
Programming in Constructive Set Theory: Some Examples

Bengt NordstrOm
Laboratory for Programming Methodology

Informationsbehandling
University of G~teborg and

Chalmers University of Technology
S-412 96 G~teborg, Sweden

Abstract

Per Mart in-L~f 's Constructive Set Theory is a
mathematical language with computation rules. I t is
pr imar i ly designed to be a language for mathematical
reasoning. The language has a very simple semantics
and i ts rules have a simple structure. Since i t is
a language for constructive mathematics, i t is pos-
s ib le to execute the proof (the construction of a
proposit ion) as a program.

The language can be seen as a programming language
without assignments and other side effects. Compared
to t rad i t i ona l functional languages i t has a very
rich type structure in that the type of an expres-
sion can completely specify the task of the expres-
t ion. A sort ing algorithm, for instance, can be con-
vent ional ly specif ied to have a type

sort: List(A) ~ List(A)

which is type-correct i f sort is any function
taking a l i s t as argument and pro#ucing a l i s t as
resul t . I t is , however, also possible to specify
that sort is a function taking a l i s t as argument
and producing a sorted permutation of i ts input
as resul t , i .e .

s o r t : (l l x E List(A)) (z y E List(A))

(Perm(x,y) × Sorted(y))

The type (or the task) of the program can be read
as the proposit ion

(Vx ~ List(A)) (3 y a List(A) (Perm(x,y)

& Sorted(y))

which is read " for a l l l i s t s x, there is a sorted
permutation y of x". We can prove that this propo-
s i t ion is true, using the rules of the language to
construct a program for the task. I f the proposit ion
were not true, i t would be impossible to f ind a

This research was sponsored by Styrelsen f~r
Teknisk utveckling and Naturvetenskapliga
ForskningsrAdet

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 ACM 0-89791-060-5/81-10/0141 $00.75

a program for i t and we would have had an impossible
task. The types of Constructive Set Theory can be
seen as a speci f icat ion language for the programs,
but of course there is only one language, avoiding
the complexity of mixing a programming language
with a logical language.

The s im i l a r i t y (or rather: iden t i t y) between a
mathematical proof of a given proposit ion and a
program for a given task suggests that programming
should be s imi lar to the mathematicians ac t i v i t y of
f inding proofs. We have i l l u s t r a ted this with an
example of how a proof of the Euclidean d iv is ion
theorem yields a program to compute the quotient
and the remainder between two natural numbers.

The paper contains a descript ion of the language.
Since a l l programs in the language terminate, the
proof rules and the semantics are simple. We give
some examples of programming with l i s t s and reasoning
about the programs. We also define the Ackermann
function.

Introduction

Constructive Set Theory is a mathematical language
with computation rules developed by Per Martin-L~f
[MLI, ML2]. The inference rules of the language
explain how to form judgements from known judge-
ments. A judgement of the form

a C A

may be read in several ways:

I) a is an element of the set A.

2) a is a material proof (construction, manifesta-
t ion o f ~ e prop~tfon-A-~

3) a is a program for the task A.

4) a is a solut ion to the problem A.

In this context, we are most interested in the th i rd
reading, but we w i l l also use the f i r s t two. The
d i f fe ren t readings imply that a proposit ion A is
seen as the set of a l l proofs of A and that the
speci f icat ion of the task of a program is s imi lar
to a proposit ion. The programmer's a c t i v i t y of f ind-
ing a program is therefore s imi lar to the mathemati-
cians a c t i v i t y of f inding a proof of a proposit ion.
Simi lar ideas have been expressed by Takasu[T] and
Goto [G] who derive programs mechanically from con-
struct ive proofs.

There are two fundamental forms of judgements in
Constructive Set Theory, "a E A" and "A set".

141

The f i r s t means t h a t a is an element of A
and the second t ha t A is a set . I f we are not i n t e -
rested in the cons t ruc t i on a f o r A, i . e . we are on ly
i n t e r e s t e d in the asse r t i on t h a t the re is a cons t ruc -
t i o n f o r A, i . e . t ha t A is t r u e , then we w i l l w r i t e

A t r ue

ins tead of a E A.

Another fundamental form of judgement is "a = b ~ A"
which means t h a t a and b are equal elements of A.

The d e s c r i p t i o n of the language w i l l proceed in the
f o l l o w i n g way. There are d i f f e r e n t ways of cons t ruc -
t i ng new sets from given sets . We c a l l these ru les
of set f o rma t i on . For each new set we w i l l e x p ~ i n
how to cons t ruc t the canonica l elements o f the se t .
A canonica l element is an element which has i t s e l f
as va lue . We w i l l c a l l these ru les i n t r o d u c t i o n r u l es .
The nex t r u l e is an e l i m i n a t i o n r u l e which from an
a r b i t r a r y element p of the set exp~rains how to con-
s t r u c t a program f o r the task S(p) , where S is a pro-
pe r t y (f a m i l y o f sets) over the set in ques t i on .
This r u l e can be seen as a con t ro l s t r u c t u r e in the
language. Since the con t ro l s t r u c t u r e is a non-cano-
n i ca l form of exp ress ion , t he re is an e q u a l i t y r u l e
which is used to f i n d the va lue of an express ion
t h a t form. The va lue of an express ion p is a canon i -
cal express ion ~ is equal to p.

We w i l l s t a r t by e x p l a i n i n g sets which are common as
types in programming languages: f i n i t e se ts , the
na tu ra l numbers, f unc t i on se ts , c a r t e s i a n p roduc ts ,
d i s j o i n t unions and l i s t s . We w i l l then con t inue to
descr ibe two set forming ope ra t i ons which correspond
to q u a n t i f i e r s in p red i ca te l o g i c , and f i n a l l y we
w i l l exp la i n w e l l - o r d e r i n g s w i th t r a n s f i n i t e induc-
t i o n which are essen t i a l f o r implement ing t r ee l i k e
data s t r uc tu res (l i s t s , na tu ra l numbers, a b s t r a c t
syntax t rees e t c .) .

