seen as a new powerful resource, bound up in and contributing to new opportunities

and desires. Whether these come in the form of business opportunities, by way of

monetising the data provided through the APIs, the opportunity to enhance one’s

programming skills or even getting into programming altogether, or just new and fun

way of practising one’s love for programming, the Twitter APIs are objects of lived

experience. APIs thereby have very real material effects on end users.

On the other hand, APIs regulate and restrict the same flow of data and information

that they enable. APIs set the limits for what can be shared, and in which ways.

Through techniques and procedures such as rate limiting and highly-controlled access

points, APIs act as highly-powerful gatekeepers of data. Importantly, APIs are

capable of responding to, adjusting, and modulating various changes within the

assemblages in which they participate.

As I have argued, these convoluted capacities of the API to make things happen, to

organise sociality in certain ways could usefully be understood through Serres’ notion

of the quasi-object. As such, the Twitter API can be understood as a catalyst for the

formation of collectives and individual being. Not only do the Twitter APIs condition

the existence of the developer ecosystem; APIs also constitute an important

‘communicative mechanism’ (de Souza and Redmiles, 2009). The Twitter API, as we

have seen, gathers multiple actors into communities of practice and ‘discursive

regimes’ involving a ‘variety of vested interests’ (Kitchin and Dodge, 2011: 251).

While some of the online interview data was collected only a couple of months after

the Sarver incident, which arguably influenced the sentiments expressed by the

developers towards Twitter at that time, my findings clearly show that APIs are never

only neutral objects.

 192

APIs should be understood as ‘objects of intense feelings’. They are invested with

various forms of contestation and identification, hopes and disappointments. Their

protocological power stems from their capacity to define the playing field of

innovation and to gather actors in various constellations of collaboration and

controversy. As I alluded to with the coupling of control and freedom, power through

the API needs to be seen as emanating both from the techniques and procedures that it

prescribes, and from the developers themselves. As a catalytic device, the Twitter API

activates certain impulses and relations. As we have seen, these relational impulses

include the divisions of labour (i.e. Twitter core service and apps as subsystems,

Twitter engineers and third-party developers), the construction of rules and

negotiations (i.e. continually updating terms of service and API usage rules), as well

as the promotion of creativity, hopes, fears, risk, and pleasure.

In this chapter I have sought to illuminate APIs as sociotechnical constructs that have

the power to install both opportunity and threat. APIs, it was argued, are not simply

‘specifications and protocols that determine relations between software and software’

(Cramer and Fuller, 2008: 149), but can also be analysed as quasi-objects, protocols

that shape the relations between multiple actors, including humans and nonhumans.

 193

Chapter 9. Conclusion: Turning the tables on ‘digital

humanities’

The main objective of this dissertation has been to examine the ways in which

software shapes sociality in the context of social networking sites. The aim has been

to use case studies to illustrate how an understanding of social life online benefits

from an analysis of the ways in which non-human actors, especially software,

participate in the activities and interactions between the entities (both human and

nonhuman) concerned. My main argument is that software fosters and supports what I

call ‘programmed sociality’, understood as the ways in which software codes,

assembles, and organises ways of relating to oneself and others. This is not to say that

user interactions and practices on social networking sites are pre-programmed and

determined by non-human actors. Rather, the concept of programming allows us to

consider sociality as an on-going process of assembling and reconfigurations that

involve human and non-human actors. In this dissertation, ‘programmed’ has not

merely referred to the materiality of software, but also to what computer pioneer John

von Neumann called ‘to program’: that is, to ‘assemble’ and ‘organize’ (Grier, 1996:

52). This has allowed me to conceptualise software as both material and practice,

something that has been constructed and designed in certain ways, and a procedure for

assembling and organising that to which it pertains. I have been guided by Foucault’s

understanding of power as a productive force, and have used the concept of power as

a primary analytical framework in which to understand the impact of software in

shaping sociality in social media. My goal in this dissertation has thus been to show

and illuminate some of the ways in which the productive power of software plays out

in the context of Facebook and Twitter.

I have shown how software governs the conditions of the intelligible and sensible by

propagating a certain social order of continued participation. In chapters 5 and 6, I

demonstrated how the protocols and algorithms of Facebook function as important

steering and selection mechanisms for what users are allowed to see and to what their

attention is directed. The studies on attention and visibility on Facebook offered a way

to address the question of how software organises and distributes the sensible.

Software permeates social relations by playing an active role in the individuation of

collective associations. In chapters 7 and 8, I showed how software not only supports

 194

sociality, but is in fact what makes sociality possible in the first place. Although quite

different in scope, the studies on friendship formation and API interaction show how

software needs to be seen as an actor and active participant in shaping social

formations and groups.

In this concluding chapter, I will expand on the notion of programmed sociality by

relating my arguments and findings to the broader picture of networked society and

algorithmic culture. I will begin by elaborating on the main contributions of this

dissertation, before discussing some of the wider implications of my research.

Major contributions

This dissertation provides several empirical, methodological, and theoretical

contributions to media and software studies. First, I have shown how software can be

analysed as something that shapes the conditions for sociality on social networking

sites. Despite the fact that software studies is a relatively new field, there are as many

ways of pursuing the study of software as there are ways of conceptualising software.

Secondly, this dissertation has developed what I have called a technographic

approach to the study of software, which can be used as a tool for analysis. Finally I

have shown how the subject-software continuums examined in the previous four

chapters are examples of what I call ‘programmed sociality’. In the following section,

I will expand on each of these points.

Towards a software-sensitive perspective to media and communication

In regard to the field of media and communication studies, this research contributes to

the understanding of social networking sites by invoking a software-sensitive

analytics. This dissertation provides an example of how we might understand and

critically approach important issues within media and communication studies,

including attention and visibility, by questioning the material-discursive conditions of

these media as software. Such a perspective can be contrasted with a more traditional

manner of analysis: that of studying users. A software-sensitive analytic approach

does not mean that users are disregarded; it simply implies another perspective on the

user – a perspective that I believe has been overlooked in media studies.

 195

I have shown how applying a software-studies perspective on social networking sites

brings about a new understanding of the co-mingling of actors in these spaces, and

how an analysis of sociality in networked media benefits from taking software actors

into account. While I have focused on aspects such as attention, visibility, friendship,

and developer community and practice, the usefulness of taking a software-studies

perspective extends well beyond these issues.

One could apply a software-sensitive perspective to almost any topic or issue of

interest within (new) media studies; therefore, my approach has applications beyond

my focus on social media. My research has contributed to a new understanding of the

issues I have studied, for example of how attention is arranged in certain ways, how

visibility becomes an algorithmic strategy etc., and I have shown how taking software

seriously opens up for understanding traditional media studies topics in new ways.

The question is whether social life on the Web can be studied without taking into

account the plethora of software actors that contribute making sociality meaningful. I

believe it cannot. One of the critical tasks for media scholars is thus to rethink some

of the traditional topics within media and communication research in light of

algorithmic and coded interventions. It is necessary to consider the regulatory spaces

entailed by the growing use of algorithms in everything from agenda-setting,

gatekeeping, editorial processes, rhetoric, advertising, and political participation and

the public sphere, just to name a few areas of interest to media research. This

dissertation offers one possible way of synthesising media studies in a manner that

has its point of departure in the power of software.

 Towards a technographic approach to the study of software

A second major contribution of this dissertation is to offer a version of software

studies that hinges on what I have called a technographic approach. As I discussed in

Chapter 4 on methods, a technographic approach is a way of reading and describing

technology – in this case software – in a manner similar to that in which an

ethnographer would describe and interpret culture. Replacing ‘ethno’ with ‘techno’

signifies a shift in focus, from people’s lifeworlds to the things that software itself can

be said to be suggestive of. Technography provides a way to treat software elements

and processes akin to other types of cultural texts, meaning that they can be

 196

approached as assemblages of various ways of sensing, doing and knowing. This way

of engaging in software studies implies an attentiveness towards the various traces

and elements of software clustering around social networking sites, including blog

posts, partial descriptions of the algorithmic logics, tech talks explaining parts of the

engineering that goes into these systems, available technical specifications, media

coverage etc. This, I believe, provides a useful approach to software and software-

mediated processes that exists somewhere in between a study of the interface alone,

and reading the source code.

My contribution to software studies has been to offer a detailed analysis of the stuff of

software, to account for the important role that protocological and algorithmic actors

and processes play in the context of social media - an area of research that has largely

been missing in writings on software studies thus far (with some notable exceptions of

course, see Chapter 2). By focusing on digital objects and ensembles such as the Open

Graph protocol, the EdgeRank algorithm and other algorithmic and coded actors of

the Facebook platform, in addition to the Twitter APIs, this dissertation has opened up

a space for a kind of software studies that seeks engage with the micropolitics of

power through software.

