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Chapter 1

Introduction

1.1 Thesis
Programming by example is a way of programming a software system in its own user interface. The

user of the system writes a program by giving an example of what the program should do. The system
remembers the sequence of actions, and can perform it again. Succinctly, programming by example is
“Do What I Did.”

Programming by example can be a  practical  way of  letting the user  of  a  system create  programs to
automate the tasks he needs to do. This dissertation describes an enhanced programming-by-example
mechanism which has been incorporated into a simulation of an office information system. To make
programming by example a reasonable way of writing more than very simple programs, the basic concept
was extended to include a data description mechanism, methods for adding control structure to programs,
and a static program representation suitable for reading and editing. The resulting system is learnable and
can be used to create practical programs.

1.2 Motivation
Most computer software used to be written with its ultimate users clearly in mind. A computer

installation had its own programmers who would write user-specific software. Even if software from
outside was used, it was frequently modified locally to suit the idiosyncrasies or particular applications of
each installation. Computers were expensive, programmers less so.

But computers have become much cheaper, and are now commonplace at work and at home. There is
a corresponding explosive growth in the amount of software available. Computers and software are
becoming mass-market merchandise. Users frequently buy general-purpose software, expecting it to
include enough functionality to cover their applications.

The user no longer has a programming staff to fall back on. How then can he make a general-purpose
system into a special-purpose one that suits his needs? The system might provide the mechanism for the
user to do his task, but if it requires seventeen general-purpose operations to do what could take one
special-purpose operation, the user will be frustrated and annoyed. One solution is to let the user do his
own programming. Certainly we should not expect the average user to write programs with the same ease
as professional programmers. (See [Anderson] and [Cuff] for general discussions about the problems of
introducing programming to the average person.) What we can do instead is to find ways to make
programming easier, to couch it in terms with which the user is familiar, and to reduce the mental burden
of programming.

Programming by the user has already appeared in a number of different ways. The degree of user
programmability can vary from choosing among options the system provides, to systems which require
programming by the user as an integral part of their functionality.

For user programming in its simplest form, systems provide options or modes from which the user
can choose in order to customize the operation of the program. For instance, a program that prints might
provide an option of single or double spacing. Though it might be stretching a point to call this real
programming, the system is supplying a very simple, specialized programming language.
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Other systems let the user create programs consisting of sequences of keystrokes or other simple user
actions. Keystroke programming is particularly common in text editors; the sequences the user creates are
frequently called macros. The well-known text editor TECO [Digital] takes this idea of macros to an
extreme. The Wang Glossary word processing system [Wang] provides a simple programming language
(Decision Processing) whose actions are the names of the keys. The advantage of this programming
technique is that the user is programming in the user interface of the system. Since he already knows this
user interface, he does not need to learn a whole new programming language, though he may need to
learn new commands that relate specifically to programming and not to normal, “manual” operation of the
system.

Fewer systems provide a separate programming language for automating their operations. The Xerox
Star office system [Smith et al 1981] [Smith et al 1982] has experimentally provided a language called
Cusp (customer  programming) which has English-like syntax and is specifically designed for
manipulating the data objects found in the Star system. The MACSYMA algebraic manipulation system
[Mathlab] is programmable using a language which is a superset of its user-interface commands and
syntax.

Finally, some systems are programmed by their users as a necessary and integral part of their
operation. Spreadsheet programs are a good example. They do nothing without the user supplying a
program by giving formulas for various spreadsheet cells.

The methods of user programming we have discussed above are all quite popular. Most software
systems provide options or modes for tailoring their operation to suit particular users. Spreadsheets are an
example of an instant and phenomenal success. Keystroke programming is widely used, and is usually the
first thought when one thinks of adding programming to a user interface.

What makes these methods of user programming so popular? Why do we not instead expect the
normal users of a system to write programs for it in some more conventional programming language? The
answer lies in what makes programming difficult, and how the methods of user programming we have
mentioned circumvent these difficulties.

1.3 Why is programming considered hard?
Why is it that programming appears to be difficult, and something our average non-programming user

does not want to attempt? There are two strong reasons: one is based on knowledge, the other on skill or
talent.

The knowledge a programmer must have about a particular programming language is largely a mass
of detail. He must know the exact syntax and semantics of the language he is using. These details differ
from language to language; constructs that appear the same in two languages may have different
meanings. A good programmer is good at remembering such details. A non-programmer or casual
programmer has no desire to learn such details; they take time to learn, and one forgets this detailed
knowledge unless it is used frequently.

Programmers must also learn idioms: there are idioms peculiar to particular programming languages,
and there are standard programming idioms which one is trained to use (e.g. hash tables, iteration
constructs,  use of  backpointers,  etc.).  Programmers know how difficult  it  is  to  write  programs in a  new
language the first few times, even if one knows a number of other languages. It is easier to see how other
people use the language by looking at existing programs than simply to refer to the language manual.
Programmers also know that their knowledge about data and program structures takes a few years to
learn, either through a formal computer science education, or through some sort of apprenticeship where
they study and modify existing programs before writing their own.
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This side of programming ability is one of knowledge and education. Another necessary ability is one
of skill or talent. It is the ability to create abstract plans without feedback.

A programmer must keep the state of an intangible reality in his mind. The programmer does not see
the effects of the program he is writing until he runs the program; he must imagine them instead. Even
when his program is run and produces output, most of the actions and decisions the programmer has
specified happen invisibly.

A non-programmer is not used to creating plans in such an abstract manner. Most people can follow
and give directions with little trouble. They can read and write recipes, follow office procedures, and tell
their friends how to drive to their houses. But all these actions occur in familiar physical reality. It is easy
for someone to imagine the consequences of an action, because he is familiar with its physical realization,
and can picture what would happen.

A person following or creating a plan that deals with ordinary reality has a chance to try out the plan,
step-by-step, and modify it as he proceeds. He can do this in his mind’s eye, or actually try out the steps
of the plan. A person following a plan can observe its effects as he executes each step, and stop or modify
the plan if it seems that something is going wrong.

A programmer instead must create his plan (a program) without being able to try it out as he writes it.
He cannot experiment with parts of the plan beforehand, because in conventional, non-interactive
programming  systems  there  is  no  simple  way  to  try  out  small  pieces  of  a  program.  When  he  runs  the
entire program to test it, it is frequently difficult for him to execute it step-by-step, and usually impossible
for him to modify it as he tries it. Thus he must be skilled in mentally simulating his plan and imagining
its consequences before it ever runs on a computer. Not all people have this skill naturally, though many
can learn to do it, with effort.

In order to make user programming easier, we must therefore attack these two problems: we must
reduce the amount of detail the user must know before programming, and we must reduce the mental
overhead necessary to create the plan that is the program.

1.4 Programming by example
We need to remove these two obstacles that we have mentioned: one is lack of knowledge, the other

is  lack of  skill.  To help the user  avoid learning a  mass of  new detail,  we should let  him rely mostly on
what he was already learned and practices often. To help him create programs more easily, we should let
him build them incrementally, so he can test them as he creates them. These two ideas are the essential
features of programming by example.

A user must learn to operate any system he intends to use regularly. There is no substitute for practice
and training if he is to become adept. However, once he does learn the system, it becomes second nature
to him.

How can we let the user program with the knowledge he already has? The answer is simple: let him
write programs in the world of the system with which is he is already familiar, using exactly the system
operations he already knows. There may be a need for additional commands, for instance to add control
structure to the program. But in general, the commands in his programming language will be the same as
the commands he uses normally.

Letting the user try out his program as he is writing it is equally simple. We just record the user’s
commands as he operates on sample or real data, transcribing his commands to form a program. This
recording does not interfere with or change the normal operation of any command. At any time during
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recording,  the  user  can  see  that  the  program  has  worked  correctly  up  to  that  point  (at  least  for  his
example), because he can see the results of his actions immediately.

If these two ideas were the entire substance of programming by example, there would be nothing left
to say. But just letting the user record his actions and have them repeated exactly makes for dull
programs. Creating a programming-by-example system becomes more interesting and more difficult
when we try to provide ways for the user to specify the intention of his program or add control structure
to it. That is the subject of my research.

1.5 To reiterate — what programming by example is
• When  the  user  writes  a  program  in  a  programming-by-example  system,  the  statements  in  his

program are the same as the commands he would normally give the system. So he is
programming in the user interface of the system.

• A program is written by remembering what the user does as he gives normal commands. Thus the
user programs by giving an example of what he wants the program to do.

A system must provide both of these features if it is to be called a programming-by-example system.
Certain systems provide programming in the user interface, but they are not programming-by-example
systems because they lack to the ability to record a program as it is being executed. For instance, many
text editors provide what is commonly called a “macro” facility, in which sequences of ordinary
commands can be stored and executed repeatedly. However, in most of these editors, the individual
commands in the macro are not executed as the macro is being written. A similar example is the scripts
one can write for the command languages of various operating system executives or shells.

1.6 Requirements for a programming-by-example system
Since programming by example includes programming in the user interface of some system, it

follows that in order to program a system by example, it must have a user interface. That is, the system
must provide a visible world in which the user can manipulate and change data “manually”, using
commands that take effect immediately. Such worlds are familiar to programmers: examples are
command languages and the environments they manipulate, and text and graphic editors.

But rarely is such a world available in conjunction with a conventional programming language. With
most languages such as, say, Pascal, there is no visible and easily manipulated world that exists
independent of the program (though sometimes the debugger tries hard to give the impression of such a
world). Instead, a Pascal program specifies its own world. The world is created when the program is run,
and destroyed when it finishes. Beforehand, when the programmer is writing the program, the world
exists only in his mind’s eye.

To create a programming-by-example system for writing Pascal programs, one would have to create a
world  of  Pascal  objects,  and  a  user  interface  for  it.  The  actions  available  in  the  user  interface  would
presumably map closely into Pascal program constructs. The user would manipulate the objects in the
world, and his actions would be transcribed to produce a Pascal program.

Some language systems do provide permanent worlds which exist across the invocation of programs.
Lisp, APL, and Smalltalk all have global static spaces in which global names and the objects to which
they are bound live indefinitely. Users can execute language constructs directly in the user interface to
compute values and possibly change the state of the world.
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However, many of the constructs in these language systems are not imperative; they do not change
the state of the world. Instead, operations on objects are usually applicative: they create new objects,
leaving the original objects undisturbed. Newly created objects are discarded immediately unless they are
bound to some global name. Successive user actions must be linked together explicitly to take effect
together. For instance, in Lisp, one may say:

(list 1 (+ 1 2))

The system responds with:

(1 3)
But in order to get the first element of this list, one must say:

(car (list 1 (+ 1 2))

since the results of the first action have not been saved; the (1 3) generated by the system is
ephemeral. Thus it is awkward for the user to build a program out of successive commands to the system,
unless some mechanism is added to allow these applicative actions to be combined easily, such as
automatically binding the intermediate results to system-generated variable names. (This is the technique
used in the MACSYMA algebraic manipulation system [Mathlab]. The Tinker system for programming
by example in Lisp [Lieberman & Hewitt] [Lieberman] saves intermediate values in a more sophisticated
way; see section 2.6.)

The user actions in non-programming-language systems are usually imperative. For instance, most
commands in a text editor alter the state of the world: they change the text, the current selection, the
cursor position, and so forth. In the Xerox Star office system, used as the basis for the programming-by-
example  research  discussed  in  this  dissertation,  most  commands  are  also  imperative.  In  these  systems,
since each user command changes the state of the system, several commands executed in sequence
naturally form a straight-line program.

1.7 Limitations of simple programming by example
I have already stated my primary motivation for adding programming by example to a software

system: I want to make it possible for normal, non-programming users to write programs. Programming
by example makes this possible by making programming easier. It allows a user to write programs in the
user interface of the system, with which he is already familiar, and it intertwines the acts of demonstrating
what the program is supposed to do, writing the program, and testing it.

These are the strong points of programming by example. But there also disadvantages in using the
technique, some of which can be overcome by extending the basic concept.

In a pure programming-by-example system, the user records a program which will repeat precisely
what he did. Occasionally, running such invariant programs is useful, but most of the time, doing exactly
the same thing is  not  what  the user  has in  mind.  The user  would like to parameterize or generalize the
program, so he can vary the data the program uses. He should be able to indicate to the system that certain
data objects used in the example served merely as placeholders, and should be replaced by parameters.

Other  times,  the  user  may  have  chosen  data  for  the  example  because  the  data  has  certain  salient
characteristics. For instance, he may choose the first item from some list, or a string that matches some
pattern. The item chosen is not a constant, but it is not a parameter to the program either. The user should
be able to provide a computation or a description that will choose data with the desired characteristics.
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Pure programming by example also limits the programmer to straight-line programs. Again, this is a
restriction on the usefulness of the programs that are recorded, since two of the wonderful things about
computers are their abilities to repeat actions and to make tests which choose between different actions.
So the programming-by-example system should be augmented to provide some kinds of control structure,
such as iteration and the conditional execution of actions.

Programs created conventionally have a static representation which is written by the programmer.
The  programmer  can  look  at  the  static  representation  to  read  or  edit  his  program.  But  since  a  program
written by example is not created by typing in some code, there may be no human-readable static
representation, though obviously the system must keep some internal representation. Nevertheless, the
programmer may want to look at the program he has created without just running it again, in order to edit
it or just to review it. One way is to execute the program one step at a time, observing the effect of each
step. But this will be unsatisfactory for longer programs or if the program needs to be edited; the user
probably wants to be able to read the program, instead of just watching it. So some static representation of
the program transcript is desirable.

For programs written in a typescript system, such as a command language or a text whose actions are
invoked solely from the keyboard, the transcript language can be a simple record of the user’s keystrokes.
But for a system in which, for instance, commands are selected using a mouse, some other transcript
language will have to be invented. The user does not need to be able to type in program text directly;
readability is what is important.

1.8 Research history
The story of the evolution of a research project is rarely told. Instead, the final result is presented as a

fait accompli. But the development of research ideas, the blind alleys taken, and the gradual improvement
in understanding of the basic issues form an interesting tale in themselves, and may help others to
understand the motivations and conclusions of the dissertation. In each chapter, including this one, I will
include information about how the research path developed, what other techniques were tried, and how
new ideas came about.

The  initial  impetus  for  this  research  came  from  reading  David  Smith’s  dissertation: Pygmalion: a
Computer Program to Model and Stimulate Creative Thought [Smith]. This dissertation describes a
system, Pygmalion, which combines two powerful ideas: graphical programming (that is, programming
not using a conventional textual programming language), and programming by example. I had originally
read this dissertation in 1977 while searching for material about visual debuggers. In 1979 I started
preliminary investigation into graphical programming, with Pygmalion being one of the main inspirations
for studying this topic. Late in 1979 I visited Smith at Xerox in Palo Alto, and before I knew it, I had a
summer job with the Office Products Division (now the Office Systems Division) of Xerox, in association
with the Learning Research Group (now the System Concepts Laboratory) at the Xerox Palo Alto
Research Center. My charter was to think about programming for the non-programmer. Six weeks of
thinking led to a short memorandum discussing possible research directions [Halbert 1980]. At that point
it became clear that programming by example was worth further study, and that it would be useful to
build a prototype of a system that included programming by example. This dissertation describes the
work that followed.
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Chapter 2

Work by others

The idea of programming by example cannot be traced to a single seminal bit of innovation. The idea
has  been  used  successfully  a  number  of  times,  and  is  simple  enough  that  it  is  reinvented  from time  to
time. In this chapter I will review briefly other work in programming by example. Certain aspects of some
of the systems mentioned here will be discussed in more detail later.

2.1 Simple examples
Industrial robots have long been programmed by example [Tanner] (also see [Vonnegut]). The

programmer of the robot can either physically move the robot’s “arms” (leadthrough) or else command
the robot from a control panel (walkthrough), and have the robot record the sequence of movements and
actions.  The  machine  moves  the  workpiece,  its  drill  bits,  cutting  tools,  spray  guns,  arc  welders,  and  so
forth as it follows the program.

To create a program on a programmable calculator, the user asks the calculator to start remembering
keystrokes, and then pushes the keys that would be pressed if the same calculations were being done by
hand. Thus the programming is done using the normal user interface of the calculator. No calculations are
actually done during program recording, so this is not real programming by example. Although one early
programmable calculator did use programming by example [Kahan], no current calculators have adopted
the idea.

Radia  Perlman,  visiting  at  the  Xerox  Palo  Alto  Research  Center  from  the  MIT  LOGO  laboratory,
created a programming-by-example system for young children, called TORTIS (described in [Smith]).
Using a simple control box with a few buttons on it, a child could manipulate a turtle (a small robot that
runs on the floor), making it go forward, turn, and raise and lower a pen which was used to draw pictures.
Sequences of these actions could be recorded by example. Children as young as four years old were able
to understand the concept of writing a program by example, and frequently wrote error-free programs the
first time, because of the by-example nature of the programming.

The  screen  text  editor  EMACS  [Stallman]  contains  a  simple  programming-by-example  system  for
sequences of editor commands called keyboard macros. The user can ask that a sequence of his actions be
recorded as they are being executed. The sequence is bound to a single command key for later playback.
Other text editors provide similar “macro” capabilities, though not all actually perform actions as the
program is being recorded, and hence do not provide true programming by example.

2.2 Spreadsheet programs
Electronic spreadsheet programs, used mostly on microcomputers, have become very popular during

the past few years. They are widely used by non-programmers and are easy to learn and use. One reason
is the immediate feedback they produce, both during set-up and use. When the user of a spreadsheet
enters a formula for a spreadsheet cell, he may beforehand have entered some data in the cells used in the
formula. The formula is usually applied immediately after type-in, and so the user can see the result and
determine if it makes sense. This reflects the immediate program testing aspect of programming by
example.

In some spreadsheet programs, the user need not even type in the coordinates of the cells used in a
formula.  He may instead,  point  at  the cells  with the cursor  while  entering the formula.  Thus,  there is  a
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close association in his mind between the actual data and the computation to be done. The user is coming
very close to writing a formula by giving an example.

2.3 Pygmalion
David Smith’s Pygmalion system [Smith] combines programming by example and graphical

programming (expressing programs using two-dimensional graphical objects, not just linear strings of
text). Pygmalion has provided the inspiration for much other research in both of these areas.

Figure 2-1. Recording a factorial program in Pygmalion.

The Pygmalion user has a world of iconically represented operations and operands he can manipulate
by hand. He can move data values into and out of icons, ask operator icons to do their appointed tasks,
and create new icons and specify their shapes. The operator icons provided are those of a typical
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programming language: the usual arithmetic, relational, and boolean operators. For instance, the user can
move two numbers to a multiplication icon, and then have the multiplication icon multiply the numbers
and replace itself with an icon containing the result.

All programming is done by example. The user’s icon manipulations are recorded and stored in an
icon for playback. The system has conditional statements and an infinite loop construct with a separate
“exit loop” statement.

