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Abstract: Wavefront shaping allows for ultimate control of light prop-

agation in multiple-scattering media by adaptive manipulation of incident

waves. We shine two separate wavefront-shaped beams on a layer of

dry white paint to create two enhanced output spots of equal intensity.

We experimentally confirm by interference measurements that the output

spots are almost correlated like the two outputs of an ideal balanced beam

splitter. The observed deviations from the phase behavior of an ideal beam

splitter are analyzed with a transmission matrix model. Our experiments

demonstrate that wavefront shaping in multiple-scattering media can be

used to approximate the functionality of linear optical devices with multiple

inputs and outputs.
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1. Introduction

Linear optical components like lenses, mirrors, polarizers and wave plates are the essential

building blocks of optical experiments and applications [1, 2]. One has often little freedom to

modify the linear optical circuit, besides rearranging components or including adaptive ele-

ments. For computational applications and on-chip light processing [3–6], it would be fantastic

to have a programmable linear optical circuit that can be controlled during operation. Spatial
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Fig. 1. Interference at an ideal lossless 50:50 beam splitter. (a) Two incident modes (1,2)
with equal intensity interfere at a 50:50 beam splitter (BS) resulting in two output modes

(1′,2′). (b) Normalized power in the output modes as a function of relative phase shift ∆θ

applied to incident mode 1. The powers in the two arms oscillate as a function of ∆θ with

a relative phase δ = π for the ideal beam splitter. All powers are normalized to the sum of

the two input powers P1 +P2.

light modulation in combination with random light scattering provides an excellent platform to

accomplish this [7]. The collective interference of scattered light propagating through a scatte-

ring material results into a speckle pattern. In wavefront shaping [8, 9] incident light is modu-

lated by a spatial light modulator to obtain a desired speckle pattern for functionality. Although

one has to tolerate some losses, this technique makes it possible to transform opaque scatte-

ring media in linear optical elements that are flexible in performance [10–15]. If one controls

light propagation inside strongly scattering media, one can make the most exotic linear optical

circuits within a fraction of a mm3.

In earlier wavefront-shaping experiments, multiple target spots have been simultaneously op-

timized with a single incident wavefront [8,15,16]. These experiments essentially demonstrate

1×m linear optical circuits with 1 incident mode projected to m output modes. If one is ca-

pable to manipulate n incident modes with wavefront shaping, it becomes possible to program

n×m optical circuits with a desired transmission matrix T. To our knowledge, no experiment

demonstrating this capability has been reported.

In this article we describe an experiment in which a layer of white paint is used as an optical

beam splitter. We apply wavefront shaping to intensity enhance 2 output spots for 2 separate in-

cident modes, forming a 2×2 optical circuit. The enhanced spots are almost correlated like the

outputs of a 50:50 beam splitter. This behavior is verified by an optical interference experiment.

Our measurements indicate that the system approaches the behavior of an ideal beam splitter

when the intensity enhancement η increases, which is confirmed by simulations. This surpris-

ingly suggests that one can program beam splitters without prior knowledge of the transmission

matrix T. We explain this with random matrix calculations. Our experiment demonstrates that

wavefront shaping can be extended to multiple incident modes that can interfere in a controlled

manner, allowing for programmable linear optical circuits.
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2. Interference on a beam splitter

The scattering matrix of a lossless beam splitter represents a unitary transformation that can be

written in its most general form as the product of three matrices [17]:

S =

[

ei Ψ
2 0

0 e−i Ψ
2

]

[

cos Θ
2

sin Θ
2

−sin Θ
2

cos Θ
2

]

[

ei ∆θ
2 0

0 e−i ∆θ
2

]

. (1)

The nonzero terms in the first and last matrix are phase differences Ψ and ∆θ applied by the

beam splitter on the incident and outgoing modes respectively. In this article we use the term

input mode for an incident wave that describes a single orthogonal input of the normal beam

splitter or wavefront-shaped beam splitter. The phase angle Θ in the center matrix determines

the splitting ratio, which has to be Θ = (2n+1)π/2 for a 50:50 beam splitter, with n an integer

value.