Towards an understanding of ‘programmed sociality’

A third major contribution that this dissertation makes to media and software studies

is to show how software signifies and is suggestive of things in the context of

networked environments, in terms of producing the conditions for the sensible and

intelligible. Software acts not only as a mediating force in social formations online,

but also as an active constituent of the practices and relationships that these

formations entail. The programmatic techniques, procedures, and mechanisms at play

in social networking sites not only make sociality possible, but also govern how and

in what ways collective associations form. By considering the notion of ‘program’ in

the sense of von Neumann – as a way of arranging and organising – sociality in

networked environments can be understood as being organised (read: programmed)

by various coded systems and processes. I believe the term ‘programmed’ offers a

useful way to articulate the type of traversal temporalities embedded in the various

algorithmic processes and data-driven logics underlying social networking sites. In

 197

particular, the term programmed captures the ways in which these computational

processes engage in the formation of a future based on past data.83

In this sense, programmed sociality exists at the intersection of various temporalities,

where the productive capacity of software both constitutes and is constituted by

relations to past, present, and future. Chapters 5, 6, and 7 demonstrated how the

protocols, algorithms, and other programmatic techniques of Facebook work to ‘make

sense’ of past conduct in order to generate new possible futures. Programmed

sociality points to the productiveness of software, as evidenced by the exercise of

power. As Foucault suggests about the essential nature of power:

In effect, what defines a relationship of power is that it is a mode of action
which does not act directly and immediately on others. Instead, it acts upon their
actions: an action upon an action, on existing actions or on those which may
arise in the present or the future (Foucault, 1982: 789).

In Chapter 5 we saw this dynamic of power, understood as acting upon actions, in the

ways in which attention is managed and organised to enable certain results. By

describing the infrastructural transformations of the Facebook platform, the argument

was made that Facebook does not merely enable certain actions and connections to

take place. Rather, the software acts upon the actions that it merely claims to facilitate

in order to create and capture users’ attention. Importantly, this process of creating

certain modes of attention is not just confined to the competition of ‘eyeballs’ or

‘clicks’, but designed to generate one particular kind of attention: participation.

In Chapter 6, we saw how this data-intensive environment plays out in the context of

Facebook’s News Feed. The heavily-personalised News Feed operated by the

EdgeRank algorithm creates a regime of visibility that, like the management of

attention, hinges on the governance of participatory subjects. Visibility on Facebook

is not something ubiquitous, but rather a scarce resource where there are no

guarantees of becoming visible as part of the News Feeds of one’s friends. In other

words, the fact that one user sees content of a certain type does not mean that

everyone else also sees it. In fact, as I demonstrated via an experiment of reverse

engineering, becoming visible on the News Feed is not only highly regulated, but is in

83 The notion of ‘programmed sociality’ is inspired by Wendy Hui Kyong Chun’s book
Programmed visions: Software and memory (2011). As she writes: ‘New media proliferates
“programmed visions,” which seek to shape and predict—indeed embody—a future based on
past data’ (2011: xii).

 198

many respects also an exclusive affair, a fact that corresponds quite well to recent

numbers reported by Facebook itself.84

Applying the notion of programmed sociality to Facebook’s News Feed allows us to

consider the micropolitics of power that are embedded within such programmatically-

designed media spaces. Ultimately, protocols and algorithms need to be understood as

associative devices that make certain decisions about which relations to forge, and

whom and what to connect. What is important to emphasise, is the fact that the

connections forged by software have a politics. The linkages are not formed in an

arbitrary manner, but rather designate a strategic arrangement aimed at governing the

conduct of individuals or groups in certain manners.

Sociality however, is not set or organised once and for all. Rather, the materiality o

software and the modes of being together as organised by the software are

continuously in flux. Algorithms are ontogenetic simply because the problems that

need solutions continually change. While the algorithms at play in Facebook continue

to calculate interestingness (the problem that needs to be solved), the company’s

definition of interestingness continually changes as new goals are introduced and

contexts change. For example, when Facebook introduced a set of new apps at the f8

in 2011 aimed at promoting activities such as listening to music or reading newspaper

articles, the algorithms were tweaked to make those Facebook users who were

actively using these new apps more prominent on their friends’ News Feeds. This

means that users who were using these apps were becoming more visible than others.

By marshalling what is visible and invisible, algorithms have the power to control the

boundaries for what and who becomes recognised, and perhaps more profound – who

or what is considered insignificant or simply forgotten. This kind of subject-software

dynamic shows that there is a need to be attentive to the contexts, workings, and

implications of algorithms, especially as contexts change in such rapid and often

unpredictable ways.

The notion of programmed sociality helps to illuminate not only how sociality itself

has become the primary object of social networking software, but also how sociality is

programmatically ‘transformed, redistributed and deployed’ (Mackenzie 2006: 173).

84 According to Josh Constine of TechCrunch, ‘your average Facebook post only reaches 12%
of your friends’. http://techcrunch.com/2012/02/29/facebook-post-reach-16-friends

 199

In Chapter 7, I addressed this notion explicitly in my analysis of the friendship

assemblage formed on Facebook. Users do not only forge connections with ‘friends’

via online platforms; the platforms themselves also contribute to the creation of these

social connections.

There are as many ways of programming sociality as there are ways of forging and

managing connections. Friendships on Facebook are but one form of programmed

sociality, albeit one that provides a very useful example of the work that software

does in managing and arranging relationships. The notion of programmed sociality

does not only imply a linear processes whereby relations are concatenated in a

predetermined fashion. The software actors explored in Chapter 7 do not determine

friendships, as people who become friends on Facebook already have an existing

offline relation in most cases. Rather, software, by virtue of its active role in shaping

specific conditions for being together online, performs work of meaningfulness that

configures collective associations in new ways. Whether we look at friendship

relations or other forms of sociality in computational media, what is important to take

into account are the ways in which actors are continuously connected and

disconnected as part of a subject-software continuum.

As was shown in the previous chapter on APIs, taking into account the multiplicity of

actors that participate in the construction of sociality complicates the picture of how

software works in the world. APIs do nothing by themselves, but once they become

part of programming practices, developer guidelines, rules of conduct, and part of

discourse and community formations, they become invested with the power to afford,

open up, but also constrain new possibilities and determinations.

Ultimately, I believe much is to be gained from understanding the role software plays

in social networking sites through an examination of its productive power. This

dissertation shows how software introduces new forms of governance by assembling

and organising conditions for the sensible and intelligible on social networking sites,

thereby altering how participation in these media spaces is regulated. In doing so, the

case is made for understanding social networking sites as an example of programmed

sociality, and that such an understanding requires an analysis of the various

components of how sociality is translated into code and how the resulting software

reshapes social life. Much of course remains to be said and done in terms of working

through the politics and power of software in our contemporary information

 200

ecosystem. In the final section of this concluding chapter, I will therefore turn to what

may lie ahead, thinking through some of the possible future directions of social media

and software studies, and provide some suggestions for further research.

Thinking ahead: Social media and software studies

In the three years during which I have undertaken this PhD research, software studies

has emerged as an interdisciplinary field in its own right, using methods and

approaches from the humanities and social sciences as a means to study software and

its practices. When I wrote my initial project proposal in early 2008, several efforts

had been put in place to establish the field in a more formal manner. While it is still a

topic on the margins of most traditional media and communication departments,

software is increasingly being ‘recognized as an object of study and area of thinking

amongst scholars and disciplines that have not historically “owned” software’ (Fuller,

2008: 2). Now that software studies has undergone a phase of formalisation, giving

rise to academic courses and job calls for tenure-track positions, the establishment of

its own academic journal, an MIT press book series and conference tracks, the

question remains: where to go from here? Now that more and more media scholars

are seeing the value and importance of taking a software perspective, what does this

imply, and how should research on software from a humanities perspective proceed?

In many respects, the year of this dissertation’s publication – 2012 – marks an

important year for software studies. One increasingly sees matters of code and

software being debated and discussed as part of public discourse. There have been

many media reports declaring 2012 the year of code, with numerous new online

services emerging that offer free crash courses in how to program. The New York

Times sees a ‘blooming interest in programming’, reporting that there is ‘a surge in

learning the language of the Internet’ (Wortham, 2012), while the Guardian devoted

its entire weekend edition on March 31st 2012 to issues of code. If the emergence of

Web 2.0 and social media was generally accompanied by a celebratory polemics in

terms of opening up the possibilities for ‘ordinary’ users to become media producers,

we now see the contours of a discourse that holds that it is not enough for users to

merely generate web content.

