
 Open access Proceedings Article DOI:10.1109/ICSNC.2007.63

Programming Approaches and Challenges for Wireless Sensor Networks
— Source link

Bartolomé Rubio, Manuel Díaz, José M. Troya

Published on: 25 Aug 2007 - International Conference on Systems and Networks Communications

Topics: Key distribution in wireless sensor networks, Wireless sensor network, Mobile wireless sensor network and
Middleware (distributed applications)

Related papers:

 Maté: a tiny virtual machine for sensor networks

 Programming wireless sensor networks: Fundamental concepts and state of the art

 Contiki - a lightweight and flexible operating system for tiny networked sensors

 TinyDB: an acquisitional query processing system for sensor networks

 TeenyLIME: transiently shared tuple space middleware for wireless sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-
225xhc3rul

https://typeset.io/
https://www.doi.org/10.1109/ICSNC.2007.63
https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul
https://typeset.io/authors/bartolome-rubio-1jhu2yt0td
https://typeset.io/authors/manuel-diaz-3zjs10ym7e
https://typeset.io/authors/jose-m-troya-3wv0i1iy5i
https://typeset.io/conferences/international-conference-on-systems-and-networks-sdorz3tn
https://typeset.io/topics/key-distribution-in-wireless-sensor-networks-2q0bta82
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/mobile-wireless-sensor-network-2mnutgl7
https://typeset.io/topics/middleware-distributed-applications-114spjtl
https://typeset.io/papers/mate-a-tiny-virtual-machine-for-sensor-networks-2kpm8eqdsl
https://typeset.io/papers/programming-wireless-sensor-networks-fundamental-concepts-40hvfmbkxp
https://typeset.io/papers/contiki-a-lightweight-and-flexible-operating-system-for-tiny-17ra90mhum
https://typeset.io/papers/tinydb-an-acquisitional-query-processing-system-for-sensor-2akih312yn
https://typeset.io/papers/teenylime-transiently-shared-tuple-space-middleware-for-v9gsg4v961
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul
https://twitter.com/intent/tweet?text=Programming%20Approaches%20and%20Challenges%20for%20Wireless%20Sensor%20Networks&url=https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul
https://typeset.io/papers/programming-approaches-and-challenges-for-wireless-sensor-225xhc3rul

Programming Approaches and Challenges for Wireless Sensor Networks ∗

Bartolomé Rubio, Manuel Dı́az and José M. Troya

Dpto. Lenguajes y Ciencias de la Computación. Málaga University

29071 Málaga, SPAIN

(tolo,mdr,troya)@lcc.uma.es

Abstract

Wireless sensor networks (WSNs) constitute a new per-

vasive and ubiquitous technology. They have been success-

fully used in various application areas and in future com-

puting environments, WSNs will play an increasingly im-

portant role. However, programming sensor networks and

applications to be deployed in them is extremely challeng-

ing. It has traditionally been an error-prone task since it re-

quires programming individual nodes, using low-level pro-

gramming issues and interfacing with the hardware and the

network. This aspect is currently changing as different high-

level programming abstractions and middleware solutions

are coming into the arena. Nevertheless, many research

challenges are still open. This paper presents a survey of

the current state-of-the-art in the field, establishing a clas-

sification and highlighting some likely research challenges

and future directions.

1. Introduction

Due to a combination of recent technological advances

in electronics, nanotechnology, wireless communications,

computing, networking, and robotics, the development of

Wireless Sensor Networks (WSNs) has been possible. They

constitute a new form of distributed computing where sen-

sors (tiny, low-cost and low-power nodes, colloquially re-

ferred to as “motes”) deployed in the environment com-

municate wirelessly to gather and report information about

physical phenomena [2]. WSNs offer numerous advantages

over traditional systems, such as the large-scale flexible

architecture (potentially hundreds or thousands of motes),

high-resolution sensed data and application adaptive mech-

anisms. These unique characteristics make these systems

very useful for a wide range of application areas, such as

environmental monitoring, object and event detection, mil-

itary surveillance, and precision agriculture [18].

∗This work is supported by the EU funded project FP6 IST-5-033563

and the Spanish project TIN2005-09405-C02-01

However, these unique characteristics also make applica-

tion development nontrivial. WSN programming has tradi-

tionally been an error-prone task since it requires program-

ming individual nodes, using low-level programming issues

and interfacing with the hardware and the network. The

complexity of designing and implementing this kind of ap-

plication makes the supply of higher-level abstractions of

low-level functionality necessary in order to ease the appli-

cation programmer task. Abstractions and middleware ar-

chitectures, such as RPC, CORBA and Distributed Shared

Memory, that have traditionally simplified and enabled the

implementation of complex distributed systems, unfortu-

nately cannot simply be applied to WSNs because they do

not meet their special requirements [33] [43]:

• Restricted resources. Due to limited resources, the

software components to be deployed in the motes

should be lightweight. In addition, since it is antic-

ipated that a WSN will execute multiple applications

concurrently, it is very likely that performance require-

ments of all the running applications cannot be simul-

taneously satisfied. Therefore, it is necessary to pro-

vide mechanisms to optimize resource allocation and

smartly trade the QoS of various applications against

each other.