How express ions are formed

Expressions are used to express sets and e lements.
There are two d i f f e r e n t ways of w r i t i n g an expres-
t i o n , e i t h e r by using the concrete syntax or the
proper syntax of the language. ~ proper syntax o f
an express ion resembles what McCarthy [McC] c a l l s
the a b s t r a c t syntax in t ha t a l l par ts o f an expres-
s ion are essen t i a l f o r i t s meaning, and t h a t the re
is on ly one k ind of separa to rs and t e rm ina to r s which
makes i t easy to decompose the express ion i n t o i t s
pa r t s . I t is d i f f e r e n t from the a b s t r a c t syntax in
t ha t the proper syntax of an express ion exp la i ns what
v a r i a b l e s become bound in d i f f e r e n t par ts o f the
express ion . The proper syntax is e a s i e r to use when
t a l k i n g about express ions (e .g . in p roo f r u l e s , ed i -
t o r s , i n t e r p r e t e r s) , w h i l e the concre te syntax is
e a s i e r to read and w r i t e s ince i t a l l ows an expres-
s ion to be w r i t t e n in a more t r a d i t i o n a l way. The
f o l l o w i n g t a b l e con ta ins examples of express ions
w r i t t e n in the two ways.

Concrete syntax Proper syntax

a÷b*c p l u s (a , t i m e s (b , c))

n
e, sum(1 , n , (i) e)

i= I

[sum,i=1 ,n]e sum(1 , n , (i) e)

~x.e ~((x)e)

(Vx E A)B v ((x)B)

Proper exPress ions

A proper express ion is e i t h e r a v a r i a b l e , an a p p l i -
ca t i on or an a b s t r a c t i o n .

An a p p l i c a t i o n is o f the form

e(e 1,e 2 e n) , n _> O,

where e is an o p e r a t o r and e . , e 2 e are i t s
operands. The ope ra to r and the loperands n are always
express ions .

An a b s t r a c t i o n is of the form

(x 1,x 2 Xn)e , n >__ I

where x I x n are v a r i a b l e s and e is an express ion .

I f e is an express ion depending on x 1,x 2 xD,
then the a b s t r a c t i o n (x . , . x)e is an express lon

• " - " n . which does not depend o~ x I , x . For i ns tance ,
• " ° " n .

the express lon (x) x 2 does no t depend on x , i t is the
express ion which squares an i n t e g e r .

An express ion e depends on the v a r i a b l e x when x is
f r ee in e. A v a r i a b l e is f r ee in an express ion in
the f o l l o w i n g cases.

- The v a r i a b l e x is f r ee in the express ion x.

- The v a r i a b l e x is f r ee in the express ion
e(e I e n) i f x is f r ee in one of the expres-
sions e ,e 1 , . . . , e n.

- The v a r i a b l e x is f r ee in the express ion
(x I xn)e i f x is f r ee in e and d i s t i n c t from
x 1 , . . . ,x n.

I f g is an a b s t r a c t i o n (x I Xn)e then the a p p l i -
ca t i on g(e I e n) is th# express ion e w i th
e I e n s u b s t i t u t e d f o r x I x n in e, i . e .

((x I Xn)e)(e I er~ -- e(e I en/X I x n)

so t h a t

((x I Xn)e) (x I x n) - e

F i n i t e sets

I f i i 2 ~i n, n > 0 are i d e n t i f i e r s then
{ i i , I ' . . . , i n } is a s ~ . The canonica l elements of
{ i I i n } are i I and i 2 and . . . and i n . The
con t ro l s t r u c t u r e assoc ia ted w i th { i I i n }
is the case express ion

case p o f

i i : e I •

i2 : e 2 ,

endcase

which is a q o n s t r u c t i o n (program) f o r S(p) i f S is
a p rope r t y I) over { i I , i n } , p E { i I i n }
and e I ~ S(i I) " , e~E S~ in) . The 6ase expreS-
s ion is a non-canonica l ~orm of exp ress ion ; i t s

I) That S is a p rope r t y over a set A means t h a t
S(a) is a p r o p o s i t i o n (se t) i f a C A. This means
t h a t S is an abs t rac ted exp ress ion , which a p p l i e d
to a member o f A y i e l d s a p r o p o s i t i o n (s e t) . S can
t h e r e f o r e be seen as a f a m i l y o f sets indexed by
elements in A.

142

value is computed by the fo l l ow ing ru le :

I . Compute p. Since pE { i I , i n } , i t s

value is of the form i j , j ~ n.

2. The value of the case-expression is the
value Of e j .

For instance, i f Boo leanm{t rue, fa lse} , then the
d e f i n i t i o n

not (x) ~ case x of

t rue: f a l se ,

fa lse : t rue

endcase

corresponds to the informal d e f i n i t i o n

I not (t rue) = fa l se ,

no t (fa l se) = t rue.

We w i l l use the convention of w r i t i ng

i f p then e else f

instead of case p of t rue: e, fa lse : f endcase

The proof rules fo r the f i n i t e sets can be given by:

FF { i I i n } set

FI i I E { i I i n } . . . i nE { i I ~ i n }

p E { i l in} el £ S (i l) " ' " e n E S(i n)
FE

case(p,e I e n)E S(p)

e I E s (i l) . . . e n E s (i n)

case (i j , e I e n) = e j E s (i j)

Natural numbers

N is a set. The canonical elements of N are 0 and
succ(a) fo r a E N. The contro l s t ruc ture associated
with the natural numbers is the rec-expression

rec p of

0: d,

succ(x): from z to b

endrec

which is a construct ion (program) f o r S(p) i f p E N,
d is a const ruct ion fo r S(0) and b is a const ruct ion
fo r S(succ(x)) under the assumption that x E N and
that z is a construct ion fo r S(x). S is a property
over N.

The proper syntax of the rec-expression is

r ec (p ,d , (x , z)b) .

The rec-expression is a non-canonical form of expres-
s ion; i t s value is computed by the fo l l ow ing ru le :

I . Compute p. Since p E N, i t s canonical form is
e i t he r 0 or succ(q), where q E N.