Figure 2-1 shows a step in the creation of a recursive program to compute factorials. The box with an
‘!’ next to it is the icon for the factorial program. The user is about to multiply 6 by 5!, which has already
been computed to be 120 by the factorial icon next to the multiplication icon. The three boxes connected
by two arrows form one icon, which contains the conditional test for termination of the recursion. Only
the result (false) is shown because the predicate has already been evaluated.

2.4 Programming by abstract demonstration
Gael Curry built a graphical programming system using programming by example that is similar to

Pygmalion [Curry], though he calls it programming by demonstration.  A  user  of  the  system  can
manipulate an iconic world like Pygmalion’s, but the user is supplied with a fixed set of kinds of icons
(memory cells and operators), and cannot create new kinds of icons. The basic data values are numbers.
The operations provided are almost the same as those in Pygmalion, though an operator icon produces a
result memory cell instead of replacing itself with the result of its operation.

Curry’s system is based on a programming methodology called programming by abstract
demonstration, or PAD. The user can write programs by example which contain only constants, using
concrete  sample data.  However,  the user  can also record programs using abstract  data  values.  A datum
can be completely unspecified and abstract, or the user can specify that a datum will fall within some
numerical subrange.

The PAD system can execute programs abstractly as well as concretely, producing abstract,
approximate  results.  For  instance,  adding  a  numerical  range  and  a  number  produces  a  result  that  is  a
numerical range. If a loop is executed abstractly, the system iterates until the state produced by the loop
becomes stable (if possible).

Curry provided abstract execution for his programming-by-example system because he felt it would
be easier to show that a program written by example would work for an entire class of inputs if the sample
data were made abstract. The user can look at what a program does by executing it abstractly, without
supplying real data. In Pygmalion, the user must supply concrete sample data to a program and run it in
order to examine it.

2.5 Tinker
Henry Lieberman has designed a programming system for Lisp called Tinker that includes aspects of

programming by example [Lieberman & Hewitt] [Lieberman]. The system is somewhat different from the
others we have described because the user is aware he is writing a conventional Lisp function, but tests it
as he is writing it by supplying sample values for the variables. Unlike some other systems we have
mentioned, Tinker does not emphasize programming for non-programmers. A user of Tinker should know
how to program in Lisp, though he need not be very experienced.

A function is constructed in Tinker by supplying data, applying functions to it, and building up larger
expressions out of these pieces. The pieces are selected and programs are built using display menus of
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commands and program fragments. Tinker keeps track of how the pieces are being fitted together, and
builds a conventional Lisp function incrementally.

For example, suppose the user wants to build a function, called 2nd, to retrieve the second member of
a list. He supplies a sample datum, say (1 2 3), as the argument for 2nd. Tinker creates a variable name,
2nd-Arg-1, for the datum, associates the two, and then puts the pair in a menu. Then the user selects (1 2
3) with its associated expression 2nd-Arg-1 from the menu, and applies cdr to it, yielding (2 3). This
result is also inserted into the menu. Tinker now displays the function 2nd as

(defun 2nd (2nd-Arg-1)
                  (cdr 2nd-Arg-1))

Now the user selects (2 3) and its associated expression, (cdr 2nd-Arg-1) from the menu, and applies
car to it, yielding 2. The function definition is now complete, and Tinker displays:

(defun 2nd (2nd-Arg-1)
                  (car (cdr 2nd-Arg-1)))

The user inserts conditionally-executed statements into his program by doing other examples with
different sample data. At some point, the user will do something different than what he did in a previous
example. At that point, the system asks the user for a predicate which will distinguish the two cases, and
inserts a test of the predicate into the program. One branch of the test will execute the old code; the other
branch will execute code about to be supplied.

Figure 2-2. Creating a poing video game with Tinker

Lieberman has found that the by-example nature of programming in Tinker is particularly effective
when building programs that produce graphical output. The effect of each graphic operation can be seen
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immediately, and errors can be corrected quickly. In figure 2-2, the programmer is in the middle of
constructing a pong video game. The top middle window shows the program as it is being constructed,
and the second window from the bottom is a menu of program fragments and their results.

2.6 Programming by Rehearsal
Laura Gould and William Finzer, working in the Systems Concepts Laboratory at the Xerox Palo

Alto  Research  Center,  have  built  a  programming  system  called  the Rehearsal World,  which  uses  a
programming paradigm known as Programming by Rehearsal [Gould & Finzer]. The system was created
for curriculum designers, to allow them to program their own interactive educational activities.

The system uses the theater as its organizing metaphor. There are predefined performers, which
perform actions when given specific cues. Related cues for each kind of performer are grouped together
into cue sheets. Performers are visible, graphical objects. Prototypical instances of each kind of performer
can be copied by the user for incorporation into his own programs. Related performers are grouped
together into troupes.

Figure 2-3 shows the creation of a spelling game in progress. The game is shown in the window
labelled Jumble1. The box labelled JUMBLE is a button performer that, when pressed, will send a cue to
the text performer above it that rescrambles the letters there. The box in the window Jumble1Wings is
called List1. A cue sheet for List1 is  shown  at  the  bottom of  the  figure.  The ControlTroupe window
contains performers useful for implementing control structure.

Figure 2-3. Building a jumbled word game in the Rehearsal World.

The Rehearsal World uses programming by example to record the invocation of cues. In the figure,
the four eyelash symbols to the left of the blanks in the cue sheet are eyecons. When an eyecon is pressed,
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it  opens  to  watch  the  user  do  something  for  one  step,  and  records  the  code  for  the  user’s  action  in  the
blank space next to it. For instance, in order to make the JUMBLE button do something, the user opened
an eyecon in a cue sheet for the JUMBLE button, and then invoked the cue setJumbled in a cue sheet for
the text performer above the button (these cue sheets are not shown in the figure).

The  Rehearsal  World  supplies  a  very  simple  kind  of  programming  by  example,  treating  all  objects
used in an example as constants, and not providing for control structure created by example. The user
does not have to use programming by example in order to create code. Nevertheless, many users find the
eyecon a very useful and natural way to write code. The Rehearsal World has been used successfully by
several curriculum designers with little or no programming experience to create quite complicated
educational games.

2.7 Exemplary programming
Don Waterman, William Faught, and others at the Rand Corporation have done work on

programming by example, though they call it exemplary programming, or EP. They have built two
systems, EP-1 [Waterman] and EP-2 [Faught 1980a] [Faught 1980b], both of which can be used to
automate sequences of  commands to programs that  use simple typed input.  In both EP-1 and EP-2,  the
user generalizes his programs by saying explicitly, before creating the typescript (called the agent), which
of the data  items used in the example are to  be considered as  parameters  in  the recorded program. The
system queries the user for the names of the parameters, and what values they will have in the given
example. After the user has finished giving the example for the agent, the system substitutes parameter
variables for the uses of the example data.

In EP-2, the user can also insert loops and conditionals in his programs, but must do so using the
mind channel, a special mechanism that circumvents the recording mechanism. The user must have some
knowledge of Interlisp in order to use the mind channel.

2.8 Juno
Juno, built by Greg Nelson [Nelson] (also described in [Gould & Finzer]), is an experimental

geometric programming system. A Juno user lays out points on a screen, and then draws line segments,
shapes, and figures, using those points. Juno records the user’s actions as he does them, and so builds a
program by example.

More interestingly, Juno lets the user describe constraints about sets of points. There are only a few
basic constraints: a pair of points must lie on a horizontal or vertical line, the line segment defined by a
pair of points must be the same length as another line segment, or, two lines segments must be parallel.
More complicated constraints are built out of these simple ones. When the user specifies constraints, they
are included in the program being recorded.

Complicated figures can be constructed by combining and repeating smaller programs. Juno has a
powerful constraint satisfaction mechanism, capable of solving the non-linear as well as linear equations
that are produced by combining constraints.

If the user edits a figure, the corresponding program is also edited: deleting a point, for instance, will
delete the parts of the program that describe the point and the constraints related to it. The figure will then
be redrawn by executing the new version of the program. The program text is visible to the user and can
also be edited directly.

Juno has proven useful and instructive, both as an artistic tool and as a system for doing research on
constraints.
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2.9 Dynamic program building
Peter Brown has experimented with a programming-by-example technique called dynamic program

building [Brown], and has built a system called Build. In Build, the programmer types in statements in a
BASIC-like language. The system is always trying to execute the program. It stops and waits for the user
to type in more statements whenever it encounters a loose end, which is a point where no statements have
yet been entered. An empty program contains a loose end, so the system waits for a statement to be typed,
executes it immediately, and then waits for another statement.

When constructs such as while loops or if-then-else statements are entered, they initially contain
loose ends. If a user types in a while loop, with its predicate, and the predicate is true, the system will
stop at the loose end in the body of the while. The user can then enter statements one at a time, each of
which will be executed in turn. When the user terminates the loose end, the while will start looping, and
will continue until the predicate evaluates to false. Then the program will stop at the loose end after the
while, and the user will be able to enter more statements.

If the user wishes to change part of the program he has already typed in, he moves to that point and
indicates he wants to edit. Build will insert a loose end at that point, and re-execute the program from the
beginning. The program will stop at the loose end, and the user can then delete or insert statements.

This  scheme  is  intriguing,  but  poses  some  problems.  If  the  program  is  to  be  re-executed  from  the
beginning, the system must restore global static state, such as the contents of files, to what it was before
the program ran the first time. In addition, executing parts of the program, particularly loops, many times
over as the program is being edited might be quite time-consuming. Nevertheless, dynamic program
building is a novel idea that might work very well in certain contexts.

2.10 Query-by-Example
Moshe Zloof and his colleagues have been working for several years on a system called Query-by-

Example (QBE) [Zloof 1977]. Though the name sounds similar to programming by example, Zloof’s
approach is actually quite different, because QBE does not build algorithms by example.

The system operates on relational data bases. The user initially sees the headings of a relation, with no
data  shown  below  them.  To  fetch  items  from  the  data  base,  the  user  creates  a  sample,  but  possibly
fictitious entry in the table. For instance, if the user wants to find everyone who works for the manager
Smith, he adds the following to the table:

Name Salary Manager
P. Jones Smith

Jones is an example of an employee who works for Smith. He may or may not actually exist. P. is a
command that asks the system to print everyone who fits the given query. Jones is underlined by the user
because it is an example (a variable). Using an example name such as Jones is not actually necessary
when giving such a simple query.

To find everyone who works for a manager who works for Martin, the user says:

Name Salary Manager
P. Doe
Doe Martin

Here, Doe is used to link the two parts of the query.
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Predicates may also be given in queries. To find out whose salary is more than $20,000, the user gives
the query:

Name Salary Manager
P. >20000 Doe

We  have  described  so  far  only  a  smattering  of  what  the  QBE  system  can  do.  More  complicated
predicates  can  be  given,  several  relations  can  be  used  in  a  query,  data  base  entries  can  be  inserted
(command I.), updated (U.), deleted (D.), and so forth.

In my programming-by-example work, we use the word “example” to mean an example execution of
an algorithm. The procedure itself is as important as the result. QBE uses “example” to mean the example
result of an algorithmic procedure whose details are unimportant to the user. The user does not write an
algorithm by example for the data base operations; instead he gives a constraint on what the system may
return when it is given a query. This constraint is given with the help of an example result.

Zloof and his associates have integrated QBE into Office-by-Example (OBE) and the System for
Business Automation (SBA) [Zloof & de Jong] [de Jong & Byrd] [Zloof 1981]. The user can write
programs to update data bases, send mail to others, print reports, and similar actions. These programs
contain data base queries that use QBE, use the underlined variable mechanism of QBE to parameterize
form letters, and so on. But the procedural parts of these programs are not written by example.

2.11 Programming by homomorphisms and descriptions
Giuseppe Attardi and Maria Simi [Attardi & Simi] have combined aspects of Query-by-Example and

the System for Business Automation (described in section 2.10) with programming-by-example
techniques, to create the PHD system (programming by homomorphisms and descriptions).

The procedural aspects are created by example, as in Tinker, Pygmalion, and similar systems already
mentioned. However, data selection and iteration constructs are done using a declarative technique which
resembles the QBE query mechanism.

To describe an iteration set, a set of data items is specified using QBE. An operation is performed on
the whole set by applying some simple or complex operation to an example member of the set, and then
the operation is used to construct a homomorphism which operates on the whole set.

Attardi and Simi show the construction of the following program, among others, in their paper:

Compute the total amount due from a collection of invoices, summing up the amounts
from the invoices which have not been paid.

We will summarize it here as a simple example. Assume there is a data base of invoices; each invoice
contains, among other fields, a Paid field and a Total field.

The user first creates a skeletal function Total-due, which returns one value, the sum described
above; on the screen a labelled box with a result field appears. The user then creates a QBE query for all
unpaid invoices , by asking for all invoices in which the Paid field contains NO. He then invokes the
query command, and ends up with a list of invoices.

The user then uses the map over command, giving as an argument the list of invoices, because he is
going to define a mapping for the homomorphism which will compute the sum. As an example, he fetches
the value in the Total field from the first invoice and indicates this is the function to perform on the rest
of the list. He ends up with a list of numbers, which are the values of the Total fields of all the invoices.
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Finally, the users shows how to combine these values, by asking the system to perform the +
operation over all of them. The + operation conveniently takes multiple operands, not just two.
(Spreadsheets usually provide a similar operation, allowing the user to calculate the sum of a whole range
of cells.) The user ends up with the sum he desired, copies this value to the result field of the Total-due
function, and then he is done.

Attardi and Simi claim that using homomorphisms for programming by example reduces the need for
explicit conditional and iteration constructs, and provides a convenient way to generalize programs. In the
example, above, for instance, retrieving all the relevant invoices was done without a loop or a conditional,
and fetching the Total field value from those invoices and applying the + operation over the resulting list
were both done without resort to explicit loop control structure.

2.12 Inductive inference
A somewhat different approach to programming by example is taken by some other workers in this

area. Their methods involve synthesizing a program from a number of examples, using inductive
inference techniques.

Alan Biermann and Ramachandran Krishnaswamy describe such a system, which they call an
autoprogrammer [Biermann & Krishnaswamy]. At conditional forks in the program structure, the user
tells the system why he is doing the following steps (e.g. note  I  >  0).  Several  similar  steps  in  the
examples can be inferred to be several executions of the same step in the synthesized program. Biermann
and Krishnaswamy prove that their method produces correct programs, if the user has gone through all
the paths in the intended program, and also prove that all possible programs can be synthesized, given
suitable examples. Variables and constants are noted explicitly. Their system has a nice graphical user
interface.

Michael Bauer describes a similar system, but emphasizes its artificial intelligence aspects, noting
that it depends on knowledge about variables, program inputs, instructions, and procedures [Bauer]. Ian
Witten describes a simple desk-calculator system which does not include conditionals, but which predicts
the remaining portion of a program based on an unfinished example and previous examples [Witten].
Program parameters are detected by noting differences between the constants used in the various
examples.

Robert Nix describes a radical approach to inductive inference in a system which provides what he
calls editing by example [Nix]. The system generates programs to do text transformations. The user gives
the system one or more examples of some text before and after some editing operations. Based on these
examples, the system constructs a generalized program to do the transformation. Note that the system
does not look at the editing operations themselves, only at the example input and output. Input and output
examples are given separately and do not always need to occur in pairs. By using various heuristics, the
system can synthesize some desired programs using just a few input examples and perhaps only one
output example for each program. Synthesized programs are presented to the user so that he can verify
their correctness.

This approach is very different from the algorithmic methods of programming by example used in
systems such as Pygmalion, since it pays no attention to the user’s actions. Nevertheless, Nix finds it is a
feasible way of creating text-editing programs, and believes further work should be done on similar
practical applications of inductive inference.
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Chapter 3

The example system

The Xerox Star 8010 office information system was used as the starting point for doing research into
programming by example. This chapter will describe the reasons for choosing Star, the salient
characteristics of the system, and the simulation of it that was constructed for use in the research.

3.1 Selection of the system
In order to study programming by example, I needed a system that provided the user with a world he

could manipulate through a user interface, without programming. There are a number of common
software systems that fill this requirement, some of which have already been mentioned: text editors,
graphic editors, operating system command languages, electronic mail systems, programming language
systems  such  as  Lisp,  APL,  and  Smalltalk,  and  so  on.  But  in  order  to  make  sure  I  was  looking  at
programming by example in a general way, I wanted to choose a system that was fairly general in what it
tried to do, and one that provided a lot of varied functionality. I also wanted to use a system that had a
graphical user interface, because I felt such an interface would make programming by the user easier, and
because it would be more fun, both for me and for the user.

Clearly, the most general systems available were programming language systems. Since the initial
research was done in association with the then Learning Research Group at the Xerox Palo Alto Research
Center, an obvious choice would have been to add some kind of programming by example to the
Smalltalk system. But the Smalltalk system has applicative aspects, as mentioned in section 1.6, which
would have meant augmenting the user interface in some way. I also felt that such an effort would largely
duplicate that of Henry Lieberman's Tinker system for Lisp (see section 2.5).

Another possibility was to design and implement quickly a system such as a graphic editor or a mail
processing and filing system, and then extend it to have programming by example. Because of the short
amount  of  time  available  initially  (a  summer),  this  seemed  infeasible.  There  were  almost  no  such  pre-
existing systems written in Smalltalk.

Fortunately, one such system was available, which satisfied all these desires nicely. David Smith and
Steve Hayes, both of Xerox, had written a prototype of the Star system in Smalltalk-76. The prototype
had been done several years before as an exercise in quick prototype development, and provided only the
icon and desktop illusions of Star, but the code was well written and looked as if it would be easy to
extend. I named this previously nameless prototype SmallStar (or sometimes, WhiteDwarf),  and  set  to
work adding more Star functionality and some way of creating programs by example.

3.2 The Xerox Star 8010 Information System
The Xerox Star is a multi-user general-purpose office information system. Each user has his own

processor, large-format bit-map display screen, keyboard (figure 3-1), and mouse. Users share one or
more  file  servers,  printers,  and  communications  gateways.  The  user  and  server  processors  are  all
connected with an Ethernet local network. Users can edit text and graphics in documents, file documents,
share them with other users, have them printed, send and receive documents to and from other users as
electronic mail, do records processing, maintain data bases, fill out forms, create new forms, and write
applications programs that process Star data objects. I will describe the features of Star that are most
relevant to this research; there is much more I will not mention.
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Figure 3-1. The Star keyboard.

Figure 3-2. A Star desktop.
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On  his  screen  the  user  sees  what  is  called  a desktop. On the desktop are small graphic icons that
represent and resemble documents, folders, file drawers, printers, in- and out-boxes, records files, and so
on. (Refer to figure 3-2 throughout the following description.). Icons either represent places where data is
kept, or are used to invoke some function. Every icon has a name, displayed inside the icon picture, which
may be changed by the user through the property sheet mechanism (see below). Two or more icons may
have the same name even if their contents differ; icon names need not be unique.