• Network dynamics. As an ad hoc network, a WSN

may exhibit a highly dynamic topology due to mo-

bility, communication failures or node failures. Pro-

gramming paradigms and middleware should support

the robust operation of WSNs despite these dynamics

by adapting to the changing network environment.

• Scale of deployments. As stated before, a WSN is

thought to consist of hundreds or thousands of nodes.

In this sense, cluster-based architectures promote a

more efficient use of resources in controlling large dy-

namic networks.

• Data centric. With the large population of sensor

nodes, it may be impractical to pay attention to each

individual node. Applications will focus on what data

is desired rather than on individual sensor nodes. For

example, users would be more interested in query-

ing which area(s) has(have) a temperature higher than

30
◦C, or what the average temperature is in the south-

east quadrant, rather than the temperature at sensor

number 57.

• Collection and processing of sensed data. Most WSN

applications involve nodes that contain redundant data

and are located in a specific local region. This open up

the possibility of in-network aggregation of data from

different sources, eliminating redundancy and mini-

mizing the number of transmissions to the sink. This

saves considerable energy and resources, given that

communication costs are much higher than computa-

tion costs.

Some additional requirements have also to be met in the

growing and promising field of Wireless Sensor and Ac-

tor Networks (WSANs) [1], a variation of WSNs where the

devices deployed in the environment are not only sensors

able to sense environmental data, but also actors (also re-

ferred to as actuators in the literature) able to react by af-

fecting the environment. Actors are resource rich nodes

equipped with better processing capabilities, higher trans-

mission power and longer battery life than sensors. WSANs

have two major requirements:

• Coordination. Coordination mechanisms are needed

for both sensor-actor and actor-actor interactions.

In particular, sensor-actor coordination provides the

transmission of sensed data from sensors to actors. Af-

ter receiving sensed data, actors need to coordinate

with each other in order to make decisions on the most

appropriate way to perform the action.

• Real-time. On the other hand, depending on the appli-

cation there may be a need to respond rapidly to sen-

sor input. Moreover, the collected and delivered sensor

data must still be valid at the time of acting. Therefore,

the issue of real-time communication is very important

in WSANs.

In the last few years, much work has targeted the de-

velopment of programming support in the effort to meet all

these requirements. Different high-level programming ab-

stractions and middleware have appeared as promising solu-

tions to address the challenges of this kind of system. This

paper presents a survey of the current state-of-the-art in the

field, establishing a classification covering a broad range of

approaches and highlighting some open research challenges

and future directions.

Some previous research has surveyed WSNs. Ian Aky-

ildiz and his colleagues focused more on characteristics and

challenges for WSNs and WSANs than on programming

Programming

Approaches

Programming

Languages

Programming

Abstractions

Middleware

Node-Centric

(Local Behavior)

Macroprogramming

(Global Behavior)

Virtual Machines

Databases

Tuple Channels

Mobile Agents

Event-Based

Application-Driven

Tuple Spaces

Component-Based

Figure 1. Classification of Programming Ap-

proaches for WSNs.

support in [2] and [1], respectively. Other surveys were fo-

cused on potential WSN applications [13] [18]. Others pre-

sented different routing protocols [24]. Finally, there are

some surveys that particularly tackle the WSN program-

ming issue [33] [23], but they target particularly middle-

ware support. Our approach also considers programming

abstraction proposals that have appeared in the literature.

Moreover, this paper establishes a broader middleware sup-

port classification than the previous ones.

The rest of the paper is structured as follows. Sec-

tion 2 establishes a classification for WSN programming

approaches, describing the main features of representative

work. In Section 3 some open research challenges and fu-

ture directions for WSNs are highlighted. Finally, some

conclusions are sketched in Section 4.

2. Programming Approaches for WSNs: A

Classification

Figure 1 depicts the established taxonomy in order to

classify the different programming approaches appeared for

WSNs. In the following subsections the characteristics of

each group are detailed and several proposals are identified.

2.1. Programming Languages

The first option we have to develop an application for

WSNs is to directly use an existing programming language.

The most popular programming languages for tiny embed-

ded systems are C and nesC [17]. Currently, nesC is the

most used in WSNs. It is a C-based programming language

with a programming model that incorporates event-driven

execution, a flexible concurrency model, and component-

oriented application design. There is no dynamic mem-

ory allocation and the call-graph is fully known at compile-

time. These restrictions make whole program analysis (for

safety) and optimizations (for performance) significantly

simpler and more accurate. The nesC component model and

parameterized interfaces eliminate many needs for dynamic

memory allocation and dynamic dispatch. In order to im-

plement TinyOS [37], a simple but highly concurrent open

source operating system, nesC has been used. Both have

been adopted by a large number of WSN research groups.