2. I f p's value is 0, then the value of the rec-
expression is the value of d.

3. I f p's value is succ(q) then f i nd the value of
b (q , r / x , z) where r is the expression

rec q of

0: d

succ(x): from z to b

endrec

For instance, the d e f i n i t i o n

f a c (x) ~ rec x of
0: I
succ(y): from z to z*succ(y)

endrec

corresponds to the informal d e f i n i t i o n :

I fac(O) = I

fac(y+1) = fac(y)* (y+1)

The proof rules fo r the natural numbers can be
given by:

NF N set

NI OEN

NE
pEN

a E N

succ(a) E N

(x E N, z E S(x))
d C S(0) e (x ,z) C S(succ(x))

rec(p ,d ,e) E S(p)

N=

(xEN, z E S (x))
q E N dES(0) e(x ,z) E S(succ(x))

rec(0,d ,e) = d E S(0)
rec(succ(q) ,d ,e) = e (q , rec (q ,d ,e)) E S(succ(q))

where the scheme

(P)

O
R

means that the conclusion R does not depend on the
assumption P. The scheme

P

R

is an abbrev ia t ion fo r the two schemes

P P

143

A specia l case of the NE-rule is the f o l l ow ing

(x E N, S(x) t rue)

p E N S(O) t rue S(succ(x)) t rue

S(p) t rue

which is the ru le of mathematical i nduc t ion : i f we
have proved tha t S(O) is t rue and tha t S(x+1) is
t rue under the assumption tha t S(x) is t r ue , then
we may conclude tha t S(p) is t rue f o r an a r b i t r a r y
natura l number p.

Function set (a spec ia l case of the car tes ian pro-
duct between a f am i l y of sets)

I f A and B are se ts , then A ~ B (w i th proper syntax
(A ,B)) i s a set . The canonical elements of A ~ B

are of the form ~x.b (w i th proper syntax ~ ((x) b))
where bEB under the assumption tha t xEA. The con t ro l
s t ruc tu re associated w i th A ~ B is f unc t i ona l app-
l i c a t i o n

app ly (p ,a)

which is a cons t ruc t ion (program) f o r B i f aEA and
p E A ~ B.

Functional appl icat ion is a non-canonical form of
expression, i t s value is computed by the fol lowing
rule.

I . Compute p. Since p E A ~ B i ts value is of the
form ~x.b.

2. Compute b(a/x) , i .e . substi tute a for x in b
and f ind the canonical value of the result ing
expression.

3. The value of apply(p,a) is the value of b(a/x)

Reading "kx.b ~ A ~ B" as "kx.b is a material proof
of the proposition A ~ B" y ields: "Ue may conclude
that the proposition A ~ B is true i f we have a
method which constructs a proof of B from an arb i -
t rary proof of A." This is the interpretat ion of
ADB(A implies B) in constructive mathematics.

In a more fami l ia r notat ion, A ~ B is the Function
space B A consisting of a l l functions mapping a mem-
ber of A to a member of B.

The proof rules for A ~ B can be given by:

A set B set ~F
A ~ B set

(xEA)
~I e(x) E B

~(e) E A ~ B

~E a E A p E A~ B

apply(p,a) E B

(x E A)
e(x) E B a C A

apply(~(e),a) : e(a) E B

Ignoring the constructions in the introduction and
el imination rules yields

(A true)
B true

÷ I
A B true

-~ E A true A->B true

B true
which are the rules for implicat ion in Gentzen's
system of natural deduction.

Cartesian product of two sets (a special case of the
d is jo in t union between a family of sets)

I f A and B are sets, then A x B (with proper syntax
×(A,B)) is a set. The canonical elements of A x B
are of the form (a,b) (with proper syntax paiSa,b))
where a E A and b E B. The control structure associ-
ated with the cartesian product is the spl i t -expres-
sion

sp l i t p into (x,y) in h

which is a construction (program) for S(p) i f
p E A x B and e is a construction for S((x,y)) under
the assumptions that x E A, y E B. The proper :syntax
for the sp l i t expression is sp l i t (p , (x , y)h) .

The s p l i t expression is a non-canonical form of
expression, i t s value is computed by the fol lowing
rule

I . Compute p. Since p E A x B, i t s canonical
form is a pair (a,b).

2. Compute h(a ,b /x ,y) , i .e . f ind the canonical
value of e a f ter having substituted a for
x and b for y.

3. The value of h(a,b/x,y) is the value of the
s p l i t expression.

For instance, the def in i t ion

length(x) ~ s p l i t x into (y,z) in sqrt(yxy+zxz)

corresponds to the informal def in i t ion

length((y,z)) ~ sqrt(y×y+z×z).

Reading "(a,b) E A × B" as "(a,b) is a material
proof of the proposition A x B" together with i t s
premises yields: "We may conclude that the proposi-
t ion A x B is true i f we have a proof of A and a
proof of B." This is the interpretat ion of A g B
(A and B) in constructive mathematics.

The proof rules for A × B can be given by:

A set B set

x F A × B set

a E A b E B
Xl

(a,b) E A x B

XE

(x E A, y E B)
p E A x B e(x,y) E S((x,y))

sp l i t (p ,e) E S(p)

144

(x E A, y E B) The proof rules for A+B can be given by:
a E A b E B e(x,y) E S((x,y))

X=

spli t((a,b),e) = e(a,b) E S((a,b))

By using p + I fo r s p l i t (p , (x , y) x) and p + 2 f o r
s p l i t (p , (x , y) y) we get as special cases of the e l i m i -
nat ion ru le :

p E A × B p E A × B
xE'

p + I E A p + 2 E B

Ignor ing the construct ions in x l and xE' y ie lds

A true B t rue
x l

A × B t rue

xE
A × B true A × B true

A true B t rue

which are the rules fo r conjunct ion in Gentzen's
system of natural deduction.

D i s j o i n t union

I f A and B are sets, then A+B (with proper syntax
+(A,B)) is a set. The canonical elements of th is set
are of the forms i l a and j l b (wi th proper syntax i (a)
and j (b)) where a E A and b E B. The contro l s t ruc-
ture associated wi th the d i s j o i n t union set is the
when - expression

when p is

i l x : e,

JlY: f

endwhen

which is a construct ion (program) fo r $(p) i f
p E A+B and e is a construct ion f o r S (i l x) under
the assumption that x E A and f is a const ruct ion
fo r S (j l y) under the assumption that y E B. The
proper syntax fo r the when-expression is
when(p,(x)e,(y)f).