Documents contain text interspersed with rectangular objects called frames. Frames may contain text,
graphics, other frames, or may be tables. Frames also have names which are visible to the user through
property sheets. The names of all the frames inside a particular document must be unique. Fields are
named blank spaces embedded in text and bounded by special characters that are meant to be filled in by
the user (for instance, they may make up the variable parts of a form letter). The slots in tables are also
fields. The NEXT key on the keyboard allows the user to step through the fields in a document
successively.

Folders are containers: they hold other icons, such as documents and other folders. File drawers are
also containers, like folders, but represent directories of files stored on a remote file server; they can be
shared among several users.

Icons such as printers and mailboxes represent function. There are also less metaphorical function
icons, such as a converter icon which performs conversions between non-Star and Star document formats.

Along the top of the desktop is a one-line message area which displays errors and informative
messages.  To  the  right  of  the  message  area  is  a  small  box  containing  three  heavy  horizontal  lines:  this
symbol indicates a pop-up menu, and this particular one is the desktop pop-up menu. If the mouse is
moved into the pop-up menu box and a mouse button is pushed, a menu of commands appears; the user
can invoke a particular command by pointing to it with the mouse and releasing the mouse button.

Star  is  a direct manipulation system [Shneiderman]. The user manipulates Star objects directly,
pointing at them with the mouse. To this end, the mouse has two buttons: Point and Adjust. Point is
used for selecting objects. Adjust is used to adjust what is included in the selection; for instance, it is
used to lengthen or shorten a text selection, or to select more or fewer icons.

The user can select an icon by moving the cursor to the icon and pressing Point; the icon changes
from white to black to indicate it has been selected. Icons on the desktop show their names, but not their
contents. To show an icon's contents, the user selects the icon and presses the OPEN key on the keyboard.
A large window is created on the screen. For documents, the window shows a page of the text and
graphics in the document; for folders, the window shows a pictorial list of the icons in the folder;
similarly, for other kinds of icons, the window shows their contents. The user can then edit text, remove
data and icons, and in general manipulate the icon's contents. The icons in a folder or file drawer window
may be selected just like icons on the desktop.

Near the top of a window is a header giving the name of the icon, and listing several commands that
may be invoked using the mouse (Close to close the window, ? for help, etc.). More than one icon may
be opened at a time. Icon windows do not overlap each other, but they do cover up icons. When a window
is opened or closed, the adjacent windows are adjusted in size as necessary.

Four  keyboard  commands  can  be  applied  to  nearly  all  Star  objects.  These  universal  commands  are
MOVE, COPY, DELETE, and PROPERTIES. If an icon is selected and the MOVE key is pressed, the icon is
lifted off the desktop into the mouse cursor. The cursor can be moved somewhere else, and then the icon
is set down by pushing a mouse button. (There is an invisible grid for icons on the desktop, so one icon
will not overlap another.) COPY is similar to MOVE, except that the original icon is not disturbed; instead,
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a copy of it is put into the cursor. DELETE merely removes the selected icon. Similar obvious and
analogous actions occur when the universal commands are applied to objects other than icons, such as
text, graphics objects, tables, and so forth.

If an icon is moved or copied onto a container icon, instead of onto a blank spot on the desktop, it is
put into that container. Moving an icon to the out-box mails it. Moving an icon to a printer causes it to be
printed.

The PROPERTIES command causes another kind of window called a property sheet to  appear.  A
property sheet describes salient characteristics of the object that is selected, and allows some or all of
those characteristics to be changed. Figure 3-3 shows a selected paragraph and the paragraph property
sheet for it. For icons, the properties listed include the name of the icon, the last time it was changed, and
so on. For text, the properties include such characteristics as the font used, and whether the characters are
boldface or italicized.

Figure 3-3. A selected paragraph and its property sheet.

The property sheet shown illustrates a number of Star user interface conventions. Text strings not in
boxes are labels, (examples here are Alignment and Keep on), or information the user may not change.
Single boxes such as the items JUSTIFIED and SAME PAGE AS NEXT PARAGRAPH are Boolean
parameters. Clicking inside such a box with the mouse button Point turns it on and off successively. The
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“on” state is indicated by inverse video, that is, by white letters on a black background. The property
sheet items which are several boxes in a row are multiple choice parameters, such as here, FLUSH LEFT
- CENTERED - FLUSH RIGHT. They act like car radio buttons; clicking inside one choice turns it on,
and turns all  the other  choices off.  Some boxes accept  user  type-in for  parameters; Left and Right are
examples here.

These conventions are used throughout Star, and I have used them when extending Star for
programming by example.

3.3 User programming in Star
Star not only provides the functionality described above (and much more), but is also programmable

so that one can automate procedures specific to particular applications. Arithmetic expressions can be
associated with fields in text and tables. These expressions are called fill-in rules. For instance, the Total
Hours Worked field in a form may be computed to be the sum of two other fields, Regular Hours and
Overtime. The fill-in rule is executed either when the user moves to the field with the NEXT key, or when
the user asks for all the fields in a document to be recomputed. The other fields mentioned in a fill-in rule
do not need to be in the same document, but may be in other documents which may be in other folders,
and so forth.

The  expressions  used  in  fill-in  rules  are  part  of  a  larger  language  called Cusp (for  customer
programming), which is being used experimentally in Star. In addition to providing expressions for
computing values from fields, Cusp can manipulate icons and the contents of tables. The syntax of Cusp
is somewhat English-like, but it still has many of the characteristics of conventional programming
languages. Below are some examples of Cusp. The first statement puts 0 into the Sum field, the second
computes and stores the mean of the ages of all the Smith children listed in the Families table, and the
third prints a dunning letter if the contents of the CreditBalance field is negative:

STORE 0 INTO Sum;

STORE MEAN[Families[Row CALL IT Parent
   WITH Parent.LastName = “Smith”].Children.Age INTO
      AverageSmithChild;

IF CreditBalance < 0 THEN
MOVE THE Document WHOSE NAME IS “PleasePay” TO THE Printer

      WHOSE NAME is “Gutenberg”;

Cusp programs exist either in fill-in rules, or in special frames called Cusp buttons. If the user pushes
Point while over a Cusp button, the code in the button is executed.

3.4 SmallStar
As mentioned, this research in programming by example was not done in the actual Star system, but

instead in a simulation of Star called SmallStar. SmallStar presents the user with a desktop that looks very
similar to a real Star desktop (refer to figure 3-4). SmallStar windows and property sheets are simplified
versions of the corresponding real Star objects. Several kinds of icons in SmallStar are weak simulations
of the corresponding real Star icons. For instance, SmallStar's in- and out-boxes and printers do not
actually perform any function, and file drawers in SmallStar hold icons stored on the local disk, not on
remote file servers.

SmallStar has a few icons which Star does not have. There is a trash can icon, into which deleted
documents are automatically placed. The user can retrieve mistakenly deleted documents from the trash
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can, and empty it out from time to time. There is a simple desk calculator which provides the standard
four arithmetic functions, plus relational and boolean operations which are used to help write programs.
(This use of the calculator will be explained in more detail in section 5.6.) Finally, there are program
icons used to write programs by example, and program buttons, which are special kinds of frames that
exist inside documents, and are otherwise exactly like program icons. Program buttons are similar in
concept to Cusp buttons in real Star.

Figure 3-4. A SmallStar desktop.

Closed SmallStar icons have pop-up menus, a feature Star does not have. If the user selects an icon
using the Point mouse button and continues holding down the button for a short while, a pop-up menu
will appear that contains commands specific to that icon.

The contents of documents are simpler in SmallStar also. In Star, the text of a document may contain
embedded text and graphics frames, fields, and tables. In SmallStar, there is no top-level text; instead, a
document consists of a sequence of frames. SmallStar does not have graphics, but it does have text
frames, form fields (text frames that each contain a field), and tables. Frames and tables have names as in
Star.
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Despite these deficiencies, the SmallStar system is still interesting in its own right. It can manipulate
icons in exactly the same way as Star, and its documents provide enough functionality to be able to do
interesting text editing and forms creation.

3.5 Basic programming by example in SmallStar
To write a program by example in SmallStar, the user asks the system to record his actions. He can do

so either by opening a program icon or button and pressing the Start Recording command in its
window, or by using the Start Recording command found in the pop-up menu available from a closed
program icon or button. (Figure 3-5 shows a program icon window containing a very simple program.)
The user then goes through the actions of the task he wants to be recorded. As he does them, the system
creates a program by making a transcript of his actions. When the user is done, he invokes the Stop
Recording command. He may then run the program using the Run command. Both Run and Stop
Recording are available in the pop-up menu or in the window.

Figure 3-5. A program window containing a simple program.

SmallStar not only records a program internally, but also presents the program to the user in a human-
readable form. The program is visible in the program icon when it is open. If the program icon is open
while the user records a program, each user action is added to the program incrementally and displayed.
When the user does a Stop Recording, the program is cleaned up slightly, and adjacent, related
commands are merged if possible.

The language in which the transcript is presented is English-like, and is designed to be as readable as
possible. It was initially inspired by Cusp, but has since strayed. It tries to be immediately understandable,
imposing little non-natural-language syntax or semantics on the user. The user is not expected to write
programs in the language. He cannot type in a program using it, and he cannot edit the individual
characters in a program statement. Small pictographs are used to indicate icons and other Star objects; the
pictographs used are listed in figure 3-6.

The user  can edit  the program in simple ways.  He can record new steps in the program. If  there is
already a program in the program icon, starting to record will add steps after the last step in the program.
Single statements and ranges of statements may be selected (in figure 3-5, the last two steps of the
program  are  selected).  If  the  user  first  selects  a  statement  in  the  program  and  then  presses Start
Recording, statements will be added before the selected statement. Statements may also be selected and
deleted. I will discuss more sophisticated editing, such as operand editing and adding control structure, in
later chapters.

Deleting statements, or adding new statements to a program may cause problems. Each statement in a
program produces  a  change  in  the  SmallStar  world.  So  the  action  performed  by  one  statement  may  be
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impossible to do unless a previous statement has been executed to set up the correct state of the world. If
the user tries to insert statements in the middle of a program without setting the world to some meaningful
state, then he may be unable to record the actions he wants to, or the actions he records may become
impossible to execute when the program is run from the beginning. Similarly, if the user deletes
statements in the program, then statements after his deletions may become meaningless.

document text selection

folder table

file drawer column of a table

printer row of a table

in- and out-box field at the intersection of a row
and a column

calculator text frame

program form field

labelled parameter (e.g., Result or
Entry box in the calculator

program button

Figure 3-6. Pictographs used in program display.

The surest way to prevent such problems is to require the user to run his program up to the point of
the desired edit by single-stepping or by indicating a breakpoint, and then have him re-record all the rest
of the program. The latter requirement is annoying, especially if a change is made near the beginning of
the program. Both requirements are unnecessary if the changes made do not interact with the rest of the
program. The system could analyze the user's changes to see whether they conflict with the rest of the
program, but this analysis might be difficult. It is easier to let the user make the edits he desires without
such restrictions. Instead, the system can provide helpful error messages and make it easy for the user to
run the program up to the point where the editing will take place.

For this reason, and as an aid to program debugging, program icons also allow programs to be
executed one statement at a time. The First Step command starts the program over again from the
beginning, and executes the first statement. The Step command is used to execute each subsequent
statement. An arrow in the left margin of the program points to the next statement to be executed.

If the program encounters an error while running, it stops, displays an error message, and indicates
the statement that caused the error.

This recording mechanism is designed to have a low overhead cost for the user. It should be as easy
as  possible  for  the  user  to  decide  to  record  a  temporary  program  to  do  some  repetitive  task.  The  user
should feel  free to write  a  program whenever  it  suits  him to do so,  and so it  should not  appear  to  be a
chore. Hence, for instance, the recording commands are available in the closed program icon pop-up
menu, so it is not even necessary to open a program icon to start recording a program.

3.6 Choice of recording mechanism
The recording mechanism just described must be explicitly invoked by the user. If the user, for

instance, decides that something he has already done was worth recording, he will have to repeat his
actions for the benefit of the recording mechanism. To avoid this problem, one could record programs
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using a history mechanism. If the system had such a mechanism, it would keep track of everything the
user does. At any time the user could review the history and select parts of it to be replayed or stored as a
program. The UNIX system command language processor csh [Joy] and the Interlisp system [Xerox] both
have well-known and heavily used history mechanisms, though they are not used for creating programs
by example.

I did not choose to use a history mechanism for several reasons. One is that the amount of history to
be stored is potentially unbounded. The other is that the user must review this history to find the actions
he wishes to make into a program. For systems in which the transcript is just a record of the commands
the user typed and saw echoed, it is easy for the user to review the transcript, since it is just what he typed
in and what the system typed out. But for systems like Star, in which there is no typescript of what the
user did, the user would have to review his actions as translated into the transcript language. The user
might confuse statements in the transcript, and indicate the wrong range of statements to be saved as a
program. For both of these reasons I felt the simple Start and Stop Recording mechanism was clearer
and more explicit, and chose it over a history mechanism.

3.7 Internal form of the recorded program
A program could be recorded merely by recording the user's literal actions: his keystrokes and mouse

manipulations. This is certainly the simplest way of recording a program by example. But in many cases,
a  literal  recording  of  the  user's  actions  would  be  too  concrete.  For  example,  the  program  to  move  a
document from the desktop into a folder could be represented internally as:

Move mouse cursor to point (430,540);
Press left mouse button;
Press MOVE key;
Move mouse cursor to point (300,300);
Press left mouse button;

This is unsatisfactory. Suppose, for instance, the user moved the document or folder to some other
spot on the desktop and then tried to run the program again. The program would stop working because the
mouse positions would no longer correspond to icons. In addition, if this kind of transcript were shown to
the user, it would convey very little information about what the program does, except that a MOVE was
taking place.

Clearly, the program should be recorded at some higher level of abstraction. In SmallStar, a program
is represented internally as an n-ary tree. Each leaf in the tree is a user command, which consists of the
name  of  an  action,  and  a  list  of  the  descriptions  of  data  objects  the  action  uses  (see  chapter  4  for  a
thorough description of these descriptions). These actions in commands correspond closely to atomic user
actions, though a single command may consist of several user operations. For example, the two-step
actions of MOVE or COPY (picking up and then putting down an object) are recorded as two separate
commands initially, and are displayed on two lines in the transcript. The two parts of the command are
later merged. For instance, when the user selects the document Doc and then presses the MOVE key, the
transcript shows:

Move  Doc to …
After the user sets the icon down, the system adds:

… the Desktop.
After the user does a Stop Recording, the system merges these two lines into the single command:
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Move  Doc to the Desktop.
User text type-in is also merged. The system may initially record the user typing “Th”, then “e”. This

is merged into the single type-in “The”.

The  program is  recorded  in  tree  form,  though  initially  it  is  just  a  linear  list  of  commands,  because
later editing of the program to add control structure is easily done if a tree form is used.

3.8 Sample program
It is difficult to convey the experience of using the program recording mechanism merely by

describing it here. However, I will attempt to give the flavor of the system.

Suppose  the  user  wanted  to  write  a  short  program  to  copy  the  document  called Meetings-Today,
save the copy in the folder Meetings, and then print Meetings-Today. He would do the following
sequence of keystrokes and mouse-button clicks:

Start recording
press Point over Meetings-Today
COPY
press Point over Meetings
press Point over Meetings-Today
MOVE
press Point over Printer
Stop recording

The program produced is shown here in figure 3-7. This entire program is recorded in a matter of a
few seconds, in far less time than it would take to type it in.

Figure 3-7. A sample program.

3.9 The SmallStar virtual machine
This section and the next one describe the internal structure and the history of the implementation of

SmallStar. It is not necessary to understand the implementation details presented here in order to
comprehend  the  user's  view  of  SmallStar,  but  the  details  may  be  of  interest  to  the  reader.  Some
knowledge of Smalltalk will be helpful in understanding this section.

SmallStar uses the object-oriented programming paradigm offered by Smalltalk. SmallStar, for
instance, has a Smalltalk class named Icon, which provides general behavior for icons, and subclasses for
more specific types of icons and their behaviors. For example, there is a subclass of Icon named
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Container,  which  in  turn  has  subclasses Folder and FileDrawer. User actions are transformed into
messages to be sent to instances of classes such as these. For instance, to select and move a document on
the desktop, the user's Point mouse click is translated into a SELECT message sent to the icon, which is
an instance of class Document. The user then presses the MOVE key, and MOVE is sent to the icon. The
icon removes itself from the desktop and places itself in the cursor. When the user clicks down with
Point somewhere on the desktop, the message INSERTAT: pt, with an argument pt corresponding to
the location of the cursor on the desktop, is sent to the (sole) instance of the class Desktop, which handles
all such desktop functionality, and the icon is then displayed on the desktop at the chosen location. To
summarize, if doc is the document icon, and desktop is the desktop, and the user sets down the icon in
the third row and third column of the desktop, then the Smalltalk code executed is:

doc SELECT.
doc MOVE.
desktop INSERTAT: 3@3.

Every single user action maps into a capitalized message name (a procedure name). Care has been
taken to separate these procedures from the ones that actually do the work of displaying icons, moving
them, and so forth. These capitalized procedures also are decoupled from the mechanics of the user
interface, so that they are not concerned with keystrokes and mouse button clicks. Therefore, a complete
transcript of the user's actions can be collected by saving these messages along with their arguments and
their receivers.

The complete set of these message names that exists in SmallStar define, in essence, the SmallStar
virtual machine. User actions are translated into virtual machine commands, but the commands can also
be executed directly without going through the user interface. Thus, SmallStar can be operated
programmatically.

3.10 Evolution of SmallStar
In this section I will describe the first implementation of programming by example in SmallStar, and

then describe how it and SmallStar changed in subsequent versions.

The initial development of an programming-by-example mechanism for SmallStar proceeded very
quickly.  As  discussed  in  the  previous  section,  SmallStar  had  already  been  built  with  the  idea  of  a  Star
virtual machine in mind. The problem was to capture the virtual machine commands. To do this, I made
all virtual machine commands pass through a single locus of control in SmallStar. Commands were
recorded in a linear list at this locus if recording was turned on. A few commands were not meant to be
recorded (e.g. those that controlled program recording), and they were marked as such. The first version
of SmallStar simulated essentially only the icon illusion of Star, so that the only programs one could write
involved moving, copying, and deleting icons.

All programs were initially recorded in an invisible program icon. After the program was recorded, it
could be copied into a newly created visible program icon. Program icons at that time looked like tape
cassettes, because I was trying to stretch the idea of program recording to fit a tape recorder metaphor.

