Programming in Constructive Set Theory: Some Examples

Bengt Nordstrom
Laboratory for Programming Methodology
Informationsbehandling
University of Goteborg and
Chalmers University of Technology
S$-412 96 Goteborg, Sweden

Abstract

Per Martin-Lof's Constructive Set Theory is a
mathematical language with computation rules. It is
primarily designed to be a Tanguage for mathematical
reasoning. The language has a very simple semantics
and its rules have a simple structure. Since it is

a language for constructive mathematics, it is pos-
sible to execute the proof (the construction of a
proposition) as a program.

The language can be seen as a programming language
without assignments and other side effects. Compared
to traditional functional languages it has a very
rich type structure in that the type of an expres-
sion can completely specify the task of the expres-
tion. A sorting algorithm, for instance, can be con-
ventionally specified to have a type

sort: List(A) » List(A)

which is type-correct if sort is any function
taking a list as argument and producing a list as
result. It is, however, also possible to specify
that sort is a function taking a list as argument
and producing a sorted permutation of its input
as result, i.e.

sort:(1Ix € List(A)) (xy €List(A))
(Perm(x,y) x Sorted(y))

The type (or the task) of the program can be read
as the proposition

(vx e List(A)) (Jy € List(A) (Perm{(x,y)

& Sorted(y))
which is read "for all lists x, there is a sorted
permutation y of x". We 'can prove that this propo-
sition is true, using the rules of the Tanguage to

construct a program for the task, If the proposition
were not true, it would be impossible to find a

This research was sponsored by Styrelsen for
Teknisk utveckling and Naturvetenskapliga
Forskningsrddet

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 ACM 0-89791-060-5/81-10/0141  $00.75

141

a program for it and we would have had an impossible
task. The types of Constructive Set Theory can be
seen as a specification language for the programs,
but of course there is only one language, avoiding
the complexity of mixing a programming language

with a Jogical lanquage.

The similarity (or rather: identity) between a
mathematical proof of a given proposition and a
program for a given task suggests that programming
should be similar to the mathematicians activity of
finding proofs. We have illustrated this with an
example of how a proof of the Euclidean division
theorem yields a program to compute the quotient
and the remainder between two natural numbers.

The paper contains a description of the language.
Since all programs in the language terminate, the
proof rules and the semantics are simple. We give
some examples of programming with Tists and reasoning
about the programs. We also define the Ackermann
function.

Introduction

Constructive Set Theory is a mathematical language
with computation rules developed by Per Martin-Lof
[ML1, ML2]. The inference rules of the language
explain how to form judgements from known judge-
ments. A judgement of the form

a€A
may be read in several ways:
1) a is an element of the set A.

2) a is a material proof (construction, manifesta-
tion of the proposition A,

3) a is a program for the task A.

4) a is a solution to the problem A.

In this context, we are most interested in the third
reading, but we will also use the first two. The
different readings imply that a proposition A is
seen as the set of all proofs of A and that the
specification of the task of a program is similar

to a proposition. The programmer's activity of find-
ing a program is therefore similar to the mathemati-
cians activity of finding a proof of a proposition.
Similar ideas have been expressed by Takasu[T] and
Goto [G] who derive programs mechanically from con-
structive proofs.

There are two fundamental forms of judgements in
Constructive Set Theory, "a € A" and "A set".



The first means that a is an element of A

and the second that A is a set. If we are not inte-
rested in the construction a for A, i.e. we are only
interested in the assertion that there is a construc-
tion for A, i.e. that A is true, then we will write

A true
instead of a € A,

Another fundamental form of judgement is "a = b € A"
which means that a and b are equal elements of A.

The description of the language will proceed in the
following way. There are different ways of construc-
ting new sets from given sets. We call these rules
of set formation. For each new set we will expTain
how to construct the canonical elements of the set.

A canonical element is an element which has itself
as value. We will call these rules introduction rules.
The next rule is an elimination rule which from an
arbitrary element p of the set explains how to con-
struct a program for the task S{p), where S is a pro-
perty (family of sets) over the set in question.

This rule can be seen as a control structure in the
language. Since the control structure is a non-cano-
nical form of expression, there is an equality rule
which is used to find the value of an expression of
that form. The value of an expression p is a canoni-
cal expression which is equal to p.

We will start by explaining sets which are common as
types in programming languages: finite sets, the
natural numbers, function sets, cartesian products,
disjoint unions and lists. We will then continue to
describe two set forming operations which correspond
to quantifiers in predicate logic, and finally we
will explain well-orderings with transfinite induc-
tion which are essential for implementing tree 1like
data structures (1ists, natural numbers, abstract
syntax trees etc.).

How expressions are formed

Expressions are used to express sets and elements.
There are two different ways of writing an expres-
tion, either by using the concrete syntax or the
proper syntax of the language. The proper syntax of
an expression resembles what McCarthy [McC] calls
the abstract syntax in that all parts of an expres-
sion are essential for its meaning, and that there
is only one kind of separators and terminators which
makes it easy to decompose the expression into its
parts. It is different from the abstract syntax in
that the proper syntax of an expression explains what
variables become bound in different parts of the
expression. The proper syntax is easier to use when
talking about expressions {e.g. in proof rules, edi-
tors, interpreters), while the concrete syntax is
easier to read and write since it allows an expres-
sion to be written in a more traditional way. The
fo110w1ng table contains examples of express1ons
written in the two ways.