The when-expression is a non-canonical form of ex-
pression, i t s value is computed by the fo l l ow ing
ru le :

I . Compute p. Since p E A+B i t s value is e i t he r of
the form i l a , where a E A or of the form j l b ,
where b E B.

2. I f p's value is i l a , then in that case the value
of the when-expression is the value of e (a /x) .

3. I f p ' s value is j l b , then in that case the value
of the when-expression is f (b / y) .

Reading " i la E A+B" and " j i b E A+B" as " i la and j i b
is a material proof of A+B" yields "We may conclude
that the proposition A+B is true i f we have a proof
of A or a proof of B." This is the interpretation of
A v B (A or B) in constructive mathematics.

A set B set
+F

A+B set

+I

+E

a E A bEB

i la E A+B j lb £ A+B

(x E A)
p E A+B c(x) E S(ilx)

(y E B)
d(y) E S (JlY)

a E A

when(p,c,d) E S(p)

(x~ A)
bE B c(,x) E S (i l x)

(y E B)
d(y) E S I j l Y l

when (i a ,c ,d) = c~a) E S ' (i I a)
when (j ! b , c , d) d(b) E S I j l b l

Ignor ing the construct ions in +I and +E y ie lds

A true B t rue
+I

A+B true A+B true

+E

(A true) (B true)
A+B true S t rue S t rue

S t rue

which are the rules fo r d is junc t ion in Gentzen's
system of natural deduction.

L is ts

I f A is a set , then L i s t lA) is a set. The canonlcal
elements of L is t (A) are n i l and a;s where a E A and
s E L i s t (A) . The proper syntax of a;s is ; (a ,s) .
The cont ro l s t ruc ture associated wi th L is t (A) is
the l i s t rec -exp ress ion

l i s t r e c p of

n i l : d ,

x ;y : from z to e

end l i s t rec

which is a const ruct ion (program) f o r S(p) i f
p E L i s t (A) , d is a const ruct ion fo r S (n i l) and
e is a const ruct ion fo r S(x;y) under the assumptions
that x E A, y E L is t (A) and z is a const ruct ion
fo r S(y). The proper syntax of the l i s t rec -exp ress ion
is

l i s t r e c (p , d , (x , y , z) e) .

The l i s t - i n d expression is a non-canonical form of
expression, i t s value is computed by the f o l l ow ing
ru le :

I . Compute p. Since p E L is t (A) i t s value is e i t he r
n i l or a;s where a C A, s E L i s t (A) .

2. I f p's value is n i l then the value of the

145

listrec-expression is the value of d.

3. If p's value is a;s, then the value of the list ~
rec-expression is the value of e (a, s, r/x ,y, z)
r is the expression

listrec s of

nil: d,

x;y: from z to e

endlistrec

For instance, the definition

concat(x,y) --- listrec x of

nil: y

a;s: from p to a;p

end

corresponds to the infoz~nal definition

I
c o n c a t (n i l , y) = y

concat (a; s ,y) a. concat (s ,y).

The proof rules for List(A) can be given by:

A set
LF

List (A) set

LI niIEList(A)
aEA sE List(A)

a;s E List(A)

LE
p F List(A) d E S(nil)

(x 6 A,y E List(A),
z E S(y))

e(x,y,z) 6 S(x;y)

]istrec(p,d,e) 6 S(p)

L=

6 List (A
E S (y) /

a6A s6List (A) dCS (nil) e (x,y,z) ES (x;y)

listrec(nil,d,e) = d 6 S(nil)
listrec(a;s,d,e)=e(a,s,listrec(s,d,e))ES(a;s)

A special case of the list elimination rule is

(x E A,y6List(A), S(y)true)
p 6 List(A) S(nil)true S(x;y)true

S (p) true

which is the rule for induction on lists: if we can
prove that S (nil) is true and that S (x;y) is true
under the assumption that S (y) is true then we may
comclude that S (p) is true for an arbitrary p.

The product of a family of sets

If A is a set and if B(x) is a set under the assump-
tion t~at x 6 A (i.e. B(x) is a family of sets index-
ed bye6 A, or B is a property of elements of A)
then~ ~x E A)B(x) is a set. The canonical elements
of (| |xEA)B(x) are of the form Ix.b (with proper
syntax l ((x)b)) where b(x) is an element of B(x) under
the assumption that x 6 A. The control structure
associated with (~x 6 A)B(x) is functional applica-
tion

apply (p,a)

which is a construction (program) for B(a) if a 6 A
and p 6 (~x 6 A)B(x).

The cc~putation rule for functional application has
been given earlier in the description of A ~ B.

Reading "Ix.b E (~x E A)B~)" as "Ix.b is a material
proof of the proposition (||x E A)B(x) " yields: 'We
may conclude that the proposition (~x E A)B(x) is
true if we have proof of B(x) for an arbitrary ele-
ment x 6 A". This is the interpretation of
(V x 6 A)B (x) in constructive mathematics.

If B(x) does not depend on x in (~x E A)B(x) then
we get the set A ~ B previously described.

If Aisafinite set, for instance A = {i4, ' i }
then (~x E A)B(x) corresponds exactly 6o ~e n
record type

record

ii: T I ,

i 2 : T 2

i : T
n n

end

provided B(i I) = T1, B(i 2) = T 2 B(i n) = T n.

The proof rules for (~x E A)B(x) can be given by:

(x 6 A)
A set B (x) set

~(A,B) set

(x 6 A)
b (x) E B(x)

l(b) E ~(A,B)

p E~(A,B) a E A

apply(p,a) E B(a)

H=

(x E A)
b(x) E B(x) a E A

apply (l (b) , a) = b(a) 6 B(a)

Ignoring some of the constructions in the introduc-
tion and elimination rules gives

146

lql

(x C A)
B(x) true

(FIx E A)B(X) true

FIE
(Fix E A)B(x) true a E A

B(a) true

which should be compared with the rules for the uni -
versal quan t i f i e r in Gentzen's system of natural
deduction:

B(x) true
v l

(Vx)B(x) true

VE (vx)B(x)
B(a)

The d i s j o i n t union of a fami ly of sets

I f A is a set and B(x) is a set under the assumption
that x E A, then (~ x E A)(B(x) (with proper syntax
~ (A ,B) I i s a set. The canonical elements of
C~x E A)B(x) are of the form (a,b) (with proper
syntax pa i r (a ,b)) where a E A and b E B(a). The
control structure associated with the d i s j o i n t
union set is the spl i t -expression

s p l i t p in to (x ,y) in h

which is a construct ion (program) for S(p) i f
p E (~ x E A)B(x) and h is a construct ion for S((x ,y))
under the assumptions that x E A and y E B(x). The
proper syntax for the spl i t -expression is
s p l i t (p , (x , y) h) .