 201

As life increasingly becomes permeated by code and algorithms are put at the centre

of everything from financial trade to information retrieval and social networks, the

question is whether we can afford not to take software seriously. As journalist John

Naughton (2012) puts it in one of the Guardian special issue articles:

So something's happening: there's a sense of tectonic plates shifting […] The
biggest justification for change is not economic but moral. It is that if we don't
act now we will be short-changing our children. They live in a world that is
shaped by physics, chemistry, biology and history, and so we – rightly – want
them to understand these things. But their world will be also shaped and
configured by networked computing and if they don't have a deeper
understanding of this stuff then they will effectively be intellectually crippled.
They will grow up as passive consumers of closed devices and services, leading
lives that are increasingly circumscribed by technologies created by elites
working for huge corporations such as Google, Facebook and the like. We will,
in effect, be breeding generations of hamsters for the glittering wheels of cages
built by Mark Zuckerberg and his kind.

Is that what we want? Of course not. So let's get on with it.

The dystopic tone aside, the journalist is right about the need to discuss and

understand the impact of networked computing. While the importance of code and the

need for code literacy can hardly be overstated, we do not have to wait for another

generation to learn how to code before we can get off these so-called ‘glittering

wheels of cages’. We do not even have to reinvent the wheel in order to engage in a

critical study of software. As I have shown, a technographic approach, using well-

known methods from the humanities and social sciences, provides a fertile ground on

which to address the power of software. Mixing an analysis of new technology with

the ‘old’ theories already familiar to many media researchers not only offers a way to

understand the unfamiliar through the familiar, but also serves to rejuvenate

‘outdated’ theory by revisiting it in terms of the new.

Just to take one example, it may be argued that Foucault’s notion of panopticism is a

somewhat overused theoretical framework for the analysis of contemporary

technology. It has however been very influential. In fact, revisiting the idea of the

technical and architectural organisation of power as proposed in the writings of

Foucault has provided me the tools with which to understand Facebook’s algorithmic

logic.

If we are witnessing an increased interest in the digital humanities, understood as

ways of using computing (including tools such as data visualisation and data mining

 202

of large data sets) to understand traditional disciplines in the humanities, let this

dissertation be a reminder that the opposite is needed as well. That is, a way of using

the tools of the humanities and social sciences to understand the micropolitics of

power entailed by specific software objects and their possible implications. While the

digital humanities and the debates surrounding ‘big data’ in many ways bring together

social media research with a focus on software studies, we must be wary of being

seduced by the promising aspects of new software techniques – yet again.

I find there to be an obvious disconnection between the contemporary calls for more

coding skills on the one hand, and the celebratory discourse surrounding data

visualisation techniques on the other. By celebrating the promises of visualisation

tools such as Gephi too enthusiastically and urging students to become more literate

in statistics and network analysis, there is a risk that we will merely educate a new

generation of software users, rather than of software critics. While there can be no

denying the significant power and potential of big data (the quantity of information

produced by people, things, and their interactions), its value derives not from the data

itself, but from the ways in which it has been brought together into new forms of

meaningfulness by the associational infrastructure of the respective software systems.

While I hope to have provided valuable perspectives on the politics and power of

algorithms in contemporary social media, much work remains to be done. The

question is not only how to make sense of the increasing amount of data generated by

our online interactions, and to ponder how best to visualise these in information

graphics. Rather, what becomes imperative is to question the politics behind the

software’s own principles of visualisation. Facebook’s News Feed constitutes but one

such important site where the software becomes visible by producing the conditions

though which data appears and is brought together into new forms of meaningfulness.

My research has provided insight into the workings of one of the most important web

platforms today, thereby highlighting the need to question the principles behind the

presentation of data as part of our most-used media sites.

What I have addressed in this dissertation is not the final situation. Ways of being

together and forming attachments online will continue to be programmed by the

associational infrastructure of software systems. Media and software studies must not

only address the role algorithms play in our media ecosystem, but also the roles we

want them to play. Where is the influence of algorithms felt, and what principles of

 203

connections do they forge? What does it mean for a democracy to have delegated the

task of making public opinions seen and heard to programmable devices? How do

these architectural and algorithmic technologies affect social media content and public

discourse more generally?

The bandwagon of digital humanities, big data, and data visualisation will need to be

counteracted by rigorous criticism that works out the commercial underpinnings, new

hierarchies, and rules of participation that are occurring in and through networked

computing. A ‘digital humanities in reverse’ is required in order to ask critical

questions pertaining to the proliferation of data and the ways in which the data is

being ‘tamed’ by mathematical inference and seductive graphics. If data, as

Alexander Galloway (2011) argues, have no necessary visual form, then there is a

need for future research to develop a critical understanding of these proliferating

algorithmic ‘fabrication’ of forms. How exactly is data being put into new forms of

meaningfulness?

Not only is there a need to counteract the (renewed) belief in the use of software

techniques to make sense of the world, but also to critique the algorithms doing the

actual work of informing the data. One of the reasons algorithms are so powerful is

that they have the capacity to produce new realities, without having to give much

consideration to the particular source and context of the data on which they act. An

important task for media studies is therefore to address not only how users generate

content, but also how algorithms create certain stories and narratives by putting these

data into new forms. Algorithms in this sense need to be addressed as meaning

engineers, as opposed to merely being viewed as abstract tools created by engineers.

This capacity of algorithms to tell stories turns them into self-evident objects for

humanistic research.

The burgeoning presence of APIs on the Web presents another point of synthesis

where social media research and software studies meet. This dissertation has shown

how APIs imply the confrontations of different actors, and how actors transform and

reconfigures the social media ecology. My research into the third-party developer

community of Twitter provides a novel perspective on the meaning-making capacities

of software, in terms of its effect on programmers’ lifeworlds. Much has been written

about the social media user, as in the many accounts of the so-called ‘produser’. My

research has contributed an understanding of the ‘other’ produser – the API

 204

user/programmer. Thus, I have highlighted the importance of seeing current media

practices not only in terms of how the end user ‘makes sense’ of the data presented on

the graphical user interface, but also how repurposing software in order to access and

remix the data constitutes an important aspect of media practice today. More research

is needed into the software cultures that are involved, especially in times where

mobile and tablet apps are becoming an important part of our media ecology.

While APIs open up interesting new possibilities for social media research in terms of

collecting user data, they are also currently at risk of being treated as just another

convenient software tool. As it stands, APIs are used, as opposed to critically

scrutinized as powerful managers of contingent relations and specific flows of

communication. In order to countervail these tendencies, further research should

examine the commercial imperatives of social media APIs and how they connect

relations. The question, then, is not what we can use the software to do, but what the

software does to whatever it is being used to do.

Ultimately, I think we are at an interesting moment in the history of social networks

and social media, in which assumptions about participation and sociality are

becoming embedded in software cultures that are only beginning to be critiqued.

 205

References

Agamben, G. (1993). The coming community. Minneapolis, Minn.: University of Minnesota

Press.

Allan, G. (1989). Friendship: Developing a sociological perspective. New York: Harvester
Wheatsheaf.

Ammirati, S. (2007). Twitter's open platform advantage. ReadWriteWeb. Retrieved February
6, 2012, from
http://www.readwriteweb.com/archives/twitter_open_platform_advantage.php

Anderson, B. (2010). Preemption, precaution, preparedness: Anticipatory action and future
geographies. Progress in Human Geography, 34 (6), 777-798.

Ansell-Pearson, K. (1997). Deleuze and philosophy: The difference engineer. London:
Routledge.

Appadurai, A. (1986). The social life of things: Commodities in cultural perspective.
Cambridge: Cambridge University Press.

Aristotele. (2004). Nicomachean ethics. [translated by F.H. Peters]. New York: Barnes &
Nobles.

Arrington, M. (2008). Interview with Evan Williams: Summize acquisition, API issues and
their revenue model. TechCrunch. Retrieved February 6, 2012, from
http://techcrunch.com/2008/07/15/interview-with-evan-william-summize-acquisition-
api-issues-and-their-revenue-model

Arthur, C. (2011). Twitter angers third-party developers with 'no more timelines' urging. The
Guardian Technology Blog. Retrieved February 17, 2012, from
http://www.guardian.co.uk/technology/blog/2011/mar/14/twitter-developers-client-
warning

Ash, J. (2012). Technology, technicity, and emerging practices of temporal sensitivity in
videogames. Environment and Planning A 44, 187-203.

Ashby, W. R. (1956). An introduction to cybernetics. London: Chapman & Hall.

Ashton, D. (2011). Upgrading the self: Technology and the self in the digital games perpetual
innovation economy. Convergence, 17 (3), 307–321.

Austin, J. L. (1962). How to do things with words:The William James lectures delivered at
Harvard University in 1955. Cambridge, Mass.: Harvard University Press.

Bakardjieva, M. (2009). Subactivism: Lifeworld and politics in the age of the internet.
Information Society, 25 (2), 91-104.

Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The power of modularity. Cambridge,
Mass.: MIT Press.