Concrete syntax Proper syntax

a+b*c plus(a,times(b,c))
n

3 e, sum(1,n,(i)e)

i=1

[sum,i=1,nle sum(1,n,{i)e)

AX. e A{(x)e)

(vx€ A)B ¥ {(x)B)

142

Proper expressions

A proper expression is either a variable, an appli-
cation or an abstraction.
An application is of the form

e(e1,e2,...,en) ,n >0,
where e is an operator and e »€55...,€ are its
operands. The operator and the opéerands =~ are always
expressions.

An abstraction is of the form

s, n >

(X)3Xps.0.xJe >

where XqseseX, are variables and e is an expression.

If e is an express1on depending on Xq,Xps....Xp,
then the abstraction ( X, )e is an express1on
which does not depend o& x1, ..X . For instance,

the expression (x)xZ does not depend on x, it is the
expression which squares an integer.

An expression e depends on the variable x when x_is is
free in e. A variable is free in an expression in

the folTo owing cases.

- The variable x is free in the expression x.

- The variable x is free in
e(eq,....en) if x is free
sions €,€45...58

the expression

in one of the expres-

ne

- The variable x is free 1in
(x1,...,xn)e if x is free

XpoeoesXy

If g is an abstract10n .. )e then the appli-

cation g(e1, ..,en is thé express1on e with
€15---5€) subst1tuted for Xqse ..,xn in e, i.e.

((X1’--- ,en) 3-..,en/X1,...
so that
((x1,...

the expression
in e and distinct from

2% )

,X PRI n

Finite sets

If 11, T, ,i_, nh > 0 are identifiers then

{igs 0% i is"a sef. The canonical elements of
{iy , i} are i, and i, and ... and 1n‘ The
control structure asloc1ate with {11, . > 1y

is the case expression

case p of
e
IPY¥
endcase
which is a Sonstruct1on (program) for S(p) if S is
a property!) over {11, oo, i, pedi s 1n}
and e, € S(i 1) s eee s € €S 1n). The case expres-

sion 1s a non-canonical ?orm of expression; its

1) That S is a property over a set A means that
S{a) is a proposition (set) if a € A. This means
that S is an abstracted expression, which applied
to a member of A yields a proposition (set). S can
therefore be seen as a family of sets indexed by
elements in A.



value is computed by the following rule:

1. Compute p. Since pe€ {11 seaes 1n} , its

value is of the form 1j’ Jj<n.

The value of the case-expression is the
value of ej.

For instance, if Boolean={ true, false} , then the
definition

not(x)

case x of

true: false,
false: true

endcase
corresponds to the informal definition

not(true)
not(false)

false,

true.
We will use the convention of writing

if p then e else f
instead of case p of true: e, false: f endcase

The proof rules for the finite sets can be given by:

FF {11,...,in} set
FI i1 € {i1,...,1n} oo in € {11,...,in}
P €{i1,...,in} e € 5(11) e, € S(in)
FE
case(p,e1,...,en) £ S(p)
e1€S(1’1) .. en€5(1'n)
case(1j,e1,...,en)= eJE'S(ij)

Natural numbers

N is a set. The canonical elements of N are 0 and
succ(a) for a € N. The control structure associated
with the natural numbers is the rec-expression

rec p of
0: d,
succ(x): fromz to b
endrec
which is a construction (program) for S{p) if p ¢ N,
d is a construction for S(0) and b is a construction
for S(succ(x)) under the assumption that x € N and

that z is a construction for S{x). S is a property
over N. .

The proper syntax of the rec-expression is
rec(p,d,(x,z)b).

143

The rec-expression is a non-canonical form of expres-
sion; its value is computed by the following rule:

1. Compute p. Since p € N, its canonical form is
either 0 or succ(q), where g € N.

2. If p's value is 0, then the value of the rec-
expression is the value of d.
3. If p's value is succ(q) then find the value of
b(q,r/x,z) where r is the expression
rec q of
0: d

succ(x): from z to b
endrec

For instance, the definition
fac(x)

rec x of
0: 1
succ(y): from z to z*succ(y)

endrec
corresponds to the informal definition:

fac(0) =1
fac(y+1) = fac(y)*(y+1)

The proof rules for the natural numbers can be
given by:

NF N set
‘a €N
NI DEN —_—
succ{a) € N
(x € N, z€S(x))
peN des(0) e(x,z) € S(succ(x))
NE
rec(p,d,e) € S(p)
(xeN, ze S{x))
g €N desS(0) e(x,z) € S(suce(x))
N:
rec(0,d,e) = d € S(0)
rec(succ(q).d,e) = e{q,rec(q,d,e)) € S(succ(q))

where the scheme

(P)
Q
R
means that the conclusion R does not depend on the
assumption P. The scheme

p

Q
R

is an abbreviation for the two schemes

L
7 R.



A special case of the NE-rule is the following
(x € N, S(x) true)
S(succ(x)) true

p €N S(0) true

S(p) true

which is the rule of mathematical induction: if we
have proved that S(0) is true and that S(x+1) is
true under the assumption that S(x) is true, then
we may conclude that S{p) is true for an arbitrary
natural number p.