The computation rule for the spl i t -expression has
been given ea r l i e r in the descr ipt ion of A x B.

Reading "(a,b) E (Z x E A)B(x)" as "(a,b) is a
material proof of the proposit ion (~ x E A)B(x)"
y ie lds : "We may conclude that the proposit ion
(~ x E A)B(x) is true i f we have an element x E A
and a proof of B(x) . " This is the in te rpre ta t ion of
(3 x E A)B(x) in construct ive mathematics.

The proof rules for (~ x E A)B(x) can be given by:

(x E A)
~F A set B(x) set

Z(A,B) set

a E A b E B(a)
ZI

(a,b) E Z(A,B)

~E

(x E A, y E B(x))
pE Z(A,B) e(x,y) E S((x,y))

sp l i t (p ,e) E S(p)

Z:

(x E A, y E B(x))

a E A b E B(a) e(x,y) E S((x ,y))

s p l i t ((a , b) , e) = e(a,b) E S((a,b))

Ignoring some of the constructions in
y ie lds

ZI
a E A B(a) true

(Z x E A)B(x) true

Z l and ~E

(x E A, B(x) true)

S true (Z x E A)B(x) true
ZE

S true

which should be compared with the rules for the exis-
ten t ia l quan t i f i e r in Gentzen's system of natural
deduction

31

3E

B(a) true

(~x)B (x) true

(B(x) true)

(~x)B (x) true S true

S true

Wellorderings

I f A is a set and B(x) is a set under the assumption
that x E A, then (Wx C A)B(x) (with proper syntax
W(A,B)) is a set. The canonical elements of

(Wx C A)B(x)a re of the form sup(a,f) where a E A
and f (y) E (Wx C A)B(x) under the assumption that
y E B(a). We can look upon "sup(a, f) " as a tree with
a root labeled "a" and branches labeled "b1",
"b2", . . . where b I E B(a), b 2 E B(a)

The branches lead to subtrees which are bu i ld up in
the same way. The control s t ructure associated with
(Wx E A)B(x) is t r a n s f i n i t e recursion

transrec p of

sup(x,u):from v to d(x,u,v)

endtransrec

147

which is a const ruct ion (program) f o r S(p) i f
p E (Wx E A)B(x) and d(x ,u ,v) is a const ruct ion fo r
S(sup(x,u)) under the assumptions that x E A, u(z)
E (Wx E A)B(x) fo r z E B(x) and v(z) E S(u{z)) f o r
z E B(x). The proper syntax fo r t r a n s f i n i t e recursion
is t ransrec(p ,d) .

The computation ru le fo r t r a n s f i n i t e recursion is :

I . Evaluate p. Since p E (Wx E A)B(x), p's
value is of the form "sup (a , f) " .

2. The value of the t r a n s f i n i t e recursion is
then the value of d (a , f , (z) t r a n s r e c (f (z) , d)) .

The rules fo r the we l lo rder ings can be given by:

(x c A)

A set B(x) set
WF

W(A,B) set

(y E B(a))

a E A f (y) E W(A,B)
WI

s u ~ a , f) E W(A,B)

((x E A,u(z) E W(A,B)(z E B(X)) 1

\ v (z) E S(U(Z))(z E B(X))

p E W(A,B) d (x ,u ,v) E S(sup(x,u))
WE

W =

aEA

t ransrec(p,d) E S(p)

Iu(z)EW(A,B) (zEB(x))

(yEB(a)) ~ ' v (z)ES(u (z)) { zEB(x))7

f(y)EW(A,B) d(x ,u ,v)ES(sup(x ,u))

t rans rec (sup(a , f) ,d)

= d (a , f , (z) t r a n s r e c (f (z) , d)) E S (s u p (a , f))

The equa l i t y p ropos i t ion

The propos i t ion which corresponds to the judgement
a = bEA is Eq(A,a,b). So i f we have a proof of the
propos i t ion Eq(A,a,b) then we may make the judgement
a = b E A and i f we have made the judgement a = b E A then
we may conclude there is an element in the set
Eq(A,a,b). We ca l l th is element e. To summari'ze:

a = b E A
Eql

e F Eq(A,a,b)

p E Eq(A,a,b)
EqE

a=bEA

A simple examPle of the de r i va t i on of a program

The task is to f ind a proof of the Euclidean d i v i -
sion theorem (ca l led E)

(va,b E N)([b>O]~3(q,r E N)([r<b]&[a=b*q+r]))

which says that f o r a l l natural numbers a and b
where b>O, there ex is ts natura l numbers q and r
such that r<b and a=b*q+r.

We have used the f o l l ow ing d e f i n i t i o n s :

(va,b E N)B ~ (Va E N)(vb E N)B

[a>b] ~ [b<a]

[b<a] ~ (3x E N)[b+succ(x)=a]

[a=b] ~ Eq(N,a,b)

(3a,b E N)B m (3a E N)(3b E N)B

The proof w i l l g ive us a program fo r the theorem
where

c = l a . l b . ~ o . (q (a , b) , (r (a , b) , (u (a , b , o) , v (a , b , o)))) E E

where a and b are natural numbers,

o is a const ruct ion f o r [b>O],

q(a,b) is the quot ien t between a and b,

r (a ,b) is the remainder,

u(a ,b ,o) is a const ruct ion fo r r<b and

v (a ,b ,o) is a const ruct ion fo r [b+succ(x)=a].

Proof: Assume a, b E N, o E [b>O].

Let us do an induct ion over a.

Define G(x) ~ (3q, r E N)([r<b]&[x=b*q+r])

Basis: (0 , (0 , .)) E G(O)

since [O<b]&[O=b*O+O] is t rue.

(" . " denotes a const ruct ion which we do not c~re
about.)

