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Abstract 

Per Mart in-L~f 's Constructive Set Theory is a 
mathematical language with computation rules. I t  is 
pr imar i ly  designed to be a language for  mathematical 
reasoning. The language has a very simple semantics 
and i ts  rules have a simple structure. Since i t  is 
a language for  constructive mathematics, i t  is pos- 
s ib le to execute the proof (the construction of a 
proposit ion) as a program. 

The language can be seen as a programming language 
without assignments and other side effects. Compared 
to t rad i t i ona l  functional languages i t  has a very 
rich type structure in that the type of an expres- 
sion can completely specify the task of the expres- 
t ion.  A sort ing algorithm, for  instance, can be con- 
vent ional ly  specif ied to have a type 

sort: List(A) ~ List(A) 

which is type-correct i f  sort is any function 
taking a l i s t  as argument and pro#ucing a l i s t  as 
resul t .  I t  is ,  however, also possible to specify 
that sort is a function taking a l i s t  as argument 
and producing a sorted permutation of i ts  input 
as resul t ,  i .e .  

s o r t : ( l l x  E List(A)) ( z y  E List(A))  

(Perm(x,y) × Sorted(y)) 

The type (or the task) of the program can be read 
as the proposit ion 

(Vx  ~ List(A))  ( 3 y  a List(A) (Perm(x,y) 

& Sorted(y)) 

which is read " for  a l l  l i s t s  x, there is a sorted 
permutation y of x". We can prove that this propo- 
s i t ion  is true, using the rules of the language to 
construct a program for  the task. I f  the proposit ion 
were not true, i t  would be impossible to f ind a 
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a program for  i t  and we would have had an impossible 
task. The types of Constructive Set Theory can be 
seen as a speci f icat ion language for  the programs, 
but of course there is only one language, avoiding 
the complexity of mixing a programming language 
with a logical  language. 

The s im i l a r i t y  (or rather: iden t i t y )  between a 
mathematical proof of a given proposit ion and a 
program for  a given task suggests that programming 
should be s imi lar  to the mathematicians ac t i v i t y  of 
f inding proofs. We have i l l u s t r a ted  this with an 
example of how a proof of the Euclidean d iv is ion 
theorem yields a program to compute the quotient 
and the remainder between two natural numbers. 

The paper contains a descript ion of the language. 
Since a l l  programs in the language terminate, the 
proof rules and the semantics are simple. We give 
some examples of programming with l i s t s  and reasoning 
about the programs. We also define the Ackermann 
function. 

Introduction 

Constructive Set Theory is a mathematical language 
with computation rules developed by Per Martin-L~f 
[MLI, ML2]. The inference rules of the language 
explain how to form judgements from known judge- 
ments. A judgement of the form 

a C A 

may be read in several ways: 

I) a is an element of the set A. 

2) a is a material proof (construction, manifesta- 
t ion o f ~ e  prop~tfon-A-~ 

3) a is a program for  the task A. 

4) a is a solut ion to the problem A. 

In this context, we are most interested in the th i rd 
reading, but we w i l l  also use the f i r s t  two. The 
d i f fe ren t  readings imply that a proposit ion A is 
seen as the set of a l l  proofs of A and that the 
speci f icat ion of the task of a program is s imi lar  
to a proposit ion. The programmer's a c t i v i t y  of f ind-  
ing a program is therefore s imi lar  to the mathemati- 
cians a c t i v i t y  of f inding a proof of a proposit ion. 
Simi lar ideas have been expressed by Takasu[T] and 
Goto [G] who derive programs mechanically from con- 
struct ive proofs. 

There are two fundamental forms of judgements in 
Constructive Set Theory, "a E A" and "A set". 

141 



The f i r s t  means t h a t  a is  an element of  A 
and the second t ha t  A is a set .  I f  we are not  i n t e -  
rested in the cons t ruc t i on  a f o r  A, i . e .  we are on ly  
i n t e r e s t e d  in the asse r t i on  t h a t  the re  is  a cons t ruc -  
t i o n  f o r  A, i . e .  t ha t  A is t r u e ,  then we w i l l  w r i t e  

A t r ue  

ins tead  of  a E A. 

Another  fundamental form of  judgement is  "a = b ~ A" 
which means t h a t  a and b are equal elements of  A. 

The d e s c r i p t i o n  of  the language w i l l  proceed in the 
f o l l o w i n g  way. There are d i f f e r e n t  ways of  cons t ruc -  
t i ng  new sets from given sets .  We c a l l  these ru les  
of  set  f o rma t i on .  For each new set  we w i l l  e x p ~ i n  
how to  cons t ruc t  the canonica l  elements o f  the se t .  
A canonica l  element is  an element which has i t s e l f  
as va lue .  We w i l l  c a l l  these ru les  i n t r o d u c t i o n  r u l es .  
The nex t  r u l e  is an e l i m i n a t i o n  r u l e  which from an 
a r b i t r a r y  element p of  the set  exp~rains how to  con- 
s t r u c t  a program f o r  the task S(p) ,  where S is  a pro-  
pe r t y  ( f a m i l y  o f  sets)  over  the set  in ques t i on .  
This r u l e  can be seen as a con t ro l  s t r u c t u r e  in the 
language. Since the con t ro l  s t r u c t u r e  is  a non-cano- 
n i ca l  form of  exp ress ion ,  t he re  is  an e q u a l i t y  r u l e  
which is used to  f i n d  the va lue  of  an express ion 
t h a t  form. The va lue  of  an express ion p is a canon i -  
cal express ion ~ is equal to p. 

We w i l l  s t a r t  by e x p l a i n i n g  sets which are  common as 
types in programming languages: f i n i t e  se ts ,  the 
na tu ra l  numbers, f unc t i on  se ts ,  c a r t e s i a n  p roduc ts ,  
d i s j o i n t  unions and l i s t s .  We w i l l  then con t inue  to  
descr ibe  two set  forming ope ra t i ons  which correspond 
to  q u a n t i f i e r s  in p red i ca te  l o g i c ,  and f i n a l l y  we 
w i l l  exp la i n  w e l l - o r d e r i n g s  w i th  t r a n s f i n i t e  induc-  
t i o n  which are essen t i a l  f o r  implement ing t r ee  l i k e  
data s t r uc tu res  ( l i s t s ,  na tu ra l  numbers, a b s t r a c t  
syntax t rees  e t c . ) .  