They are also used to implement the runtime support and

infrastructures needed in most of the approaches discussed

in the following sections.

2.2. Programming Abstractions

By programming abstractions we mean high-level ab-

stractions that, supported by a suitable programming model,

compiler and runtime support, liberate the programmer

from having to address the low-level WSN mechanisms

such as messaging and routing protocols, data caches and

neighbor lists. Basically, we can establish two main types

of programming abstractions: Node-centric or local behav-

ior approaches, which are centered on individual nodes, and

macroprogramming or global behavior approaches, which

focus on the behavior of a WSN as a whole.

Node-Centric (Local Behavior)

In node-centric programming, the programmer has to

translate the global application behavior in terms of local

actions on each node, and individually program the sensor

nodes using the corresponding programming model. Pro-

posals such as Hood [40], Abstract Regions [39], Logi-

cal Neighborhoods [30] and Virtual Nodes [9] belong to

this class. We discuss Logical Neighborhoods as a rep-

resentative of them. In a WSN, a node is able to ex-

change data directly only with the surrounding nodes lo-

cated within its communication radius (physical neighbor-

hood). This proposal introduces the abstraction of logi-

cal neighborhoods, whose span is not inherently limited

by the physical communication range, but is controlled by

the programmer using applicative and contextual informa-

tion. Logical neighborhoods provide the programmer with

a higher-level, application-defined notion of proximity. The

span of a logical neighborhood is specified declaratively

based on the characteristics of nodes, along with require-

ments about communication costs. For example, the pro-

grammer can establish a logical neighborhood for a node

declaring that it will be formed by nodes hosting temper-

ature sensors, that are currently showing a reading with a

value higher than a given threshold and that are at a max-

imum of 2 hops away. The declarative language used is

conceived to be a simple extension to existing WSN pro-

gramming languages such as nesC.

Macroprogramming (Global Behavior)

This type introduces a new and completely different view

on how to program WSNs. Macroprogramming involves

programming the network as a whole, rather than writing

software to drive individual nodes. The WSN global behav-

ior is programmed at a high-level specification, enabling au-

tomatically generated nodal behaviors. This relieves appli-

cation developers from having to deal with concerns at each

network node. Regiment [31], Kairos [20] and ATaG [3]

are significant contributions to this type of abstraction. We

discuss ATaG as representative of them. The Abstract Task

Graph (ATaG) seeks to raise the level of programming ab-

straction by allowing the architecture-independent specifi-

cation of application behavior and transferring the respon-

sibility of low level coordination, communication and opti-

mization to an underlying runtime system, thereby allowing

the application developer to focus on high-level behavioral

aspects. To accomplish this, ATaG employs a data driven

programming model and mixed imperative-declarative pro-

gram specification for separation of concerns. Tasks are de-

fined in terms of their input and output data objects. Avail-

ability of operands triggers task execution, subject to firing

rules. The mixed imperative-declarative specification sepa-

rates the ”when and where” of processing from the ”what”.

The same program can be compiled for a different network

size and topology by interpreting the declarative (”when

and where”) part in the context of that network architecture,

while the imperative (”what”) part remains unchanged.

2.3. Middleware

The main purpose of middleware is to support the devel-

opment, maintenance, deployment and execution of appli-

cations, filling in the gap between the application layer and

the hardware, operating system and network stack layers.

In the case of a WSN, this includes mechanisms for for-

mulating complex high-level sensing tasks, communicating

them to the WSN, coordination of sensor nodes to split tasks

and distribute them to the individual nodes, data fusion for

merging the sensor readings into high-level result, and re-

porting it. Moreover, appropriate abstractions and mech-

anisms for dealing with the heterogeneity of sensor nodes

should be provided [33]. We have established the following

types of middleware which most of the proposals appeared

fit into.

Virtual Machines

This category allows the developers to write applica-

tions in separate, small modules. The system injects and

distributes the modules through the network using tailored

algorithms, and therefore overall energy consumption and

resource use are minimized. The Virtual Machine (VM)

then interprets the modules. Solutions in this category in-

clude Maté [26], ASVM [27] and DAViM [29]. The most

representative is probably Maté. It is a byte code inter-

preter that runs on TinyOS. It uses codes broken into cap-

sules of 24 byte-long instructions, to the benefit of large

programs, which are made up of multiple capsules that are

easily injected into the network. Maté’s key components

are the VM, the network, the logger, the hardware and the

boot/scheduler. Using a synchronous model that begins ex-

ecution in response to an event such as a packet transmis-

sion or a time out, Maté avoids buffering and large storage.

The synchronous model makes application-level program-

ming simpler and far less prone to bugs than dealing with

asynchronous event notifications.