Banks, J., & Deuze, M. (2009). Co-creative labour. International Journal of Cultural Studies,
12(5), 419-431.

Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of
matter and meaning. Durham: Duke University Press.

Baym, N. K. (2010). Personal connections in the digital age. Cambridge: Polity Press.

 206

Beer, D. (2009). Power through the algorithm? Participatory web cultures and the
technological unconscious. New Media & Society, 11 (6), 985-1002.

Benjamin, W., & Arendt, H. (1999). Illuminations. London: Pimlico.

Bernays, E. L. (1947). The Engineering of consent. Annals of the American Academy of
Political and Social Science, 250: 113-120.

Berry, D. M. (2008). Copy, rip, burn: The politics of copyleft and open source. London: Pluto
Press.

Berry, D. M. (2009). A contribution towards a grammar of code. Fibreculture, 13.

Berry, D. M. (2011). The philosophy of software: Code and mediation in the digital age.
Houndmills, Basingstoke, Hampshire ; New York: Palgrave Macmillan.

Blue, V. (2010). Cracking the Facebook news feed code. ReadWriteWeb. Retrieved
November 28, 2011, from
http://www.readwriteweb.com/archives/cracking_the_facebook_news_feed_code.php

Bodle, R. (2011). Regimes of sharing. open APIs, interoperability, and Facebook.
Information Communication & Society, 14 (3), 320-337.

Bogost, I. (2007). Persuasive games: The expressive power of videogames. Cambridge,
Mass.: MIT Press.

Boltanski, L., & Chiapello, È. (2005). The new spirit of capitalism. London: Verso.

Bosworth, A. (2007). News feed is a robot! Facebook blog. Retrieved February 25, 2012,
from http://blog.facebook.com/blog.php?post=2242467130

boyd, d. (2006). Friends, friendsters, and top 8: Writing community into being on social
network sites. First Monday, 11 (12). Retrieved October 5, 2011, from
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1418/1336

boyd, d. (2007). Why youth (heart) social network sites: The role of networked publics in
teenage social life. In D. Buckingham (Ed.), MacArthur Foundation series on digital
learning – Youth, identity, and digital media volume. Cambridge, MA: MIT Press.

boyd, d. (2008). Facebook's privacy trainwreck: Exposure, invasion, and social convergence.
Convergence, 14 (1), 13-20.

boyd, d. (2010). Friendship. In M. Ito, S. Baumer, M. Bittanti, d. boyd, R. Cody, B. Herr, H.
Horst, P. Lange, D. Mahendran, K. Martinez, C. J. Pascoe, D. Perkel, L. Robinson, C.
Sims & L. Tripp (Eds.), Hanging out, messing around, and geeking out: Kids living
and learning with new media Cambridge, Mass.: MIT Press.

boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and
scholarship. Journal of Computer-Mediated Communication, 13 (1). Retrieved
October 5, 2011, from http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html

Bröckling, U., Krasmann, S., & Lemke, T. (2011). Governmentality: Current issues and
future challenges. New York: Routledge.

Brown, S. D. (2004). Parasite logic. Journal of Organizational Change Management, 17 (4),
383-395.

Bruhn Jensen, K. (2012). A handbook of media and communication research: Qualitative and
quantitative methodologies. London: Routledge.

Bruns, A. (2008). Blogs, wikipedia, second life, and beyond: From production to produsage.

 207

New York: Peter Lang.

Buote, V., Wood, E., & Pratt, M. (2009). Exploring similarities and differences between
online and offline friendships: The role of attachment style. Computers in Human
Behavior 25 (2), 560–567.

Burns, E. (2010). Developing email interview practices in qualitative research. Sociological
Research Online, 15(4), 8.

Butler, J. (1990). Gender trouble: feminism and the subversion of identity. New York:
Routledge.

Callon, M. (1986). Some elements of a sociology of translation: Domestication of the
scallops and the fishermen of St.Brieuc Bay Sociological Review Monograph, 196-
233.

Callon, M. (Ed.). (1998). The laws of the markets. Oxford: Blackwell.

Callon, M. (2007). What does it mean to say that economics is performative? In D.
MacKenzie, F. Munesia & L. Siu (Eds.), Do economics make markets? On the
performativity of economics. Princeton, NJ: Princeton University Press.

Campbell-Kelly, M. (2003). From airline reservations to sonic the hedgehog : A history of
the software industry. Cambridge, Mass.: MIT Press.

Carr, N. G. (2010). The shallows: What the Internet is doing to our brains. New York:
Norton.

Ceruzzi, P. E. (2003). A history of modern computing. Cambridge, Mass.: MIT Press.

Chabert, J.L. (1999). A History of algorithms: From the pebble to the microchip. New York:
Springer.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative
analysis. London: Sage.

Chen, J., Geyer, W., Dugan, C., Muller, M., & Guy, I. (2009). Make new friends, but keep the
old – Recommending people on social networking sites. Paper presented at the CHI 09
27th international conference on Human factors in computing systems, New York.

Chun, W. H. K. (2006). Control and freedom: Power and paranoia in the age of fiber optics.
Cambridge, Mass.: MIT Press.

Chun, W. H. K. (2011a). Programmed visions: Software and memory. Cambridge, Mass.:
MIT Press.

Chun, W. H. K. (2011b). Crisis, crisis, crisis, or sovereignty and networks. Theory Culture &
Society, 28 (6), 91-112.

Clarke, B., & Hansen, M. B. N. (2009). Emergence and embodiment: New essays on second-
order systems theory: Duke University Press Books.

Clough, P. T. (2000). Autoaffection: Unconscious thought in the age of teletechnology.
Minneapolis, Minn.: University of Minnesota Press.

Cocking, D., & Matthews, S. (2001). Unreal friends. Ethics and Information Technology 2
(4), 223-231.

Constine, J. (2011). Facebook combines most recent and top news into a single feed, adds a
real-time news ticker. Inside Facebook. Retrieved February 25, 2012, from
http://www.insidefacebook.com/2011/09/20/single-feed-ticker

 208

Coonfield, G. (2006). Thinking machinically, or, the techno-aesthetic of Jackie Chan: Toward
a Deleuze-Guattarian media studies. Critical Studies in Media Communication, 23(4),
285-301.

Cramer, F. (2005). Words made flesh: Code, culture, imagination. Rotterdam: Media Design
Research, Piet Zwart Institute.

Cramer, F. (2008). Language. In M. Fuller (Ed.), Software studies: A lexicon. Cambridge,
Mass.: MIT Press.

Cramer, F., & Fuller, M. (2008). Interface. In M. Fuller (Ed.), Software studies: A lexicon.
Cambridge, Mass.: MIT Press.

Crogan, P. (2012). Gameplay mode: War, simulation, and technoculture: University of
Minnesota Press.

Crogan, P., & Kennedy, H. (2009). Technologies between games and culture. Games and
Culture 4 (2), 107-114.

Crutzen, C., & Kotkamp, E. (2008). Object orientation. In M. Fuller (Ed.), Software studies:
A lexicon. Cambridge, Mass: MIT Press.

Dahl, O. J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structured programming. London:
Academic Press.

Dahlberg, L. (2007). Rethinking the fragmentation of the cyberpublic: From consensus to
contestation. New Media & Society, 9 (5), 827-847.

Daly, E., Geyer, W., & Millen, D. (2010). The network effects of recommending social
connections. Paper presented at the RecSys'10 The fourth ACM conference on
Recommender systems.

Dayan, D. (2009). Sharing and showing: Television as monstration. Annals of the American
Academy of Political and Social Science, 625, 19-31.

de Souza, C., & Bentolila, D. (2009). Automatic evaluation of API usability using complexity
metrics and visualizations. Paper presented at the 31st International Conference on
Software Engineering.

de Souza, C. R. B., & Redmiles, D. F. (2009). On the roles of APIs in the coordination of
collaborative software development. Computer Supported Cooperative Work-the
Journal of Collaborative Computing, 18 (5-6), 445-475.

Deleuze, G. (1992). Postscript on the societies of control. October (59), 3-7.

Deleuze, G. (1993). The fold: Leibniz and the baroque. London: The Athlone Press.

Deleuze, G. (2006). Foucault. London: Continuum.

Deleuze, G., & Guattari, F. (1987). A thousand plateaus: Capitalism and schizophrenia.
Minneapolis, Minn.: University of Minnesota Press.

Deleuze, G., & Parnet, C. (2007). Dialogues II. New York: Columbia University Press.

Derrida, J. (2005). The politics of friendship. London: Verso.

Dodge, M., & Kitchin, R. (2004). Flying through code/space: The real virtuality of air travel.
Environment and Planning A, 36 (2), 195-211.

Dodge, M., & Kitchin, R. (2005). Codes of life: Identification codes and the machine-
readable world. Environment and Planning D-Society & Space, 23 (6), 851-881.