There was a one-to-one correspondence between each user action and each step in the transcript. The
transcript language was vaguely English- and Cusp-like. As the user did each action, the transcript step it
produced was echoed in a one-line area just below the regular desktop message area. The user could open
a cassette icon after a program was recorded, and see the entire program transcript, though the transcript
was not editable in any way. Figure 3-8 shows a simple program that copies the Report document on the
desktop and then moves it into the Memos folder.  Needless  to  say,  this  program is  not  terribly easy to
read. The variable table lists every data object touched or created. Here, “variable”[3] was created as
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the result of the copy. The To [1] and To [4] lines in the transcript are the setting-down of an icon after it
has been moved or copied into the cursor. The motivation behind the variable table will be discussed in
more detail in chapter 4.

variable table

[1] the Desktop
[2] Report (Document)
[3] Report (Document)
[4] Memos (Folder)

program

Select [2]
Copy [2] (into cursor as [3])
  To [1]
Move [3] (into cursor as [3])
  To [4]

Figure 3-8. Program display in the first version of SmallStar

After this initial attempt, finished in September 1980 [Halbert 1980b], the prototype was cleaned up
and improved in various ways. The internal form of a program was changed from a simple linear list to an
n-ary tree,  so that  control  structure could be added to the recorded program (see chapter  5).  An ad hoc
parsing technique was used to combine the atomic actions of multi-part commands such as MOVE and
COPY into a single recorded command. The display of the program was improved somewhat, so that now
the transcript of the program mentioned above looked like figure 3-9. Variable table entries were now
indexed by simple generated names (A, B, C, etc.), instead of by number (e.g. [1]). The work up to this
point (spring 1981) was described in my Master's report [Halbert 1981].

Figure 3-9. Program display in the second version of SmallStar.

Data

Name Type Value

A a Document Report

B a Document Report

C Folder Memos

Program
Select A;
Define B to be (Copy A to the Desktop);
Copy B to C;
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At this time it was clear there was more work to be done on programming by example, but I felt that I
was exhausting the limited possibilities of writing programs that just manipulated Star icons. So I added a
number of other Star features to SmallStar, notably text editing, fields, tables, and property sheets. The
goal was to be able to write a simple order-entry application by example. Such an application had already
been implemented in Cusp on another prototype of Star, and I wanted to match that level of
sophistication.

After these changes, the idea of a single locus of control in the implementation at which all recording
could take place became impractical. The arguments supplied for each recorded command had to be
processed in a certain way (to be discussed later) in order to be recorded, a task best done in the procedure
where the command was executed, because of that procedure's knowledge of what it was doing. In
addition, there was much less of a one-to-one correspondence between each user action and what was to
be recorded. So the idea of a single locus of control was discarded in favor of doing the recording inside
each procedure implementing a SmallStar virtual machine operation. This change, while necessary, was
unfortunate, because I lost the ability to confine the knowledge of how to do recording to a single place in
the code.

Initially, I included the selecting of data objects as one of the operations I recorded in the program
transcript. Select statements can be seen in figures 3-8 and 3-9. However, I found that Select statements
were always redundant to the operation of the program. One would see

   …
Select X.
Move X to the desktop.
   …

and similar constructs. The data object being used was always mentioned twice: once by being
selected, and then again in the operation that followed. This redundancy made programs longer but no
clearer. If the object was not used in a subsequent operation, then the Select was  useless  anyway.  In
addition, changing the size of an existing selection caused extra Select operations to be recorded.  This
was particularly noticeable if the user was doing text selections. For instance, the user might select a
single character, say “T”, and then extend the selection to, say a whole word, “The”. This would produce
two Select statements, only the second of which was useful. My initial approach was to record all select
operations, and discard superfluous ones when the user pressed Stop Recording, but I soon decided to
omit selection operations altogether. Selecting an object does not change the state of the SmallStar world,
and so discarding the Select operations had no effect on the proper operation of programs.

As I progressed through various versions of SmallStar, the Smalltalk-80 system being developed by
the then Software Concepts Group at Xerox PARC was becoming stable. Since I was hitting a number of
implementation limits in Smalltalk-76, I spent a few months converting the code to Smalltalk-80, gaining
quite a bit of performance because of the conversion. In addition, a number of visual cosmetic changes
were made to make SmallStar appear much more like the real Star system.

Most of the subsequent changes in SmallStar came about because of changes in my thinking of how
to record and handle the operands used in a program written by example. This evolution of ideas is
discussed in Chapter 4.
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Chapter 4

Data descriptions

When a user creates a program by example, he does not necessarily tell the system why he chose the
data he used in the program. His intentions may be concealed from the system. In this chapter I will
discuss this problem, and present the idea of data descriptions as a way of allowing the user to specify his
intentions. I will also give a history of the earlier concepts that lead up to the present idea.

4.1 Choosing data in programs
Computer programs do computation. They take input, give output, and in between they compute

things. If we look at the process of computation more closely, we can divide it into first getting the data
on which the computation is to be done, and then doing the necessary computing.

When a computation is done with some data object, the programmer has decided to use that object for
a certain reason. There are several possibilities:

• The object is a fixed quantity, to be used as a constant in the resulting program.

• The object is the result of some previous computation.

• The  object  is  merely  a  placeholder;  it  represents  a  parameter  to  the  program.  Each  time  the
program is run, some (possibly different) value will be read as input by the program, or will be
supplied by a calling program.

• The object has been chosen from among other possibilities, based on certain characteristics it has,
or based on its relationship to other data. The program looked for an object, in the right context,
that matched some characteristics or that satisfied some constraints.

It is the last possibility that causes the most trouble in programming by example. In a program written
in a conventional programming language, the programmer writes code to choose data. There are explicit
computations in the program that do searches, fetch objects out of tables, and so forth.

However, in a program written by example, another possibility arises. As in a conventional program,
the user could record an explicit computation to choose some data. But he could also select data
manually, the same way he would if he were doing, by hand, the task he is trying to program. Instead of
programming a search, he may do the search himself, by eye. Instead of indexing into a table, he may just
pick the right element.

The problem is that this manual selection of data leaves parts of the program incompletely specified.
The user has done some computation to choose the data, but the computation is all in his head, and has
not been communicated to the system. Yet this seems natural to the user, since the most natural way to
program a task by example is to repeat exactly what one would do to perform the task manually.

Suppose,  for  instance,  the user  of  a  file  system interface wants  to  write  a  program to delete  all  his
BASIC  programs.  If  he  were  using  a  typescript  system,  such  as  one  of  a  number  of  operating  system
executives, he would probably type something like

delete *.BAS
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to the executive. Here there is no problem. The file system interface provides a pattern matching
mechanism: the user has taken advantage of it in a natural way. On the other hand, consider a direct
manipulation system, such as Star. The files might be listed separately, as for example:

A.BAS
LETTER.TXT
A1.BAS

While recording the example, the user would select A.BAS and A1.BAS, and then delete them. Here
the  user  has  performed  a  search  in  the  list  for  the  files  he  wants,  and  has  never  communicated  to  the
system the rule he was using for conducting the search. The user's intentions,  that  is,  why he chose the
data he did, remain a mystery to the system.

4.2 Finding out the user's intentions
There are several ways to find out the user's intentions. One is that the system can require the user to

supply explicitly the computation used to select the data, just as in a conventional program. The user
could do the computation step-by-step, or perhaps use some mechanism provided in the user interface of
his system, such as a query or search mechanism. If the user does not explicitly perform a computation to
select a data value, the system assumes the value is a constant in the program. For example, suppose a text
editor provided a simple method of programming by example, and the user wanted to write a program to
delete a line of text that matched some pattern and replace it with another. The user might program an
explicit search for the line to be deleted, using a search command provided by the editor, delete the line,
and then type in some constant text which would always be used when the program was run again. The
user cannot omit the search command. If the user had not included the search in the program, the program
would probably have deleted the line of text at the current position of the cursor, which is not what the
user had in mind. And if the user had chosen the line to be deleted by looking for it by eye, rather than by
using a search, and used explicit context-sensitive positioning commands (e.g., go up 17 lines), then the
resulting program would also do the wrong thing.

Another method for determining the user's intentions is to use inductive inference techniques. The
user does several examples, not just one. When recording a program, the system notes the differences
between the examples, and draws conclusions about what the user meant. For instance, Ian Witten's desk
calculator system uses a simple inference technique (see section 2.12). The user repeats the example
several  times.  If  a  number  changes  from  one  example  to  the  next,  then  it  must  be  a  parameter  to  the
program. Suppose, for instance, the user enters

2 + 3 ÷ 4
as one example, and then enters

2 + 3 ÷ 7
as another. The system will construct

2 + 3 ÷ variable
as the resulting program. When the program is run again, the system will prompt the user for the

value of the variable.

This sort of inductive inference technique is at the simple end of a class of possibilities using artificial
intelligence techniques. Witten's system makes inferences based on previous very similar examples. But
one can imagine AI systems with more knowledge of the user's needs, the problem domain, and the
programming system. Such systems could make more sophisticated guesses about the user's intentions.
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For instance, in the example given previously, the user is trying to delete all his BASIC programs. In the
example program he records, he deletes A.BAS and A1.BAS. If the system is trying to detect a pattern in
this example, it can choose certain filename patterns which match the names of the files that were
selected. Possible reasonable patterns might be A*.BAS, A*.*, and *.BAS. Based on the user's previous
actions, and some knowledge about what is reasonable, the system would choose one of these. Of course,
it might choose incorrectly.

This example illustrates the basic problem with such AI techniques. The system can guess what the
user means, but it can never be sure. It cannot read the user's mind. The richer the problem domain, the
more likely it is there will be a variety of reasonable alternatives. Nevertheless, such techniques are quite
useful if they end up saving the user time and bother in writing his program.

There is a middle ground. If the system is unsure as to what the user's intentions are, it can ask the
user about one of several alternatives, or offer some way of letting the user correct the system if it guesses
wrong. This is the method I have chosen to use in SmallStar.

4.3 Choose the data, or choose the container?
The methods of specifying what data to use mentioned in the previous section are complicated by the

need to talk about the choice of the container of the data object, as well as the choice of the object itself.
A certain object may be contained in another, which is inside another object, and so forth. At each point
in the path to the final object, a choice is made about how to select the object at that point.

Sometimes the division between object and container is sharp, but sometimes it is not; it depends on
the system. In conventional programming languages, there is a clear distinction between a name and its
binding, that is, between a variable and its contents. The user interfaces of some systems that are
programmable by example provide data objects which clearly correspond to such programming language
variables. For instance, the Pygmalion system (see section 2.3) has icons which can contain numbers (not
to be confused with Star icons). If we take the number 42 from one Pygmalion icon and copy it into
another icon, it is reasonable to assume we are concerned with whatever value is in the first icon, not with
the number 42 specifically. The choice of 42 is not important, but the choice of the icon that contains the
number is. Therefore, the programming-by-example mechanism in Pygmalion concentrates on data
selection methods for icons, not their contents.

On the other hand, in the Star system, if we write a program to print a document that is in a folder, it
is not clear whether we want the program always to print that particular document, or want it to print
whatever document happens to be in that folder. Since either choice is plausible, the system must
provided the ability to specify the choice of both the document and the folder.

4.4 SmallStar data descriptions
To let the user specify his intentions about why he chose the data he did, I have added the concept of

data description to programming by example. SmallStar keeps an explicit description for each and every
data object used in a program recorded by example. These descriptions are built as the program is being
recorded. They describe the data objects to be used during the later execution of the program by giving
the characteristics of the desired object. Or alternately, one could say they supply constraints that narrow
down the possible choices for an object. For instance, a data description for a document might say that the
desired icon is the newest document on the desktop with the name “Parts Contract”. A description for a
text string might specify a string that matches the pattern “*Canyon*”, or might ask for the first 5
characters in a text frame. There are no constants in a program. Every object used has a corresponding
data description.
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Each step in a  program consists  of  a  command and some operands.  These operands are pointers  to
data descriptions (see figure 4-1). As a program is being recorded, every newly referenced object is
assigned a reasonable default description by the system. During recording, or afterwards, the user can go
back and modify these default descriptions if they turn out to be incorrect.

Figure 4-1. The relation between operands and descriptions

In addition to this specification of how to choose an object, a data description contains a slot for
temporarily binding an object to the description once the object has been chosen. When a program is
asked to run, it first clears all the binding slots in its data descriptions. As each command in the program
is executed, the data descriptions corresponding to its operands are used to find the relevant data objects.
If a description has not yet been used in the program and therefore does not yet have a value bound to it, a
search is made for a data object matching the given specification. If more than one object matches the
description, one is chosen arbitrarily. (Alternatively, the system could ask the user to choose one.) Once
an object is found, it is temporarily bound to its description for the duration of the execution of the
program. Later uses of that description will shortcut the search process and use the object already found.

 (In reality, a description generates a set of all the objects that match the description. Normally, only
the first element of the set is used, and so the user is not aware the entire set has been generated. The
entire set is used when the program does set iteration; this is discussed in section 5.4.)

Thus in SmallStar I have mixed some of the techniques described in the previous section. The system
tries to guess the user's intentions by using reasonable default data descriptions, but it makes its guesses in
a fairly superficial way. Much of the time, it does not expect to guess correctly. Instead, the system makes
it very easy for the user to modify the guesses the system has made, by editing the data descriptions. So
programming by example has become a mix of program recording and program editing.

Descriptions are created for every object referenced by the user during program recording, whether
the objects are referenced directly or indirectly. For instance, if the user selects a document in a folder, the
system builds a description for the folder as well as the document. Every item on the path to an object is
included, and the descriptions on a path are linked. Thus, in this example, the description for the
document is linked back to the one for the folder.

More precisely, the description-building mechanism works in the following way. User commands in
the program transcript consist of the name of the action, and the operands it uses. The operands are

Program

Open  A Tale of Two Cities

Close  A Tale of Two Cities

operands

Description for a document named “A Tale of Two Cities”

…
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pointers to descriptions. While a program is being recorded, the system keeps a table whose keys are the
actual objects used in the program, and whose entries are the corresponding descriptions. When the
system records a user command, it looks up every object used in the command in this table. The system
uses  an  existing  description  if  one  has  already  been  created  for  the  object.  Otherwise,  it  creates  a  new
description and enters it in the table. The system then does a recursion and looks at the objects that
contain that object, if there are any, looks them up in the table, and continues similarly until it reaches a
top-level object.

For instance, if the user deletes some text in a field in a table, the system will record a DELETE, find
or create a description for the text string, then recursively find or create descriptions for the field the text
is in, for the row and the column the field is in, for the table the row and column are in, for the document
the table is in, and so forth until it reaches something that is contained in nothing but the desktop.

Illustrated in figure 4-2 is a simple program that moves the document named Treaty out  of  the
Negotiations folder onto the desktop. Notice that command operands may be selected. Each operand
corresponds to a description; that is, each operand represents the use of a description. In the figure, one
use of the description for Negotiations is selected. The other uses of the description have been outlined
in gray to show the user where else this description is being used. The way a description is displayed
indicates  its  current  state.  In  this  case,  the  description  specifies  a  search  for  a  folder  whose  name  is
“Negotiations”. This description is not a constant, which will always be bound to exactly the folder
Negotiations used in the example. For instance, if the user deletes the Negotiations used in the example
and creates a new folder Negotiations, then the new one will be used.

Figure 4-2. Program to move a particular document out of a folder.

I mentioned previously that if an object is used more than once in a program, new descriptions are not
created for each use; instead, the same description is used several times. This is a fundamental heuristic,
and is a matter of convenience. If the user refers to an object more than once, the system assumes the uses
are connected in intent; that is, it does not assume that another use of the same object is accidental. If the
user edits the description for an operand in one program step, he will have conveniently changed the
description for the uses of that operand in all steps.

This heuristic works very well. Rarely does a user refer to the same object for a completely different
purpose. However, exceptions can occur, and so there is a way to defeat the heuristic. Suppose, for
instance,  a  user  writes  a  program to print  two documents  on two printers,  and happens to use the same
printer because one of the printers was broken at the time the example was recorded. If the user selects
one use of the printer in the program, both uses will be highlighted. The user, instead, needs two different
descriptions, and so he uses the Make Description Different command in the program window pop-up
menu, which makes a copy of the description for the selected operand and changes the operand to use the
new description.
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Conversely, two different operands may be merged to use the same description. The user selects an
operand, presses COPY, and then drops what is put in the cursor onto another operand. The second
operand is changed to point to the same description as that of the first operand.

4.5 Content and editing of data descriptions
A  data  description  specifies  a  particular  way  of  looking  for  a  data  object.  To  see  and  edit  a  data

description, the user selects a use of the description in the program and presses the PROPERTIES key. He
may do this while a program is being recorded, since each step in a program is added to the transcript as it
is recorded, or he may choose to do this after recording is finished. If a description is examined during
programming, recording is suspended for the duration.

In either case, pressing the PROPERTIES key opens up a window that resembles a property sheet. The
user may then look at the detailed description, and may change it to suit his needs.

A number of different search methods are provided for each kind of data object. These methods are
available as a menu of choices in the description sheets. In addition to the menu of choices, the necessary
parameters and sub-choices for each choice are displayed. Those that are inapplicable for the current
choice are grayed out.  Here,  for  instance,  in  figure 4-3 is  the description sheet  for  the document  Treaty
used in the example program above. All description sheets for documents resemble this one.

Figure 4-3. A document description sheet.

The main description choices given are listed in the Choose using item. The choices are NAME,
POSITION, PROMPT, and ANY.

If NAME is chosen, the system looks for a document whose name matches the pattern given in the
Name Pattern parameter. The pattern may be a simple text string, or a pattern such as Chapter*, which
matches any document whose name begins with “Chapter”. Since icon names need not be unique, the
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system must have some reason to choose between two icons that match the same name pattern, and so the
Version choice further narrows the document choice based on the date and time when the document
contents were last changed. Some of the items in the Version choice require supplying one or two dates
and times, and so the parameters below Version are used for this purpose.

If POSITION is  chosen,  all  the items become gray except  for Position at  the bottom. The system
looks  for  a  document  in  the  position  specified  (FIRST or LAST). Position on the desktop is not well
defined, since the desktop grid is not labelled with axes, so this choice is displayed only when looking for
a document in a container, such as a folder.

PROMPT requests  the system to ask the user  when the program is  run to choose a  document.  The
systems prints out the request given in the Prompt item; a default prompt is supplied, which the user
may change.

ANY specifies that the user does not care which item is picked. For picking a single document, this
choice is not very useful, but in section 5.4, I will show how this choice is used to indicate set iteration.

Of course, the choices given here do not give all possible ways of choosing a document. Many
possibilities are missing. For instance, the POSITION choice only includes FIRST and LAST, and does
not include the more general possibility of the n-th document. There is also no way to choose a document
based on any characteristic of its contents.

Nevertheless, the choices given were selected to cover many of the common reasons for choosing a
document.  My  intent  is  not  to  cover  all  possible  cases,  but  merely  a  large  fraction  of  reasonable
possibilities. I will discuss this limitation further in section 4.11.