How express ions are formed 

Expressions are used to  express sets and e lements.  
There are two d i f f e r e n t  ways of  w r i t i n g  an expres-  
t i o n ,  e i t h e r  by using the concrete  syntax or the 
proper  syntax of  the language. ~ proper  syntax o f  
an express ion resembles what McCarthy [McC] c a l l s  
the a b s t r a c t  syntax in t ha t  a l l  par ts  o f  an expres-  
s ion are essen t i a l  f o r  i t s  meaning, and t h a t  the re  
is on ly  one k ind of  separa to rs  and t e rm ina to r s  which 
makes i t  easy to  decompose the express ion i n t o  i t s  
pa r t s .  I t  is  d i f f e r e n t  from the a b s t r a c t  syntax in 
t ha t  the proper  syntax of  an express ion exp la i ns  what 
v a r i a b l e s  become bound in d i f f e r e n t  par ts  o f  the 
express ion .  The proper  syntax is  e a s i e r  to  use when 
t a l k i n g  about express ions (e .g .  in p roo f  r u l e s ,  ed i -  
t o r s ,  i n t e r p r e t e r s ) ,  w h i l e  the concre te  syntax is  
e a s i e r  to  read and w r i t e  s ince i t  a l l ows  an expres-  
s ion to  be w r i t t e n  in a more t r a d i t i o n a l  way. The 
f o l l o w i n g  t a b l e  con ta ins  examples of  express ions 
w r i t t e n  in the two ways. 

Concrete syntax Proper syntax 

a÷b*c p l u s ( a , t i m e s ( b , c ) )  

n 
e, sum(1 , n , ( i ) e )  

i= I  

[sum,i=1 ,n ]e  sum(1 , n , ( i ) e )  

~x.e ~( (x)e)  

(Vx E A)B v ((x)B) 

Proper exPress ions 

A proper  express ion is  e i t h e r  a v a r i a b l e ,  an a p p l i -  
ca t i on  or  an a b s t r a c t i o n .  

An a p p l i c a t i o n  is  o f  the form 

e(e 1,e 2 . . . . .  e n) , n _> O, 

where e is an o p e r a t o r  and e . , e  2 . . . . .  e are i t s  
operands. The ope ra to r  and the loperands n are  always 
express ions .  

An a b s t r a c t i o n  is of  the form 

(x 1,x 2 . . . .  Xn)e , n >__ I 

where x I . . . .  x n are v a r i a b l e s  and e is  an express ion .  

I f  e is  an express ion depending on x 1,x 2 . . . . .  xD, 
then the a b s t r a c t i o n  ( x . ,  . x )e is an express lon 

• " - "  n . which does not  depend o~ x I ,  x . For i ns tance ,  
• " ° "  n . 

the express lon ( x ) x  2 does no t  depend on x ,  i t  is  the 
express ion  which squares an i n t e g e r .  

An express ion e depends on the v a r i a b l e  x when x is 
f r ee  in e. A v a r i a b l e  is f r ee  in an express ion in 
the f o l l o w i n g  cases. 

- The v a r i a b l e  x is  f r ee  in the express ion x.  

- The v a r i a b l e  x is  f r ee  in the express ion 
e(e I . . . . .  e n) i f  x is  f r ee  in one of  the expres-  
sions e ,e  1 , . . . , e  n. 

- The v a r i a b l e  x is  f r ee  in the express ion 
(x I . . . . .  xn)e i f  x is  f r ee  in e and d i s t i n c t  from 
x 1 , . . .  ,x n. 

I f  g is  an a b s t r a c t i o n  (x I . . . . .  Xn)e then the a p p l i -  
ca t i on  g(e I . . . . .  e n) is  th# express ion e w i th  
e I . . . . .  e n s u b s t i t u t e d  f o r  x I . . . . .  x n in e, i . e .  

( (x  I . . . . .  Xn)e)(e I . . . . .  er~ -- e(e I . . . . .  en/X I . . . . .  x n ) 

so t h a t  

( ( x  I . . . . .  Xn)e ) (x  I . . . . .  x n) - e 

F i n i t e  sets 

I f  i i 2 . . . .  ~i n, n > 0 are  i d e n t i f i e r s  then 
{ i i  , I ' . . .  , i n } is  a s ~ .  The canonica l  elements of  
{ i  I . . . . .  i n } are  i I and i 2 and . . .  and i n . The 
con t ro l  s t r u c t u r e  assoc ia ted  w i th  { i  I . . . . .  i n } 
is  the case express ion 

case p o f  

i i :  e I • 

i2 :  e 2 , 

endcase 

which is a q o n s t r u c t i o n  (program) f o r  S(p) i f  S is  
a p rope r t y  I )  over  { i  I . . . .  , i n }  , p E { i  I . . . . .  i n } 
and e I ~  S( i  I )  . . . .  " ,  e~E S~ in) .  The 6ase expreS- 
s ion is  a non-canonica l  ~orm of  exp ress ion ;  i t s  

I )  That S is a p rope r t y  over  a set  A means t h a t  
S(a) is  a p r o p o s i t i o n  (se t )  i f  a C A. This means 
t h a t  S is  an abs t rac ted  exp ress ion ,  which a p p l i e d  
to a member o f  A y i e l d s  a p r o p o s i t i o n  ( s e t ) .  S can 
t h e r e f o r e  be seen as a f a m i l y  o f  sets indexed by 
elements in A. 
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value is computed by the fo l l ow ing  ru le :  

I .  Compute p. Since pE { i  I , . . . .  i n } , i t s  

value is of the form i j ,  j ~ n. 

2. The value of the case-expression is the 
value Of e j .  

For instance, i f  Boo leanm{t rue,  fa lse}  , then the 
d e f i n i t i o n  

not (x)  ~ case x of  

t rue:  f a l se ,  

fa lse :  t rue 

endcase 

corresponds to the informal d e f i n i t i o n  

I not ( t rue)  = fa l se ,  

no t ( fa l se )  = t rue.  

We w i l l  use the convention of w r i t i ng  

i f  p then e else f 

instead of case p of t rue:  e, fa lse :  f endcase 

The proof rules fo r  the f i n i t e  sets can be given by: 

FF { i  I . . . . .  i n } set 

FI i I E { i I . . . . .  i n } . . .  i nE { i I ~  . . . .  i n } 

p E { i l  . . . . .  in}  el £ S ( i l )  " ' "  e n E S(i n) 
FE 

case(p,e I . . . . .  e n)E S(p) 

e I E s ( i l )  . . . e n E s ( i  n) 

case ( i j , e  I . . . . .  e n ) = e j E s ( i j )  

Natural numbers 

N is a set. The canonical elements of  N are 0 and 
succ(a) fo r  a E N. The contro l  s t ruc ture  associated 
with the natural  numbers is the rec-expression 

rec p of 

0: d, 

succ(x): from z to b 

endrec 

which is a construct ion (program) f o r  S(p) i f  p E N, 
d is a const ruct ion fo r  S(0) and b is a const ruct ion 
fo r  S(succ(x)) under the assumption that  x E N and 
that  z is a construct ion fo r  S(x).  S is a property 
over N. 

The proper syntax of the rec-expression is 

r ec (p ,d , ( x , z )b ) .  

The rec-expression is a non-canonical form of expres- 
s ion;  i t s  value is computed by the fo l l ow ing  ru le :  

I .  Compute p. Since p E N, i t s  canonical form is 
e i t he r  0 or succ(q), where q E N. 