Now consider the experiment in Fig. 1(a) in which two modes (1,2), carrying coherent light

of equal power, frequency, polarization, and wavefront are incident on a 50:50 beam splitter

giving two output modes (1′,2′). The relative phase difference ∆θ between mode 1 and 2 can

be controlled. The power P1′ ,P2′ as a function of ∆θ is shown in Fig. 1(b). P1′ and P2′ will

oscillate as a function of ∆θ with a phase difference of the power oscillation δ = π for the

ideal lossless beam splitter, independent of phases ∆θ and Ψ in Eq. (1). For this graph we

have set Ψ = 0. Any nonzero value for Ψ will provide a phase offset to both the output modes,

essentially shifting both P1′ and P2′ along the horizontal axes by the same amount. If one of the

incident modes is blocked, a constant power is detected in both output modes that is 4 times

lower than the maximum power in one of the output modes when both inputs are present. Note

that energy is conserved: P1′ +P2′ = P1 +P2, and a fringe visibility of 100% is observed.

Modeling lossy beam splitters is an interesting subject on its own with a wide variety of

approaches [18–22]. We describe the effective transmission matrix T as a non-unitary version

of Eq. (1). The phase difference δ = π will still hold if there are losses in any of the input or

output modes. In such a case, the damping can be modeled in the left or right matrix in Eq.

(1) by making them non-unitary with a determinant smaller than 1. This is valid for the typical

beam splitter one uses. However, when the scattering in the beam splitter does not conserve

energy (i.e. the damping is in the center matrix in Eq. (1) dictating that not all energy goes

to the considered output modes), δ could in principle take on any value as long as the total

output power does not exceed the total input power. To model the most general form of a lossy

beam splitter we make the following assumptions: 1. The system is described by an effective

transmission matrix T consisting of 2×2 elements; 2. Transmission matrix T provides an equal

power splitting ratio; 3. The power losses for both input modes are identical.

The system behaves as a lossy beam splitter with equal splitting ratio. For convenience to

compare to the ideal beam splitter, we consider that a single input mode is reflected with power

reflectance |r|2 and transmitted with transmission |t|2. For a lossy balanced beam splitter this

means |r| = |t| and |r|2 + |t|2 ≤ 1. We relate the complex input amplitudes A1 and A2 to the

output amplitudes A1′ and A2′ as A1 → |r|(A1′ + eiδ A2′) and A2 → |r|(A1′ +A2′), with relative

phase term δ . Now we set |r|2 = 1/N, with splitting factor N and N ≥ 2. This leads to the

following transmission matrix:

T =
1√
N

[

1 eiδ

1 1

]

. (2)

For the ideal lossless 50:50 beam splitter, T is only unitary when N = 2, with for example

δ = π , and would always result to interference as shown in Fig. 1(b). The eigenvalues λ1 and
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allowed forbidden

Fig. 2. The allowed phase difference δ as a function of reflectivity |r|2 for the balanced

beam splitter. The white region is forbidden because of energy conservation.

λ2 of the matrix in Eq. (2) are:

λ1 =
1+ ei δ

2

√
N

, λ2 =
1− ei δ

2

√
N

. (3)

The observed phase difference in the power oscillations between the output channels in an

interference experiment is given by δ . Since T is a square matrix, from the singular values of

Eq. (2) τ2
1 = |λ1|2 = (2+2cos( δ

2
))/N and τ2

2 = |λ2|2 = (2−2cos( δ
2
))/N we obtain:

τ2
1 + τ2

2 =
4

N
. (4)

If this relation is fulfilled, it is guaranteed that |r|2 = |t|2. In addition τ1,τ2 ≤ 1 to guarantee

a transmission not exceeding 1. This restricts the possible δ to the range 2cos−1 (N/2−1) ≤
δ ≤ 2cos−1 (1−N/2) for 2 ≤ N ≤ 4, as marked by the gray area in Fig. 2.

With wavefront shaping it is possible to use a multiple-scattering material as a balanced beam

splitter. In our experiment we are working with N ≫ 102 and therefore any δ is allowed. The

scattering statistics of the sample, such as the the singular value distribution, and the intensity

enhancement defining N in Eq. (4), determine the combination of τ1 and τ2 that satisfy Eq. (4).

Therefore one would not expect in general a constant probability distribution for δ in the gray

marked area in Fig. 2. We would like to approximate the behaviour of a beam splitter where

δ → π since this mimics the beam splitter one normally uses.