As an example of the use of description sheets, consider the simple program given in figure 4-2. The
program as recorded looks for the document Treaty in  the Negotiations folder, and moves it onto the
desktop. Suppose the user wanted to change this program so that it moved the first document in
Negotiations to the desktop. The user would select the use of the description for Treaty in the program.
He would then bring up the description sheet for Treaty (see figure 4-3 above), and change the Choose
using item from NAME to POSITION.  He  then  wants  to  set  the  Position  item to FIRST, but this is
already its current state, so he need do nothing. After he presses Done in the description sheet header, the
description is changed, and the program transcript is updated to show this change. The resulting program
is shown in figure 4-4.

Figure 4-4. Program to move the first document out of a folder.

Description sheets with similar structures and choices exist for all the other kinds of data objects the
user may choose. Some description sheets are straightforward. Figure 4-5 shows the description sheet for
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a text frame. A text frame may be chosen, among other ways, by giving a pattern for its name or by giving
a pattern for its contents (here, choose the frame containing the text string “snake”).

Figure 4-5. A text frame description sheet.

Other description sheets provide more sophisticated choices. So far, we have seen only choice and
literal parameters. But there are cases where the user would like to give a description as a parameter to
another description.

Consider the following example (figure 4-6). The user is designing an order-entry application. He has
a  table  of  parts  information  (Parts) in the Parts Data document,  and  a  customer  order  blank  (Order
Blank) in the document Order Form. By telephone, a customer orders 5 handsaws, but does not know
the part number for a handsaw. The user wishes to write a program to look up the part number, given that
its name is already in Order Blank.  He  records  a  program  to  copy  the  part  number  from  the  row  for
“handsaw” in Parts to Order Blank.  This program, as recorded, is shown in figure 4-7. But the system
chooses an incorrect default description for the row chosen in Parts;  it  guesses that  the user  wanted to
choose the row based on its position (row #2).  This  will  not  work.  If  the user  tried to look up the part
number for hawks, the program would again return the part number for handsaws.

Instead, the user wants the program to choose the row in Parts whose Name field is the same as the
Name field in Order Blank. That is, he wants the description of the row in Parts to require that the text
in its Name field match the text in the Name field in Order Blank. To do this, he can insert a description
for the Name field in Order Blank into the row description sheet.

The incorrect row description is selected in figure 4-7. If the user brings up the sheet for this
description, he sees what is illustrated in figure 4-8. He does not want to choose the row based on ROW
POSITION; he wants instead to choose it based on its CONTENTS OF FIELDS. After indicating this
choice, he must give patterns for each field in the row. For each field in the row, the description sheet
offers  the  choice  of  using  a  literal  pattern  (Text)  or  a  description  (Description).  The  first  and  last
patterns  do  not  matter,  and  so  the  user  chooses  Text  from  them  and  enters  “*”  (meaning  “match
anything”) in the parameters for those fields. For the second field, he cannot use Text “handsaw”, for that
will cause the description to produce the same incorrect result. So, instead, he turns on the boolean
parameter DESCRIPTION, which grays the Text parameter,  and  makes  the Description parameter
accessible. Inside the Description parameter is a non-functional placeholder text string description,
indicated by

-fill this in-
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Figure 4-6. Documents for an order entry application.

Figure 4-7. The original part number program, showing the incorrect row description.
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Figure 4-8. The description sheet for the incorrect row description.

Figure 4-9. The corrected row description sheet.

The user wants to replace this description with one referring to the Name field in Order Blank. To
do this he selects the object for which he wants to create a description (in this case, the text “handsaw” in
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the order blank), and invokes the command Create Description, which is available in the pop-up menu
of either the program window or the row description sheet. The command creates a complete description
for the text selection, including everything on the path to the text, and puts this description in the mouse
cursor. The user then drops this description into the field in the row description sheet. The resulting
description sheet is shown in figure 4-9. The complete path for the description of the text selection is
shown in the appropriate field parameter. If any part of the path is wrong, the user can select it and edit it
using its description sheet.

Notice that while it is possible to create data descriptions while not recording a program, the initial
creation of a description must be done with a real Star object, as in program recording. Creation of data
descriptions is done by example whether or not a program is being recorded.

4.6 References to data in early versions of SmallStar
In the very first implementation of programming by example in the SmallStar prototype, programs

contained no data descriptions or variables, only constants. Programs consisted of actions and operands,
but the operands were direct pointers to the data objects used in the program. The original implementation
provided programming by example only for icon manipulations, so the operands were always icons. Each
time  a  program  was  run,  it  did  exactly  the  same  thing.  In  fact,  programs  held  on  to  their  operands  so
tenaciously that many things could be done to the operand icons and yet the program would still run. For
instance,  an  icon  used  by  a  program could  be  deleted,  but  since  the  program still  held  a  pointer  to  the
object, and since Smalltalk uses a reference-counting scheme for storage reclamation, the object would
continue to exist, and would reappear if moved or copied. Similarly, renaming an icon would have no
effect on its use in a program.

I quickly discovered this scheme did not work; it failed if the recorded program used a newly created
copy of an object. Every COPY operation creates a new object, and so each time a program that contains a
COPY is run, it will create a different new object. However, if the program refers to the copy, it will refer
to the original copy created during the recording of the example, and not to the desired new copy.

Consider a program which includes the statement:

Copy Clone to the desktop.
This statement creates a copy of the document Clone. The new copy of Clone also has the name

Clone, but in order to distinguish it, let us call it Clone2, and call the original Clone1. Suppose that later
in the program, the contents of Clone2 are edited by the user, and eventually the document is printed.

Now consider what happens when the program is run. Yet another copy of Clone1 is created, which
we will call Clone3. However, the program will edit and print Clone2, not Clone3, rather than correctly
using the result of the COPY operation, since the program contains a hard pointer to Clone2.

Always using hard pointers to refer to objects is therefore incorrect. At the very least, some kind of
slots to hold newly created objects must be used. A newly created object would be put in such a slot, and
subsequent references to the created object should refer to the slot, so that they can refer to the created
object. Such a slot is, of course, a variable, in the conventional programming language sense.
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This technique of using a simple variable was used in the next version of the prototype. In order to
make  all  references  to  data  objects  uniform,  every  operand  used  in  a  program  statement,  whether  a
constant or a newly copied object, was an index into a variable table. (See section 3.10, figures 3-8 and 3-
9. Figure 3-8 is reproduced here as figure 4-10 for convenience.) These indexes into the variable table
were initially just numbers ([1], [2],  etc.),  but  later  simple names (A, B,  etc.)  were used to improve the
readability of the program. The entries in the variable table were still hard pointers to objects, but the
indirection provided by the variable table allowed programs containing COPY operations to work
correctly. Slots in the variable table were filled in with pointers to objects as the program was being
recorded. Usually these pointers were never again disturbed, but if a COPY was done, the old value in the
appropriate slot in the variable table would be replaced with a pointer to the newly created object. So
except for copied objects, the “variables” in the variable table were just constants.

Figure 4-10. Program display in the second version of SmallStar.

The creation of the variable table naturally spawned the reuse heuristic described in section 4.4. The
variable table was displayed to the user, and for clarity and conciseness it did not contain an entry for
every use of every object. Instead, each object had one and only one entry. New entries were added to the
table as the program was being recorded only if an object not previously referenced was used as an
operand. Since neither a program nor its variable table could be edited, using this heuristic actually had no
effect on whether the program accurately reflected the user's intent or not; it merely made the program
more readable.

Though the variable table enabled COPY to work correctly, the data objects used in a program were
still constants. There was no way for the program to operate on data other than that used in the original
example. To eliminate this restriction, I started working on ways of generalizing programs. This topic is
discussed in the next section.

4.7 An earlier concept: generalization
In this section I will discuss the idea of program generalization. I attached great importance to the

term initially, but have since deemphasized its use. However, it was the study of this notion that lead to
the current idea of data descriptions. The evolution of the idea of generalization is covered in this and the

Data

Name Type Value

A a Document Report

B a Document Report

C Folder Memos

Program
Select A;
Define B to be (Copy A to the Desktop);
Copy B to C;
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next section. An earlier discussion of generalization and its use in SmallStar can be found in my Master's
report [Halbert 1981].

Despite the existence of variable tables described in the previous section, programs were still
constant.  They always performed the same operations on the same data.  It  was clear  that  some way of
generalizing a program so that it would operate on data other than that used in the example was needed.

For most other programming-by-example systems, generalizing the example program means
specifying which data are constants, and which are parameters to the program. Some programming-by-
example systems provide very weak forms of generalization. For instance, in simple “keystroke macro”
systems found in various text editors, there is no parameter to the program other than the current position
of the cursor. Since most text editor commands are position-relative, moving the cursor will cause the
program to operate on different data.

Other systems provide program parameters, but ask the user to specify them explicitly. In the Tinker
system (see section 2.5), the user is creating Lisp functions, and specifies the arguments to each function
as he starts to define the function. He then gives the arguments sample values and proceeds to create the
function by example. In the EP system (section 2.7), the user gives names for the program parameters,
and then gives the parameters the values they will have in the example program. After the example is
given, the system substitutes the parameters for the sample values in the typescript.

In Ian Witten's desk-calculator system (see sections 2.12 and 4.2), program parameters are not noted
explicitly by the user; instead, an inference scheme detects differences between program examples and
determines which values in the program must be parameters. In the Pygmalion system (section 2.3),
programs  are  inherently  parameterized  because  the  data  objects  held  by  the  program  are  references  to
value containers and not values themselves (explained in section 4.3).

In all these systems, the only kind of program generalization provided is parameterization. When I
initially thought about programming by example, this seemed to me to be inadequate, since it did not
provide a way for the program to choose data based on some constraints. I envisioned a spectrum of
generalization, with constants at one end, and variables at the other (figure 4-11). Most programming-by-
example systems handled only the two ends of the spectrum. But I wanted to use the middle of the
spectrum as well. If the user used a certain data object in a program example, but did not mean for it to be
a constant, there were nevertheless some characteristics about that object that caused the user to choose it.
When program was run again and a different object was used, the new object used would be chosen
because it was similar to the example object in some respect. I said that the object used in the example
had to be “generalized” in some way.

Figure 4-11. The spectrum of generalization.

The problem here is to discover in what way the example object is similar to the desired object. In
other words, the system wants to ask the user, “Why did you choose the data you did?” I set out to
provide a way for the user to answer this question, and implemented a generalization facility in SmallStar.

most specific
most constrained
constant

somewhat specific
partially constrained

constant

most general
unconstrained

variable
parameter
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The early SmallStar prototypes simulated only the icon manipulation functionality of Star. Data
generalization was done as the program was being recorded. The variable table scheme described
previously continued to be used. In the very first implementation of generalization, the user selected the
icon he wished to generalize with a special, third mouse button. (Xerox research mice have three buttons;
Star product mice have only two.) The mouse button brought up a pop-up menu with several choices on
it. The choices were:

same location
same row
same name
ask for a similar object

The user chose one of these kinds of generalization, causing the system to record a statement which
would find an icon with the same characteristics when the program was run again. For instance, if the user
selected the document Moonstone with  the same name generalization, the system would record the
statement:

Define B to the Document whose name is “Moonstone”.
assuming that B was the next unused variable name in the variable table. Subsequent references to

Moonstone would use variable B.

The generalization same location added a Define statement that looked for an icon at the same
place on the desktop, assuming that the icon was on the desktop. Same row looked for an icon in a
container  at  the same position as  the selected icon (for  instance,  the third icon in a  folder). Ask for  a
similar object prompted the user at run-time for an icon of the same type (in the case of Moonstone,
for a Document).

Define statements were inserted at the point in the program where an icon was first generalized.
Previous references to the icon therefore would not use the generalized value. For instance, in the
example above, previous references to Moonstone would  be  treated  as  constant  references.  So  it  was
important that the user generalize an icon before he used it.

Subsequent changes to this mechanism were slight. The use of an extra mouse button was discarded,
since it did not fit with Star. Instead, the user would select the icon to be generalized in the normal way,
using the Point mouse button, and then choose a kind of generalization from the desktop pop-up menu.
Same location and same row were merged into a single choice, same place, which chose desktop
location or position in a container as appropriate.

This generalization mechanism is the one described in my Master's report [Halbert 1981]. The most
serious problem that occurred while using this mechanism was that the user frequently forgot to do a
generalization when necessary. An icon choice had to be generalized before the icon was used, but many
users (myself included) often forgot to do so.

There are several ways of solving this problem. One is to remind the user, whenever he uses an icon,
that a generalization is possible. A generalization menu would appear after using an icon. The user would
choose a generalization if desired; if not, he would either indicate he did not want to generalize, or else he
would ignore the menu entirely and it would quietly go away.

Another method is to remove the restriction that an icon is generalized in the program only after a
Define statement has been added using the generalization menu. Instead, the Define statement would be
moved up in the program, to a point before the first use of the icon. Generalizing an icon choice late in the
program, after one or more uses of the icon, would therefore still work. But this method has the



43

disadvantage that the generalization may not work for previous uses of the icon. Suppose the user selected
an icon, moved it from one folder to another, and then generalized it based on its position. Did the user
mean the position in the first or the second folder?

A third method is to provide a completely ex post facto generalization method. All generalizations
would be specified after the program was recorded. The user would edit the uses of an icon in a listing of
the program, and indicate what generalizations he desired. For consistency with Star, the obvious way to
do this editing would be through a property-sheet-like mechanism. This method also has the advantage
that the user does not need to consider what generalizations are necessary while the program is being
recorded. Instead, he can concentrate on the task he is trying to program.

Besides this difficulty of when to generalize, it was also clear that this version of SmallStar did not
provide enough different kinds of generalizations. Choices more complicated than the few listed in the
generalization menu were needed. In addition, some choices really required parameters, such as one
allowing the user to provide his own prompt for the generalization ask for a similar object, instead of
being forced to use the prompt the system provided. I also had plans for extending SmallStar to simulate
more Star functionality than simple icon manipulation; the possible generalizations for text selections,
rows and columns in tables, and so forth could not all be handled using such simple generalization menus.

These desires to improve the generalization mechanism and extend the functionality of SmallStar
eventually led to the transformation of the generalization mechanism into the present data description
mechanism. This evolution is described in the next two sections.

4.8 Defining generalization
Though I used the idea of generalization extensively in the versions of SmallStar that led up to my

Master's report, I was bothered by being unable to come up with a satisfactory explanation of what the
word “generalization” meant. This definition remained elusive; I had no theory of generalization.

The best definition seemed to be that a generalization was any run-time binding of data to a variable.
The most general form of generalization was parameterization, where the value was passed in to the
program. The other kinds of generalization were more constrained, and represent searches in various
spaces for data that matched given characteristics.

I hoped to find parallels between programs written conventionally and programs created by example
with generalizations. But only parameterization had a parallel with conventional programming. There
were no special constructs in conventional programming that corresponded to other kinds of
generalization. If a programmer had written a conventional program to do what was implied by a
SmallStar generalization, he would have included explicit code to do the requisite lookup or search. For
instance, if a programmer were to write conventional code to do the same row generalization, looking
for, say, the third icon in the Contracts folder, he might write B := Contracts[3].  If  he  wanted  to  do
same name to find a document named Remodeling in Contracts, he might write a loop that did a linear
search for Remodeling (shown here in some mythical programming language):

R := nil;
for each Document D in Contracts do
    if D.name = “Remodeling” then
        R := D; exit loop;
    end if;
end for each;
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These kinds of examples are not called “generalizations” when they are written in conventional
programming languages. In fact, they have no special name; they are just ways of getting at data; the
word “generalization” seems inappropriate. Because of this lack of distinctiveness, it was unclear that
there were clearly defined program constructs that could be called generalizations. The Define statements
used for SmallStar generalizations replace pieces of code like the ones given here. But they are more a
convenience than anything else; they are just constructs that add to the power of the language, allowing
various kinds of searching and indexing.

In retrospect, this confusion arose because I was using generalization for two different purposes. The
generalization mechanism provided program parameterization, using ask for a similar object.  But  it
also provided a descriptive way to specify data searches. It was a mistake to call these searches
“generalizations”. A program can become generalized by substituting data searches for data constants, but
the searches themselves are not generalizations.

4.9 Generalization becomes data description
This concern for defining exactly what “generalization” meant was overshadowed by another issue.

The early versions of SmallStar described in the previous section still used hard pointers to refer to
constants in programs. This was inappropriate for a programming-by-example mechanism in the real Star
system. Hard pointers to Star data objects are sometimes available for referring to objects during a single
session, but they become invalid after a session with Star is finished. Furthermore, using hard pointers
makes the transfer of programs between users more difficult. A program sent by one user to another
would have to carry its constants with it, since one user cannot refer to objects on another user's desktop.
Finally,  the  concept  of  a  hard  pointer  is  alien  to  the  Star  user.  Users  choose  objects  by  name  or  by
position. Two icons of the same type and with the same name are distinguished by their contents and the
date and time when they were last changed.

So it seemed more appropriate to address all Star objects by some more indirect method, such as
name or position. This naturally led to the idea of using the generalization mechanism which already
existed to address all objects referenced in a program, and not just those that the user explicitly chose to
generalize. The ways of generalizing an object now become ways of describing it. But rather than putting
explicit Define-like constructs into the program transcript, each description could be associated with an
entry in the variable table.

Since such a description is an imprecise reference to an object, the description must include the
complete path needed to address the object. For instance, the system must be able to distinguish between
the document Chapter 4 on the desktop and the document Chapter 4 in the Thesis folder.

Every time the user refers to an object not previously used while recording a program, the system
needs to create a description for that object. The system could ask the user for a description, or it could
make some reasonable guess. I chose the latter alternative, for the same reasons I wanted an ex post facto
generalization mechanism. The user may not know during program recording exactly why he chose an
object, and in any case asking him about every object he touches would cause annoying interruptions
during program recording, when he is concentrating on the algorithm and not the choice of data.

When the program is run again, the description is used to find the object. The description is not used
until the object is needed. A plausible alternative would be to find all the data at the start of program
execution, but this does not work in some cases. The desired object may not exist yet, or may not be in
the right place. For instance, the description for a document might look for the first document in some
folder. But the desired document may not be the first until some preceding document is deleted or moved
out.
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All this, of course, is the data description mechanism currently in SmallStar, described in section 4.4.
Once the decision to use this sort of mechanism was made, the basic idea of data description did not
change. But the presentation of the mechanism to the user did change; its evolution is discussed in the
next section.

What happened to generalization? It is still there, somewhat disguised. When a program is recorded,
all references to data are generalized immediately into descriptions. The generalization is done implicitly
by the system, instead of explicitly by the user. But since every object is represented by a description, one
can  no  longer  point  to  the  program  and  say  that  this  datum  is  generalized,  while  that  one  is  not.  This
distinction has been lost.

For a long time after adopting the idea of data descriptions, I continued to refer to descriptions as
generalizations, and started to use the terminology of “data description” only recently. “Generalization”
was confusing, since one data reference was not more or less general than another, but I stuck to the term
until it became clear that it did not describe well what was happening.