Databases

Examples of this category are Cougar [6], TinyDB [28]

and SINA [34]. The first two proposals are based on pure

database systems, which essentially provide a distributed

database solution appropriate for resource-constrained sen-

sor networks, focusing on efficient query routing and pro-

cessing. SINA differs in that it uses an SQL-like query lan-

guage for expressing queries, but also provides other func-

tions which are outside the scope of traditional database

systems. It provides support for scripting in such a way

that sensor hardware access, communication and event han-

dling can be managed. SINA uses an attribute-based nam-

ing scheme in order to facilitate the data-centric characteris-

tics of sensor queries and it allows hierarchical clustering of

sensor nodes in order to facilitate scalable operations within

sensor networks.

Event-Based

Another approach to WSN middleware is based on the

notion of events. Here, the application specifies interest in

certain state changes of the real world (basic events). Upon

detecting such an event, a sensor node sends a so-called

event notification towards interested applications. The ap-

plication can also specify certain patterns of events (com-

pound events), such that the application is only notified if

occurred events match these patterns. In [42], a reason-

ably sophisticated set of event operators for describing event

patterns in sensor networks has been produced. A crucial

limitation of this solution is the complexity that is neces-

sarily involved in implementing it. In contrast, the Mires

middleware [35] is a more pragmatic publish/subscribe so-

lution that has been designed and implemented to run on

TinyOS using nesC. It adopts a component-based program-

ming model using active messages to implement its publish-

subscribe-based communication infrastructure.

Application-Driven

This approach allows programmers to fine-tune the net-

work on the basis of application requirements, that is, appli-

cations will dictate network operations management, pro-

viding a QoS advantage. However, the tight coupling with

applications might result in specialized, not general pur-

pose, middleware. The MiLAN middleware [22] is an ex-

ample of this category. It takes an approach building on ex-

isting networking and service discovery protocols. Applica-

tions specify their sensing requirements to the middleware

through a standard API, in terms of graphs describing sen-

sor quality of service and state-based variable requirements.

MiLAN’s application-driven network management is well

suited to application adaptation and it effectively tackles the

challenges of openness and scalability.

Component-Based

Component-Based Software Engineering (CBSE) is a

modern methodology that proposes software construction

by plugging software components [21]. Based on compo-

nent interoperability, this programming style allows the cre-

ation of more flexible and adaptable software. Recently,

some middleware proposals based on CBSE are appearing

in the field of WSNs. In [10], a reconfigurable component-

based middleware for networked embedded systems, called

RUNES, is introduced. This approach comprises two dis-

tinct layers: a foundation layer, called the middleware ker-

nel, which is the runtime realization of a simple but well-

defined software component model, and an on top layer of

component frameworks that offer a configurable and exten-

sible set of both middleware and application services. Other

example is MWSAN [4], a real-time component-oriented

middleware for WSANs, which provides a set of high level

services for sensors and actors. Besides considering the

real-time as a major aspect, it also takes into account issues

such as the network configuration and the quality of service

(QoS).

Tuple Spaces

The coordination needs in WSNs and WSANs have at-

tracted the attention of the Coordination paradigm commu-

nity [7]. More specifically, different coordination models

and middleware based on the Linda abstract model [19]

have appeared in the area of sensor networks. Linda can be

considered the most representative coordination language.

It is based on a shared memory model where data is repre-

sented by elementary data structures called tuples, and the

memory is a multiset of tuples called a tuple space. Ex-

amples of this type of middleware are TinyLime [14] and

TeenyLime [11]. In TinyLime, a new operational scenario

is assumed, one that naturally provides contextual infor-

mation, does not require multi-hop communication among

sensors, and places reasonable computation and commu-

nication demands on the motes. Sensors are sparsely dis-

tributed in an environment, not necessarily able to commu-

nicate with each other, and a set of mobile base stations (lap-

tops) move through the space accessing the data of nearby

sensors. Each base station owns a tuple space and feder-

ated tuple spaces can be established in order to communi-

cate and synchronize several base stations and some client

hosts. TeenyLimne is an evolution of TinyLime to be ap-

plied in WSANs. As in TinyLime, the core abstraction is

the transiently shared tuple space, but in this case the spaces

are physically located on the sensors themselves.

Tuple Channels

An alternative to tuple spaces is the proposal based on

the use of tuple channels to carry out communication and

synchronization among the WSN nodes involved. Several

advantages can be obtained from the use of channels with

respect to shared memory models:

• Architectural expressiveness. Like messaging, using

channels to express the communication carried out

within a distributed system is architecturally much

more expressive than using shared data spaces. With

a shared data space, it is difficult to see which compo-

nents exchange data with each other.

• Channels support data streams in a natural and suit-

able way. The application programmer does not have

to deal with head and tail tuples as is necessary in a

tuple space based approach to implement information

streams. This is particularly important in information-

flow applications, such as building WSNs.