3. Optimization algorithm

The optimization procedure for wavefront-shaped balanced beam splitters is illustrated in Fig.

3. We start with a single incident mode. All segments of a phase-only spatial light modulator

(SLM) are subsequently addressed. The phase φn ⊂ [0,2π) of the nth segment is randomly

chosen and the output powers P1′ and P2′ are monitored. φn is accepted and kept on the SLM if

the summed output powers of both spots has increased and the difference power has decreased:

1. P1′,new +P2′,new > P1′,old +P2′,old + ε1

2. |P1′,new −P2′,new|< |P1′,old −P2′,old|+ ε2
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Fig. 3. Optimization procedure for wavefront-shaped balanced beam splitters. A sin-

gle SLM is divided into two sections to phase modulate incident modes 1 and 2 that are

spatially separated. (a) Only mode 1 is incident and mode 2 is blocked. Two target spots 1′

and 2′ are optimized on a CCD camera. (b) Only mode 2 is incident and mode 1 is blocked,

and the same target spots 1′ and 2′ are optimized. (c) Both modes 1 and 2 are incident on

the SLM, using both optimized phase patterns. A relative phase differenced ∆θ between

mode 1 and 2 is applied with the SLM to confirm optical interference like in Fig. 1(b).

with positive tolerances ε1,ε2 → 0 to compensate for noise. Otherwise the previous φn was re-

stored. Next the (n+1)th segment is addressed, etc. After the final segment has been addressed,

the entire optimization is repeated until the desired convergence is reached.

The same procedure is repeated for the second incident mode for the same two target spots.

Finally both modes are incident to perform an interference experiment as described in Fig. 1,

where the relative phase ∆θ is controlled with the SLM.

We have decided to select this optimization algorithm because of ease of implementation and

the guaranteed convergence to spots of equal power. There are algorithms that work faster and

more efficiently resulting in spots of higher intensity enhancement [23]. At any rate, in the next

sections we demonstrate that our algorithm is adequate for this experiment.

4. Experimental setup

The setup is illustrated in Fig. 4(a). The light source is a mode-locked Ti:Sapphire laser

(Spectra-Physics, Tsunami) emitting transform-limited pulses at a repetition rate of 80 MHz

with a pulse width of approximately 0.3 ps and a center wavelength of 790.0 nm. The pulses

are spectrally filtered by a Fabry-Perot cavity with a linewidth of 1.5 nm. The beam is split

and coupled into two separate single-mode fibers. The output modes have identical polarization

and waist and form the input modes 1 and 2. The two modes are phase-modulated with a SLM

(Hamamatsu, LCOS-SLM). The two modes are spatially overlapped with a half-wave plate

(HWP) and polarizing beam splitter (PBS) cube, resulting in co-linear propagation of modes

with orthogonal polarization. This allows us to completely fill the aperture of the objective

(NA=0.95, Zeiss) that focuses the light on a layer of white paint. Both pulses arrive simultane-

ously at the sample to within 20 fs. We make sure that the power of both incident modes on the

objective are identical (power of approximately 0.5 mW per mode). The layer of white paint

consists of ZnO powder with a scattering mean free path of 0.7±0.2 µm. The layer is approx-
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Fig. 4. Setup for wavefront-shaped balanced beam splitters. (a) Two incident modes

(1,2) are phase-modulated with a spatial light modulator (SLM). Both modes are spatially

overlapped with a polarizing beam splitter cube (PBS). The modes are focused on a layer

of white paint (ZnO particles) that has been spray coated on a 1 mm thick microscope

slide. The transmitted light is projected on a CCD camera. Two output modes 1′ and 2′ are

selected. (b) Camera image for two optimized spots when mode 1 is blocked. (c) Optimized

phase pattern on the SLM.

imately 30 µm thick and spray painted on a glass microscope slide of 1 mm thickness. The

transmitted speckle pattern is collected with a second objective (NA=0.55, Nikon) and imaged

on a CCD camera after reflection on a PBS, see for example Fig. 4(b). The intensity values for

the CCD pixels that correspond to the target spots are integrated to obtain the output powers

for the enhanced spots. The optimized spots can be transmitted through the PBS, towards a

different part of the setup for applications, by rotating the HWP.