Function set (a special case of the cartesian pro-
duct between a family of sets)

If A and B are sets, then A » B (with proper syntax
- (A,B))is a set. The canonical elements of A > B
are of the form Ax.b (with proper syntax A((x)b))
where beB under the assumption that x€A. The control
structure associated with A - B is functional app-
lication

apply(p,a)

which is a construction (program) for B if a€A and
DEA-)B.

Functional application is a non-canonical form of
expression, its value is computed by the following
rule.

1. Compute p.
form Ax.b.

Since p € A » B its value is of the

2. Compute b(a/x}, i.e. substitute a for x in b
and find the canonical value of the resulting
expression.

3. The value of apply(p,a) is the value of b{a/x)

Reading "Ax.b =7 A > B" as "ix.b is a material proof
of the proposition A - B" yields: "He may conclude
that the proposition A - B is true if we have a
method which constructs a proof of 8 from an arbi-
trary proof of A." This is the interpretation of
A>B(A implies B) in constructive mathematics.

In a more familiar notation, A - B is the function
space BA consisting of all functions mapping a mem-
ber of A to a member of B.

The proof rules for A - B can be given by:

A set B set
F HS€L B set
A - B set
(x€A)
R, e(x) € B
Ae) € A= B
S 2€A pehA-B
apply(p,a)€B
(x € A)
e(x) eB ach
==
apply(a(e),a) = e(a) € B

Ignoring the constructions in the introduction and
elimination rules yields

144

(A true)

B true
> ] —_—
A B true
+E A true A>B true

B true
which are the rules for implication in Gentzen's
system of natural deduction.

Cartesian product of two sets (a special case of the
disjoint union between a family of sets)

If A and B are sets, then A x B (with proper syntax
x(A,B)) is a set. The canonical elements of A x B

are of the form (a,b) (with proper syntax pain(a,b))
where a € A and b € B. The control structure associ-
ated with the cartesian product is the split-expres-
sion

split p into (x,y) in h

which is a construction (program) for S{p) if
p€AxBande is a construction for S({x,y)) under
the assumptions that x € A, y € B. The proper syntax
for the split expression is split(p,(x,y)h).

The split expression is a non-canonical form of
expression, its value is computed by the following
rule :

1. Compute p. Since p € A x B, its canonical
form is a pair (a,b).
2. Compute h(a,b/x,y), i.e. find the canonical

value of e after having substituted a for
x and b for y.

3. The value of h(a,b/x,y) is the value of the
split expression,

For instance, the definition

length(x) = split x into (y,z) in sqrt(yxy+zxz)

corresponds to the informal definition

Tength((y,z))} = sqrt{yxy+zxz).

Reading "(a,b) € A x B" as "(a,b) is a material
proof of the proposition A x B" together with its
premises yields: "We may conclude that the proposi-
tion A x B is true if we have a proof of A and a
proof of B." This is the interpretation of A 8 B

(A and B) in constructive mathematics.

The proof rules for A x B can be given by:

A set’ B set
XF A x B set

a€A beB
X] — —

(a,b) € AxB

(x € A, y € B)

pehAxB elx,y)es(x,y))

XE

split(p,e) € S{p)



(x € A, y € B)

acA beB elx,y) e s((x,y))

split({a,b),e) = e(a,b) € S((a,b))

By using p + 1 for split(p,(x,y)x) and p + 2 for
split(p,(x,y)y) we get as special cases of the elimi-
nation rule:
peEAxB peAxB
xE'

p+1eA p+y2¢cB

Ignoring the constructions in xI and xE' yields

A true B true
xI -
A x B true
A x B true A x B true
xf ——— _—
A true B true

which are the rules for conjunction in Gentzen's
system of natural deduction.

Disjoint union

If A and B are sets, then A+B (with proper syntax
+(A,B)) is a set. The canonical elements of this set
are of the forms ila and j|b (with proper syntax i(a)
and j(b)) where a € A and b € B. The control struc-
ture associated with the disjoint union set is the
when - expression

when p is
i|x: e,
Jly: f
endwhen

which is a construction (program) for S(p) if

p € A+B and e is a construction for S(i|x) under
the assumption that x € A and f is a construction
for S(Jj|y) under the assumption that y € B. The
proper syntax for the when-expression is
when{p,(x)e,{y)f).

The when-expression is a non-canonical form of ex-
pression, its value is computed by the following
rule:

1. Compute p. Since p € A+B its value is either of
the form i|a, where a € A or of the form j|b,

where b € B.
2. If p's value is i}a, then in that case the value
of the when-expression is the value of e(a/x).
3. Ifp's value is j|b, then in that case the value

of the when-expression is f(b/y).

Reading "ila € A+B" and "j|b € A+B" as "i|a and j|b

is a material proof of A+B" yields "We may conclude

that the proposition A+B is true if we have a proof

of A or a proof of B." This is the interpretation of
A v B (A or B) in constructive mathematics.

145

The proof rules for A+B can be given by:

A set B set
+F
A+B set
a €A b €B
+1
ila € A+B jlb < A+B
(x € A) {y € B)
p€A+B  c(x) e S(i|x) dly)esS (jly)
+E
when(p,c,d) € S(p)
{xe A) (y € B)
a€aA beB clx) e S{ilx) dly) € Stjly)
=
when (ila,c,d) =cla) € $'(1]a)
when (jlb,c,d) =d(b) € S(jlb)

Ignoring the constructions in +I and +E yields

A true B true
+1
A+B true A+B true
(A true) (B true)
A+B true S true S true
+E
S true

which are the rules for disjunction in Gentzen's
system of natural deduction.