Since program parameterization is provided by data descriptions (using PROMPT),  I  am using the
data description mechanism for parameterization as well as description. I used the “generalization”
mechanism for the same two purposes (as I discussed at the end of section 4.8). But the mix is a natural
one, and is not confusing to the user, though it does make describing the semantics of data descriptions
somewhat more difficult.

4.10 Evolution of the program display
The initial presentation of programs after data descriptions were implemented was quite similar to the

display presentation used for programs with generalizations. A program icon showed a variable table,
which was renamed the data list, and a program transcript. Figure 4-12 shows a one-line program, which
moves the document Treaty from  the Negotiations folder to the Signed Treaties folder. The
Negotiations folder was already open when this program was recorded.

The data list was a list of all the data objects used in a program whether directly or indirectly. Each
entry in the data list corresponded to a description, and was given a generated name, such as F2 for  a
folder or Tb1 for a table. The name of a entry stayed constant even though its description might change.
Each entry displayed two aspects of itself. One was the path needed to reach it, expressed in terms of
entry names. For instance, in the example, document D1 can be found inside folder F1. The other aspect
shown was the current description for the data list entry. In the example, the description for D1 specifies a
search in the folder F1 for a document named “Treaty”. The program transcript used the data list names
for operands, as was done in the previous versions of SmallStar when the data list was a variable table.
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Figure 4-12. Program display using a data list.

The data list for some programs has more entries than would have been in the variable table for the
same program, because the data list includes objects that have been referenced only indirectly, as part of
the path to an object referenced directly. The variable table for the same program would not have included
objects referenced indirectly. For instance, in the example, folder F1 is in the data list, even though it is
not directly used as an operand in the Move statement.

The length of the data list quickly became a problem. For instance, figure 4-13 shows the size of the
data list for a single-statement program that deletes all the text in a field in the table Chinaware, in row
1, column Dinner Plates. The path to the text to be deleted is long, and so the data list contains a large
number of entries. For programs that refer to several other objects with equally long paths, the data list
becomes horrendously long.

In an effort to suppress some of this display, the next technique I tried was to make items in the data
list selectively visible. By default, the data list showed only the entries that corresponded to objects used
directly in the program. For the example given here, only the data list entry for T1 would be shown. By
using various commands in the program window pop-up menu, the user could ask that the entire data list
be displayed, or could select a particular entry in the data list, and ask that only the entries for the path
leading up to the selected entry be displayed. For instance, if the user selected R1, and asked for the path
entries to be displayed, the entries for D1, Tb1 and R1 would be shown.

But this technique made programs even harder to read. Figure 4-14 shows another simple program. It
is impossible to tell what is being deleted from where without asking for more entries in the data list to be
displayed.

Readability also suffered because of the generated names T1, D1, and so forth. These names meant
nothing to the user, and only served as cross-references to the entries in the data list.

Because of these problems, I merged the descriptions given in the data list into the program transcript
itself, discarding the generated names, and removing the data list display, since it was now redundant.
There are no longer any variable names in a program. In conventional programming languages, variable
names  are  used  because  they  allow  the  same  object  to  be  referred  to  in  multiple  places.  Sharing  the
descriptions of objects and displaying the descriptions in multiple places substitutes for using names.

Data List

Path Description

 F1  Negotiations

 F1  D1  Treaty

 F2  Signed Treaties

Program

Move  D1 to  F2.
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After this change, program display reached its current format, shown in the figures in sections 4.4 and
4.5. There are still some problems with program display, but they will be discussed in the next section.

Figure 4-13. Program to delete all the text in a field in a table, displayed using a data list.

Figure 4-14. An obscure program.

4.11 Problems with SmallStar data descriptions
Some problems still remain with the use of data descriptions in SmallStar. Some of these are peculiar

to Star or SmallStar, and do not represent problems with data description in general, while others are
problems that could appear in other systems that used data descriptions with programming by example.

Long paths to objects pose a readability problem in SmallStar. Figure 4-14 above already hinted at the
problem by showing long paths in the data list. Consider the example in figure 4-15, for instance, which
shows the text in a text frame being copied into a field in a table. The casual observer's first reaction to
this example is to suggest that some of the detail that is shown be suppressed. But this poses other

Data List

Path Description

 D1  Kitchen inventory

 D1  Tb1  Chinaware

 D1  Tb1  R1 row #1

 D1  Tb1  R1  C1  Dinner Plates

 D1  Tb1  R1  C1  TbF1 row R1, column C1

 D1  Tb1  R1  C1  TbF1  T1 all

Program

Delete  T1.

Data List

Path Description

 D1  Tb1  R1  C1  TbF1  T1 all

 D1  Tb2  R2  C2  TbF2  T2  ‘peach’

Program

Delete  T1.
Delete  T2.
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problems. Suppressing the display of any of the path components removes information the reader of the
program needs to have in order to identify the operands. The most extreme suppression of detail is
suggested by figure 4-14, and it indicates what difficulty this can cause. In addition, all the descriptions in
a path are of relatively equal importance, since it is plausible that the user will want to edit any one of
them in order to fix an incorrect default description.

Figure 4-15. A program with long description paths.

Some more attractive layout of the operands in the program statement would help. As an experiment,
I tried putting each description in the path on a separate line, nicely indented. Program readability
improved, but the resulting program display used up far too much screen space. Some compromise
program display format, which used up less screen space but still separated the path components clearly
would probably be successful.

The problem of long paths is inherent in Star. Objects can be highly structured and nested. The path
to an object deep in a structure is long, and the number of ways to describe how to get there is large. The
direct manipulation nature of Star allows the user to circumvent these descriptions by pointing directly to
objects. But the user's intentions in pointing to an object reflect choices from many alternatives.

The implementation of the heuristic which determines the sharing of descriptions in a program
(described in section 4.4) poses another, different sort of problem. The heuristic is that all references to
the same data object in a program will share the same description. The implementation does this by
keeping a table of objects already referenced and their corresponding descriptions, and looking for the
operands of newly recorded program statements in the table. (I will call this table the object-description
table, for convenience.) If the object is already in the object-description table, then the description that
has already been created is used. However, this way of implementing the heuristic requires that hard
pointers to objects be saved, though only for as long as the program is being recorded.

Currently the object-description table is discarded after the user stops recording. A problem arises if
the user adds new steps to the program. New descriptions for the operands in the new steps will be
created, even if descriptions have previously been created for those operands. Since the old object-
description pairs are no longer in the table, the system cannot find the old descriptions. The user must
therefore manually make the new operands refer to the old descriptions after recording the new program
steps.

For example, suppose the records a program which moves a document out of a folder. Later, he adds
a step to the program which moves a different document out of the same folder. The program will have
two  different  descriptions  for  the  same  folder,  since  the  two  parts  of  the  program  were  recorded  at
different times. If the user wants the operands in the two steps to refer to the same description, he must
select one of them, press COPY, and drop the result onto the other operand.



49

Various plausible solutions do not work. The object-description table cannot be kept indefinitely. I
already mentioned in section 4.9 the impossibility of storing hard pointers indefinitely; it was this
problem that led to data descriptions. If the new steps are recorded during a later session than the one in
which the program was originally recorded, or if the original program has been moved or copied to a
different desktop, then the hard pointers cannot be kept.

Another possible solution is to look for an existing description that matches a newly created one. But
this solution also has problems. The new description for the object may not be the same as the old one,
because the object may have moved, been renamed, or otherwise been changed. The original description
for a document Floor Plan may have looked for it in the Building folder, but if Floor Plan were moved
onto the desktop in some program step before the newly recorded ones, then the new description would
specify looking on the desktop, not in the folder.

It would be possible to require the user to run the program up to the point of insertion, as mentioned
in section 3.5. The object-description table could then be set up in preparation for recording new
statements. But this sort of requirement was already rejected because it was inconvenient, and required
setting up data to be as it was at the beginning of the program.

Currently, no better solution to the problem has been found, so the user must be aware of the problem,
and make descriptions be the same when necessary.

Another problem arises with the method used to specify data description. All the supplied ways of
describing a choice of a data object are given on the data description sheet, in menu form. The sheet lists a
number of reasonable possibilities, but is not by any means an exhaustive list of alternate ways of
choosing a data object. If the user would like to choose data in some way not provided on the description
sheet, he is out of luck. Each alternative on the description sheet is backed by an internal algorithm for
doing the choice; there is no way for the user to specify a new alternative and its corresponding algorithm.

It would be possible to provide such a “trap door” into the description mechanism, but then some way
must be provided for programming the algorithm for the new alternative. If the system is powerful
enough, the algorithm could be programmed by example. If not, it could be programmed in the
implementation language of the system or some other programming language, though probably not by the
ordinary system user. Data description alternatives could be tailored to the system installation.

However, the idea of such a trap door mechanism, accessible only to experts, does not fit well with
programming by example and the whole concept of programming by the user. Instead, the system
designer should select the alternatives available on description sheets carefully, and make sure they are
comprehensive enough to satisfy the needs of nearly all users.

4.12 Data descriptions and other programming-by-example systems
Data descriptions, which are a fundamental component of programming by example in SmallStar, do

not appear in other existing programming-by-example systems. However, data descriptions resemble
certain mechanisms used in other systems for specifying data or constraints on data.

The  Juno  geometric  programming  system  (see  section  2.8)  allows  the  user  to  lay  out  points  on  a
screen and then draw line segments, shapes, and figures using those points. The user's actions are
recorded to create a program. A Juno program includes constraints about the points used in the program.
However, unlike SmallStar, the constraints specify relationships between data objects (points), and are not
used to describe the objects themselves. In fact, points have no inherent characteristics of their own, and
become interesting only when they are combined with other points and used to draw shapes and figures.
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A Juno user specifies constraints as he builds a program. Unlike SmallStar's method of providing
default data descriptions, Juno does not try to suggest or guess possible constraints. For example, though
two points may happen to lie on a horizontal line, they are not constrained to do so unless the user
specifies such a constraint explicitly. Automatic constraint generation or suggestion might be useful to the
Juno user, but it might also be a nuisance: Juno has a simple user interface for specifying constraints, and
they are quickly and easily given.

The data base queries found in Query-by-Example (see section 2.10) are also similar to data
descriptions, especially in the way they are used in the PHD programming-by-example system (section
2.11).  The PHD system and other  QBE systems store data  in  relational  data  base tables.  Each row in a
table is a tuple. Using Query-by-Example, the user constructs queries to select sets of tuples from these
tables. The queries specify various constraints on the values of tuples. For instance, in a table of
employees, the user may wish to choose everyone whose manager is Smith. The table will have a column
for Manager. The user would construct a query which selects only those tuples whose Manager value is
“Smith”.

The column headings in a relational table resemble the characteristics of SmallStar objects listed in a
description sheet (for instance, see figure 4-3, a description sheet for a document). A document
description could therefore also be expressed as a PHD-like QBE query. The icons in a folder might be
listed in a relational table as:

Name Version Position
Bryce 14 Oct 1984 2:23:34 1
Zion 12 Jun 1983 1:12:17 2
Canyonlands 16 Dec 1984 9:45:00 3

To choose the document Bryce in the folder, the user would give the query:

Name Version Position
Bryce

PHD queries  resemble data  descriptions.  Description sheets  and PHD queries  are  both used to state
constraints on data. But the menu of alternatives used in data descriptions provides a more flexible
constraint mechanism and a better user interface. In the example given above, to select the last document
in the folder, the user might say something like:

Name Version Position
MAXIMUM

However, the user must know which the special operator to use (in this case, MAXIMUM) in the
Position column in order to retrieve the tuple with the largest position value. The description sheet, on
the other hand, makes this choice visible at all times.

The description sheet shown in figure 4-16 chooses a text string. The sheet includes a switch which
selects whether or not to ignore letter case; such a choice would have to be somehow encoded in a QBE
query. The choice PROMPT, which is present in nearly all description sheets, has no equivalent in the
PHD query mechanism; such description choices, which are not based on data values, cannot be
expressed in QBE.
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Figure 4-16. A text string description sheet.

The PHD system also differs from SmallStar in the way constraints are first given. In SmallStar, the
system creates a default data description when the user first refers to an object. Later, the user can edit the
description if it is incorrect. In PHD, the user always gives an explicit query to select data. If PHD were
more like SmallStar, it would let the user select the data without giving a query, and then propose a
plausible query which would have selected the data the user chose. Such a query generator is a reasonable
addition to the PHD system.
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Chapter 5

Control structure

Programming by example produces straight-line programs in a natural way. A program is a transcript
of sequential actions done by the user. But much of the great power of a computer comes from its ability
to repeat actions many times and to choose what to do based on the result of some test. If such power can
be added to programming by example, then more powerful programs can be written, and programming by
example will become better at automating the user's tasks.

5.1 Control structure constructs
Frequently, certain statements in a program are executed only if some condition is true. Most

programming languages have constructs like the familiar if-then-else.  I  will  call  such  constructs
conditionals.

When a computer programs repeats the same actions over and over (a loop),  it  usually  does  so
because the operands of the actions are changing in some way. Sometimes the loop is repeated until some
condition is satisfied (here called a while-loop),  and  sometimes  successive  values  from  some  set  are
substituted for an operand until the set is exhausted (set iteration).

There are many other kinds of control structure, but I will concentrate on set iteration and
conditionals.

5.2 Control structure in other programming-by-example systems
Not all programming-by-example systems supply control structure constructs. The simpler ones

generally avoid them, but the more complete programming systems make some attempt at providing
control structure.

The Pygmalion system (section 2.3) provides a way of constructing conditionals. To create a
conditional, the user records actions which generate a boolean truth value, and then places the value into a
graphical if-then-else construct. The system then looks at the truth value in the conditional and,
depending on whether it was true or false, records subsequent user actions into either the then or else
branch of the conditional. When the user indicates he has finished recording actions in the conditional
branch, the system then reverts to recording actions in the main-line of the program. To record the actions
for the other branch of the conditional, the user must run the program again, changing the example data so
that the opposite truth value is generated. Thus recording all the alternate paths in a program requires
giving a number of different examples.

Pygmalion also supplies an infinite loop construct, and a separate action that means “exit loop”.
Together these constructs can be used to construct while-loops. Pygmalion has no set iteration construct.

In the Tinker system (section 2.5), conditionals are not inserted explicitly by the user. Instead, the
system notes when two examples for the same program differ in their actions at some point. At the point
at which the user does something different, he is asked to supply a predicate to distinguish the two cases.
Once two program paths have diverged because of a conditional, they do not rejoin. Tinker does not
provide a way of generating looping constructs by example, but the user is free to use the control
structures provided by Lisp.
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The Programming by Rehearsal system (see section 2.6 and figure 2-3) provides conditionals and set
iteration though the true-false performer and the list performer available in its ControlTroupe. But these
control structure mechanisms are not directly connected with the programming by example provided in
the Rehearsal World.

Spreadsheet programs (see section 2.2) can do a sort of set iteration, since they provide ways of
replicating the formula for a particular cell or set of cells. Parts of the formula may be varied in step with
the replication. For instance, if the formula for cell C13 is A2+B13,  then  the  user  may  replicate  this
formula into cells C14 through C20, asking that B13 be varied accordingly, but that A2 be held constant.
Thus, the formula for C14 would be A2+B14, for C15 it would be A2+B15, and so forth. Thus the set
iteration is accomplished by multiple calculations and rules, and not by control structure.

The PHD system (see section 2.11) uses the idea of set iteration heavily. The user chooses a set of
data using a Query-by-Example (section 2.10) mechanism, records a program by example using one
member of  the set,  and then,  using the program, creates  a  homomorphism that  operates  over  the whole
set.  The  designers  of  the  PHD  system  claim  that  this  technique  reduces  the  need  for  conditional
constructs, since much of the time, conditionals are used to choose the data on which to operate.

5.3 Set iteration in early versions of SmallStar
The version of SmallStar described in [Halbert 1981] did not provide any sort of conditionals, but did

supply a simple mechanism for specifying set iteration. In the program window pop-up menu, there were
two commands, for  each  do  …  and … end for each, used to start and end a loop, respectively.
Between invoking these two commands, the user would record the actions he wanted to be inside the
loop. Loops could be nested. The commands provided only one kind of iteration set, namely, all the icons
of a given type in some container (all the documents in a folder, all the file drawers on the desktop. and so
forth).

The mechanism is best illustrated with an example. Suppose the user wanted to write a program to
move all the documents in a folder to the desktop. He would start recording, select the folder, open it,
select any of the documents inside the folder as the example on which to generalize, and then invoke for
each do …  . The system would start building a set iteration loop. Then the user would then move the
document out of the folder and invoke … end for each. The system would close the loop, and execute
the statements in the loop for the rest of the members of the iteration set, which in this case is the rest of
the documents in the folder. Finally the user would close the folder and stop recording. Here is the
program that would be shown in the program window (A is a variable name generated for the folder):

Select A;
Open A;
For each Document B in A do
  Move B to the desktop;
end;
Close A;

When the user closed a loop with … end for each, the system repeated the loop for the rest of the
members of the iteration set. It is also quite plausible that the system might not have done this, and
instead, repeated the loop for the whole iteration set only when the program was run. Executing the loop
for all the members of the iteration set during program recording is slightly more faithful to the intent of
the example, but if that will take a long time, the user may not want to wait for it. For SmallStar, either
choice is reasonable.
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This method of set iteration was easy to understand. But it was not clear how well the method would
work when more ways of specifying the iteration set were provided. I considered the description of an
iteration set to be a form of generalization, and choosing from among multiple kinds of generalization
caused problems when done during program recording. As explained in section 4.7, an ex post facto
generalization mechanism seemed best. If the generalization were to be done after program recording, as
a program editing operation, then it also seemed reasonable to add the control structure by editing the
program after it was recorded, rather than trying to record the control structure in-line. This means that
control constructs themselves are not added in a by-example way, though the statements they contain are
programmed by example.

5.4 Set iteration in SmallStar now
In the current version of SmallStar, set iteration control structure is now always added to a program

after it has been recorded. Iteration sets are specified by editing descriptions through their description
sheets. The user records the program and includes the statements that will be in the body of loop, but
initially records them into the main-line of the program. The user then selects the statements that should
be in the body of the loop, wraps them in a loop, and then specifies which description is to be used for the
iteration set. The details of this procedure are described below in an example.

In  chapter  4  I  described  data  descriptions,  and  implied  that  a  data  description  searches  for  a  single
data object that matches the given description. In fact, this is not really true. The data description actually
generates the set of all the objects that match the description, but in most cases only the first object in the
set is used. The description is ordered in some reasonable way. For instance, a request to find the newest
version of the document Fishing Treaty will actually generate a set of all the documents with that name,
ordered from newest to oldest.

Most description sheets provide ANY as one of the possible ways of choosing a data object (see, for
instance, the description sheet shown in figure 4-3). For single objects, this choice is not terribly useful.
For instance, on a description sheet for a document in some folder, ANY means any document in that
folder. But since the description would actually generate a set of all documents that match the given
constraints, ANY would actually generate a set of all the documents in the folder. The resulting set can
then be usefully used in a set iteration.