• Channel interconnection provides great flexibility for

the definition of complex and dynamic interaction pro-

tocols. Sensor data dissemination can be achieved ele-

gantly, allowing for data redirection, data aggregation

and redundant data elimination.

A representative of this category is TCMote [15]. This

middleware is thought to support an operational setting

based on a (hierarchical) architecture of sensor regions,

each one governed by a leader with higher capabilities

(power, memory, processing ability) than the rest of the re-

gion nodes (motes). A region leader host owns a tuple chan-

nel space, which stores tuple channels used to carried out

communication and synchronization between region sen-

sors and the leader in a single-hop way. A tuple channel

is a FIFO structure that allows one-to-many and many-to-

one communication of data structures, represented by tu-

ples. Channel consumption behavior contributes to deal-

ing with the data-centric characteristics of sensor queries.

In addition, tuple channels can be dynamically intercon-

nected through the use of predefined and user-defined con-

nectors, providing great flexibility for the definition of dif-

ferent topologies. Recently, a new approach, called TC-

WSANs [5], adapts and extends TCMote with real-time

characteristics in order to satisfy this important requirement

in WSAN systems.

Mobile Agents

In the traditional client/server-based computing architec-

ture, data at multiple sources are transferred to a destination,

whereas in the mobile agent based computing paradigm, a

task-specific executable code traverses the relevant sources

to gather data. Mobile agents can be used to reduce the

communication cost, by moving the processing function to

the data rather than bringing the data to a central node.

Recently, mobile agents have been proposed for effi-

cient data dissemination in WSNs. Some proposals are Ag-

illa [16], MAWSN [8] and actorNet [25]. We discuss the

former as representative. It could also be included in the tu-

ple space middleware category as agents coordinate through

tuple spaces. Agilla facilitates the rapid deployment of

adaptive applications in WSNs. It allows the programmer

to create and inject mobile agents, which can migrate across

the WSN performing application-specific tasks. Mobile

agents can intelligently move or clone themselves to desired

locations in response to changing conditions in the environ-

ment. Each node maintains a local tuple space, and different

agents can coordinate through local or remote operations on

these tuple spaces. This fluidity of code and state has the po-

tential to transform a WSN into a shared, general-purpose

computing platform capable of running several autonomous

applications at a time.

3. Programming Challenges for WSNs

As discussed in the previous section, lots of approaches

have targeted the development of programming support in

the effort to meet the requirements of WSNs. However,

many research challenges are still ahead faced. In this sec-

tion we outline some of them and envision future direc-

tions. The three categories of programming approaches es-

tablished before are affected by them.

3.1. Incorporation of Java

Sensor nodes are devices with scarce resources. For ex-

ample, the well-known and most broadly used Crossbow

Micaz/Mica2 family motes [12] have a 8 MHz Atmel AT-

Mega128L 8-bit microprocessor, 4 KB of RAM and a flash

memory with 640 KB (128 KB for program and 512 KB for

user data). These constraints have influenced the character-

istics that a programming language must have in order to be

used in this kind of system, as was discussed in section 2.1.

However, more powerful motes are recently appear-

ing. For example, the Imote2 from Crossbow has an In-

tel PXA271 32-bit XScale processor at 13–416 MHz, 256

KB of SRAM, 32 MB of SDRAM and 32 MB of flash

memory. This may influence the arrival of other program-

ming languages to the WSN area, providing it with new

characteristics and advantages. In this sense, Java may be

one of the most required languages (ease of development,

security, dynamic capabilities for developer productivity,

etc.). Squawk [36] is a first attempt to incorporate Java into

WSNs. It is the Java VM for the Sun Small Programmable

Object Technologoy (Sun SPOT) wireless sensor/actuator

device designed by Sun Labs. Squawk implements a full

Java Platform, Micro Edition (Java ME) VM. We envision

more approaches in the next few years.

3.2. Efficient Support for Programming Ab-
stractions

As stated in section 2.2, programming abstractions lib-

erate the programmer from having to address the low-level

WSN mechanisms. However, these abstractions will only

be useful if they are supported by a suitable compiler and

runtime support, especially the necessary novel routing pro-

tocols to address the peculiarities of the established ab-

straction. In this sense, some work is being carried out

as in the macroprogramming abstraction ATaG, where the

node-centric abstraction Logical Neighborhood has been

used as the target API of the compilation process, and as

the underlying support to manage communication among

the nodes [32]. Nevertheless, much work has to be done

in order to achieve optimizations at the compilation phase

and full end-to-end application development frameworks

for programming WSNs using programming abstractions.

3.3. Reprogramming

In most applications, WSNs are deployed once and are

intended to operate unattended for a long period of time.