Induct ion step:

Assume that z E G(x) and def ine q(z) ~ z+1,
r (z) ~ z~2+I. We want to f ind a const ruct ion For
G(succ(x)). From the assumption, by repeated
Z - e l i m i n a t i o n , we get z+2+2+I E [r (z)<b] which

means that we can f ind a const ruct ion
p(z,b) E [r (z) + 1 < b v [r (z) + 1 = b] .

We can now make an v - e l i m i n a t i o n :
Assume that [r (z)+1<b] is t rue.

z#2+2~2 E [x=b*q(z)+r (z)]

x = b*q(z)+r (z) E N

x+1 = b*q(z)~r(z)+1) E N

(q (z) , (r (z) + 1 , .)) E G(x+1)

(EqE)

(Ari thmeti c s)

(ZE)

Eq=
p E Eq(A,a,b)

p = e E Eq(A,a,b)

148

Assume that [r(z)+1=b] is true.

z+2+2+2 E [x = b*q(z)+r(z)]

x = b*q(z)+r(z) E N (EqE)

X+1 = b*q(z)+(r (z)+1) E N

x+1 = b*(q(z)+1)+0 E N

(q (z) + 1 , (r (z) , .)) E G(x+1)

We can conclude that

when p(z,b) is

i l x : (q (z) , (r (z) + 1 , .))

J l x : (q (z) + 1 , (r (z) , .))

endwhen is a const ruct ion f o r

(Ar i thmet ics)

G(x+I)
by + elimination

N-e l iminat ion gives us:

rec a of

0 : (0 , (0 , .))

succ(x): f rom z to

when p(z,b) i s

i l x : (q (z) , (r (z) + 1 , .))

j x : (q (z) + 1 , (r (z) , .))

endwhen

end is a construct ion fo r G(a)

Three I] - i n t r o d u c t i o n s y i e l d that

Xa.Xb.Xo. rec a of

0 : (0 , (0 , .))

succ(x): f rom z to

when p(z,b) is

i l x : (q (z) , (r (z) + 1 , .)

j l x : (q (z) + 1 , (r (z) , .)

endwhen

end

is a const ruct ion f o r the theorem, where p(z,b) s a
const ruct ion f o r [r (z)+1<b]v [r (z)+1=b]

and q(z) ~ z~1

and r (z) ~ z+2+I

What remains to be done is to f i nd a proof p of
[r (z)+1<b]v [r (z)+1=b] . I t is not d i f f i c u l t to prove
that f o r each propos i t ion P b u i l t up by conjunct ions
and d is junc t ions of a r i thmet ic e q u a l i t i e s and in-
equa l i t i e s there is an expression p' E Bool w h i c h
is such that

p'= t rue E Bool i f f p is t rue

We can now use the fac t that there is a boolean
funct ion a<b (wi thout brackets) which is def ined
such that

a<b = t rue E Bool i f f [a<b] is t rue.

to obtain the fo l l ow ing program

xEL(A)

Xa.Xb.Xo. rec a of

0:(0, (0 , .))

succ(x):from z to

i f r(z)+1<b then (q(z) , (r (z)+1,.))

else (q(z)+1,(r(z) , .))
end

which is a construction for the theorem E.

Programming with l i s t s

The def ini t ion of concatenation between l i s ts was
given earl ier,

concat(x,y) ~ l is t rec x of

n i l : y

a;s: from p t_o_o a.p

end

In order to give a flavour of how to reason about
programs we w i l l give a formal proof that concatena-
tion is associative. Instead of writ ing concat(x,y)
we w i l l write xCy, and instead of n i l we w i l l
write 6 .

Theorem: (xCy)~z = x¢ (yCz) E List(A)

i f x,y,z E List(A), where A is a type.

Informal proof :

We make a l i s t - i n d u c t i o n on x, and abbreviate
Eq(L is t (A) ,x ,y) to x = y

Basis: By L is t= (~ y) ~ z = y C z , and

(~ (y~ z) = yo z.

Induct ion step:

Assume that (s ~ y) ¢ z = s O (y ~ z) .

(a.sCy)~z : (a . (sCy))¢z

= a . ((s¢y)¢z)

: a.(s¢ (yO (yOz))

(a.s¢(yOz) = a. (aO(y~z))

A formal proof

We define L(A) ~ List(A). The formal proof of
the theorem is the following proof tree:

by List=

by List=

by the induc-
tion assumption.

by List=

PI

[(~ y) ~ z -- ~ (y<>z)]

[(s<>y)~>z : sK> (y<>z)]

P2
[(a.s<>y)<>z = a.s<> (yK>z)LE

[(x<>y)<>z ~ x<> (yCz)]

(x<>y)<> z= x<> (yK>z) E L(A)

149

where PI stands for the proof

yE L(A) (xEL(A)) (y,zEL(A) (xEL(A))
LE - R Refl

~<> y=y x<> z=x<> z y<> z=y<> z x=~<> x

(~<> y)<> z:y<> z y<>z = ~O(yOz)

(~<>y)<>z = 6<> (y<>z)

[(~<>y)<>z : 6<> (y<>z)]
Eql

L

S

Trans

and P2 stands fo r the proof

y ,zEL (A) aEA ,s, xEL (A)
L =

P21 y<> z=y<> z a. (s<> x)=(a.s)<> x

(a .s<> y)<>z =a. (a<> (y<> z)) a. (s<> (y<>z))= a.s<>. (y<> z)
Trans

(a.s<>y)<>z = a.s<> (y<>z)

[(a.s<>y)<>z : a.s<> (y<>z)]
Eql

The Ackermann-function

The Ackermann funct ion is the c lassical example of
a recursive funct ion which is not p r imi t ive recur-
s ive, i . e . a funct ion which cannot be defined using
composition of funct ions and the schemata

f (x I Xn,O) =d(x I x n)

f (x I Xn,~l)= e(x I Xn,X,f(x I Xn,X))

which corresponds to the form rec in Constructive
Set Theory.

This exercise w i l l show how to express the Ackermann
funct ion in Constructive Set Theory.