2. I f  p's value is 0, then the value of  the rec- 
expression is the value of  d. 

3. I f  p's value is succ(q) then f i nd  the value of  
b ( q , r / x , z )  where r is the expression 

rec q of 

0: d 

succ(x): from z to b 

endrec 

For instance, the d e f i n i t i o n  

f a c ( x ) ~  rec x of 
0: I 
succ(y): from z to z*succ(y) 

endrec 

corresponds to the informal d e f i n i t i o n :  

I fac(O) = I 

fac(y+1) = fac(y)* (y+1)  

The proof rules fo r  the natural  numbers can be 
given by: 

NF N set 

NI OEN 

NE 
pEN 

a E N  

succ(a) E N 

(x E N, z E S(x)) 
d C S(0) e (x ,z )  C S(succ(x)) 

rec(p ,d ,e)  E S(p) 

N= 

(xEN,  z E S ( x ) )  
q E N dES(0 )  e(x ,z)  E S(succ(x)) 

rec(0,d ,e)  = d E S(0) 
rec(succ(q) ,d ,e)  = e (q , rec (q ,d ,e ) )  E S(succ(q)) 

where the scheme 

(P) 

O 
R 

means that  the conclusion R does not depend on the 
assumption P. The scheme 

P 

R 

is an abbrev ia t ion  fo r  the two schemes 

P P 
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A specia l  case of the NE-rule is  the f o l l ow ing  

(x E N, S(x) t rue)  

p E N S(O) t rue  S(succ(x))  t rue  

S(p) t rue 

which is the ru le  of  mathematical i nduc t ion :  i f  we 
have proved tha t  S(O) is t rue and tha t  S(x+1) is 
t rue under the assumption tha t  S(x) is t r ue ,  then 
we may conclude tha t  S(p) is  t rue  f o r  an a r b i t r a r y  
natura l  number p. 

Function set (a spec ia l  case of  the car tes ian  pro-  
duct between a f am i l y  of  sets)  

I f  A and B are se ts ,  then A ~ B (w i th  proper syntax 
(A ,B) ) i s  a set .  The canonical elements of  A ~ B 

are of  the form ~x.b (w i th  proper syntax ~ ( ( x ) b ) )  
where bEB under the assumption tha t  xEA. The con t ro l  
s t ruc tu re  associated w i th  A ~ B is f unc t i ona l  app- 
l i c a t i o n  

app ly (p ,a )  

which is a cons t ruc t ion  (program) f o r  B i f  aEA and 
p E A ~ B. 

Functional appl icat ion is a non-canonical form of 
expression, i t s  value is computed by the fol lowing 
rule. 

I .  Compute p. Since p E A ~ B i ts  value is of the 
form ~x.b. 

2. Compute b(a/x) ,  i .e .  substi tute a for x in b 
and f ind the canonical value of the result ing 
expression. 

3. The value of apply(p,a) is the value of b(a/x) 

Reading "kx.b ~ A ~ B" as "kx.b is a material proof 
of the proposition A ~ B" y ields:  "Ue may conclude 
that the proposition A ~ B is true i f  we have a 
method which constructs a proof of B from an arb i -  
t rary proof of A." This is the interpretat ion of 
ADB(A implies B) in constructive mathematics. 

In a more fami l ia r  notat ion, A ~ B is the Function 
space B A consisting of a l l  functions mapping a mem- 
ber of A to a member of B. 

The proof rules for  A ~ B can be given by: 

A set B set ~F 
A ~ B set 

(xEA) 
~I e(x) E B 

~(e) E A ~ B  

~E a E A p E A~ B 

apply(p,a) E B 

(x E A) 
e(x) E B a C A 

apply(~(e),a) : e(a) E B 

Ignoring the constructions in the introduction and 
el imination rules yields 

(A true) 
B true 

÷ I  
A B true 

-~ E A true A->B true 

B true 
which are the rules for  implicat ion in Gentzen's 
system of natural deduction. 

Cartesian product of two sets (a special case of the 
d is jo in t  union between a family of sets) 

I f  A and B are sets, then A x B (with proper syntax 
×(A,B)) is a set. The canonical elements of A x B 
are of the form (a,b) (with proper syntax paiSa,b))  
where a E A and b E B. The control structure associ- 
ated with the cartesian product is the spl i t -expres-  
sion 

sp l i t  p into (x,y) in h 

which is a construction (program) for  S(p) i f  
p E A x B and e is a construction for  S((x,y)) under 
the assumptions that x E A, y E B. The proper :syntax 
for  the sp l i t  expression is sp l i t ( p , ( x , y )h ) .  

The s p l i t  expression is a non-canonical form of 
expression, i t s  value is computed by the fol lowing 
rule 

I .  Compute p. Since p E A x B, i t s  canonical 
form is a pair  (a,b). 

2. Compute h(a ,b /x ,y ) ,  i .e .  f ind the canonical 
value of e a f ter  having substituted a for  
x and b for  y. 

3. The value of h(a,b/x,y)  is the value of the 
s p l i t  expression. 

For instance, the def in i t ion  

length(x) ~ s p l i t  x into (y,z) in sqrt(yxy+zxz) 

corresponds to the informal def in i t ion  

length((y,z))  ~ sqrt(y×y+z×z). 

Reading "(a,b) E A × B" as "(a,b) is a material 
proof of the proposition A x B" together with i t s  
premises yields:  "We may conclude that the proposi- 
t ion A x B is true i f  we have a proof of A and a 
proof of B." This is the interpretat ion of A g B 
(A and B) in constructive mathematics. 

The proof rules for  A × B can be given by: 

A set  B set 

x F A × B set 

a E A  b E B  
Xl 

(a,b) E A x B 

XE 

(x E A, y E B) 
p E A x B e(x,y) E S((x,y)) 

sp l i t (p ,e )  E S(p) 
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(x E A, y E B) The proof rules for A+B can be given by: 
a E A b E B e(x,y) E S((x,y)) 

X= 

spli t((a,b),e) = e(a,b) E S((a,b)) 

By using p + I fo r  s p l i t ( p , ( x , y ) x )  and p + 2 f o r  
s p l i t ( p , ( x , y ) y )  we get as special cases of the e l i m i -  
nat ion ru le :  

p E A × B  p E A × B  
xE' 

p + I E A  p + 2 E B  

Ignor ing the construct ions in x l  and xE' y ie lds  

A true B t rue 
x l  

A × B t rue 

xE 
A × B true A × B true 

A true B t rue 

which are the rules fo r  conjunct ion in Gentzen's 
system of natural  deduction. 

D i s j o i n t  union 

I f  A and B are sets, then A+B (with proper syntax 
+(A,B)) is  a set. The canonical elements of th is  set 
are of the forms i l a  and j l b  (wi th proper syntax i (a )  
and j ( b ) )  where a E A and b E B. The contro l  s t ruc-  
ture associated wi th the d i s j o i n t  union set is the 
when - expression 

when p is 

i l x :  e, 

JlY: f 

endwhen 

which is a construct ion (program) fo r  $(p) i f  
p E A+B and e is a construct ion f o r  S ( i l x )  under 
the assumption that  x E A and f is a const ruct ion 
fo r  S ( j l y )  under the assumption that  y E B. The 
proper syntax fo r  the when-expression is 
when(p,(x)e,(y)f). 