Lists

It A is a set , then List(A) is a set. The canonical
elements of List(A) are nil and a;s where a € A and
s € List(A). The proper syntax of a;s is ;(a,s).

The control structure associated with List(A) is

the 1istrec-expression

listrec p of
nil:d,
x;y: from z to e
endlistrec
which is a construction (program) for S(p) if
p € List(A), d is a construction for S(nil) and
e is a construction for S(x;y) under the assumptions
that x € A, y € List(A) and z is a construction

for S(y). The proper syntax of the listrec-expression
is

lTistrec(p,d,(x,y,z)e).
The Tist-ind expression is a non-canonical form of
expression, its value is computed by the following
rule:

1. Compute p. Since p € List(A) its value is either
nil or a;s where a € A, s € List{A).

2. If p's value is nil then the value of the



listrec-expression is the value of d.

3. If p's value is a;s, then the value of the list-—
rec-expression is the value of e(a,s,r/x,y,z),
r is the expression

listrec s of
nil: d,
X;y: from z to e

endlistrec
For instance, the definition

concat (x,y) = listrec x of
nil: y
aj;s: fram p to a;p

end

corresponds to the informal definition

i

concat (nil,y) y

a.concat (s,y) .

)

concat(a;s,y)

The proof rules for List(A) can be given by:

A set
IF —_—_———
List(A) set

ach s€List(A)

LI nilelList(A)
azs€List(A)

(x € A,y € List(a),

z € S(y))
p € List(d) d € snil) e(x,y,2z) € S{x;y)
LE
listrec(p,d,e) € S(p)
X €A
(y € List(A>
’ _ Z € Sl{y)
a€A  s€List(d) d€s(nil) e(x,y,z)eS(x:;y)
L=

listrec(nil,d,e) = d € S(nil)

listrec(a;s,d,e)=e(a,s,listrec(s,d,e))€S(a;s)

A special case of the list elimination rule is

(x € A,y€List (D),

p € List(A) S{nil)true S(x;y)true

S{y) true)

S(p) true

which is the rule for induction on lists: if we can
prove that S(nil) is true and that S(x;y) is true
under the assumption that S({y) is true then we may
comclude that S(p) is true for an arbitrary p.

The product of a family of sets

If A is a set and if B(x) is a set under the assump-
tion t‘r}at X € A (i.e. B(x) is a family of sets index~
ed by x € A, or B is a property of elements of A)
then X € A)B(x) is a set. The canonical elements
of (| |[x€A)B(x) are of the form Ax.b (with proger
syntax A((x)b)) where b(x) is an element of B(x) under
the assumption that x € A. The control structure
associated with ([ [x € A)B(x) is functional applica—
tion

apply (p,a)

which is a construction (program) for B(a) if a € A
and p ¢ ([ [x € &)B(x).

The camputation rule for functional application has
been given earlier in the description of A - B.

Reading "Mx.b € (nx € A)B(x)" as "Ax.b is a material
proof of the proposition (| |x € A)B(x)" yields: "We
may conclude that the proposition (ﬂx € A)B(X) is
true if we have proof of B(x) for an arbitrary ele-
ment x € A". This is the interpretation of .

(Vv x € A)B(x) in constructive mathematics.

If B(x) does not depend on x in ([ [x € A)B(x) then
we get the set A - B previously described.

If Aisafinite set, for instance A = {i1, iorens, in}
then (ﬂx € A)B(x) corresponds exactly to t%e
record type
record
i1: T1,
12: T2
i:T
n® “n
end
provided B(i1) = T1, B(iz) =Tyrenes B(ln) = Tn'

The proof rules for ([ Ix € 28)B(x) can be given by:

(x € A)
A set B(x)set
F
[la,B) set

(x € B)
b(x) € B(x)

M ——
rb) €l la,B)
pella,B a€a

apply (p,a) € Bl(a)

(x € A)

b(x) € B(x) a€EaA

apply (A (b), a) = b(a) € B(a)

Ignoring scome of the constructions in the introduc-
tion and elimination rules gives

146



(x € A, y € B(x))

{x € A)
n B(x) true 5 pe 2.(A,B) elx,y) € S{(x,y))
I E :
(I'lx € A)B(x) true split(p,e) € S(p)
(x € A, y € B(x))
. (I'Tx € A)B(x) true a € A 5 a €A beB(a) e(x,y)e S{(x,y))
E =
B(a) true split{{a,b),e) = e(a,b) € S((a,b))
which should be compared with the rules for the uni- , . .
versal quantifier in Gentzen's system of natural Ignoring some of the constructions in 21 and JE
deduction: yields
5 a€Ah B(a) true
B(x) true 1
vl —— (> x € A)B(x) true

(vx)B(x) true
(x € A, B(x) true)

(3 x € A)B(x) true S true
ve (vx)B(x) S true

which should be compared with the rules for the exis-
tential quantifier in Gentzen's system of natural

The disjoint union of a family of sets deduction
If A is a set and B(x) is a set under the assumption
that x € A, then (2 x € A)(B(x) (with proper syntax al B(a) true