 209

Dodge, M., Kitchin, R., & Zook, M. (2009). How does software make space? Exploring some
geographical dimensions of pervasive computing and software studies. Environment
and Planning A, 41 (6), 1283-1293.

DuVander, A. (2010). Twitter reveals: 75 % of pure traffic is via API (3 billion calls per day).
ProgrammableWeb. Retrieved February 6, 2012, from
http://blog.programmableweb.com/2010/04/15/twitter-reveals-75-of-our-traffic-is-via-
api-3-billion-calls-per-day

DuVander, A. (2012). 5000 APIs: Facebook, Google and Twitter are changing the Web.
ProgrammableWeb. Retrieved February 6, 2012, from
http://blog.programmableweb.com/2012/02/06/5000-apis-facebook-google-and-
twitter-are-changing-the-web/

Edwards, P. (2002). Infrastructure and modernity: Force, time, and social organization in the
history of technical systems. In T. Misa, P. Brey & A. Feenberg (Eds.), Modernity
and Technology. Cambridge, MA: MIT Press.

Eilam, E. (2005). Reversing: Secrets of reverse engineering. Indianapolis, Ind.: Wiley.

Ellis, B., Stylos, J., & Myers, B. (2007). The factory pattern in API design: A usability
evaluation. Paper presented at the ICSE' 07 The 29th International Conference on
Software Engineering.

Ellison, N., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook friends: Social
capital and college students' use of online social network sites. Journal of Computer-
Mediated Communication, 12 (4), 1143-1168.

Elmer, G. (2003). A diagram of panoptic surveillance. New Media & Society, 5 (2), 231-247.

Elmer, G. (2004). Profiling machines: Mapping the personal information economy.
Cambridge, Mass.: MIT Press.

Entman, R. (1993). Framing - Toward clarification of a fractured paradigm. Journal of
Communication, 43 (4), 51-58.

Esposito, R. (2010). Communitas: The origin and destiny of community. Stanford: Stanford
University Press.

Facebook. (2008). Facebook press release, July 23. Retrieved February 25, 2012, from
http://www.facebook.com/press/releases.php?p=48242

Facebook. (2010). Hacking the graph tech talk. Facebook Engineering. Retrieved December
19, 2011, from http://www.facebook.com/video/video.php?v=690842469235

Facebook. (2011a). Extending the graph tech talk. Facebook Engineering. Retrieved
February 10, 2012, from
http://www.facebook.com/video/video.php?v=10150231980165469

Facebook. (2011b). How news feed works. Retrieved September 15, 2011, from
http://www.facebook.com/help/?page=408

Facebook. (2011c). About news feed. Retrieved November 21, 2011, from
http://www.facebook.com/help/newsfeed

Facebook. (2011d). Statistics. Retrieved November 21, 2011, from
http://www.facebook.com/press/info.php?statistics

Faubion, J. D. (2001). Power. London: Allen Lane.

 210

Fink, B. (1995). The Lacanian subject: Between language and jouissance. Princeton, N.J.:
Princeton University Press.

Foucault, M. (1972). The archaeology of knowledge and the discourse on language. New
York: Pantheon Books.

Foucault, M. (1977). Discipline and punish: The birth of the prison. London: Allen Lane.

Foucault, M. (1982). The subject and power. Critical Inquiry, 8 (4), 777-795.

Foucault, M. (1991) ‘Governmentality’, in G. Burchell, C. Gordon & P. Miller (eds), The
Foucault Effect: Studies in Governmentality. Hemel Hempstead: Harvester
Wheatsheaf.

Foucault, M., & Rabinow, P. (1997). The essential works of Michel Foucault, 1954-1984.
London: Allen Lane.

Foucault, M., Senellart, M., Ewald, F., & Fontana, A. (2007). Security, territory, population:
Lectures at the Collège de France, 1977-78. Basingstoke: Palgrave Macmillan.

Foucault, M., Senellart, M., Ewald, F., & Fontana, A. (2008). The birth of biopolitics:
Lectures at the Collège de France, 1978-1979. Basingstoke: Palgrave Macmillan.

Franck, G. (1998). Ökonomie der Aufmerksamkeit: Ein Entwurf. München: Carl Hanser.

Fraser, M. (2006). Event. Theory Culture & Society, 23 (2-3), 129-132.

Fuller, M. (2003). Behind the blip: Essays on the culture of software. New York:
Autonomedia.

Fuller, M. (2008). Software studies: A lexicon. Cambridge, Mass.: MIT Press.

Galison, P. (1994). The ontology of the enemy: Norbert Wiener and the cybernetic
vision Critical Inquiry, 21 (1), 228-266.

Galloway, A. R. (2004). Protocol: How control exists after decentralization. Cambridge,
Mass.: MIT Press.

Galloway, A. R. (2006). Language wants to be overlooked: On software and ideology.
Journal of Visual Culture, 5 (3), 315-331.

Galloway, A. (2011). Are some things unrepresentable? Theory Culture & Society, 28(7-8),
85-102.

Gane, N. (2005). Radical post-humanism - Friedrich Kittler and the primacy of technology.
Theory Culture & Society, 22 (3), 25-41.

Geminder, K. (2007). Platform is here. Facebook blog. Retrieved February 25, 2012, from
http://blog.facebook.com/blog.php?post=2437282130

Gerlitz, C., & Helmond, A. (2011). Hit, link, like and share. Organizing the social and the
fabric of the web in a Like economy, DMI mini-conference. Amsterdam.

Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, N.J.: Lawrence
Erlbaum.

Gill, R., & Pratt, A. (2008). Precarity and cultural work in the social factory? Immaterial
labour, precariousness and cultural work. Theory Culture & Society, 25 (7-8), 1-30.

Gillespie, T. (2007). Wired shut: Copyright and the shape of digital culture. Cambridge,
Mass.: MIT Press.

Gillespie, T. (2011). Can an algorithm be wrong? Twitter Trends, the specter of censorship,

 211

and our faith in the algorithms around us. Culture Digitally. Retrieved October 25,
2011, from http://culturedigitally.org/2011/10/can-an-algorithm-be-wrong/

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for
qualitative research. Chicago: Aldine.

Goffey, A. (2008). Algorithm. In M. Fuller (Ed.), Software studies: A lexicon. Cambridge,
Mass.: MIT Press.

Goffman, E. (1974). Frame analysis: An essay on the organization of experience. Cambridge,
Mass.: Harvard University Press.

Goldhaber, M. (1997). The attention economy and the net. First Monday 2(4).

Google. (2011a). Ten algorithm changes on inside search. Google Blog. Retrieved March 13,
2012, from http://googleblog.blogspot.com/2011/11/ten-algorithm-changes-on-inside-
search.html

Google. (2011b). Finding more high-quality sites in search. Google Blog. Retrieved March
13, 2012, from http://googleblog.blogspot.com/2011/02/finding-more-high-quality-
sites-in.html

Google. (2011c). Giving you fresher, more recent search results. Google Blog. Retrieved
March 13, 2012, from http://googleblog.blogspot.com/2011/11/giving-you-fresher-
more-recent-search.html

Google. (2012). Technology overview. Google Company. Retrieved March 13, 2012, from
http://www.google.com/about/company/tech.html

Graham, S. D. N. (2005). Software-sorted geographies. Progress in Human Geography,
29(5), 562-580.

Grier, D. A. (1996). The ENIAC, the verb ''to program'' and the emergence of digital
computers. Ieee Annals of the History of Computing, 18 (1), 51-55.

Grimmelmann, J. (2009). Saving Facebook. Iowa Law Review, 94 (4), 1137-1206.

Grossberg, L. (1986). On postmodernism and articulation : An interview with Stuart Hall.
Journal of Communication Inquiry, 10, 45-60.

Guattari, F. (1989). The three ecologies. New Formations, 8, 131-147.

Guattari, F. (1996). Subjectivities: For better and for worse. In G. Genosko (Ed.), The
Guattari reader. Oxford: Blackwell.

Guillory, J. (2010). Genesis of the media concept. Critical Inquiry, 36(2), 321-362.

Gumbrecht, H. U. (2004). Production of presence: what meaning cannot convey. Stanford,
Calif.: Stanford University Press.

Hacking, I. (1995). The looping effects of human kinds. In D. Sperber, D. Premack & A.
Premack (Eds.), Causal cognition: A multidisciplinary approach. Oxford: Clarendon
Press.

Hampton, K. N., Goulet, S. L., Rainie, L., & Purcell, K. (2011). Social networking sites and
our lives. Pew Internet & American Life Project. Retrieved January 11, 2012, from
http://pewinternet.org/Reports/2011/Technology-and-social-networks.aspx/

Halonen, R. (2007). Users As Developers In Information System Projects. Observatorio
(OBS*) Journal, 3: 115-130 1646-

 212

Hansen, M. B. N. (2012). Ubiquitous sensibility. In J. Packer & S. Wiley Crofts (Eds.),
Communication matters: Materialist approaches to media, mobility and networks.
London: Routledge.