Consider the fo l lowing de f in i t i ons

f o (x , y) ~ y+x ~ rec y of

O: x

succ(n): from z to succ(z) end

f1~x,y)'' ~ x.y m rec y of

O: 0

succ(n): from z to x+z end

where P21 is the proof

P211
(a.s<>y)g>z = a.((s<>y)<>z)

(xEL(A)) ([(s<> y)<> z = sO (y<> z)])
R IdE

a .x=a.x (s<> y)O z = s<> (y<> z)
S

a. ((s<> y)<> z) = a. (s<>(y<> z))

(a.s<>y)<>z : a.(s<> (y<>z))

where P211 is the proof

x,zEL(A) aEA, s,yEL(A) s,yEL(A)
R

x<>z = x<>z a.s<>y = a.(s<>y) s<>y = s o y

f (x ,y) ~ x y ~ rec y of

O: I

succ(n): from z to x*z end

aEA,xEL(A) A(n,x ,y) m fn(X,y) is
R = and is defined by the

a .xOz = a.(x<>z)

f3 (x ,y) ~ x÷+y ~ rec y of

O: I

succ(n): from z to x z end

These funct ions are the f i r s t in a series of funct ions
f l ' f2 where fn+ l (x , y) is the resu l t of

fn (x fn(X,X) . . ')) i f y>O

where fn is applied y-1 times. The funct ion

the or ig ina l Ackerman funct ion
fo l lowing equa l i t i es :

(a.s<>y)<>z = a . (s<>y)¢z a.(s<>y)<>z = a.((s<>y)<>z)

(a.s <>y)<>z : a.((s<>y)<>z)

This completes the formal proof. I t is not our
suggestion that programmers should always give
formal computer checked proofs of t he i r programs.
Formal proofs can however be used to optimize pro-
grams in the way shown by Goad [Gd].

A(O,x,O) =x

A(O,x ,y+I)=A(O,x ,y)+ I

A(I ,x ,O) = 0

A(n+2,x,O) = I

A(n+1,x,y+l) = A(n,x ,A(n+1,x ,y))

We assume for s imp l i c i t y that y > O. The f i r s t two
equa l i t ies define fn (x ,y) = x+y and the f i f t h equa-
l i t y defines fn+1 in t~rms of fn"

I f we define the funct ion do(n , f , x) E N(n EN, f ENxNEN)
such that

do(n , f ,x) = a p p l y (f , (. . , a p p l y (f , (x , x)) . . .))))

with n app l ica t ions, then we can define the Ackermann
funct ion a f te r having noted the equa l i t ies

150

A(0,x,y) : x+y

A(n+1,x,0) = i f iszero(n) then 0 else I

A(n+1,x,y+1) =do(y ,x (y ,z) . A (n ,y ,z) , x)

where we have used the abbreviat ion x (y ,z) .e fo r
x x . s p l i t x in to (y,z) in e. For f (n) defined by

f (n) z ~(x,y) . A(n,x,y)

the fo l lowing equal i t ies hold

f (0)= ~(x,y) .x+y

f(n+1) =~(x ,y) . i f y > 0 then do (y - l , f (n) , x)

else i f iszero(n)

then 0

else I

This means that we can define the Ackermann funct ion
by

A(n,x,y) ~ apply(rec n of

0 : ~ (x ' , y ') . x ' + y '

succ(n):from z to

~(x' ,y ') .
i f y '> 0
Then do(y ' -1,z,x ')

else i f iszero(n)

then 0 else I ,

(x,y))

What remains to be done is to define the funct ion
do which is such that

I do(0, f ,x) = x E N

do(n+1,f ,x) = a p p l y (f , (x , d o (n , f , x)))

These equal i t ies are solved by putt ing

do(n , f ,x) ~ rec n of

0: x

succ(n): from z to

app l y (f , (x , z))
end

F ina l l y , we prove the fo l lowing theorem.

Theorem: The funct ion A(n,x,y) as defined above is a
~ n to the Ackermann equations.

Proof: We prove the equal i t ies by subs t i tu t ing A in to
the three equations

i) A (0 , x , 0) = x+0 : x

i i) A(0,x,y+1) = x+(y+1) = (x+y)+1 = A(0,x,y)+1

These two cases have been proven by N-equal i ty ,
~ - e l i m i n a t i o n and elementary propert ies of +.

i i i) I f f (n)z ~ (x ,y) .A (n ,x ,y) then

f(n)=rec(n,
~(x,y) .x+y,
(n,z) ~(x,y) .

i f y>0
then do (y - l , z , x)
else rec(n,0,1)

)
and

A(1,x,0)=apply(~(x,y) .
i f y>0
then d o (y - l , f (0) , x)
else rec(0,0,1),

(x ,0)) by N-equal i ty
=rec(0,0,1) by ~-equal i ty
=0 by N-equal i ty

iv)
A(n+2,x,0)=apply(~(x,y).

i f y>0
then do(y - l , f (n+1) ,x)
else rec(n+1,0,1),

(x ,0)) by N-equal i ty
=rec(n+1,0,1) by ~-equal i ty
=0 by N-equal i ty

v)
A(n+1,x,y+1)=apply(~(x,y) .

i f y>0
then d o (y - l , f (n) , x)
else rec(n,0,1) ,

(x,y+1)) by N-equal i ty
=do(y , f (n) ,x) by ~-equal i ty

Now since y>0, y = m+1E N for some m. This means that

A(n+1,x,y+1) = do(m+1,f(n),x) E N by subs t i tu t ion

= app l y (f (n) , (x ,do (m, f (n) , x) E N

by N-equal i ty

= apply(f (n) , (x,A(n+1,x,m+1) E N

by N = and FI=

= A(n,x,A(n+1,x,y)) E N by subst i -

tu t ion

The summation oPerator and a more general i t e r a t o r

We w i l l show how to define the t rad i t i ona l summation
h

operator Ze where e is an expression depending
i=I

on i . We w i l l use the proper syntax

sum(l,h,e)

where e is an abstract ion, i . e . we could also wr i te

sum(l ,h , (i)g)

i f g is an expression depending on the var iable i .
The de f i n i t i on is straightforward when we have
observed the facts that

151

h
(I) ~ e (i) :

i= I

h-1
e(i+1)

i=O

n+1
(2) Z e (i) =

i=O

n

e (i) + e(n+1)
i=O

0
(3) Z e (i) : e(O)

i=O

The f i r s t fac t impl ies tha t we should do a p r im i t i ve
recurs ion over h - l :

sum(l ,h,e) m rec h-I of

O: e(1)

succ(x) : from p to p+e(succ(x)+1)

end

This d e f i n i t i o n is an instance of a general scheme
f o r apply ing a func t ion repeatedly over an abstracted
expression. F i r s t we need some d e f i n i t i o n s f o r
func t iona l app l i ca t i on and composit ion.