As an example, consider the simple move program discussed in section 4.4. The program moves the
document Treaty out  of  the Negotiations folder. Suppose the user instead wished to move all the
documents out of the Negotiations folder.  (In Star  it  is  possible  to  select  consecutive icons in a  folder
and move them simultaneously, but this feature has not been implemented in SmallStar.) The user would
start out by recording a program that just moved one document out of the folder. The program is given in
figure 5-1. Then, the user would edit the description for the document, selecting ANY document in the
folder (figure 5-2). The resulting program is shown in figure 5-3.

The user wants to repeat the Move statement for all documents in the folder. He first wraps the Move
in a set iteration loop, by selecting the Move statement, and then invoking the command Repeat …  from
the program window pop-up menu. The program then looks like figure 5-4. The set iteration loop is
present, but the set to iterate over has not yet been specified, hence, there is a blank space labelled -fill
this in-.  The  user  selects  the any document description, presses MOVE or COPY to produce another
reference to that description, and drops the reference into the blank, yielding the program shown in figure
5-5. When this program is run, it will create a set containing all the documents in the folder, and then, one
by one, move the documents out of the folder onto the desktop.
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Figure 5-1. Program to move one document out of a folder

Figure 5-2. Description sheet for any document in a folder

Figure 5-3. Program to move any document out of a folder.
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Figure 5-4. Adding the set iteration loop.

 Figure 5-5. Program to move all the documents out of a folder.

No variable names are introduced in the program using this set iteration technique. There is nothing
like the D in For each document D in Negotiations do …  . Sharing descriptions substitutes for this use
of variable names.

This method of doing set iteration is quite convenient, though it does require that the user read and
understand the program to decide which statements should be in the loop body, and which description
will be used to generate the iteration set.

5.5 Conditionals and programming by example
Conditionals are inherently difficult to provide in a programming-by-example system. Programming

by example naturally produces straight-line programs. When the user goes through an example that is
being recorded, he is tracing a single thread of control through the program. But a conditional is a fork in
the program graph, and only one fork at a time can be taken. For example, if an if-then-else construct is
provided, when does the system record both branches? Recording one and then the other consecutively
(say, then first and else second) may not work, since the code for then may  change  the  state  of  the
user's world enough so that the else code could not be recorded. To avoid this problem the system could
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save the state of the world before recording the then code, and restore it before the else code was
recorded. But this also may not work. The predicate evaluated to either true or false, thus selecting then
or else.  It  may not  be possible  to  record the code for  the other  branch of  the if,  given the result  of  the
predicate.

One solution is to record only the branch selected by the predicate. This is what is done in Pygmalion
and Tinker, as described in section 5.2. The program is incomplete until the other branch is recorded, and
another example must be given that will cause the predicate to produce the opposite value.

Another possibility is to allow only if-then constructs, or some kind of case construct in which each
case tests an arbitrary predicate. The user records an if statement or a case whose predicate must be true
when it is given, so that the then code can be recorded. When the user stops recording, the program will
not contain any unspecified paths in its control flow, though it may still be incomplete because it does not
include conditionals for all the necessary cases. It may be impossible to record all conditionals in a single
pass of  program recording,  since it  may be impossible  to  make all  their  predicates  be true at  once (for
instance, some may be negations of others). So the user must be able to edit an already recorded program
to add new conditional statements.

Regardless of what method is chosen, it will probably be necessary to give several examples to cover
all program paths. That is the penalty of programming by example.

5.6 Conditionals in SmallStar
Because of the problems mentioned in the previous section, I did not attempt to provide a conditional

mechanism in early versions of SmallStar. In addition, Star itself, without extensions, has no way of
expressing predicates which could be used in conditional statements. So I had to add a way of specifying
predicates as well as a control structure construct for conditionals.

In the current version of SmallStar, the control structure for conditionals is added after the program
has been recorded,  just  as  with set  iteration,  as  explained in section 5.4.  In fact,  I  originally thought  of
adding control structure by program editing only for the set iteration construct, and only subsequently
realized it could be applied to conditionals as well.

Conditionals are added in a way that is quite similar to the method used for set iteration. The user
records a program first, and includes the statements that will be in the body of the conditional. After the
program is  recorded,  the  user  selects  the  statements  to  be  executed  conditionally,  and  wraps  them in  a
conditional. The user then edits the conditional to specify the predicate to be tested. If the predicate is a
simple comparison, it can be expressed directly in the conditional. If it is a more complicated test, the user
can record extra statements just before the conditional to compute the value of the predicate, using the
relational and boolean operations provided by the calculator. Since the user can add extra statements to a
program after it has been recorded, more conditionals and the statements they control can be added to an
existing program, if there are more conditions to test.

I will illustrate this mechanism with an example. Suppose a customer's order is sent by first-class mail
if it is under one pound, but by fourth-class mail otherwise. A mailing instructions form has already been
made up, which assumes that fourth-class mail is to be used (figure 5-6). The program given here is
probably part of some larger program. The program should open the mailing form, look at the Weight
field, compare it with 1, and change “Fourth” to “First” if necessary. Then it should close the form and
drop it on a printer.
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Figure 5-6. A mailing form.

First the user records the program, assuming that the condition is true. The initial program is shown in
figure 5-7. The user selects the statements that will be in the body of the conditional, as shown in the
figure.  The  user  then  wraps  the  selected  statements  in  an  if  statement,  using  the  If  ...  command  in  the
program window pop-up menu. The resulting program, with its incomplete conditional, is shown in figure
5-8.

Figure 5-7. Mailing form program, before addition of the conditional.

To edit the conditional, the user selects the equal sign (=) in the program and presses PROPERTIES.
Using the property sheet,  the user  changes the comparison to a <, and puts 1 in as the second operand.
Then he selects all the text in the Weight field, and invokes Make Description from the program
window pop-up menu to create a description for the selected text. The description is dropped into the
property sheet as the first operand. The resulting property sheet is shown in figure 5-9. After the user
presses Done in the property sheet, the program is changed to reflect the predicate, and is shown in figure
5-10.

The user could also have produced the predicate using SmallStar's calculator (shown in figure 5-11.).
The calculator has relational and boolean operations as well as simple arithmetic operations. The user can
compute a boolean value by inserting extra steps that perform calculator operations before the if
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statement, and then editing the if statement so it tests the truth value generated in the calculator. This
program is shown in figure 5-12. 'Yes' and 'No' are Star's way of saying true and false.

Figure 5-8. An incomplete conditional.

Figure 5-9. The property sheet for the conditional.
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Figure 5-10. Completed mailing program.

Figure 5-11. The calculator window.

Originally, the calculator was used only to create predicates. The if statement only tested values for
being equal to 'Yes', and the value tested was almost always the Result field in the calculator. However,
the resulting programs were quite hard to read, as can be seen in the figure. So I implemented the more
flexible way of specifying predicates, described at the beginning of this section, which is akin to a syntax-
directed editor.

Further additions could be made to conditionals. The calculator could be used to specify the predicate
expression, but the resulting computation expression could be displayed algebraically, and not as a
sequence of calculator commands. This would improve readability greatly. Or, the conditional property
sheet could be enhanced to allow more complicated expressions.
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Figure 5-12 Mailing program written using the calculator.

The problem of when to record the statements to be executed conditionally, as discussed in section
5.5, is present, but is not much of an annoyance. In the example given, the conditionally executed
statements were recorded when the main-line of the program was recorded, but they could have been
added later to the program. Since the user is free to add statements at will, he can set up the state needed
to record some conditionally executed path after he has recorded other parts of the program.

5.7 Other control structure
While-loops are not provided in SmallStar, but could be added easily. The body of the loop would be

wrapped in a while statement just as with set iteration and conditionals. A predicate could be specified as
is done for conditionals.

Procedure calls are another kind of control structure, not yet mentioned. When a procedure is called,
arguments are passed to it, it is invoked, and then results are returned from it. SmallStar allows existing
program icons or buttons to be invoked while a program is being recorded, but no simple way of passing
arguments explicitly has been implemented. The data to be passed can be left in known places, so that for
instance, a called program that computes shipping charges based on some weight would know to look in a
field in a particular document for its input, and would, by convention, leave the computed charges as
output in another field in the same document.

One can imagine several different methods for argument passing. In a called program, operands could
be parameters. The descriptions for those operands would specify whether the operand was an input or
output parameter, and what position the parameter was in (first, second, third parameter, etc.). When a
program was called during program recording, the user would select the objects to be passed as
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parameters, one by one, and the recording mechanism would build an argument list consisting of the
descriptions for the selected object.

Another possibility would be to provide input and output parameter slots associated with a program.
A program icon or button would have parameter fields and frames attached to it. Before running the
called program, the user would move the input arguments to these input slots. After running the program,
the results would appear in the output slots and could be moved somewhere else.
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Chapter 6

User trials

6.1 Purpose of trials
The ultimate goal of the research described in this dissertation is to show that it is possible to build a

practical, usable programming-by-example system. One can state that SmallStar is a demonstration of a
practical system, but the real test is to see whether it can be used by its intended audience. This chapter
describes a set of trials of SmallStar by experienced Star users who are potential users of a programming-
by-example mechanism in Star.

Ideally, programming by example should be compared to other kinds of programming to see whether
it is easier to learn and use. However, it would be very difficult to design an experiment to test this which
would yield meaningful quantitative results. One plausible experiment would compare programming in
the Star programming language Cusp (see section 3.3) with the programming-by-example mechanism in
SmallStar. Pools of subjects would be trained to use both systems. Their speed of learning, error rates,
ability to program specified tasks, and so forth would be compared.

However, there are a number of variables in such an experiment which would be difficult to control.
The instruction used to teach the two different systems must be similar in quality and approach. The
functionality provided by the two programming systems must be similar. The tasks the users are asked to
do must be realistic, and must not accidentally favor one programming method over the other.

Performing such an experiment is beyond the scope of my research. The number of subjects needed to
produce statistically useful results is unknown and potentially large. Cusp and SmallStar are currently
sufficiently different in functionality that a particular task is much more suited to one than the other.
Bringing them closer together would have required much more programming. It was more interesting and
fruitful to spend the time evolving the SmallStar programming-by-example mechanism than to bring it
closer to Star and Cusp.

Instead of attempting such an experiment, I elected to evaluate SmallStar programming by example in
a more quantitative, subjective way. Discovering whether users perceived programming by example to be
easy to use was just as interesting as finding out whether it actually was better than conventional
programming. So a number of Star users were taught how to use programming by example in SmallStar,
taken through a few sample tasks, and then asked to produce similar tasks on their own. Along the way
they were questioned about their understanding of programming by example, how easy they found it to
use, and what problems they encountered. I called these tests user trials rather than experiments, to
emphasize their non-rigorous nature.

Other kinds of experiments could be done, which would answer questions about the success of the
individual design decisions made in SmallStar. The programming-by-example functionality in SmallStar
could be implemented in different ways, and those ways compared. For instance, the user could be
allowed to edit data descriptions only while the program was being recorded. Or, the user could be
required to specify control structure during program recording, rather than inserting it by editing
afterwards. These experiments would test the hypothesis, now assumed to be true, that such operations are
better done after the program has been recorded. Methods for presenting data descriptions in formats
other than description sheets could also be tried, to see whether one method is more or less
understandable than another.
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These sorts of experiments would be useful for fine-tuning the user interface to a programming-by-
example mechanism, but of course would not show, by themselves, whether or not programming by
example is useful.

6.2 The trial users
User trials were done on five employees of the Xerox Office Systems Division. The users will be

named A, B, C, D, and E. All are experienced Star users who use Star in their daily work. In no particular
order, one is a product planner, one a technical writer, one a secretary, one a project manager, and one a
Star  consultant  who  helps  others  learn  and  use  Star.  All  will  be  referred  to  as  “she”,  though  there  was
actually a mix of men and women.

Surprisingly, no user tested was without programming experience. User A had not taken any
programming courses, but had done some exercises in a book that taught simple programming in terms of
commanding a robot. B had just started a beginning Pascal course. C had taken courses in PL/I, COBOL,
and BASIC, but had not done any programming outside of school. D had taken a programming courses
two decades ago, and has since written a few BASIC programs. E had taken a Pascal course and a course
in algorithm design and data structures.

Some, but not all of the users had attended a talk I gave on programming by example and SmallStar.
However, during the trials, none of those who saw the talk referred to something I was teaching them as a
detail they remembered from the talk.

6.3 Procedure
Each user trial took place in a quiet cubicle, with a minimum of interruption. Because of logistical

difficulties, no audio or video tape records of the trials were kept; I took notes instead. I spent between an
hour and two hours with each user. The user always manipulated the keyboard and mouse; I told the user
what to do, and did not take over the input devices when demonstrating something.

The trial started with an introduction to SmallStar, its functionality, and how it is similar to and
different from Star. The keys on the keyboard are in different places, so that was pointed out, and the
difference between Star and SmallStar documents was shown. Property sheets for text and icons were
demonstrated.

I walked the user through the recording of a simple program which moved a document with a
particular name out of a folder, similar to the program shown in figure 3-5. The user saw how the
program transcript was built up as her actions were being recorded.

I then asked the user to record a program that moved the first document out of a folder. This task is
exactly the one shown in figures 4-2, 4-3, and 4-4. The user was shown how operands in the program
could be selected, how several operands could correspond to a single data description, and how
descriptions could be modified using description sheets. I asked the user to write a simple program using
the knowledge she had already learned, such as deleting the last document in a folder.

Set iteration and conditionals were covered next. I showed the user how to add a set iteration loop to a
program  that  moved  a  document  out  of  a  folder.  The  steps  for  this  program  are  shown  in  figures  5-1
through 5-5. I then took the user through the construction of a program with a conditional, using the
example shown in figures 5-6 through 5-10.
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At this point, rather than supplying another fixed task, I asked the user to think of a task she would
like to try to program. If there was time, I also took the user through the order entry example shown in
figures 4-6 through 4-9.

Finally, I asked each user what her general impression of the system was, and whether she would find
it useful if it were present in the real Star system.

6.4 Observations
The user trials were quite encouraging. Most users understood the concepts presented during the trial

without much trouble. Conceptual blocks did not persist for long. A number of users had comments and
criticisms about details of the user interface, but few provided comments about the basic ideas of
programming by example and the techniques used for data description and control structure.

I had given a number of demonstrations of SmallStar previously, and expected difficulty with certain
features. In particular, the Make Description Different and Create Description commands,
described in sections 4.4. and 4.5, respectively, had been stumbling blocks in the past. But surprisingly,
no users during the trials had any difficulty understanding what the commands did. Long paths, as
mentioned in section 4.11, were a problem during the demonstration and to some extent, during the trials.
Also,  Star  users  do  not  know the  pictographs  in  figure  3-6  that  are  not  pictures  of  icons,  and  so  some
SmallStar users found them hard to comprehend.

Following are detailed comments on each user's trial:

A: User A had no trouble grasping the concepts presented. A did find description paths difficult to read,
because of their left-to-right nature: the object of ultimate interest was far away from the action. A
found the use of the word any, as used in descriptions for set iteration, confusing; she would have
preferred every or all. She thought of and started to program a form letter application, but was
unfortunately stymied by a bug in SmallStar (subsequently fixed).

A was somewhat familiar with the Cusp programming language used in real Star, but disliked it
because she found it too easy to type something that was incorrect. By contrast, she liked
programming by example because it did not require her to remember programming language syntax.
She found herself motivated to create programs because of the speed and ease of use of the
mechanism. She said that debugging was “fun”, and also remarked that “even if the program has
bugs, part of it always works”.

B: User B had some difficulty understanding set iteration. B started to write a program for a task she had
in mind before formulating the task clearly; as a result she became stuck in the middle, and had to be
coached to state clearly what it was she wanted to accomplish. Some of the tasks she wanted to
program were unprogrammable because the data descriptions did not provide enough choices (for
instance, she wanted to be able to choose the two newest documents in a folder).

B was inclined to edit an existing program into a new one, by deleting and adding steps. She had
some difficulty doing so because of the limited program editing SmallStar provides. She later
commented that she would in some cases prefer just to type in the commands rather than record them,
and found the programming pop-up menus and recording occasionally tedious to use.

C: User C used the single-stepping commands in the programming window a great deal in order to try
out small parts of programs. She could read and understand description paths, but would have
preferred a more pictorial approach, especially for the descriptions of parts of tables: she suggested
larger pictographs with the descriptions contained within them. C thought of a simple icon
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manipulation task and programmed it easily. We also went though the order entry example, which she
understood with no trouble. C found herself mentally translating descriptions to the corresponding
real objects; she would have liked a command that did this for her.

D: User D had little trouble with most concepts. She found the separate single-stepping commands 1st
Step and Step somewhat confusing. Since steps in a program could be deleted, she expected other
kinds of programming editing to be possible. She wanted to see the list of possible descriptions,
perhaps displayed in a pop-up menu, that could be used to fill in the -fill this in- blanks found in
control structure and description sheets (for instance, see figure 5-4). Like user C, D found paths hard
to read, and would prefer larger pictographs with their descriptions inside.

D constructed a program to merge the text from two documents into a single document. The program
had two errors in the middle, and D was able to correct them by deleting a step and inserting two new
ones, after a small amount of coaching.

D considers programming by example to be an “essential” capability for Star. Though she finds the
programming-by-example mechanism complex in places, she feels the complexity is necessary for the
power it provides.

E: User E understood every concept with no misunderstandings. She did not object to the current form of
paths, and found them easy to read, but would prefer a slightly more graphical approach for paths to
parts of tables. She said she found conditionals easy to understand because of her programming
experience. E could not think of a program to write, so we went though the order entry application,
which she understood perfectly.

6.5 Results
The user trials can be considered to be successful. None of the users had any difficulty understanding

the basic concept of programming by example. Given surprisingly little instruction, most were able to
comprehend and use all the concepts presented. Users had no trouble understanding data descriptions or
the idea that one data description could be used in several places in the program.

The choices available on certain data description sheets could be improved. Some users were stymied
when they could not describe a certain object or set of objects.

Some users had difficulty with set iteration, but this seemed to be a result of the awkward use of the
data description choice any. In retrospect, it would be better if data descriptions indicated more clearly
when they were being used to generate a single value, and when they were intended to choose a set.

Most users wanted an undo facility, so they could back up one or more steps in the program if they
had made an error.

All the users tested were enthusiastic and said they would definitely use programming by example if
it were available in Star. They did not consider it too difficult to learn or use. The trials were too brief to
be able to ascertain what limitations they might encounter while trying to program other tasks by
example. Nevertheless, their uniform enthusiasm and acceptance of the idea of the system is the most
telling result. It means that programming-by-example mechanism functionality like that in SmallStar, if
expanded and added to the real Star system, would be accepted and used by a large number of Star users.
The ordinary Star user would then be able to program Star.
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Chapter 7

Discussion and conclusions

7.1 Summary of work; principal contributions
The original motivation for the research described in this dissertation was to explore programming for

the non-programmer. Programming by example seemed to be the most promising direction to take; I
wanted  to  show  that  it  could  be  a  practical  technique  for  letting  the  user  of  a  system  write  his  own
programs easily.