The SLM was divided into segments of 20x20 pixels. Each segment was sequentially ad-

dressed with a random phase as described in the optimization algorithm. The phase is applied

by writing a gray value between 0 and 255. This corresponds to a phase modulation depth of

(2.0±0.1)π rad. This algorithm was repeated approximately 15 times for all segments to obtain

two enhanced spots of equal power at 1′ and 2′, see Fig. 4(b). The total optimization procedure

for both incident modes takes about 3 hours. In our experiments we achieved η ∼ 5. At ≈ 103

speckles this is not yet close to the theoretical maximum [8] and was limited by a noisy pulsed

laser and the not completely optimized SLM segment size. It nevertheless served its purpose

and we confirm interference between the output modes by adding a phase offset to the encircled

area in Fig. 4(c).
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Fig. 5. Interference between two optimized spots of a wavefront-shaped beam splitter.

A phase shift is applied on one of the incident modes by applying an offset to the phase

pattern of the SLM. (a) Camera images for different phase offsets ∆θ expressed as gray

values. (b) Power in the two optimized spots (red squares and blue diamonds) as a function

of gray value (top) and phase (bottom). The solid and dashed lines are sinusoidal fits. When

only one incident mode is present, a constant power in both target spots is observed (white

diamonds and white squares).

5. Experimental results

Figure 5 presents the main result of this article: optical interference with a wavefront-shaped

nearly balanced beam splitter. Figure 5(a) shows a series of camera images when on incident

mode 1 a phase offset is applied. The number in the left top corners represent the phase offset

∆θ in gray values. All pictures are subsequently taken with the same integration time. The

intensity clearly oscillates between the two target spots.

Figure 5(b) shows the output power P1′ (red squares) and P2′ (blue diamonds) as a function of

the applied phase difference ∆θ . Both curves show sinusoidal behavior and are approximately

out-of-phase, mimicking the behavior of an ideal beam splitter as is shown in Fig. 1(b). We

expect an error in the phase of about ∆(∆θ) = 0.1 rad due to interferometric stability during

data collection and an additional systematic error of 0.1 rad due to phase calibration (both not

shown). We have fitted two functions of the form Asin(∆θ + b) + c to the measured power,

which is in good agreement with the data points. From b we determined the phase difference

|δ | = 2.30± 0.14 rad, close to but significantly different from the value of δ = π of an ideal

beam splitter. Note that since the ordering of the two spots is arbitrary, we only consider the

reduced |δ | when discussing the experimental results. Since the Both P1′ and P2′ show a fringe

visibility of approximately 100%, which indicates a near-perfect mode matching between the

output modes for the two seperate incident modes. The maximum measured power in both

spots is approximately the same to within 5%. When one of the incident modes is blocked

in the interference experiment, the output power is approximately constant (white diamonds

and squares). The small spatial separation between mode 1 and 2 on the SLM gives a small

crosstalk, causing fluctuations within 10%. The output power is approximately 4 times lower

than the maximum power in one output mode when both input modes are incident, in excellent

agreement with Fig. 1(b).

We have repeated this interference experiment 5 times for different target spots and deter-
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ideal
50:50 BS

Fig. 6. Measured reduced phase difference |δ | for different realizations of the

wavefront-shaped balanced beam splitter.

mined |δ |. The result is shown in Fig. 6. All measurements were performed under comparable

circumstances. Although the number of measurements are not sufficient for any statistical rel-

evant conclusion, our measurements suggest a tendency for |δ | to cluster close to π . This is

somewhat unexpected and therefore interesting to explore. In the next section we therefore

present a model that predicts this behavior.

6. Model for the phase difference

In this section we model the observed phase difference δ in the interference experiment based

on random matrix theory. Light undergoes isotropic multiple scattering in a sample with a

thickness much larger than the scattering mean free path l and kl ≫ 1. We therefore expect

the transmission matrix T to follow the statistics of a random matrix, as was demonstrated

experimentally for ZnO [16]. One could argue that T is a subset of the scattering matrix S, and

therefore δ can take in principle any value between [0,2π) with equal probability. This would

naively result in a constant probability distribution for δ , which is not observed.