2(A,B))is a set, The canonical elements of

(. x € A)B(x) are of the form (a,b) (with proper
syntax pair(a,b)) where a € A and b € B(a). The
control structure associated with the disjoint (B(x) true)
union set is the split-expression (2x)B(x) true

3E

(3 x)B(x) true

S true

split p into (x,y) in h S true
which_is a construction (program) for S(p) if

pe (S xe AB(x) and h is a construction for S((x,y))

under the assumptions that x € A and y € B(x). The

proper syntax for the split-expression is Wellorderings
split(p,(x,y)h). . '

If A is a set and B(x) is a set under the assumption
The computation rule for the split-expression has that x € A, then (Wx € A)B(x) (with proper syntax
been given earlier in the description of A x B. W(A,B)) is a set. The canonical elements of

(Wx ¢ A)B(x) are of the form sup(a,f) where a € A

Reading "(a,b) € (3. x € A)B(x)" as "(a,b) 15 a and f(y) € (Wx € A)B{x) under the assumption that
material proof of the propos1t1on (2 x € A)B(x)" -y € B(a). We can Took upon "sup(a,f)" as a tree with
yields: "we may conclude that the proposition a root labeled "a" and branches labeled "b,",
(2 x € A)B(x) is true if we have an element x € A "b,", ... where b, € B(a), b, € B(a),

and a proof of B(x)." This is the interpretation of
(3 x € A)B(x) in constructive mathematics.

The proof rules for (3 x € A)B(x) can be given by:

(x € B) :
F A set B(x) set
2.(A,B) set

The branches lead to subtrees which are build up in
achA beosla) the same way. The control structure associated with

S —?-——3——Ei( (Wx € A)B(x) is transfinite recursion
a,b) e 2(A,B)

transrec p of
sup(x,u):from v to d(x,u,v)

endtransrec

147



which is a construction (program) for S(p) if

p € (Wx € A)B(x) and d(x,u,v) is a construction for
S(sup(x,u}) under the assumptions that x € A, u(z)

€ (Wx € A)B(x) for z € B{x) and v(z) € S{u(z)) for

2z € B{x). The proper syntax for transfinite recursion
is transrec(p,d).

The computation rule for transfinite recursion is:

1. Evaluate p. Since p € (Wx € A)B(x),
value is of the form “sup(a,f)".

p's

The value of the transfinite recursion is
then the value of d(a,f,

The rules for the wellorderings can be given by:

(x € A)
A set B(x) set
WF
W(A,B) set
(y € B(a))
a €A fly)€ WA,B)
WI
sup(a,f) € W(A,B)
((x € A,u(z) € W(A,B)(z € B(x))’,>
v(z) € S(u(z))(z € B(x))
p € WA,B) d(x,u,v) € S(sup(x,u))
WE
transrec(p,d) € S(p)
xeh,
u(z)ew(A,B) (zeB(x)),
(yeB(a)) v{(z)eS(u(z))(zeB(x))
a€ A f(y)ew(A,B) d(x,u,v)eS(sup(x,u))
W =

transrec(sup(a,f),d)
= d(a,f,(z)transrec(f(z),d))eS{sup(a,f))

The equality proposition

The proposition which corresponds to the judgement
a be A is Eq(A,a,b). So if we have a proof of the
proposition Eq(A,a,b) then we may make the judgement

a=becA and if we have made the Judgement a=b¢A then

we may conclude there is an element in the set
Eq{A,a,b). We call this element e. To summarize:

beA
Eq] ————
e € Eq{A,a,b)

p € Eq(A,a,b)
EQfE —————
=beA

p € Eq(A,a,b)

Eg=
p=e € Eq(A,a,b)

(z)transrec(f(z),d)).

A simple example of the derivation of a program

The task is to find a proof of the Euclidean divi-
sion theorem (called E)

(va,b € N)}([b>01-3(qg,r € N)({r<bl&[a=b*g+r]))

which says that for all natural numbers a and b
where b>0, there exists natural numbers q and r
such that r<b and a=b*g+r.

We have used the following definitions:

(va,b € N)B
[adb] = [b<a]
[b<al = (3x € N)[b+succ(x)=a]

(va € N){(vb € N)B

[a=b] = Eq(N,a,b)
(aa,b € N)B = (3a € N)(3b € N)B
The proof will give us a program for the theorem
where
¢ = Aa.xb.xo.(q(a,b),{r(a,b),(u(a,b,0),v(a,b,0))))e E
where a and b are natural numbers,
o 1is a construction for [b>0],
g(a.b) s the quotient between a and b,
r{a,b) is the remainder,
u(a,b,0) 1is a construction for r<b and
v(a,b,0) 1is a construction for [b+succ(x)=a]l.
Proof: Assume a, b & N, o€ [b>0].
Let us do an induction over a.
Define G(x) = (3q,r € N)([r<bl&[x=b*qg+r])
Basis: (0,(0,.)) € G(0)
since [0<b]&[0=b*0+0] is true.
("." denotes a construction which we do not care
about.)
Induction step:
. Assume that z € G(x) and define g(z) = z¥1,
r(z) = z4241. We want to find a construction for
G(succ(x)). From the assumption, by repeated
2 -elimination, we get z+24241 € [r(z)<b] which
means that we can find a construction
p(z,b) € [r(z)+1<b y [r(z)+1=b].
We can now make an v-elimination:
Assume that [r(z)+1<b] is true.
z424242 € [x=b*qg ( Y+r(z)]
= b*q(z)+r(z) € (EqQE)
x+1 = b*q(z)Hr(z)+ ) “(Arithmetics)
(a(z),(r(z)+1,.}) € G(X+1) (20E)