The when-expression is a non-canonical form of ex- 
pression, i t s  value is computed by the fo l l ow ing  
ru le :  

I .  Compute p. Since p E A+B i t s  value is e i t he r  of 
the form i l a  , where a E A or of the form j l  b , 
where b E B. 

2. I f  p's value is i l a ,  then in that  case the value 
of the when-expression is the value of e (a /x ) .  

3. I f p ' s  value is j l  b , then in that  case the value 
of the when-expression is f ( b / y ) .  

Reading " i la  E A+B" and " j i  b E A+B" as " i la  and j i  b 
is a material proof of A+B" yields "We may conclude 
that the proposition A+B is true i f  we have a proof 
of A or a proof of B." This is the interpretation of 
A v B (A or B) in constructive mathematics. 

A set B set 
+F 

A+B set 

+I 

+E 

a E A  bEB 

i la  E A+B j lb  £ A+B 

(x E A) 
p E A+B c(x) E S(ilx) 

(y E B) 
d(y)  E S (JlY) 

a E A  

when(p,c,d) E S(p) 

(x~ A) 
bE B c(,x) E S ( i l x )  

(y E B) 
d(y) E S I j l Y l  

when ( i  a ,c ,d)  = c~a) E S ' ( i I a )  
when ( j ! b , c , d )  d(b)  E S I j l b l  

Ignor ing the construct ions in +I and +E y ie lds  

A true B t rue 
+I 

A+B true A+B true 

+E 

(A true) (B true) 
A+B true S t rue S t rue 

S t rue 

which are the rules fo r  d is junc t ion  in Gentzen's 
system of natural  deduction. 

L is ts  

I f  A is a set , then L i s t lA )  is a set. The canonlcal 
elements of L is t (A)  are n i l  and a;s where a E A and 
s E L i s t (A ) .  The proper syntax of a;s is ; (a ,s ) .  
The cont ro l  s t ruc ture  associated wi th L is t (A)  is 
the l i s t rec -exp ress ion  

l i s t r e c  p of 

n i l : d ,  

x ;y :  from z to e 

end l i s t rec  

which is a const ruct ion (program) f o r  S(p) i f  
p E L i s t (A ) ,  d is a const ruct ion fo r  S (n i l )  and 
e is a const ruct ion fo r  S(x;y) under the assumptions 
that  x E A, y E L is t (A)  and z is a const ruct ion 
fo r  S(y).  The proper syntax of  the l i s t rec -exp ress ion  
is 

l i s t r e c ( p , d , ( x , y , z ) e ) .  

The l i s t - i n d  expression is a non-canonical form of 
expression, i t s  value is computed by the f o l l ow ing  
ru le :  

I .  Compute p. Since p E L is t (A)  i t s  value is e i t he r  
n i l  or a;s where a C A, s E L i s t (A ) .  

2. I f  p's value is n i l  then the value of the 
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listrec-expression is the value of d. 

3. If p's value is a;s, then the value of the list ~ 
rec-expression is the value of e (a, s, r/x ,y, z ) 
r is the expression 

listrec s of 

nil: d, 

x;y: from z to e 

endlistrec 

For instance, the definition 

concat(x,y) --- listrec x of 

nil: y 

a;s: from p to a;p 

end 

corresponds to the infoz~nal definition 

I 
c o n c a t ( n i l , y )  = y 

concat (a; s ,y) a. concat (s ,y). 

The proof rules for List(A) can be given by: 

A set 
LF 

List (A) set 

LI niIEList(A) 
aEA sE List(A) 

a;s E List(A) 

LE 
p F List(A) d E S(nil) 

(x 6 A,y E List(A), 
z E S(y)) 

e(x,y,z) 6 S(x;y) 

]istrec(p,d,e) 6 S(p) 

L= 

6 List (A 
E S (y) / 

a6A s6List (A) dCS (nil) e (x,y,z) ES (x;y) 

listrec(nil,d,e) = d 6 S(nil) 
listrec(a;s,d,e)=e(a,s,listrec(s,d,e))ES(a;s) 

A special case of the list elimination rule is 

(x E A,y6List(A), S(y)true) 
p 6 List(A) S(nil)true S(x;y)true 

S (p) true 

which is the rule for induction on lists: if we can 
prove that S (nil) is true and that S (x;y) is true 
under the assumption that S (y) is true then we may 
comclude that S (p) is true for an arbitrary p. 

The product of a family of sets 

If A is a set and if B(x) is a set under the assump- 
tion t~at x 6 A (i.e. B(x) is a family of sets index- 
ed bye6 A, or B is a property of elements of A) 
then~ ~x E A)B(x) is a set. The canonical elements 
of (| |xEA)B(x) are of the form Ix.b (with proper 
syntax l ( (x)b)) where b(x) is an element of B(x) under 
the assumption that x 6 A. The control structure 
associated with (~x 6 A)B(x) is functional applica- 
tion 

apply (p,a) 

which is a construction (program) for B(a) if a 6 A 
and p 6 (~x 6 A)B(x). 

The cc~putation rule for functional application has 
been given earlier in the description of A ~ B. 

Reading "Ix.b E (~x E A)B~)" as "Ix.b is a material 
proof of the proposition (||x E A)B(x) " yields: 'We 
may conclude that the proposition (~x E A)B(x) is 
true if we have proof of B(x) for an arbitrary ele- 
ment x 6 A". This is the interpretation of 
(V x 6 A)B (x) in constructive mathematics. 

If B(x) does not depend on x in (~x E A)B(x) then 
we get the set A ~ B previously described. 

If Aisafinite set, for instance A = {i4, ' i } 
then (~x E A)B(x) corresponds exactly 6o ~e .... n 
record type 

record 

ii: T I , 

i 2 : T 2 

i : T 
n n 

end 

provided B(i I) = T1, B(i 2) = T 2 ..... B(i n) = T n. 