Hardt, M., & Negri, A. (2000). Empire. Cambridge, Mass.: Harvard University Press.

Hargittai, E. (2007). The social, political, economic, and cultural dimensions of search
engines: An introduction. Journal of Computer-Mediated Communication, 12 (3).

Harman, G. (2009). Prince of networks: Bruno Latour and metaphysics. Melbourne re.press.

Hayles, N. K. (1999). How we became posthuman: Virtual bodies in cybernetics, literature,
and informatics. Chicago: University of Chicago Press.

Hayles, N. K. (2004). Print is flat, code is deep: The importance of media-specific analysis.
Poetics Today, 25 (1), 67-90.

Hayles, N. K. (2005). My mother was a computer: Digital subjects and literary texts.
Chicago: University of Chicago Press.

Hayles, N. K. (2007). Hyper and deep attention: The generational divide in cognitive modes.
Profession, 13, 187–199.

Hays, R. (1988). Friendship. In S. Duck (Ed.), Handbook of personal relationships: Theory,
Research, and Interventions. New York: Wiley.

Heidegger, M. (1977). The question concerning technology and other essays. New York:
Harper & Row.

Hellsten, I., Leydesdorff, L., & Wouters, P. (2006). Multiple presents: How search engines
rewrite the past. New Media & Society, 8 (6), 901-924.

Higginbotham, S. (2011). Are APIs the new black? Gigaom. Retrieved February 21, 2012,
from http://gigaom.com/2011/03/16/are-apis-the-new-black/

Hine, C. (2000). Virtual ethnography. London: Sage.

Hine, C. (2011). Towards ethnography of television on the internet: A mobile strategy for
exploring mundane interpretive activities. Media Culture & Society, 33 (4), 567-582.

Hoffman, M. (2011). Disciplinary power. In D. Taylor (Ed.), Michel Foucault key concepts.
Durham: Acumen.

Hull, M. (2011). Facebook changes mean that you are not seeing everything that you should
be seeing. Retrieved April 20, 2011, from http://www.facebook.com/notes/mark-
hull/please-read-facebook-changes-mean-that-you-are-not-seeing-everything-that-
you-sh/10150089908123789

Introna, L. D., & Nissenbaum, H. (2000). Shaping the Web: Why the politics of search
engines matters. Information Society, 16 (3), 169-185.

Jansen, K., & Vellema, S. (2011). What is technography? Njas-Wageningen Journal of Life
Sciences, 57 (3-4), 169-177.

Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York: New
York University Press.

Joinson, A. N. (2008). 'Looking at', 'looking up' or 'keeping up with' people? Motives and
uses of Facebook. Paper presented at the CHI'08 26th Annual Conference on Human
Factors in Computing Systems.

 213

Kelty, C. M. (2008). Two bits: The cultural significance of free software. Durham: Duke
University Press.

Kien, G. (2008). Technography = Technology plus ethnography an introduction. Qualitative
Inquiry, 14 (7): 1101-1109.

Kincaid, J. (2010a). EdgeRank: The secret sauce that makes Facebook’s news feed tick.
TechCrunch. Retrieved February 3, 2012, from
http://techcrunch.com/2010/04/22/facebook-edgerank

Kincaid, J. (2010b). Twitter acquires Tweetie. TechCrunch. Retrieved February 17, 2012,
from http://techcrunch.com/2010/04/09/twitter-acquires-tweetie

Kirkpatrick, M. (2008). APIs and developer platforms: A discussion on the pros and cons.
ReadWriteWeb. Retrieved February 28, 2012, from
http://www.readwriteweb.com/archives/apis_platforms_pros_and_cons.php

Kirschenbaum, M. G. (2008). Mechanisms: New media and the forensic imagination.
Cambridge, Mass.: MIT Press.

Kitchin, R., & Dodge, M. (2011). Code/space: software and everyday life. Cambridge, Mass.:
MIT Press.

Kittler, F. A. (1990). Discourse networks 1800/1900. Stanford, Calif.: Stanford University
Press.

Kittler, F. A. (1999). Gramophone, film, typewriter. Stanford, Calif.: Stanford University
Press.

Kittler, F. A., & Johnston, J. (1997). Literature, media, information systems: essays.
Amsterdam: G+B Arts International.

Knuth, D. E. (1968). The art of computer programming. Reading, Mass.: Addison-Wesley.

Kracauer, S., & Levin, T. Y. (1995). The mass ornament: Weimar essays. Cambridge, Mass.:
Harvard University Press.

Krämer, S. (2006). The Cultural techniques of time axis manipulation. On Friedrich Kittler’s
conception of media. Theory Culture & Society, 23 (7-8), 93-109.

Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing. Thousand
Oaks, Calif.: Sage.

Langlois, G. (2012). Participatory Culture and the New Governance of Communication.
Television & New Media. Online first February 2.

Langlois, G., & Elmer, G. (2009). Wikipedia leeches? The promotion of traffic through a
collaborative web format. New Media & Society, 11 (5), 773-794.

Langlois, G., Elmer, G., McKelvey, F., & Devereaux, Z. (2009a). Networked publics: The
double articulation of code and politics on Facebook. Canadian Journal of
Communication, 34, 415-434.

Langlois, G., McKelvey, F., Elmer, G., & Werbin, K. (2009b). Mapping commercial Web 2.0
worlds: Towards a new critical ontogenesis. Fibreculture (14).

Latour, B. (1988). The pasteurization of France. Cambridge, Mass.: Harvard University
Press.

Latour, B. (1994). On technical mediation – philosophy, sociology, genealogy. Common
Knowledge, 3 (2), 29-64.

 214

Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford:
Oxford University Press.

Law, J. (1992). The olympus 320 engine: A case-study in design, development, and
organizational control. Technology and Culture, 33 (3), 409-440.

Law, J. (2002). Objects and spaces. Theory Culture & Society, 19 (5-6), 91-105.

Lazzarato, M. (2004). From capital-labour to capital-life. Ephemera, 4 (3), 187-208.

Lazzarato, M. (2006). The concepts of life and the living in the societies of control. In M.
Fuglesang & B. Sørensen (Eds.), Deleuze and the social. Edinburgh: Edinburgh
University Press.

Lazzarato, M. (2007). From the revolutions of capitalism. SubStance, 36 (1).

Leigh-Star, S. (1999). The ethnography of infrastructure. American Behavioral Scientist
43(3), 377-391.

Leistert, O., & Röhle, T. (2011). Generation Facebook: Über das Leben im Social Net.
Bielefeld: Transcript Verlag.

Lemke, T. (2001). The birth of bio-politics – Michel Foucault’s lecture at the Collège de
France on neo-liberal governmentality. Economy & Society, 30 (2), 190-207.

Lennon, A. (2009). A conversation with Twitter co-founder Jack Dorsey. The Daily Anchor.
Retrieved February 6, 2012, from http://www.thedailyanchor.com/2009/02/12/a-
conversation-with-twitter-co-founder-jack-dorsey

Lessig, L. (1999). Code: And other laws of cyberspace. New York: Basic Books.

Levy, S. (2010). Hackers. Sebastopol, Calif.: O'Reilly Media.

Lewin, K. (1947). Frontiers in group dynamics II - Channels of group life; Social planning
and action research. Human Relations, 1 (2), 143-153.

Lewis, J., & West, A. (2009). ‘Friending’: London-based undergraduates’ experience of
Facebook. New Media & Society, 11 (7), 1209-1229.

Lingis, A. (1994). The community of those who have nothing in common Bloomington, Ind:
Indiana University Press.

Lovink, G. (2007). Zero comments: Blogging and critical Internet culture. New York:
Routledge.

Løvlie, A. (2011). Textopia: Experiments with locative literature. University of Oslo, Oslo.
Unpublished Ph.D. dissertation.

Lüders, M. (2009). Becoming more like friends: A qualitative study of personal media and
social life. Nordicom Review, 30 (1), 201-216.

Lynch, S. (2005). Philosophy and friendship. Edinburgh: Edinburgh University Press.

Mackenzie, A. (2002). Transductions: Bodies and machines at speed. London: Continuum.

Mackenzie, A. (2005). The performativity of code - Software and cultures of circulation.
Theory Culture & Society, 22 (1), 71-92.

Mackenzie, A. (2006). Cutting code: Software and sociality. New York: Peter Lang.

Mackenzie, A. (2007). Protocols and the irreducible traces of embodiment: The viterbi
algorithm and the mosaic of machine time. In R. Hassan & R. Purser (Eds.), 24/7:
time and temporality in the network society. Stanford: Stanford University Press.