148



Assume that [r(z)+1=b} is true.
2424242 € [x = b*q(z)+r(z)]

x = b*q(z)+r(z) € N (EQE)
x+1 = b*q(z)+(r(z)+1) € N
x+1 = b*(q(z)+1)+0 € N {Arithmetics)

(q(z)+1,(r(z),.)) € G(x+1)
We can conclude that

when p(z,b) is
ix:(q(z2),(r(z)+1,.))
Jlx:(a(2)+1,(r(2),.))
endwhen 1is a construction for G{x+1)
by + elimination
N-eTimination gives us:

rec a of
0:(0,(0,.))
succ(x):from z to
when p(z,b) is
ilx:(qlz),(r{z)+1,.))
Jlx:(g{z)+1,(r(z),.))
endwhen
end is a construction for G(a)

Three [ [-introductions yield that

Aa.Ab.ro. rec a of
0:(0,(0,.))
succ(x):from z to
when p(z,b) is
ilx:(q(z),(r(z)+1,.))
Jlx:(a(2)+1,(r(2),.))
endwhen

end

is a construction for the theorem, where p(z,b) is a
construction for [r{z)+1<blv[r(z)+1=b]

and q(z) = z41
and r(z) = z+241

What remains to be done is to find a proof p of
[r(z)+1<blvir(z)+1=b]. It is not difficult to prove
that for each proposition P built up by conjunctions
and disjunctions of arithmetic equalities and in-
equalities there is an expression p' € Bool which .
is such that

p'= true € Bool iff p is true
We can now use the fact that there is a boolean

function a<b (without brackets) which is defined
such that

x€L(A)

Aa.Ab.%o. rec a of
0:(0,(0,.))
succ(x):from z to
if r(z)+1<b then (q(z),(r(z)+1,.))

else (q(2)+1,(r(z2),.))
end

which is a construction for the theorem E.

Programming with lists

The definition of concatenation between 1ists was
given earlier,

concat(x,y) = listrec x of

nil: y
ass: from p to a.p
end
In order to give a flavour of how to reason about
programs we will give a formal proof that concatena-
tion is associative. Instead of writing concat(x,y)
we will write x$y, and instead of nil we will
write ¢ .
Theorem: (x$y)dz = x0 (y&z) € List(A)
if X,y,z € List(A), where A is a type.

Informal proof:

We make a list-induction on x, and abbreviate
Eq{List(A),x,y) to x = y

(6o y)Pz = yoz, and
(8S (y&z) = yo 2.

Basis: By List=

Induction step:

Assume that (s¢y)oz = s& (yo z).
(a.5¢y)oz = (a.(sOy))o 2

a.((soy)oz)

a.(s¢ (yo (yo 2))

by List=
by List=

by the induc-~
tion assumption.

by List=

(3.5 (y© z) = a.(a® (yo 2))

A formal proof

We define L(A) = List(A). The formal proof of
the theorem is the following proof tree:

[(soy)oz = s&(yoz)]
P P2

1
[((BOy)oz = 90 (0 2)] [(a.5¢0y)0z = a.5¢ (yo z)LE

a<b = true € Bool iff [a<b] is true.

to obtain the following program

[(xOy)0oz = x0 (yo 2)]
(xoy)o z= x0 (yoz)€e L(A)




where P, stands for the proof

YEL(A)  (x€L(A))
LE

. (y,z€L(A) (x€EL(A))

PO y=y X0 2=x$ 2

S

Ref1
yo 2=y 2z x=9<$ X

L

(80 y)O z=y0 2

¥oz = g (y<oz)

(8o y)oz

Trans
$ (y¢ 2)

[(Oy)o 2

I

Eql
8o (yo z)]

and P2 stands for the proof

y,2zEL(A) agA,s, x€L(A)

21

L:

p yo z=yd z a.(s¢x)=(a.s)o x

S

(a.s0y)0z=a.(a0 (yoz))  a.(so (yoz) =a.so (yo 2)

(a.50y)¢z = a.50 (yo 2)

Trans

"

[(a.50y)o 2

where P21 is the proof

(x€L(A))R (I(s¢y)oz=50(yoz)])

Eql
a.59 (y¢ z)]

d.X =
Pats

a

X (sOy)®z=50 (yo2)
S

(a.s¢y)0z = a.((sOy)o 2) a.((soy)oz) =a.(sO(yo 2))

IdE

(a.s¢y)oz = a.(so (yo 2))
where P211 is the proof
x,zEL{A) . ach, s,yeL(A) s,ycL(A) aeA,xe L(A)
R

x$z = x$z 3.50y = a.(s¢y) sOy = 5Oy

a.x02z = a.(xo z)*

(a.5¢y)0z = a.(s0y)o 2z

a.(s0y)0z = a.((soy)o 2)

(a.s Oy)oz = a.((s0y)o 2)

This completes the formal proof. It is not our
suggestion that programmers should always give
formal computer checked proofs of their programs.
Formal proofs can however be used to optimize pro-
grams in the way shown by Goad [Gd].