I started my research into programming by example by adding a simple programming-by-example
mechanism to SmallStar, a simulation of icon user interface of the Xerox Star office information system.
Because the resulting programs operated only on constant data, and did exactly the same thing each time
they were run, I added the notion of generalization to the programming-by-example mechanism. The
programmer could generalize a data object that had been a constant; when the program was run again, the
system would choose some (possibly different) object that matched certain characteristics of the original.
A simple set iteration mechanism was also added.

I then spent some time adding many more Star features to SmallStar, so as to be able to write more
realistic and varied programs by example. The somewhat vague notion of generalization evolved into the
concept of data description. The system created a data description for every object used while recording a
program. A data description contained specifications for choosing an object when the program was run;
the system supplied a reasonable default specification in each description it created, but if the
specification was wrong, it could modified by the user. Control structure could be added to a program by
editing, after the program had been recorded; I implemented set iteration loops and conditional
statements.

Finally, I tested SmallStar by teaching it to a number of experienced Star users, to see whether they
found the system usable and useful.

The research described in this dissertation produced three notable contributions to the study of
programming by example:

• The notion of data description is useful: data descriptions search for and select the data to be used
each time a program is run. They let the user say why he chose the data he did when he created a
program by example, by providing a mechanism that indicates which characteristics of the data
are important.

• Certain programming operations, such as adding control structure, are better done after, rather
than during program recording. The operations can be easily accomplished by program editing, if
the programming mechanism provides the user with a readable static representation of the
recorded program

• A practical system for programming by example can be incorporated into a richly functional,
commercial software system.

The first two contributions are techniques that can be used in programming-by-example systems; the
last contribution is a goal, not a technique, that was met with the help of the first two ideas. Much of the
rest of this chapter discusses various aspects of programming by example and how these contributions
relate to them.
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7.2 Syntactic and semantic programming by example
A programming-by-example mechanism can be included in many different kinds of systems.

However,  it  seems  easier  to  add  programming  by  example  to  some  systems  than  to  others.  Text  editor
macros, such as EMACS keyboard macros (section 2.1), and the typescript programs provided by
Exemplary Programming (section 2.7) both have straightforward programming-by-example mechanisms,
because they simply keep a transcript of the user's keystrokes. Compare this with the mechanisms in
Pygmalion (section 2.3) and SmallStar, which must go to some trouble to record the user's actions; they
must interpret the user's keystrokes and mouse-button clicks in terms of the objects in the Pygmalion or
SmallStar worlds.

These two categories of systems illustrate the difference between syntactic and semantic
programming by example. A syntactic programming-by-example system records the user's actions in the
form in which they were given; a semantic programming-by-example system is more interested in the
meaning of what the user does.

Typescript systems like those mentioned above lend themselves to syntactic programming by
example, while direct manipulation systems such as Star need semantic programming by example. There
are several reasons for this difference.

In  typescript  systems  it  is  possible  to  record  the  raw user  input,  play  it  back,  and  have  the  system
perform the same task. In direct manipulation systems, the raw user input consists of pointing as well as
keystrokes. Some commands may be invoked from the keyboard, but others will be invoked by pressing
“buttons” on the screen, pointing at items in menus, or directly manipulating (for instance, moving)
objects on the screen. Simply adding information such as cursor position or mouse movement to the
program transcript will work only if objects and commands always appear in the same place on the
screen, which is unlikely. Instead, the system must look a level deeper than the raw user input, and record
what commands were invoked, not just what keys were pressed.

Second, and more importantly, typescript systems refer to objects explicitly, by name or by
description. A denotation for an object is included in the typed command. For instance, filenames and
filename patterns are common operands in operating system executive languages. When a programming-
by-example mechanism records commands in such systems, it need not understand what the meaning of
the syntax is; it merely has to record the syntax.

In contrast, one usually refers to objects in direct manipulation systems directly, by pointing to them.
There is no need, and frequently no opportunity, to give a description for an object. Since objects and
many of  their  characteristics  are  visible,  it  is  easier  for  the user  to  search for  an object  visually than to
give a description that denotes the object. The user does not need to communicate the mental description
he is using to the system; the mental description substitutes for the explicit description the user would
have given in a typescript system.

If the programming-by-example mechanism in a direct manipulation system records the user's actions
only in a simple syntactic way, the transcript will lack some crucial semantic information. The
mechanism must therefore also record the user's intentions even though he has not stated them explicitly.

This recording of the user's intentions can be done in several ways, as was discussed in section 4.2.
The system can require the user to state his intentions explicitly, it can use inductive inference, or it can
make informed guesses as to what the user means, and let the user correct the guesses if they are wrong.
SmallStar implements the last choice, using data descriptions to record the user's semantic intent. Data
descriptions substitute for the descriptions that would be given in a typescript system; they are
denotations for objects.
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These contrasts between typescript and direct manipulation systems only illustrate the differences
between syntactic and semantic programming by example; they do not define them. Other systems fall in
between these two extremes, and combine aspects of both kinds of programming by example.

The Tinker system (section 2.5) combines aspects of both syntactic and semantic programming by
example. Tinker understands the structure of Lisp functions. It knows they consist of nested function
applications which return values. Tinker lets the user build Lisp functions in terms of these components; it
does not just blindly record what the user types in. On the other hand, Tinker does not try to understand
the meaning of each function call. Thus, Tinker does semantic programming by example to help the user
build a function out of function calls, but does a sort of syntactic programming by example when
recording the individual components of the function.

Pygmalion (section 2.3) is a direct manipulation system, but the semantic aspects of its programming-
by-example mechanism are not as complex as those of SmallStar. The Pygmalion system has graphical
cells which can contain numbers. When the user uses or changes the contents of a cell, the system always
records  a  constant  reference  to  the  cell  itself,  not  to  its  contents.  (Section  4.3  discusses  the  differences
between referring to data directly, and referring to it in terms of its container.) For instance, if the user
moves the number 5 from one cell to another, the operation recorded will always refer to the two cells,
not  to  the  number  5.  Because  of  this  uniform  way  of  referring  to  data,  Pygmalion  does  not  need  a
mechanism like SmallStar data descriptions. On the other hand, choosing a cell at run-time is
correspondingly more difficult; the user must record an explicit computation that makes the choice,
instead of using a data description.

The differences between syntactic and semantic programming by example provide a convenient way
of classifying programming-by-example systems. Many systems will mix the recording of syntax and
semantics. Separating the two when examining a system, or when considering the design of a new system
will help clarify what functionality is really being provided by the programming-by-example mechanism.

7.3 Creating the program: recording vs. editing
The fundamental idea of programming by example is simple: the user creates a program by giving an

example of what he wants the program to do. The system records his actions; the resulting transcript is the
program.

Clearly, SmallStar does not use pure programming by example. Certain parts of the program are
specified, not during recording, but afterwards, by editing an already recorded program. SmallStar data
descriptions are constructed by the system while the program is being recorded, but the default
descriptions the system chooses may be wrong, and it is up to the user to edit and correct the data
descriptions  after  the  program  has  been  recorded.  In  addition,  all  the  control  structure  in  a  SmallStar
program is added after the main-line steps in the program have been recorded.

It is a mistake to try to do everything by example. Programming by example is best at recording serial
user actions. When it strays from this best use, the serial nature of the mechanism may intrude and make
certain tasks awkward. If the user must give many commands related only to program recording, or if he
must change or augment the manual steps of a task in order to record it, then one of the virtues of
programming by example will be lost: recording the example will no longer be similar to doing the same
task by hand.

It  is  therefore  better  to  let  the  user  record  the  program  in  as  straightforward  a  way  as  possible.
Complications such as adding control structure or specifying exactly how the program should choose its
data should be done after the example is given, so that the user can concentrate on recording the
algorithmic steps of his task. In earlier versions of SmallStar, data descriptions and control structure were
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done in a more by-example way. The user specified data generalizations (section 4.7) and indicated the
boundaries of set iteration loops (section 5.3) as he was recording the program. But doing these parts of
program creation during recording was awkward, and now these tasks are done by editing, rather than
during program recording.

A few programming-by-example systems are able to combine recording and program editing, because
they are willing to re-execute parts of the program every time a change is made. Juno (see section 2.8)
and the Build system for dynamic program building (section 2.9) are examples of such systems.

A  program created  by  example  in  the  Juno  system describes  a  static  geometric  figure  on  a  display
screen. Each time the user modifies the program, by adding, modifying, or deleting an operation or a
constraint, the program is run again, and the figure is redrawn.

In the Build system, the user types in statements in a BASIC-like language, which are executed
immediately. If the user starts to delete or insert statements in an existing part of the program, the
program is re-executed from the beginning, and then is stopped at the point just before where the editing
is to take place. Rerunning a program, can of course, take quite a while.

Both Juno and Build must be able to restore the objects their programs can change to their original
states before rerunning a program. For Juno, this is a simple matter of clearing the screen. But Build must
keep snapshots of its world or undo what the program has done. Saving and restoring state is discussed
further in section 7.4; it is impractical for many real-life systems.

Combining program editing with recording is attractive, but it will be feasible only with certain
systems. If rerunning a program every time a change is made is time-consuming or impractical, the
system will have to rely on more conventional program editing.

If some part of program creation is done by editing, there must be something to edit. The program
must be made visible to the user. One way is to display dynamically what the program does by letting the
user single-step the program; the user can stop and edit when necessary. But for other than very simple
programs or systems this will be awkward. The user needs to be able to view the whole program, to see
what actions are being enclosed in what control structures, and to see quickly what data is being used
where.

Program editing therefore implies the system must provide some human-readable static program
representation. Designing a concise and comprehensible program representation is a major part of the
design of a programming-by-example system.

7.4 Real and contrived examples
When a user decides to write a program by example, he may wish to supply his example in a tentative

way. If his example does not work for some reason, he may not want his actions to have damaged any real
data, or to have performed any undesirable or irreversible actions. Such caution may not be necessary if
the program being recorded is straightforward. Indeed, one of the goals of programming by example is to
make it more likely for a program to work the first time. Nevertheless, the user may want to be careful
when executing his example. For this reason, the user may prefer to give a contrived, “made-up” example
while recording the program, rather than incidentally performing the task he wants to do on real data as he
records it.

There  are  several  ways  to  attack  this  problem.  The  user  can  avoid  using  real  data,  the  system can
suppress undesirable side effects while a program is being recorded, or the system can provide a way of
saving and restoring the state of its world.
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To avoid mangling real data, the user can manufacture some sample data, either by creating some
data that resembles the real data accurately enough to be used in a recorded example, or by making copies
of already existing real data, and manipulating the copies to avoid damaging the originals. (In fact,
creating some sample data may be necessary if the user is writing a program to be used in the future, but
for which he has no immediate application and no data to manipulate.) The distinction between “real” and
“made-up” data is entirely in the user's mind; the system cannot tell the difference.

The undesirable side effects mentioned here are generally actions that produce effects outside the
user's world; they are actions he cannot retract or undo easily, or which may interfere with other users. In
the Star system, such actions can merely be annoying, such as printing a document the user does not
really want printed, confusing, such as automatically sending mail to other users which may be
inappropriate, or really damaging, such as changing files that are shared with others. Such unwanted
actions can be prevented by turning them off while a program is being recorded or tested. For instance,
the user would move a document to a printer icon, but nothing would actually be printed. Changes in a
shared file would be visible only to the user who made them, and so on. But the system would have to
indicate clearly to the user when he was in such a “safe” mode, to avoid confusion.

A third way to prevent the user from mangling his world is to provide a way to restore its state to
some previous time. Before the user started to record a program, the system would checkpoint, or take a
snapshot of the state of its world. The user could restore his world to the saved state if he made an error or
simply wanted to undo the effects of the example he gave. An alternate way of accomplishing the same
task is to remember each command the user executes, and to provide a way to undo these actions, step-by-
step. Such a facility would of course be generally useful, both during normal operation of the system,
during program recording when the user wished to back up a step, and during the recording of an example
the user later wished to retract.

However, in many systems, checkpointing is impractical, because large amounts of state must be
saved. A complete undo facility may be similarly difficult to provide, since some operations might require
saving too much state. In the real Star system, both checkpointing and undo are unimplemented.
Checkpointing the contents of a user's desktop is possible, but one cannot checkpoint the entire state of
the external things to which the user has access, such as objects stored on shared file servers. There is an
UNDO key on the keyboard, but it presently does nothing. Implementing an undo mechanism in SmallStar
would have been possible, but it would have taken quite a while, and so I did not choose to take the time.
So I have not done any empirical tests on these ideas, and leave them for future research.

7.5 Adding programming by example and SmallStar techniques to other systems
Programming by example is a concept which can clearly be applied to many different systems. The

number of systems described in chapter 2 confirms this. However, if a system designer would like to
incorporate programming by example into a new or existing system, there are a number of design
decisions to make.

The  first  thing  to  consider  is  whether  simple  syntactic  programming  by  example  will  suffice.  For
systems such as an operating system executive or a small data base system, a simple typescript
mechanism such as EMACS keyboard macros (section 2.1), or a parameterized typescript mechanism
such as the one used for Exemplary Programming (section 2.7) may be all that is necessary. Even for
richly functional direct manipulation systems, syntactic programming by example may be quite suitable
for use in creating animated tutorials and automating very simple tasks. Syntactic programming by
example is especially good for reducing long, frequently used sequences of keystrokes to single
commands. If some non-programmable action needs to be done in the program, such as choosing among a
set of alternatives, the program can instead pause and let the user do it. As long as the user understands
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that the mechanism is just substituting for the input devices of the system, syntactic programming by
example is an effective

However, if the system designer would like to give the user a more sophisticated programming
capability or if syntactic programming by example is not suitable , the recorded program must include
some semantic information as well. The techniques used in SmallStar can be applied in many cases.

Consider, for example, a symbolic algebra system with a direct manipulation user interface. In such a
system,  the  user  can  select  parts  of  expressions,  and  ask  that  they  be  transformed  in  some  way.  For
instance, the user could select the denominator in a rational function, ask for it to be factored, then select
the whole function and ask that it be simplified by canceling like terms in the numerator and denominator.
Data descriptions would be well suited for describing the expressions the user chose. Including
sophisticated pattern matching in the data description mechanism would also be useful. Suppose the user
were trying to move all terms containing y2 to one side of an equation; a data description could be used to
describe the set of such terms.

Sophisticated data descriptions can also be used in more mundane applications, such as text editors.
SmallStar provides relatively simple data description choices for text strings (see figure 4-16, which
shows a text string description sheet). But a system whose major purpose was to manipulate text would
provide many more ways of choosing text strings. The data descriptions in such a system would allow
choices  as  varied  as  all  the  text  between  two  patterns,  the  third  word  in  the  fourth  paragraph,  all  text
strings beginning with “Samuel”, and ending with, but not including a carriage return, and so forth.

Data descriptions could also be used to augment syntactic programming by example systems, in order
to increase their power. An operating system command language usually includes a pattern matching
mechanism for file names. In a programming-by-example system built on such a language, the pattern
mechanism would be used instead of data descriptions to select files. But if the mechanism were
inadequate, data descriptions could supply more flexibility without changing the command language.
However, the existence of two ways of searching for files, one in the command language, and one in the
programming-by-example mechanism, would probably confuse the user, and so, if possible, it is probably
better to augment the command language.

Data descriptions are a powerful notion by themselves, and do not always need to be used in
conjunction with programming by example; they could be used in other programming systems that do not
provide programming by example at all. For instance, one can imagine a system like SmallStar in which
the user creates the program, not by example, but by typing it in or using a syntax-directed editor. Special
data description objects would be inserted in the program text, and could be edited just as they are now in
SmallStar.  Such  a  system  would  not  be  as  convenient  to  use  as  SmallStar,  and  would  not  provide  the
advantages of programming by example, but it would be as powerful.

A system with data descriptions but without programming by example might also be easier to
implement. If programming by example is not designed into a system from the start, it may be difficult to
implement. Intercepting the user's actions in order to record them, at a level other than the raw user input,
may not be easy, and may require a considerable amount of recoding.

The ex post facto methods provided in SmallStar for adding control structure are also applicable to
many systems. They could be used for both syntactic and semantic programming by example. The only
requirement is that the system provide a readable static program representation, so the user can indicate
where the control structure is to be inserted. Small pieces of programs could be recorded separately, and
later combined with control structure. This would probably be more convenient than the current SmallStar
method of requiring that everything be recorded in-line in a single program.
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7.6 Programming by example and conventional programming
So  far,  programming  by  example  has  been  discussed  as  an  end  unto  itself,  as  a  way  of  letting  an

ordinary user program the system he uses. But programming by example can also be a used as a tool to
teach conventional programming in a relatively painless way. If the system records the user's actions and
shows the resulting transcript to the user in a static form (that is, in a programming language), then the
user will be able to see that certain actions map into certain programming language constructs.
Eventually, the user should be able to remember these mappings, and write programs himself without
needing to use the program recording mechanism. If good user interfaces for conventional programming
languages were built, programming by example might be an excellent way to teach beginners how to
program.

Interactive programming systems such as Lisp, Smalltalk, and APL are close to this goal. They allow
programmers to try out small pieces of programs quickly and, see what they do.

Programming by example could also be used as an adjunct to conventional programming, even by
professional programmers. Many parts of a program could be written by example much more quickly than
by hand. The programmer's time could be spent more constructively on the difficult parts of the program.
Producing code by example would also reduce errors, since creating the code would include testing it on
an example.

If a programming-by-example system were built for creating programs in some conventional
programming language, data descriptions would probably not be included. Data descriptions substitute for
code that would normally be included explicitly in a program written in a conventional language (see
section 4.8, which discusses this point with respect to generalizations). However, the ex post facto method
of adding control structure would be useful in such a system. Bodies of conditional statements and loops
could be recorded separately and later merged into the program when control structure was added.

7.7 Conclusions
The research described in this dissertation was motivated by a long-term goal of mine: making

computers easier to use. Making programming easier is a part of this goal; I want to enlarge the
community of people who can program computers. In this research I have concentrated on programming
by  example,  a  technique  that  lets  a  user  program  a  system  in  its  normal  user  interface,  by  giving  an
example of what the program should do.

To explore the promise of programming by example, I incorporated it into a simulation of a richly
functional system with a modern user interface. Doing so meant evolving new techniques, most notably
data descriptions and the addition of control structure by program editing. Finally, I performed trials on
potential users to see whether the resulting system could really be used and learned.

This research has demonstrated that programming by example is a viable method of programming by
the  user  that  can  be  applied  to  real  systems.  The  techniques  used  in  SmallStar  are  applicable  to  other
systems as well. Programming by example can make the computers and programming more accessible to
more people; that is its ultimate worth.
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