One of the key research challenges is to manage WSNs in

such a way that they can be dynamically customized to var-

ious (unanticipated) circumstances. Since resource limita-

tions prevent sensors from having an extensive set of ser-

vices pre-installed, sensor software should be dynamically

reconfigurable. In order to develop a practical and effi-

cient reprogramming system, many challenges have to be

addressed. Because of the characteristics of sensors and

wireless communications, the following points should be

considered:

• The time and space complexity of algorithms in repro-

gramming should be well matched to the capacity pro-

file of a sensor node.

• Reprogramming requires the program code to be deliv-

ered in its entirety. However, wireless communication

is unreliable due to possible signal collisions and in-

terference. This makes reliable protocol designs more

challenging.

• Scalability is crucial for large-scale sensor network de-

ployment. Code dissemination and scope selection

(any particular nodes in the network selected for re-

programming) will be conditioned by this issue.

• Reprogramming should be energy efficient. After be-

ing received over the air, the new program codes are

usually stored in an external flash memory. A sen-

sor node will then switch to the new program. Among

computing, sensing and communication functions, the

latter consumes a large portion of the energy compared

to the other ones. In addition, the writing operation to

the flash memory consumes four times more energy

than sending a packet.

Several reprogramming systems have been designed in

the past few years. In [38] various approaches are discussed,

and their limitations established. There are lots of unre-

solved problems that need further investigation to make re-

programming highly usable and efficient. Code dissemina-

tion is a continuing focus of current research. Approaches

such as Agilla, RUNES and DAViM, previously classified

and discussed in section 2, have taken this issue into ac-

count. However, design trade-offs and impact factors have

not been fully understood. There has been little research on

scope selection, completion validation (no errors in a new

received program) and code acquisition functions (initiated

from targeted sensor nodes). In addition, for practical use,

security measures in reprogramming need to be considered.

3.4. Heterogeneity

The presence of heterogeneity in a WSN is known to

increase network reliability and lifetime. We can identify

three common types of hardware heterogeneity: computa-

tional heterogeneity where some nodes have added compu-

tational power (e.g. Intel’s Stargate and Imote2), link het-

erogeneity where some nodes have long-distance highly re-

liable communication links (e.g. 802.11 connectivity), and

energy heterogeneity where nodes have unlimited energy

resources (e.g. connection to a wall socket). Some work

has been carried out to try to answer unexplored questions

such as where, how many and what types of heterogeneous

resources should be deployed to maximize benefit, mainly

from low-level point of views such as MAC and routing pro-

tocols [41].

From the programming perspective, a key assumption of

most of the programming solutions discussed in section 2 is

that the nodes in a sensor network are resource constrained

and homogeneous. Two exceptions could be the tuple chan-

nel based middleware TCMote and the component-based

approach RUNES. In the former, nodes with high capabili-

ties of power, memory and processing act as the leaders of

regions/clusters of sensors. The application programmer is

aware of this operational setting, and then s/he can take ad-

vantage of the present heterogeneity. But at the same time,

s/he use the same high-level coordination model primitives

to program both leaders and sensors. In the later, device

heterogeneity is handled by exploiting different implemen-

tations of the middleware. Even if these implementations

clearly differ in the underlying technology used, they nev-

ertheless provide the same, simple, component-based pro-

gramming environment to the application developers.

The homogeneity assumption is too restrictive in light

of sensor network-based applications envisioned for the fu-

ture. New programming solutions for sensor networks must

be more generic and assume heterogeneous sensor hardware

and diverse communication mechanisms.

3.5. WSAN challenges

As stated in section 1, Wireless Sensor and Actor Net-

works (WSANs) constitute a variation of WSNs where

the devices deployed in the environment are not only sen-

sors able to sense environmental data, but also actors (re-

source rich nodes) able to react by affecting the environ-

ment. In [1] different research challenges were established

for WSANs. These challenges are mainly influenced by

the two major requirements of these systems: coordination

(needed for both sensor-actor and actor-actor interactions)

and real-time. We might say that they are still open issues

as less work has tried to tackle them. Recently, some ap-

proaches have proposed high-level constructs to ease the ap-

plication programmer task and to address the challenges of

WSANs. The aforementioned TeenyLime middleware and

Virtual Nodes programming abstraction are two examples.

However, neither of them directly deal with the real-time re-

quirement of WSANs. This major requirement is tackled by

MWSAN and TC-WSANs approaches, but more proposals

are required in this growing and promising field of WSANs.

4 Conclusions

This paper has established a taxonomy in order to

classify the programming approaches appeared in the re-

search area of wireless sensor networks. Three main cate-

gories have been considered: programming languages, pro-

gramming abstractions and middleware. Several proposals

have been identified and classified, and representative ap-

proaches have been discussed and compared.

In spite of the significant effort carried out in this area,

there are still a lot of research challenges to be tackled. We

have also highlighted several important research challenges.

Some preliminary work dealing with them has been identi-

fied and future directions have been outlined.