The scattering matrix S has to be unitary, which sets restrictions on the allowed values for

each element sa,b. Consider a random S in a basis where one input mode is one element of the

input vector and one target output spot is one element of the output vector. If S contains a beam

splitter of equal splitting ratio, there have to be 2 rows and 2 columns in S with corner elements

of approximately the same amplitude:
∣

∣si, j

∣

∣= c1

∣

∣sn, j

∣

∣= c2 |si,m|= c3 |sn,m| (5)

with {i, j,m,n} ≤ Dim(S) positive integers and c1 ≈ c2 ≈ c3 ≈ 1. For a random scattering

matrix with dimension Dim(S) = 2, the only possibility for a balanced beam splitter is that

δ = π . From matrix algebra it follows that for Dim(S) = 3, δ can only lie on the boundary lines

of the gray area of Fig. 2: δ = 2cos−1
(

1/(2|r|2)−1
)

or, equivalently by reordering the two

outputs, δ = 2cos−1
(

1−1/(2|r|2)
)

, with |r|2 the intensity reflectivity as defined in section

2. The amplitude coefficients of S should satisfy
∣

∣sa,b

∣

∣

2 ≥ 1/4. For Dim(S) ≥ 4 any phase

becomes accessible within the gray marked area of Fig. 2. However, the corresponding phase

distribution is strongly dependent on Dim(S), as illustrated in Fig. 7. There we have generated

many random scattering matrices with different dimension that contain a balanced beam splitter

[24]. The corresponding intensity enhancement is given by η = |s|2 /
〈

∣

∣sa,b

∣

∣

2
〉

, with |s|2 =

(1/4)(
∣

∣si, j

∣

∣

2
+
∣

∣sn, j

∣

∣

2
+ |si,m|2 + |sn,m|2), and

〈

∣

∣sa,b

∣

∣

2
〉

= 1/Dim(S). An increased probability
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(a) (b)

(c) (d)

Fig. 7. Calculated normalized probability distribution for the phase difference δ for

random scattering matrices S with different dimension Dim(S) containing balanced

lossy beam splitters. All 4 elements in the scattering matrix that form the beam splitter

have an equal amplitude within 1% to be accepted. The green dashed line represents the

boundary of allowed and forbidden phases as in Fig. 2. The black vertical dotted line rep-

resents
〈

∣

∣sa,b

∣

∣

2
〉

, which is equivalent to an intensity enhancement of η = 1.

for δ = π is observed with higher η . The probability distribution becomes flat for small η .

How this scales, depends strongly on Dim(S). It becomes extremely difficult to observe η > 4

for
〈

∣

∣sa,b

∣

∣

2
〉

< 0.01, because the probability to get these realizations out of random unitary

matrices becomes astronomically small. The SLM in our experiment, however, is programmed

to realize exactly such situations.

Therefore we have simulated our experiment by applying our optimization algorithm on

large random S. Figure 8 shows the observed distribution for |δ | as a function of intensity

enhancement η . The main observation is that P(|δ |) has a global maximum at |δ | = π that

increases with η . The simulations in Fig. 8 are performed for Dim(S) = 300. We control the

phase of 40 input elements representing incident mode 1, and 40 input elements represent-

ing incident mode 2. Each controlled input element has a normalized input power of 1. We

have set margins ε1 = 0 and ε2 = 0.001. We apply the optimization algorithm 2500 times per
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(a) (b)

(c) (d)

Fig. 8. Simulated phase difference |δ | for the balanced beam splitter for different in-

tensity enhancements η and Dim(S) = 300 (bars). The probability that δ → π increases

with η . (a) Realizations with 7.5 ≤ η < 8.5. (b) Realizations with 9.5 ≤ η < 10.5. (c)

Realizations with 11.5 ≤ η < 12.5. (d) Realizations with 13.5 ≤ η < 14.5.

mode to guarantee convergence. We select output elements for which the total power of the

optimization for mode 1 is within 10% of the optimization for mode 2, approximating our ex-

periment. The intensity enhancement η is given by the observed power in a target spot, divided

by 40×
〈

∣

∣sa,b

∣

∣

2
〉

= 40/Dim(S), where the factor 40 comes from the number of channels that

are controlled per incident mode.

It is beyond the scope of this model to match experimental conditions. In particular the

large number of channels is difficult to implement. We have repeated our simulations for sev-

eral Dim(S) and several amounts of controlled input channels, always demonstrating a global

maximum at a |δ | = π that increases with η . This demonstrates that the two optimized spots

approximate better the behavior of a balanced beam splitter with increasing enhancement, using

our optimization algorithm. Based on the model with large unitary matrices, it is likely that this

result is independent of the type of optimization algorithm used.