The proof rules for (~x E A)B(x) can be given by: 

(x 6 A) 
A set B (x) set 

~(A,B) set 

(x 6 A) 
b (x) E B(x) 

l(b) E ~(A,B) 

p E~(A,B) a E A 

apply(p,a) E B(a) 

H= 

(x E A) 
b(x) E B(x) a E A 

apply (l (b) , a) = b(a) 6 B(a) 

Ignoring some of the constructions in the introduc- 
tion and elimination rules gives 
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lql 

(x C A) 
B(x) true 

(FIx E A)B(X) true 

FIE 
(Fix E A)B(x) true a E A 

B(a) true 

which should be compared with the rules for  the uni -  
versal quan t i f i e r  in Gentzen's system of natural 
deduction: 

B(x) true 
v l  

(Vx)B(x) true 

VE (vx)B(x) 
B(a) 

The d i s j o i n t  union of a fami ly of sets 

I f  A is a set and B(x) is a set under the assumption 
that x E A, then ( ~ x  E A)(B(x) (with proper syntax 
~ (A ,B ) I i s  a set. The canonical elements of 
C~x E A)B(x) are of the form (a,b) (with proper 
syntax pa i r (a ,b) )  where a E A and b E B(a). The 
control structure associated with the d i s j o i n t  
union set is the spl i t -expression 

s p l i t  p in to (x ,y)  in h 

which is a construct ion (program) for  S(p) i f  
p E ( ~ x  E A)B(x) and h is a construct ion for  S( (x ,y ) )  
under the assumptions that x E A and y E B(x). The 
proper syntax for  the spl i t -expression is 
s p l i t ( p , ( x , y ) h ) .  

The computation rule for  the spl i t -expression has 
been given ea r l i e r  in the descr ipt ion of A x B. 

Reading "(a,b) E ( Z x  E A)B(x)" as "(a,b) is a 
material proof of the proposit ion ( ~ x  E A)B(x)" 
y ie lds :  "We may conclude that the proposit ion 
( ~ x  E A)B(x) is true i f  we have an element x E A 
and a proof of B(x) . "  This is the in te rpre ta t ion  of 
( 3 x  E A)B(x) in construct ive mathematics. 

The proof rules for  ( ~ x  E A)B(x) can be given by: 

(x E A) 
~F A set B(x) set 

Z(A,B) set 

a E A b E B(a) 
ZI 

(a,b) E Z(A,B) 

~E 

(x E A, y E B(x)) 
pE Z(A,B) e(x,y) E S((x,y)) 

sp l i t ( p ,e )  E S(p) 

Z: 

(x E A, y E B(x) )  

a E A b E B(a) e(x,y)  E S((x ,y) )  

s p l i t ( ( a , b ) , e )  = e(a,b) E S((a,b)) 

Ignoring some of the constructions in 
y ie lds 

ZI 
a E A B(a) true 

( Z x  E A)B(x) true 

Z l  and ~E 

(x E A, B(x) true) 

S true ( Z x  E A)B(x) true 
ZE 

S true 

which should be compared with the rules for  the exis-  
ten t ia l  quan t i f i e r  in Gentzen's system of natural 
deduction 

31 

3E 

B(a) true 

(~x )B (x )  true 

(B(x) true) 

(~x )B (x )  true S true 

S true 

Wellorderings 

I f  A is a set and B(x) is a set under the assumption 
that x E A, then (Wx C A)B(x) (with proper syntax 
W(A,B)) is a set. The canonical elements of 

(Wx C A)B(x )a re  of the form sup(a,f)  where a E A 
and f ( y )  E (Wx C A)B(x) under the assumption that 
y E B(a). We can look upon "sup(a, f ) "  as a tree with 
a root labeled "a" and branches labeled "b1", 
"b2", . . .  where b I E B(a), b 2 E B(a) . . . . .  

The branches lead to subtrees which are bu i ld  up in 
the same way. The control s t ructure associated with 
(Wx E A)B(x) is t r a n s f i n i t e  recursion 

transrec p of 

sup(x,u):from v to d(x,u,v)  

endtransrec 
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which is a const ruct ion (program) f o r  S(p) i f  
p E (Wx E A)B(x) and d(x ,u ,v )  is a const ruct ion fo r  
S(sup(x,u))  under the assumptions that  x E A, u(z) 
E (Wx E A)B(x) fo r  z E B(x) and v(z) E S(u{z))  f o r  
z E B(x).  The proper syntax fo r  t r a n s f i n i t e  recursion 
is t ransrec(p ,d) .  

The computation ru le  fo r  t r a n s f i n i t e  recursion is :  

I .  Evaluate p. Since p E (Wx E A)B(x),  p's 
value is of the form "sup (a , f ) " .  

2. The value of the t r a n s f i n i t e  recursion is 
then the value of d ( a , f ,  ( z ) t r a n s r e c ( f ( z ) , d ) ) .  

The rules fo r  the we l lo rder ings  can be given by: 

(x c A) 

A set B(x) set 
WF 

W(A,B) set 

(y E B(a)) 

a E A f ( y )  E W(A,B) 
WI 

s u ~ a , f )  E W(A,B) 

( ( x  E A,u(z) E W(A,B)(z E B(X)) 1 

\ v (z )  E S(U(Z))(z E B(X)) 

p E W(A,B) d (x ,u ,v )  E S(sup(x,u))  
WE 

W = 

aEA 

t ransrec(p,d)  E S(p) 

Iu(z)EW(A,B) (zEB(x)) 

( yEB(a ) )  ~ ' v (z )ES(u (z ) ) { zEB(x ) )7  

f(y)EW(A,B) d(x ,u ,v)ES(sup(x ,u) )  

t rans rec (sup(a , f ) ,d )  

= d ( a , f , ( z ) t r a n s r e c ( f ( z ) , d ) ) E S ( s u p ( a , f ) )  

The equa l i t y  p ropos i t ion  

The propos i t ion  which corresponds to the judgement 
a = bEA is Eq(A,a,b). So i f  we have a proof of  the 
propos i t ion  Eq(A,a,b) then we may make the judgement 
a = b E A  and i f  we have made the judgement a = b E A  then 
we may conclude there is an element in the set 
Eq(A,a,b). We ca l l  th is  element e. To summari'ze: 

a = b E A  
Eql 

e F Eq(A,a,b) 

p E Eq(A,a,b) 
EqE 

a=bEA 

A simple examPle of  the de r i va t i on  of a program 

The task is to f ind  a proof of the Euclidean d i v i -  
sion theorem (ca l led  E) 

(va,b E N)([b>O]~3(q,r  E N)( [ r<b]&[a=b*q+r ] ) )  

which says that  f o r  a l l  natural  numbers a and b 
where b>O, there ex is ts  natura l  numbers q and r 
such that  r<b and a=b*q+r. 

We have used the f o l l ow ing  d e f i n i t i o n s :  

(va,b E N)B ~ (Va E N)(vb E N)B 

[a>b] ~ [b<a] 

[b<a] ~ (3x E N)[b+succ(x)=a] 

[a=b] ~ Eq(N,a,b) 

(3a,b E N)B m (3a E N)(3b E N)B 

The proof w i l l  g ive us a program fo r  the theorem 
where 

c = l a . l b . ~ o . ( q ( a , b ) , ( r ( a , b ) , ( u ( a , b , o ) , v ( a , b , o ) ) ) ) E E  

where a and b are natural  numbers, 

o is a const ruct ion f o r  [b>O], 

q(a,b)  is the quot ien t  between a and b, 

r (a ,b)  is the remainder, 

u(a ,b ,o)  is a const ruct ion fo r  r<b and 

v (a ,b ,o )  is a const ruct ion fo r  [b+succ(x)=a].  