References

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor

networks: Research challenges. Ad Hoc Networks Journal,

2(4):351–367, 2004.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: A survey. Computer

Networks Journal, 38(4):393–422, 2002.

[3] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The

Abstract Task Graph: A Methodology for Architecture-

Independent Programming of Networked Sensor Systems.

In Proceedings of the International Workshop on End-to-end

Sense-and-respond Systems (EESR’05), pages 19–24, 2005.

[4] J. Barbarán, M. Dı́az, I. Esteve, D. Garrido, L. Llopis, and

B. Rubio. A Real-Time Component-Oriented Middleware

for Wireless Sensor and Actor Networks. In Proceedings of

the IEEE International Conference on Complex, Intelligent

and Software Intensive Systems (CISIS’07), pages 3–10, Vi-

enna, Austria, April 2007. IEEE Computer Society Press.

[5] J. Barbarán, M. Dı́az, I. Esteve, D. Garrido, L. Llopis, B. Ru-

bio, and J. Troya. Programming Wireless Sensor and Actor

Networks with TC-WSANs. In Proceedings of the IEEE

International Conference on Pervasive Services (ICPS’07),

Istanbul, Turkey, July 2007. IEEE Computer Society Press.

[6] P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor

Database Systems. In Proceedings of the 2th International

Conference on Mobile Data Management (MDM’01), pages

3–14. Springer. LNCS. vol. 1987, 2001.

[7] N. Carriero and D. Gelernter. Coordination languages and

their significance. Communications of the ACM, 35(2):97–

107, 1992.

[8] M. Chen, T. Kwon, Y. Yuan, and V. Leung. Mobile agent

based wireless sensor networks. Journal of Computers,

1(1):14–21, 2006.

[9] P. Ciciriello, L. Mottola, and G. Picco. Building Virtual Sen-

sors and Actuators over Logical Neighborhoods. In Pro-

ceedings of the 1st International Workshop on Middleware

for Wireless Sensor Networks (MidSens 2006), co-located

with the 7th International Middleware Conference (Middle-

ware’06), pages 19–24, Melbourne, Australia, November

2006. ACM Press.

[10] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco,

and S. Zachariadis. Reconfigurable component-based mid-

dleware for networked embedded systems. International

Journal of Wireless Information Networks, 2007.

[11] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.

TeenyLIME: Transiently Shared Tuple Space Middleware

for Wireless Sensor Networks. In Proceedings of the 1st

International Workshop on Middleware for Wireless Sensor

Networks (MidSens 2006), co-located with the 7th Interna-

tional Middleware Conference (Middleware’06), pages 43–

48, Melbourne, Australia, November 2006. ACM Press.

[12] Crossbow. http://www.xbow.com/.

[13] D. Culler, D. Estrin, and M. Srivastava. Sensor network ap-

plications. IEEE Computer, 8(37):50–78, 2004.

[14] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Mur-

phy, and G. P. Picco. TinyLime: Bridging Mobile and

Sensor Networks through Middleware. In Proceedings of

the 3rd IEEE International Conference on Pervasive Com-

puting and Communications (PerCom 2005), pages 61–72,

Kauai Island (Hawaii, USA), March 2005. IEEE Computer

Society Press.

[15] M. Dı́az, B. Rubio, and J. M. Troya. A Coordination Middle-

ware for Wireless Sensor Networks. In Proceedings of the

IEEE International Conference on Sensor Networks (SENET

2005), pages 377–382, Montreal, Canada, August 2005.

IEEE Computer Society Press.
[16] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid Development and

flexible deployment of adaptative wireless sensor network

applications. In Proceedings of the 25th International Con-

ference on Distributed Computing Systems (ICDCS 2005),

pages 653–662, Columbus, Ohio, USA, June 2005. IEEE

Computer Society Press.
[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and

D. Culler. The nesC Language: A Holistic Approach to Net-

worked Embedded Systems. In Proceedings of Program-

ming Language Design and Implementation (PLDI 2003),

pages 1–11, San Diego, California, USA, June 2003. ACM

Press.
[18] J. Gehrke and L. Liu. Sensor-network applications. IEEE

Internet Computing, 10(2), 2006.
[19] D. Gelernter. Generative communication in linda. ACM

Transactions on Programming Languages and Systems,

7(1):80–112, 1985.
[20] R. Gummadi, O. Gnawali, and R. Govidan. Macro-

Programming Wireless Sensor Networks using Kairos. In

Proceedings of the International Conference on Distributed

Computing in Sensor Systems (DCOSS’05), pages 126–140.

Springer. LNCS vol. 3560, 2005.
[21] G. Heineman and W. Councill. Component-Based Software

Engineering: Putting the Pieces Together. Addison-Wesley:

Reading, MA, 2001.
[22] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo.