We can also explain our findings by considering an analytic model. Assume that the wave-

front shaping process has been completed, where each enhanced spot has an identical intensity

enhancement η . We are free to define a basis for the complete scattering matrix S, which in-

cludes the SLM and the scattering material. We write S as:
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S =
1

√

Dim(S)















√
η

√
ηeiαin s1,3 · · · s1,Dim(S)√

ηeiδ eiαout
√

ηeiαineiαout

s3,1
...

sDim(S),1 sDim(S),Dim(S)















, (6)

where the first two elements of the input vector correspond with the field in the input modes

and the first two elements of the output vector correspond to the field in the output modes.

Therefore the relevant elements in S for the beam splitter are the four top left elements. We

have chosen a basis where the phase difference δ of the beam splitter, as observed in our

interference experiment, is included in s2,1. The phase difference between the input modes αin

is included in s1,2 and s2,2, the phase difference between the enhanced spots αout is included in

s2,1 and s2,2. Since S has to be unitary, each column of the matrix should be orthogonal to the

other columns. Therefore the innerproduct between the first two columns becomes:

η(1+ eiδ )e−iαin +
i=Dim(S)

∑
i=3

si,1s∗i,2 = 0. (7)

We define B=∑
i=Dim(S)
i=3 si,1s∗i,2. For η ≪Dim(S) we assume that all elements si, j still follows

the statistics of the elements of a randomly generated unitary matrix, except for the elements

describing the beam splitter. We are dealing with a system where Dim(S) ≫ 2 and therefore

we can approximate Dim(S)− 2Dim(S). We assume that for a random scattering matrix all

elements si, j are complex Gaussian distributed with mean
〈

si, j

〉

= 0 and standard deviation

σs =
〈∣

∣si, j

∣

∣

〉

= 1. From the rules of multiplication and adding Gaussian distributions it follows

that B should be a complex Gaussian distributed value with 〈B〉= 0 and σB = 〈|B|〉=
√

Dim(S)
2

.

Therefore if η >

√

Dim(S)
2

, B can be ignored in Eq. (7) and we expect δ → π to satisfy this

equation. For the simulations in Fig. 8 this should be the case for η = 12.2, which we indeed

observe in the simulated distributions. In our experiments we have η ∼ 5 and Dim(S) ∼ 103,

and therefore according to this model δ → π for η ∼ 101. Therefore our experimental obser-

vations of Fig. 6 are not convincingly explained by this model. On the other hand, Eq. (7) sets

restrictions on the allowed combinations of B, αin, η , and δ , which we have ignored up till now.

Therefore more advanced modeling is required that is outside the scope of the present paper.

7. Discussion

We have experimentally created two optimized spots that are correlated like the output of a

lossy balanced beam splitter. The interference experiment suggests that |δ |→ π with increasing

η , which is indicated by a random matrix model. The model could not match the dimension

of our experiment, nevertheless, the agreement is gratifying. Our model demonstrates that the

probability distribution for δ depends on the number of modes in the system. It would be

intriguing to perform these kind of experiments with systems of lower dimension, such as,

multi-mode fibers with embedded disorder to confirm this scaling [25].

It would be fascinating to measure the transmission matrix of the sample prior to optimiza-

tion. This allows for an experimental study on the influence of the optimization algorithm and

η on the observed δ . In addition this would also allow to address speckle patterns with more

complicated correlations.

The loss in our experiment can be reduced by several orders of magnitude by implementing

more efficient wavefront-shaping procedures and using continuous-wave lasers. On the other
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hand, our pulsed experiment reveals the opportunity to apply this beam splitter on incident

light produced in nonlinear processes, such as entangled photon pairs or higher order quantum

states produced with spontaneous parametric down-conversion [26, 27]. This makes it possible

to program linear optical circuits for incident quantum states to exploit quantum correlations in

disordered media [28–35].

8. Conclusions and outlook

In summary, we have controlled light propagation in opaque scattering media with phase mod-

ulation of the two incident light modes. We have optimized two spots that show interference

like a 50:50 beam splitter. Advanced optimization algorithms make it possible to create more

complicated linear circuits out of multiple-scattering media [36].
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