The Ackermann-function

The Ackermann function is the classical example of
a recursive function which is not primitive recur-
sive, i.e. a function which cannot be defined using
composition of functions and the schemata

FxpseenaXs0) = d(xg s nenx)

f(x1 e ,Xn,)@“l)= e<x1 300 sxn;xaf(x1 3o e ’Xn’x))

which corresponds to the form rec in Constructive
Set Theory.

This exercise will show how to express the Ackermann
function in Constructive Set Theory.

Consider the following definitions

fo(xoy) = y+x = rec y of
0: x

succ(n): from z to succ(z) end

f1(x,y)sx'y rec y of
0: 0

succ(n): from z to x+z end

f06y) = %% = rec y of
0: 1
succ(n): from z to x*z end

f3(x,y) xtty = rec y of

0: 1

succ{n): from z to xZ end
These functions are the first in a series of functions
f1, LETER where fn”(x,y) is the result of

fn(x,...fn(x,x).,.)) i y>0

where fn is applied y-1 times. The function

A(n,x,y) = f (x,y) is the original Ackerman function
and is defined by the following equalities:

A(0,x,0) =x
A(0,x,y+1) = A(0, X,y )+1
A(1,x,0)=0

A(n+2,x,0) =1
Rn+1,x,y+1) = A(n,x,A(n+1,x,y))

We assume for simplicity that y > 0. The first two
equahtigs define f, (x,y) = x+y and the fifth equa~
Tity defines fn+1 in térms of fn'

If we define the function do(n,f,x) € N(n
o e def ) (neN, FENXNEN)

do(n,f,x) = apply(f,(... apply(f,{(x,x})...0)}))

with n applications, then we can define the Ackermann
function after having noted the equalities

150



A(D,x,y) = x+y
A(n+1,x,0) = if iszero(n) then 0 else 1}
A{n+1,x,y+1) =do(y,r(y,z). A(n,y,z),x)

where we have used the abbreviation A(y,z).e for
ax.split x into (y,z) in e. For f(n) defined by

f(n) = a(x,y). Aln,x,y)
the following equalities hold

0} = x(x,y).x+y
f(n+1) = A(x,y). if y>0 then do (y-1,f(n),x)
else if iszero(n)
then 0
else 1
ghis means that we can define the Ackermann function
Y
A(n,x,y) = apply(rec n of
0:a(x",y" ). x"+y*
succ(n):from z to
Ax',y").
if y'>0
“then do(y'-1,z,x)
else if iszero(n)
then 0 else 1,

(x,¥))

What remains to be done is to define the function
do which 1is such that

do(0,f,x) = x € N
do(n+1,f,x) = apply(f,(x,do(n,f,x)))

‘These equalities are solved by putting

do(n,f,x) = rec n of
0: x
succ(n): from z to
apply(f,(x,z))
end

Finally, we prove the following theorem.

Theorem: The function A(n,x,y) as defined above is a
soTution to the Ackermann e&uations.

Proof: We prove the equalities by substituting A into
the three equations

i)

ii)

A(0,x,0) = x+0 = x

A0, x,y+1) = x+(y+1) = (x+y)+1 = A(0,x,y)+1
These two cases have been proven by N-equality,

-elimination and elementary properties of +.

151

i1i) If f(n)z
f(n)=rec(n,
A(x,y).x+y,
(n,z) Alx,y).
if y>0
then do(y-1,z,x)
else rec(n,0,1)

A{x,y).A(n,x,y) then

and

A(1,x,0)=apply{A(x,y).
if y>0
then do(y-1,f(0),x)
else rec(0,0,1),

(x,0)) by N-equality
=rec{0,0,1) by n-equality
=0 by N-equality

iv)
A(n+2,x,0)=apply(x(x,y).
if y>0
then do(y-1,f(n+1},x)
else rec(n+1,0,1),
(x,0)) by N-equality
=rec(n+1,0,1) by m-equality
=0 by N-equality
v)

.Y).

if y>0

then do(y-1,f(n),x)

else rec(n,0,1),
(x,y+1)) by N-equality

=do(y,f(n),x) by T-equality

Aln+1,x,y+1)=apply( r(x

Now since y>0, y = m+1 € N for some m. This means that

do(m+1,f(n),x) € N by substitution
apply(f(n),(x,do(m,f(n),x) € N

by N-equality
apply(f(n),{(x,A(n+1,x,m1) € N

Aln+1,x,y+1) =

by N = and []=
= A(n,x,A(n+1,x,y)) € N by substi-
tution

The summation operator and a more general iterator

We will show how to define the traditional summation
operator Ee where e is an expression depending
on i. We w};} use the proper syntax
sum(1,h,e)
where e is an abstraction, i.e. we could also write
sum(1,h,(i)g)
if g is an expression depending on the variable i.

The definition is straightforward when we have
observed the facts that



h h-1
(1) > e(i) = e(i+1)
i=1 i=
n+1 n
(2) 3 e(i) = 3 e(i) + e(n+1)
i=0 i=0
(3) 2 e(i) = e(0)
i=0

The first fact implies that we should do a primitive
recursion over h-1:

sum(1,h,e) = rec h-1 of
0: e(1)
succ(x): from p to pre(succ(x)+1)
end

This definition is an instance of a general scheme
for applying a function repeatedly over an abstracted
expression. First we need some definitions for
functional application and composition.