Middleware to support sensor network applications. IEEE

Network, 1(18):6–114, 2004.
[23] K. Henricksen and R. Robinson. Middleware for Sensor

Networks: State-of-the-Art and Future Directions. In Pro-

ceedings of the 1st International Workshop on Middleware

for Wireless Sensor Networks (MidSens 2006), co-located

with the 7th International Middleware Conference (Mid-

dleware’06), Melbourne, Australia, November 2006. ACM

Press.
[24] Q. Jiang and D. Manivannan. Routing Protocols for Sensor

Networks. In Proceedings of the 1st IEEE Consumer Com-

munications and Networking Conference (CCNC’04), pages

93–98, Las Vegas, Nevada, USA, January 2004.
[25] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha. ActorNet:

An Actor Platform for Wireless Sensor Networks. In Pro-

ceedings of the IEEE International Joint Conference on Au-

tonomous Agents and Multiagent Systems, Hakodate, Japan,

May 2006.
[26] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for

Sensor Networks. In Proceedings of the 10th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS-X’02), San Jose,

CA, USA, October 2002.
[27] P. Levis, D. Gay, and D. Culler. Active Sensor Networks.

In Proceedings of the 2nh International Symposium on

Networked Systems Design and Implementation (NSDI’05),

pages 29–42, San Francisco, CA, USA, March 2005.
[28] S. Madden, M. Franklin, M. Hellerstein, and W. Hong.

Tinydb: An acquisitional query processing system for sen-

sor networks. ACM Transactions on Database Systems,

1(30):122–173, 2005.

[29] S. Michiels, W. Horré, W. Joosen, and P. Verbaeten. DAViM:

a Dynamically Adaptable Virtual Machine for Sensor Net-

works. In Proceedings of the 1st International Workshop on

Middleware for Sensor Networks (MidSens’06), co-located

with the 7th International Middleware Conference (Middle-

ware’06), Melbourne, Australia, November 2006.
[30] L. Mottola and G. P. Picco. Logical Neighborhoods: A Pro-

gramming Abstraction for Wireless Sensor Networks. In

Proceedings of the 2nd International Conference on Dis-

tributed Computing in Sensor Systems (DCOSS ’06), San

Francisco, CA, USA, June 2006.
[31] R. Newton and M. Welsh. Regions Streams: Functional

Macroprogramming for Sensor Networks. In Proceedings

of the 1st International Workshop on Data Management for

Sensor Networks (DMSN’04), pages 78–87, 2004.
[32] A. Pathak, L. Mottola, A. Bakshi, V. Prasanna, and G. Picco.

Expressing Sensor Network Interaction Patterns using Data-

Driven Macroprogrammming. In Proceedings of the 3rd In-

ternational Conference on Software Engineering (ICSE’07),

Minneapolis, USA, May 2007.
[33] K. Romer, O. Kastem, and F. Mattern. Middleware Chal-

lenges for Wireless Sensor Networks. ACM SIGMOBILE

Mobile Computing and Communication Review (MC2R),

2(4):59–61, 2002.
[34] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor

information networking architecture and applications. IEEE

Personal Communications, pages 52–59, August 2001.
[35] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira,

N. Rosa, and C. Ferraz. A Message-Oriented Middleware

for Sensor Networks. In Proceedings of the 2nd Interna-

tional Workshop on Middleware for Pervasive and Ad-Hoc

Computing (MPAC 2004), pages 127–134, Toronto, Canada,

October 2004.
[36] Squawk. http://research.sun.com/projects/squawk.
[37] TinyOS. http://www.tinyos.net/.
[38] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless

sensor networks: Challenges and approaches. IEEE Net-

work Magazine, pages 48–55, May/June 2006.
[39] M. Welsh and G. Mainland. Programming Sensor Networks

Using Abstract Regions. In Proceedings of the 1st UNENIX-

ACM Symposium on Networked System Design and Imple-

mentation (NSDI’04), pages 29–42, 2004.
[40] W. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:

a Neighborhood abstraction for sensor networks. In Pro-

ceedings of the 2nd International Conference on Mobile Sys-

tems, Applications and Services (MobiSYS’04), pages 99–

110, New York, NY, USA, 2004.
[41] M. Yarvism, N. Kushalnagar, H. Singh, A. Rangarajan,

Y. Liu, and S. Singh. Exploiting Heterogeneity in Sensor

Networks. In Proceedings of the IEEE Infocom, Miami, FL,

USA, March 2005.
[42] E. Yoneki and J. Bacon. Unified Semantics for Event Cor-

relation over Time and Space in Hybrid Network Environ-

ments. In Proceedings of the IFIP International Conference

on Cooperative Information Systems (CoopIS’05), pages

366–384. Springer. LNCS vol. 3760, 2005.
[43] Y. Yu, B. Krishnamachari, and V. Prasanna. Issues in design-

ing middleware for wireless sensor networks. IEEE Network

Magazine, January 2004.