Proof: Assume a, b E N, o E [b>O]. 

Let us do an induct ion over a. 

Define G(x) ~ (3q, r  E N)( [ r<b]&[x=b*q+r ] )  

Basis: ( 0 , ( 0 , . ) )  E G(O) 

since [O<b]&[O=b*O+O] is t rue.  

( " . "  denotes a const ruct ion which we do not c~re 
about.)  

Induct ion step: 

Assume that  z E G(x) and def ine q(z) ~ z+1, 
r (z )  ~ z~2+I. We want to f ind  a const ruct ion For 
G(succ(x)).  From the assumption, by repeated 
Z - e l i m i n a t i o n ,  we get z+2+2+I E [ r (z )<b]  which 

means that  we can f ind  a const ruct ion 
p(z,b) E [ r ( z ) + 1 < b v [ r ( z ) + 1 = b ] .  

We can now make an v - e l i m i n a t i o n :  
Assume that  [ r (z)+1<b] is t rue.  

z#2+2~2 E [ x=b*q(z )+r (z ) ]  

x = b*q(z)+r (z)  E N 

x+1 = b*q(z)~r(z)+1)  E N 

( q ( z ) , ( r ( z ) + 1 , . ) )  E G(x+1) 

(EqE) 

(Ari  thmeti c s ) 

(ZE)  

Eq= 
p E Eq(A,a,b) 

p = e E Eq(A,a,b) 
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Assume that [r(z)+1=b] is true. 

z+2+2+2 E [x = b*q(z)+r(z)] 

x = b*q(z)+r(z) E N (EqE) 

X+1 = b*q(z)+( r (z)+1)  E N 

x+1 = b*(q(z)+1)+0 E N 

( q ( z ) + 1 , ( r ( z ) , . ) )  E G(x+1) 

We can conclude that  

when p(z,b) is 

i l x : ( q ( z ) , ( r ( z ) + 1 , . ) )  

J l x : ( q ( z ) + 1 , ( r ( z ) , . ) )  

endwhen is a const ruct ion f o r  

(Ar i thmet ics)  

G(x+I) 
by + elimination 

N-e l iminat ion  gives us: 

rec a of  

0 : (0 , (0 , . ) )  

succ(x): f rom z to 

when p(z,b) i s  

i l x : ( q ( z ) , ( r ( z ) + 1 , . ) )  

j x : ( q ( z ) + 1 , ( r ( z ) , . ) )  

endwhen 

end is a construct ion fo r  G(a) 

Three I ] - i n t r o d u c t i o n s  y i e l d  that  

Xa.Xb.Xo. rec a of 

0 : ( 0 , ( 0 , . ) )  

succ(x): f rom z to 

when p(z,b) is 

i l x : ( q ( z ) , ( r ( z ) + 1 , . )  

j l x : ( q ( z ) + 1 , ( r ( z ) , . )  

endwhen 

end 

is a const ruct ion f o r  the theorem, where p(z,b) s a 
const ruct ion f o r  [ r (z)+1<b]v [ r (z)+1=b]  

and q(z) ~ z~1 

and r (z)  ~ z+2+I 

What remains to be done is to f i nd  a proof p of  
[ r (z )+1<b]v [ r (z )+1=b] .  I t  is not d i f f i c u l t  to prove 
that  f o r  each propos i t ion P b u i l t  up by conjunct ions 
and d is junc t ions  of a r i thmet ic  e q u a l i t i e s  and in-  
equa l i t i e s  there is an expression p' E Bool w h i c h  
is such that  

p'= t rue E Bool i f f  p is t rue 

We can now use the fac t  that  there is a boolean 
funct ion a<b (wi thout  brackets) which is def ined 
such that  

a<b = t rue E Bool i f f  [a<b] is  t rue.  

to obtain the fo l l ow ing  program 

xEL(A) 

Xa.Xb.Xo. rec a of  

0:(0, (0 , . ) )  

succ(x):from z to 

i f  r(z)+1<b then (q(z) , ( r (z)+1,. ) )  

else (q(z)+1,(r(z) , . ) )  
end 

which is a construction for the theorem E. 

Programming with l i s t s  

The def ini t ion of concatenation between l i s ts  was 
given earl ier,  

concat(x,y) ~ l is t rec x of 

n i l :  y 

a;s: from p t_o_o a.p 

end 

In order to give a flavour of how to reason about 
programs we w i l l  give a formal proof that concatena- 
tion is associative. Instead of writ ing concat(x,y) 
we w i l l  write xCy, and instead of n i l  we w i l l  
write 6 . 

Theorem: (xCy)~z  = x¢ (yCz)  E List(A) 

i f  x,y,z E List(A), where A is a type. 

Informal proof :  

We make a l i s t - i n d u c t i o n  on x,  and abbreviate 
Eq(L is t (A) ,x ,y )  to x = y 

Basis: By L is t=  ( ~ y ) ~ z  = y C z ,  and 

( ~  (y~ z) = yo z. 

Induct ion step: 

Assume that  ( s ~ y ) ¢ z  = s O ( y ~ z ) .  

(a.sCy)~z : (a . (sCy) )¢z  

= a . ( ( s¢y )¢z )  

: a.(s¢ (yO (yOz)) 

(a.s¢(yOz) = a. (aO(y~z))  

A formal proof 

We define L(A) ~ List(A). The formal proof of 
the theorem is the following proof tree: 

by List= 

by List= 

by the induc- 
tion assumption. 

by List= 

PI 

[ ( ~ y ) ~ z  -- ~ (y<>z)] 

[(s<>y)~>z : sK> (y<>z)] 

P2 
[(a.s<>y)<>z = a.s<> (yK>z)LE 

[(x<>y)<>z ~ x<> (yCz)]  

(x<>y)<> z= x<> (yK>z) E L(A) 
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where PI stands for  the proof 

yE L(A) (xEL(A)) (y,zEL(A) (xEL(A)) 
LE - R Refl 

~<> y=y x<> z=x<> z y<> z=y<> z x=~<> x 

(~<> y)<> z:y<> z y<>z = ~O(yOz) 

(~<>y)<>z = 6<> (y<>z) 

[(~<>y)<>z : 6<> (y<>z)] 
Eql 

L 

S 

Trans 

and P2 stands fo r  the proof 

y ,zEL (A) aEA ,s, xEL (A) 
L = 

P21 y<> z=y<> z a. (s<> x)=(a.s)<> x 

(a .s<> y)<>z =a. (a<> (y<> z) ) a. (s<> (y<>z))= a.s<>. (y<> z) 
Trans 

(a.s<>y)<>z = a.s<> (y<>z) 

[(a.s<>y)<>z : a.s<> (y<>z)] 
Eql 

The Ackermann-function 

The Ackermann funct ion is the c lassical  example of 
a recursive funct ion which is not p r imi t ive  recur- 
s ive,  i . e .  a funct ion which cannot be defined using 
composition of funct ions and the schemata 

f ( x  I . . . . .  Xn,O) =d(x I . . . . .  x n) 

f ( x  I . . . . .  Xn,~l)= e(x I . . . . .  Xn,X,f(x I . . . . .  Xn,X)) 

which corresponds to the form rec in  Constructive 
Set Theory. 