Instead of f(a) we will write a»f and use the
convention that a+b»c=(a+b)»c. For functional compo-
sition

flg(x})

we also use the notation

fog(x) =

g|f = fog
We could define the multiple composition f|f]... |f
with n compositions by the equaTities

£0

(x)x

n+1

AT

fM===4(f,n) = (x)rec(n of
0:x,
succ(x): from p to p}f
endrec

We use a===b to mean "the concrete syntax for the
proper expression b is a".

If we can find a construct l?=1f(i) which eva]uateé
to
f(1) f(2)...f(n)

under the assumption that f(i)(x)€A,(ieN,x & A)
we obtain the summation expression

e{1)+...+e(n) by 0 » li21(x)x+e(1)

152

For Iitlf(i) we use the proper syntax [(1,h,f) and
we note the following equalities

470 = Bt
|?=1f(i) = (X)X
TG = (T D ()

which gives the following definition

I?z]f(i)===l(1,h,f) = (x)rec h-1+1 of

0: x,

succ(n): from p to
p) f(n+1)

endrec

Iterators for lists

Composition iterator for lists

The definition of Iizlf(i) which is defined such that

f(1)|f(2)

|0 ) = o F ()

if 1,neNat, f(i)(x)eA for ieN, x€A
can be generalized to lists by the following construct
for i in s do f(i) = f(s1)|f(sz)l...[f(sn)

.nil

if s = $4-Sp+ S

We make the following definition

for i in s do f(i)od===for(i,s,f) =
(xNlist-ind s in
nil: x
a.t: from p to
f(a)lp
end

For example to sum all elements in a list 1 of inte-
gers we write

0+for i in 1 do( x)x+i od

and to check if the number of elements in each ele-
ment in a list of Tlists are less than 40 we write

true>for i in 1 do (x)x and # i < 40)od

The following theorem is a link between the list
iterator and the composition iterator.



Theorem: If i,néNat, xed,f(i)(x)eA +hen

|121f(i) = for 1 in t...n do f(i)eA>A

where we have used the definitions

J
k=i

cons(x,y) = x;y
so, for instance
1...5 = 1;2;3:4;5;n11

i..j= ni]-+l (x)cons{i+j-k,x)

Proof: Set F(j,m) = for i in j...m do f(i)

We prove the theorem by an induction over n
I The theorem is true for n = 0 since
Lhs = |.2,6(i) = (x)x
RHS = for i din 1...0 do f(i)

{x)x

"

for i in nil do f(i) =

II  Assume that liT1f(i) = F(1,m)

We want to show that |T:1f(i) = F(1,m+1)

M) =

i=1 | FG)[F(me1) by N =

It

F(1,m)|f(m+1) by the induction
assumption

F(1,m+1) by the following lemma.

Lemma: F(j,m)|f(m+t) = F(j,m+1)

Proof: We know that F(j,m+1) = £(j)|F(j+1,m+1) since

F(j,me1) = for § in j...me1 do (i)
= for i in ni1+|TZ;(x):ons(j¢m+1-i,x)
do (i)
= for i in cons(3,niP+|™! . (x)cons

i=j+1
(j+m+2-i,x))do f(i)
= F(3F(G+1,me1)

We prove the lemma by an induction over m-j.

1 The lemma is true for m-j = 0 (follows from
the first line in the proof.)

II  Assume that F(j,m)}f(m+1) = F(j,m+1) holds
when m-j = n. We want to show that the Temma

is true when m-j = n+1

153

LHS = F(3,m)|f(m+1) = (F(IF(G+1,m)|f(me1)
£(3)) (F(3+1,m) [f(m+1)) by
associativity of |.
F(3))F(j+1,m1) by the

induction hypothesis

The composition iterator for lists resembles the

reduce operator in APL.

Implementation
We have implemented an interpreter for Constructive

Set Theory written in Lisp. It runs under Unix on a
Vax computer.

Acknowledgements

I would Tike to thank Per Martin-Lof for many
stimulating discussions and also the members of
the.laboratory for contributing to a nice working
environment.

References
[ML1] Per Martin-L&f: "An Intuitionistic Theory of
Types: Predi@tive Part", Logic Colloguium
'73, ed. Rose, Shepherdson, North-Holland,
Amsterdam, 1975, pp. 73-118.

Per Martin-Lof: "Constructive Mathematics and
Computer programming”, Dept of Math, Universi-
ty of Stockholm, 113 85 Stockholm, Sweden,
read at the 6:th International Congress for
Logic, Methodology of S¢ience, Hannover 1979.

[ML2]

{1l Takasu: Proofs and Programs, The Third IBM
Symposium on Mathematical Foundation of
Computer Science, Aug. 1978.

[G] Goto: Program Synthesis from Natural Deduc-
tion Proofs, IJCAI 1979, Tokyo.

[McC1 John McCarthy: "A formal description of a
subset of Algol 60", in Formal Language Des-
cription Languages, ed. Steel, North-Holland.
[P] Dag Prawitz: "Natural Deduction, a Proof Theo-
retical Study", Almgvist & Wiksell, Stock-
holm 1965.

[Gd] Christopher Goad: "Computational Uses of the
Manipulation of Formal Proofs". (Thesis).
Standard Report CS-80-819, 1980.



154