 215

Mackenzie, A., & Vurdubakis, T. (2011). Codes and codings in crisis signification,
performativity and excess. Theory Culture & Society, 28 (6), 3-23.

Madrigal, A. (2010). How the Facebook news feed algorithm shapes your friendships. The
Atlantic. Retrieved Novermber 18, 2011, from
http://www.theatlantic.com/technology/archive/2010/10/how-the-facebook-news-
feed-algorithm-shapes-your-friendships/64996/

Manovich, L. (2001). The Language of New Media. Cambridge, Mass.: MIT Press.

Manovich, L. (2008). Software Takes Command. Retrieved from May 2, 2011, from
http://lab.softwarestudies.com/2008/11/softbook.html

Manovich, L. (2011). Cultural Software. Retrieved March 15, 2012, from
http://manovich.net/2011/07/14/new-article-cultural-software-lev-manoich-7142011

Manovich. L. (2012). How to follow software users? Retrieved April 5, 2012, from
http://lab.softwarestudies.com/p/publications.html

Marcus, G. E. (1995). Ethnography in/of the world-system: The emergence of multi-sited
ethnography Annual Review of Anthropology, 24, 95-117.

Marino, M. (2006). Critical code studies. Retrieved February 15, 2012, from
http://www.electronicbookreview.com/thread/electropoetics/codology/

Marwick, A. (2010). Status update: Celebrity, publicity and self-branding in Web 2.0.
Unpublished PhD dissertation.

Massumi, B. (2002). Parables for the virtual: Movement, affect, sensation. Durham, N.C.:
Duke University Press.

Massumi, B. (2009). `Technical materiality' revisited: Brian Massumi on Gilbert Simondon.

Parrhesia, 7, 36-45.

Mateas, M., & Wardrip-Fruin, N. (2009). Defining operational logics. Paper presented at the

Digital Games Research Association (DiGRA).

McCombs, M. E., & Shaw, D. L. (1972). Agenda-setting function of mass media. Public
Opinion Quarterly, 36(2), 176-&.

McKelvey, F. (2010). Ends and ways: The algorithmic politics of network neutrality. Global
Media Journal — Canadian Edition, 3 (1), 51-73.

McKelvey, F. (2011). A Programmable Platform? Drupal, Modularity, and the Future of the

Web. Fibreculture, 18.

McLuhan, M. (1994). Understanding media: The extensions of man. Cambridge, Mass.: MIT

Press.

McLuhan, M., & Fiore, Q. (1967). The medium is the massage: An inventory of effects. New

York: Bantam books.

Metz, C. (2012). API: Three letters that change life, the universe and even Detroit. Wired.

Retrieved February 16, 2012, from

http://www.wired.com/wiredenterprise/2012/02/apis-change-the-world/all/1

Meyrowitz, J. (1998). Multiple media literacies. Journal of Communication, 48 (1), 96-108.

Michael, M. (2004). On making data social: Heterogeneity in sociological practice.

Qualitative Research, 4(1), 5-23.

 216

Miller, P., & Rose, N. (1990). Governing economic life. Economy and Society, 19 (1), 1-31.

Miller, P., & Rose, N. (2008). Governing the present: Administering economic, social and
personal life. Cambridge: Polity.

Mitchell, W. J. T. & Hansen, M. B. N. (2010). Critical terms for media studies. Chicago:

University of Chicago Press.

Mol, A., & Law, J. (1994). Regions, networks and fluids - Anemia and social topology.

Social Studies of Science, 24 (4), 641-671.

Moricz, M., Dosbayev, Y. & Berlyant, M. (2010). PYMK: Friend recommendation at
MySpace. Paper presented at the SIGMOD ’10. The 2010 international conference on

Management of data, Indianapolis, Indiana, USA.

Munster, A. (2011). Nerves of data: The neurological turn in/against networked media.

Computational culture: a journal of software studies, 1. Retrieved February 16, 2012,

from http://computationalculture.net/article/nerves-of-data

Musser, J. (2007). Twitter API trafic is 10x Twitter's site. ProgrammableWeb. Retrieved

February 6, 2012, from http://blog.programmableweb.com/2007/09/10/twitter-api-

traffic-is-10x-twitters-site

Nakamura, L. (2002). Cybertypes. New York: Routledge.

Naughton, J. (2012). Why all our kids should be taught how to code. The Guardian.

Retrieved April 10, 2012, from

http://www.guardian.co.uk/education/2012/mar/31/why-kids-should-be-taught-code

Neff, G., Wissinger, E., & Zukin, S. (2005). Entrepreneurial labor among cultural producers:

"Cool" jobs in "hot" industries. Social Semiotics, 15 (3), 307-334.

Newman, M. (2010). New media, young audiences and discourses of attention: From Sesame

Street to 'snack culture'. Media, Culture & Society, 32(4), 581–596.

Niederer, S. & van Dijck, J. (2010). Wisdom of the crowd or technicity of content?

Wikipedia as a sociotechnical system. New Media & Society, 12 (8), 1368-1387.

O'Reilly, T. (2005). What is Web 2.0. O'Reilly. Retrieved 8 February, 2012, from

http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1

Ong, W. J. (2002). Orality and literacy: The technologizing of the word. London: Routledge.

Packer, J., & Wiley, S. B. C. (2012). Communication matters: Materialist approaches to
media, mobility, and networks. London: Routledge.

Parikka, J. (2011a). New materialism as media theory: Medianatures and dirty matter.

Communication and Critical/Cultural Studies 1-6.

Parikka, J. (2011b). Operative media archaeology: Wolfgang Ernst's materialist media

diagrammatics. Theory Culture & Society, 28 (5), 52-74.

Parks, M., & Roberts, L. (1998). Making moosic: The development of personal relationships

on-line and a comparison to their off-line counterparts. Journal of Social and
Personal Relationships, 15 (4), 517–537.

Parr, B. (2009). The evolution of the social media API. Mashable. Retrieved February 28,

2012, from http://mashable.com/2009/05/21/social-media-api

Parr, B. (2011a). Twitter acquires TweetDeck. Mashable. Retrieved February 17, 2012, from

http://mashable.com/2011/05/25/twitter-acquires-tweetdeck

 217

Parr, B. (2011b). Facebook turns friend activity into new ad format. Mashable. Retrieved

November 21, 2011, from http://mashable.com/2011/01/25/facebook-sponsored-

stories

Pashler, H. E. (1998). The psychology of attention. Cambridge, Mass.: MIT Press.

Pasquinelli, M. (2009). Google’s PageRank algorithm: A diagram of the cognitive capitalism

and the rentier of the common intellect. In K. Becker & F. Stalder (Eds.), Deep
Search. London: Transaction Publishers.

Pels, D., Hetherington, K., & Vandenberghe, F. (2002). The status of the object -

Performances, mediations, and techniques. Theory Culture & Society, 19 (5-6), 1-21.

Perez, S. (2010). Twitter is not a social network, says Twitter exec. ReadWriteWeb. Retrieved

February 7, 2012, from

http://www.readwriteweb.com/archives/twitter_is_not_a_social_network_says_twitter

_exec.php

Peters, J. D., & Packer, J. (2012). Becoming mollusk: A conversation with John Durham

Peters about media, materiality, and matters of history. In J. Packer & S. Wiley Crofts

(Eds.), Communication matters: Materialist approaches to media, mobility and
networks. London: Routledge.

Phillips, J. (2006). Agencement/Assemblage. Theory, Culture & Society, 23, 108-109.

Pickering, A. (1995). The mangle of practice: time, agency, and science. Chicago: University

of Chicago Press.

Quintana, M. (2010). Facebook tips: What’s the difference between top news and most

recent? Facebook Blog. Retrieved January 20, 2012, from

http://blog.facebook.com/blog.php?post=414305122130

Rabinow, P. (1999). French DNA: Trouble in purgatory. Chicago: University of Chicago

Press.

Rajchman, J. (1988). Foucault art of seeing. October(44), 89-107.

Rancière, J. (2004). The politics of aesthetics: The distribution of the sensible. London:

Continuum.

Riemer, F. (2009). Ethnography research. In S. Laplan & M. Quartaroli (Eds.),

Research essentials: An introduction to designs and practices. Jossey-Bass.

Rodowick, D. N. (1990). Reading the figural. Camera Obscura (24), 11-45.

Rose, N. (1999). Powers of freedom: Reframing political thought. Cambridge: Cambridge

University Press.

Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., & Orr, R. R. (2009).

Personality and motivations associated with Facebook use. Computers in Human
Behavior, 25 (2), 578-586.

Rubin, H. J., & Rubin, I. (1995). Qualitative interviewing: The art of hearing data. Thousand

Oaks, Calif.: Sage.