This exercise w i l l  show how to express the Ackermann 
funct ion in Constructive Set Theory. 

Consider the fo l lowing de f in i t i ons  

f o ( x , y ) ~  y+x ~ rec y of 

O: x 

succ(n): from z to succ(z) end 

f1~x,y)'' ~ x.y m rec y of 

O: 0 

succ(n): from z to x+z end 

where P21 is the proof 

P211 
(a.s<>y)g>z = a.((s<>y)<>z) 

(xEL(A)) ([(s<> y)<> z = sO (y<> z) ]) 
R IdE 

a .x=a.x  (s<> y)O z = s<> (y<> z) 
S 

a. ((s<> y)<> z) = a. (s<>(y<> z)) 

(a.s<>y)<>z : a.(s<> (y<>z)) 

where P211 is the proof 

x,zEL(A) aEA, s,yEL(A) s,yEL(A) 
R 

x<>z = x<>z a.s<>y = a.(s<>y) s<>y = s o y  

f (x ,y)  ~ x y ~ rec y of 

O: I 

succ(n): from z to x*z end 

aEA,xEL(A) A(n,x ,y )  m fn(X,y)  is 
R = and is defined by the 

a .xOz = a.(x<>z) 

f3 (x ,y )  ~ x÷+y ~ rec y of  

O: I 

succ(n): from z to x z end 

These funct ions are the f i r s t  in a series of funct ions 
f l '  f2 . . . .  where fn+ l ( x , y )  is  the resu l t  of 

fn (x . . . .  fn(X,X) . . ' ) )  i f  y>O 

where fn is applied y-1 times. The funct ion 

the or ig ina l  Ackerman funct ion 
fo l lowing equa l i t i es :  

(a.s<>y)<>z = a . (s<>y)¢z a.(s<>y)<>z = a.((s<>y)<>z) 

(a.s <>y)<>z : a.((s<>y)<>z) 

This completes the formal proof. I t  is  not our 
suggestion that programmers should always give 
formal computer checked proofs of t he i r  programs. 
Formal proofs can however be used to optimize pro- 
grams in the way shown by Goad [Gd]. 

A(O,x,O) =x 

A(O,x ,y+I )=A(O,x ,y )+ I  

A( I ,x ,O)  = 0 

A(n+2,x,O) = I 

A(n+1,x,y+l)  = A(n,x ,A(n+1,x ,y) )  

We assume for  s imp l i c i t y  that  y > O. The f i r s t  two 
equa l i t ies  define fn (x ,y )  = x+y and the f i f t h  equa- 
l i t y  defines fn+1 in t~rms of fn" 

I f  we define the funct ion do(n , f , x )  E N(n EN, f ENxNEN) 
such that 

do(n , f ,x )  = a p p l y ( f , ( . . ,  a p p l y ( f , ( x , x ) ) . . . ) ) ) )  

with n app l ica t ions,  then we can define the Ackermann 
funct ion a f te r  having noted the equa l i t ies  
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A(0,x,y)  : x+y 

A(n+1,x,0) = i f  iszero(n) then 0 else I 

A(n+1,x,y+1) =do(y ,x (y ,z ) .  A (n ,y ,z ) , x )  

where we have used the abbreviat ion x (y ,z ) .e  fo r  
x x . s p l i t  x in to  (y,z)  in  e. For f (n )  defined by 

f (n)  z ~(x,y) .  A(n,x,y)  

the fo l lowing equal i t ies  hold 

f ( 0 )=  ~(x,y) .x+y 

f(n+1) =~(x ,y ) .  i f  y > 0  then do ( y - l , f ( n ) , x )  

else i f  iszero(n) 

then 0 

else I 

This means that we can define the Ackermann funct ion 
by 

A(n,x,y)  ~ apply(rec n of 

0 : ~ ( x ' , y ' ) . x ' + y '  

succ(n):from z to 

~(x' ,y ' ) .  
i f  y '> 0 
Then do(y ' -1,z,x ' )  

else i f  iszero(n) 

then 0 else I ,  

(x,y))  

What remains to be done is to define the funct ion 
do which is such that 

I do(0, f ,x )  = x E N 

do(n+1,f ,x) = a p p l y ( f , ( x , d o ( n , f , x ) ) )  

These equal i t ies  are solved by putt ing 

do(n , f ,x )  ~ rec n of 

0: x 

succ(n): from z to 

app l y ( f , ( x , z ) )  
end 

F ina l l y ,  we prove the fo l lowing theorem. 

Theorem: The funct ion A(n,x,y)  as defined above is a 
~ n  to the Ackermann equations. 

Proof: We prove the equal i t ies  by subs t i tu t ing  A in to  
the three equations 

i )  A ( 0 , x , 0 )  = x+0 : x 

i i )  A(0,x,y+1) = x+(y+1) = (x+y)+1 = A(0,x,y)+1 

These two cases have been proven by N-equal i ty ,  
~ - e l i m i n a t i o n  and elementary propert ies of +. 

i i i )  I f  f (n )z  ~ (x ,y ) .A (n ,x ,y )  then 

f(n)=rec(n,  
~(x,y) .x+y,  
(n,z) ~(x,y) .  

i f  y>0 
then do (y - l , z , x )  
else rec(n,0,1) 

) 
and 

A(1,x,0)=apply(~(x,y) .  
i f  y>0 
then d o ( y - l , f ( 0 ) , x )  
else rec(0,0,1),  

(x ,0))  by N-equal i ty 
=rec(0,0,1) by ~-equal i ty  
=0 by N-equal i ty 

iv) 
A(n+2,x,0)=apply(~(x,y).  

i f  y>0 
then do(y - l , f (n+1) ,x )  
else rec(n+1,0,1), 

(x ,0))  by N-equal i ty 
=rec(n+1,0,1) by ~-equal i ty  
=0 by N-equal i ty 

v)  
A(n+1,x,y+1)=apply(~(x,y) .  

i f  y>0 
then d o ( y - l , f ( n ) , x )  
else rec(n,0,1) ,  

(x,y+1)) by N-equal i ty 
=do(y , f (n) ,x )  by ~-equal i ty  

Now since y>0, y = m+1E N for  some m. This means that  

A(n+1,x,y+1) = do(m+1,f(n),x) E N by subs t i tu t ion  

= app l y ( f ( n ) , ( x ,do (m, f (n ) , x )  E N 

by N-equal i ty 

= apply( f (n) , (x,A(n+1,x,m+1) E N 

by N = and FI= 

= A(n,x,A(n+1,x,y))  E N by subst i -  

tu t ion  

The summation oPerator and a more general i t e r a t o r  

We w i l l  show how to define the t rad i t i ona l  summation 
h 

operator Ze  where e is an expression depending 
i=I  

on i .  We w i l l  use the proper syntax 

sum(l,h,e) 

where e is an abstract ion,  i . e .  we could also wr i te  

sum( l ,h , ( i )g)  

i f  g is an expression depending on the var iable i .  
The de f i n i t i on  is straightforward when we have 
observed the facts that 
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h 
( I )  ~ e ( i ) :  

i= I  

h-1 
e( i+1)  

i=O 

n+1 
(2) Z e ( i )  = 

i=O 

n 

e ( i )  + e(n+1) 
i=O 

0 
(3) Z e ( i ) :  e(O) 

i=O 

The f i r s t  fac t  impl ies tha t  we should do a p r im i t i ve  
recurs ion over h - l :  

sum(l ,h,e)  m rec h-I  of  

O: e(1) 

succ(x) :  from p to p+e(succ(x)+1) 

end 

This d e f i n i t i o n  is  an instance of a general scheme 
f o r  apply ing a func t ion  repeatedly over an abstracted 
expression. F i r s t  we need some d e f i n i t i o n s  f o r  
func t iona l  app l i ca t i on  and composit ion. 

Instead of f ( a )  we w i l l  w r i t e  a÷f and use the 
convention tha t  a+b-~c~(a+b)-~c. For func t iona l  compo- 
s i t i o n  

fog(x )  - f ( g ( x ) )  

we also use the no ta t ion  

g l f  - fog 

We could def ine the mu l t i p l e  composit ion f l f l . . .  I f  
w i th  n composit ions b - - ~ q u a l i t i e s  

I fO : (x)x  

fn+1 = f n l f  

i . e .  

f n :==+( f ,n )  _= (x ) rec(n  of 

O:x, 

succ(x) :  from p to p l f  

endrec 

We use a===b to mean "the concrete syntax f o r  the 
proper expression b is  a".  

I f  we can f i nd  a cons t ruc t  I ~ : I f ( i )  which evaluates 
to 

f ( 1 )  f ( 2 ) . . . f ( n )  

under the assumption tha t  f ( i ) ( x )  E A , ( i  ~ N,x G.A) 
we obtain the summation expression 

e (1 )+ . . .+e (n )  by 0 ÷ I n i =1 (x )x+e ( i )  

For ] i h l f ( i )  we use the proper syntax l ( l , h , f )  and 

we note the f o l l ow ing  equa l i t i e s  

h - I + I ¢ ( i + i + i )  
l ~ = I f ( i )  = i= I  -" 

I ~ : i f ( i )  = ( x ) x  

which 

n+1=, n f ( i ) ) i f ( n + 1 )  
l i : 1 . ~ i )  : ( l i :  I 

gives the fo l l ow ing  d e f i n i t i o n  

[~= i f ( i )===  ( l , h , f )  ~ (x) rec h-l+1 o f  

O: x,  

succ(n):  from ID to 

p l f (n+1)  

endrec 

I t e r a t o r s  f o r  l i s t s  

Composition i t e r a t o r  f o r  l i s t s  

The d e f i n i t i o n  of Finl f ( i )= which is def ined such tha t  

n 
l i = l f ( 3 )  = f ( 1 ) ] f ( 2 ) l . . . ] f ( n )  

i f  l , n E N a t , f ( i ) ( x ) E A  f o r  i e N ,  x ~ A  

can be general ized to l i s t s  by the f o l l ow ing  cons t ruc t  

f o r  i in  s d.o f ( i )  = f ( s l ) I f ( s 2 ) l . . . I f ( s  n) 

i f  s = s1.s 2 . . . .  Sn .n i l  

We make the f o l l ow ing  d e f i n i t i o n  

f o r  i in  s do f ( i ) o d = = = f o r ( i , s , f )  :- 

( x ) l i s t - i n d  s in 

n i l :  x 

a . t :  from p to 

f (a )  Ip 

end 

For example to sum a l l  elements in  a l i s t  1 oi' i n t e -  
gers we w r i t e  

O+for i in 1 do( x )x+ i  od 

and to check i f  the number of  elements in  each e le-  
ment in a l i s t  of l i s t s  are less than 40 we wr i t e  

t rue+for  i in  1 do (xXx and # i < 40)od 

The f o l l ow ing  theorem is a l i n k  between the l i s t  
i t e r a t o r  and the composit ion i t e r a t o r .  
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Theorem: I f  i,nENat, x c--A,f( i)(x)~A ~ e q  

n , - -l i=if(1) = for i in 1...n do f(i)EA+A 

where we have used the de f in i t i ons  

i . . j  m ni l -~I~=i(x)cons( i+j-k,x ) 

cons(x,y) ~ x;y 

so, for instance 

I . . . 5  = I ;2;3;4;5;n i i  

Proof: Set F(j,m) ~ for  i in j . . .m  do f ( i )  

We prove the theorem by an induct ion over n 

I The theorem is true fo r  n = 0 since 

LNS = l i 0 1 f ( i )  = ( x ) x  

RHS = for  i in I . . . 0  do f ( i )  

= fo r  i in n i l  do f ( i )  = (x)x 

I I  Assume that [ i m l f ( i )  = F(1,m) 

m+I f ( i )  = F(1,m+1) We want to show that i=I  

I ~ I f ( i  ) : ] :m , f ( i ) l f (m+ l  ) , : ,  by N : 

= F(1,m) l f(m+l) by the induct ion 
assumption 

= F(1,m+l) by the fo l lowing lemma. 

Lemma: F(j,m)[f(m+1) = F(j,m+1) 

Proof: We know that F(j,m+1) : f ( j ) IF( j+1,m+1) since 

F(j,m+1) = for  i in j . . .m+l  do f ( i )  

+ m+l. = for i in ni l  li=j~x)cons(j~m+1-i,x) 

do f ( i )  

for i in cons( j ,n i~ I?~+ I (x)sons 

(j+m+2-i,x))do f ( i )  

= f(j)IF(j+1,m+1) 

We prove the lemma by an induction over m-j. 

The lemma is true for  m-j = 0 ( fo l lows from 
the f i r s t  l i ne  in the proof.)  

I I  Assume that F(j,m)If(m+1) = F(j,m+1) holds 
when m-j = n. We want to show that the lemma 
is true when m-j = n+1 

LHS = F(j,m)If(m+1) = ( f ( j ) IF( j+1,m)Jf(m+1) 

= f ( j )~(F( j+1,m)I f (m+1))  by 

assoc ia t i v i t y  of I ,  

= f ( j ) IF( j+1,m+1) by the 

induct ion hypothesis 

The composition i t e ra to r  fo r  l i s t s  resembles the 
reduce operator in APL. 

Implementation 

We have implemented an in te rpre te r  fo r  Constructive 
Set Theory wr i t ten in Lisp. I t  runs under Unix on a 
Vax computer. 
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