Schroeder, S. (2009). Twitter API Gets Rate Limit; Will It Hurt App Growth? Mashable.

Retrieved February 16, 2012, from http://mashable.com/2009/01/21/twitter-api-gets-

limited/

Scriptol. (2012). Definition of algorithm. Scriptol. Retrieved April 15, 2012, from

 218

http://www.scriptol.com/programming/algorithm-definition.php

Seel, M. (2000). Ästhetik des Erscheinens. München: Hanser.

Seligstein, J. (2010). See the messages that matter. Facebook Blog. Retrieved January 20,

2012, from http://blog.facebook.com/blog.php?post=452288242130

Serres, M. (1982). The parasite. Baltimore: The John Hopkins University Press.

Serres, M. (1995). Genesis. Ann Arbor: University of Michigan Press.

Shahani, S., Roshon, N., Sharma, S., & Leonard, A. (2011). How to make your brand more
visible in the new Facebook. Marketing report. iCrossing. Retrieved November 25,

2011, from http://icrossing.com

Siegler, M. (2011). Twitter drops the ecosystem hammer: Don't try to compete with us on

clients, focus on data and verticals. TechCrunch. Retrieved February 26, 2012, from

http://techcrunch.com/2011/03/11/twitter-ecosystem-guidelines

Simon, H. (1971). Designing organizations for an information-rich world. In M. Greenberger

(Ed.), Computers, communication, and the public interest. Baltimore, MD: The Johns

Hopkins Press.

Simondon, G. (1992). The genesis of the individual. In J. Crary & S. Kwinter (Eds.),

Incorporations. New York: Zone

Simondon, G. (2009). Technical mentality. Parrhesia, 7 (17-27).

Song, F. (2010). Theorizing web 2.0. Information, Communication and Society, 13 (2), 249-

275.

Stiegler, B. (1998). Technics and time. Stanford, Calif.: Stanford University Press.

Stiegler, B. (2010). Taking care of youth and the generations. Standford, Calif.: Stanford

University Press.

Sullivan, D. (2011). By the numbers: How Facebook says likes & social plugins help

websites. Search Engine Land. Retrieved February 25, 2012, from

http://searchengineland.com/by-the-numbers-how-facebook-says-likes-social-plugins-

help-websites-76061

Taylor, B. (2010). The Next Evolution of Facebook Platform. Facebook Developers Blog.

Retrieved February 25, 2012, from http://developers.facebook.com/blog/post/377

Taylor, B. (2011). f8 developers conference keynote. Retrieved March 16, 2012, from

http://www.facebook.com/f8/app_283743208319386

Taylor, D. (2011). Everything you need to know about Facebook’s EdgeRank. TheNextWeb.

Retrieved February 3, 2012, from

http://thenextweb.com/socialmedia/2011/05/09/everything-you-need-to-know-about-

facebook’s-edgerank

Telfer, E. (1991). Friendship. In M. Pakaluk (Ed.), Other selves: Philosophers on friendship.

Indianapolis: Hackett.

Terranova, T. (2000). Free Labor: Producing culture for the digital economy. Social Text,
18(2), 33-58.

Terranova, T. (2004). Network culture: Politics for the information age. London: Pluto Press.

Thompson, J. B. (2005). The new visibility. Theory Culture & Society, 22(6), 31-+.

 219

Thrift, N. (2004). Remembering the technological unconscious by foregrounding knowledges

of position. Environment and Planning D-Society & Space, 22 (1), 175-190.

Thrift, N. (2005). Knowing capitalism. London: Sage.

Thrift, N. (2008). Non-representational theory: Space, politics, affect. London: Routledge.

Thrift, N., & French, S. (2002). The automatic production of space. Transactions of the
Institute of British Geographers, 27 (3), 309-335.

Tonkelowitz, M. (2011). Interesting news, any time you visit. The Facebook Blog. Retrieved

February 3, 2012, from http://blog.facebook.com/blog.php?post=10150286921207131

Trendwatching. (2011). The F-Factor. Trendwatching. Retrieved May 25, 2011, from

http://trendwatching.com/trends/ffactor

Twitter. (2011). One million registered Twitter apps. Twitter Blog. Retrieved February 26,

2012, from http://blog.twitter.com/2011/07/one-million-registered-twitter-apps.html

Uprichard, E., Burrows, R., & Parker, S. (2009). Geodemographic code and the production of

space. Environment and Planning A, 41 (12), 2823-2835.

Valenzuela, S., Park, N., & Kee, K. F. (2009). Is there social capital in a social network site?:

Facebook use and college students' life satisfaction, trust, and participation. Journal of
Computer-Mediated Communication, 14 (4), 875-901.

Vallor, S. (2011). Flourishing on facebook: Virtue friendship & new social media. Ethics and
Information Technology. Online first January 7.

van Dijck, J. (2012). Facebook as a tool for producing sociality and connectivity. Television
& New Media, 13(2), 160-176.

von Hilgers, P. (2009). Ursprünge der Black Box. In P. von Hilgers & A. Ofak (Eds.),

Rekursionen: Von Faltungen des Wissens (pp. 127-145). Berlin: Fink.

Vannini, P., & Vannini, A. (2008). Of walking shoes, boats, golf carts, bicycles, and a slow

technoculture: A technography of movement and embodied media on protection

island. Qualitative Inquiry, 14 (7), 1272-1301.

Wallimann, I., Tatsis, N., & Zito, G. (1977). On Max Weber's definition of power. Journal of
Sociology, 13 (3), 231-235.

Walter, E. (2011). 10 tips for posting on your brand’s Facebook Page. Mashable. Retrieved

February 25, 2012, from http://mashable.com/2011/03/22/tips-brand-facebook-page

Wardrip-Fruin, N. (2006). Expressive processing: On process-intensive literature and digital
media. Brown University.

Wardrip-Fruin, N. (2009). Expressive processing: Digital fictions, computer games, and
software studies. Cambridge, Mass.: MIT Press.

Webb, D. (2003). On friendship: Derrida, Foucualt, and the practice of becoming. Research
in Phenomenology 33 (1), 119-140.

Webster, J. (2011). The duality of media: A structurational theory of public attention.

Communication Theory 21 (1), 43-66.

Whitehead, A. N. (1978). Process and reality. Edited by Griffin, D. R., & Sherburne, D. W.

New York: Free Press.

Winner, L. (1986). The whale and the reactor: A search for limits in an age of high

 220

technology. Chicago: University of Chicago Press.

Winthrop-Young, G., & Gane, N. (2006). Friedrich Kittler - An introduction. Theory Culture
& Society, 23 (7-8), 5-+.

Wise, J. (2012). Attention and assemblage in the clickable world. In J. Packer & S. Wiley

Crofts (Eds.), Communication matters: Materialist approaches to media, mobility and
networks. London: Routledge.

Wolf, M. (2007). Proust and the squid: The story and science of the reading brain. New

York: HarperCollins.

Wortham, J. (2012). A surge in learning the language of the Internet. New York Times.

Retrieved April 10, 2012, from http://www.nytimes.com/2012/03/28/technology/for-

an-edge-on-the-internet-computer-code-gains-a-following.html?pagewanted=all

Zhao, S. Y., Grasmuck, S., & Martin, J. (2008). Identity construction on Facebook: Digital

empowerment in anchored relationships. Computers in Human Behavior, 24 (5),

1816-1836.

Zook, M., & Graham, M. (2007). The creative reconstruction of the Internet: Google and the

privatization of cyberspace and DigiPlace. Geoforum, 38, 1322-1343

Zuckerberg, M. (2010). Building the social web together. Facebook Blog. Retrieved January

20, 2012, from http://blog.facebook.com/blog.php?post=383404517130

Zuckerberg, M. (2011). F8 developers conference keynote. Retrieved March 16, 2012, from

http://www.facebook.com/f8/app_283743208319386

 221

Appendix 1. List of interviews

Informant Date of e-mails received

Jack 10.8.2010; 12.8.2010

Edward 10.8.2010; 12.08.2010

Thomas 11.8.2010

Peter 11.8.2010; 28.7.2011; 20.1.2012

Brad 11.8.2010

Patrick 20.8.2010

Henry 3.9.2010

Tony 21.9.2010; 15.6.2011

Rob 21.9.2010

Alex 25.9.2010; 17.6.2011

Alexandra 26.9.2010

Joey 8.11.2010; 15.11.2010

Eric 15.6.2011; 16.06.2011

Daniel 15.6.2011

Julian 16.6.2011

Carl 20.6.2011

Jacob 1.8.2011; 2.8.2011

Oliver 3.8.2011

Nick 5.8.2011; 12.09.2011

Jeremy 9.8.2011

Matt 19.8.2011

All names have been changed to protect the informants’ privacy.