Instead of f (a) we w i l l w r i t e a÷f and use the
convention tha t a+b-~c~(a+b)-~c. For func t iona l compo-
s i t i o n

fog(x) - f (g (x))

we also use the no ta t ion

g l f - fog

We could def ine the mu l t i p l e composit ion f l f l . . . I f
w i th n composit ions b - - ~ q u a l i t i e s

I fO : (x)x

fn+1 = f n l f

i . e .

f n :==+(f ,n) _= (x) rec(n of

O:x,

succ(x) : from p to p l f

endrec

We use a===b to mean "the concrete syntax f o r the
proper expression b is a".

I f we can f i nd a cons t ruc t I ~ : I f (i) which evaluates
to

f (1) f (2) . . . f (n)

under the assumption tha t f (i) (x) E A , (i ~ N,x G.A)
we obtain the summation expression

e (1)+ . . .+e (n) by 0 ÷ I n i =1 (x)x+e (i)

For] i h l f (i) we use the proper syntax l (l , h , f) and

we note the f o l l ow ing equa l i t i e s

h - I + I ¢ (i + i + i)
l ~ = I f (i) = i= I -"

I ~ : i f (i) = (x) x

which

n+1=, n f (i)) i f (n + 1)
l i : 1 . ~ i) : (l i : I

gives the fo l l ow ing d e f i n i t i o n

[~= i f (i)=== (l , h , f) ~ (x) rec h-l+1 o f

O: x,

succ(n): from ID to

p l f (n+1)

endrec

I t e r a t o r s f o r l i s t s

Composition i t e r a t o r f o r l i s t s

The d e f i n i t i o n of Finl f (i)= which is def ined such tha t

n
l i = l f (3) = f (1)] f (2) l . . .] f (n)

i f l , n E N a t , f (i) (x) E A f o r i e N , x ~ A

can be general ized to l i s t s by the f o l l ow ing cons t ruc t

f o r i in s d.o f (i) = f (s l) I f (s 2) l . . . I f (s n)

i f s = s1.s 2 Sn .n i l

We make the f o l l ow ing d e f i n i t i o n

f o r i in s do f (i) o d = = = f o r (i , s , f) :-

(x) l i s t - i n d s in

n i l : x

a . t : from p to

f (a) Ip

end

For example to sum a l l elements in a l i s t 1 oi' i n t e -
gers we w r i t e

O+for i in 1 do(x)x+ i od

and to check i f the number of elements in each e le-
ment in a l i s t of l i s t s are less than 40 we wr i t e

t rue+for i in 1 do (xXx and # i < 40)od

The f o l l ow ing theorem is a l i n k between the l i s t
i t e r a t o r and the composit ion i t e r a t o r .

152

Theorem: I f i,nENat, x c--A,f(i)(x)~A ~ e q

n , - -l i=if(1) = for i in 1...n do f(i)EA+A

where we have used the de f in i t i ons

i . . j m ni l -~I~=i(x)cons(i+j-k,x)

cons(x,y) ~ x;y

so, for instance

I . . . 5 = I ;2;3;4;5;n i i

Proof: Set F(j,m) ~ for i in j . . .m do f (i)

We prove the theorem by an induct ion over n

I The theorem is true fo r n = 0 since

LNS = l i 0 1 f (i) = (x) x

RHS = for i in I . . . 0 do f (i)

= fo r i in n i l do f (i) = (x)x

I I Assume that [i m l f (i) = F(1,m)

m+I f (i) = F(1,m+1) We want to show that i=I

I ~ I f (i) :] :m , f (i) l f (m+ l) , : , by N :

= F(1,m) l f(m+l) by the induct ion
assumption

= F(1,m+l) by the fo l lowing lemma.

Lemma: F(j,m)[f(m+1) = F(j,m+1)

Proof: We know that F(j,m+1) : f (j) IF(j+1,m+1) since

F(j,m+1) = for i in j . . .m+l do f (i)

+ m+l. = for i in ni l li=j~x)cons(j~m+1-i,x)

do f (i)

for i in cons(j ,n i~ I?~+ I (x)sons

(j+m+2-i,x))do f (i)

= f(j)IF(j+1,m+1)

We prove the lemma by an induction over m-j.

The lemma is true for m-j = 0 (fo l lows from
the f i r s t l i ne in the proof.)

I I Assume that F(j,m)If(m+1) = F(j,m+1) holds
when m-j = n. We want to show that the lemma
is true when m-j = n+1

LHS = F(j,m)If(m+1) = (f (j) IF(j+1,m)Jf(m+1)

= f (j)~(F(j+1,m)I f (m+1)) by

assoc ia t i v i t y of I ,

= f (j) IF(j+1,m+1) by the

induct ion hypothesis

The composition i t e ra to r fo r l i s t s resembles the
reduce operator in APL.

Implementation

We have implemented an in te rpre te r fo r Constructive
Set Theory wr i t ten in Lisp. I t runs under Unix on a
Vax computer.

Acknowledgements

I would l i ke to thank Per Mart in-L~f f~r many
st imulat ing discussions and also the members of
the laboratory for cont r ibut ing to a nice working
environment.

References

[MLI] Per Mart in-L~f: "An I n t u i t i o n i s t i c Theory of
Types: P red i~ t i vePar t " , Logic Colloquium
'73, ed. Rose, Shepherdson, North-Holland,
Amsterdam, 1975, pp. 73-118.

[ML2] Per Mart in-L~f: "Constructive Mathematics and
Computer programming", Dept of Math, Universi-
ty of Stockholm, 113 85 Stockholm, Sweden,
read at the 6:th In ternat ional Congress for
Logic, Methodology of Science, Hannover 1979.

[T] Takasu: Proofs and Programs, The Third IBM
Symposium on Mathematical Foundation of
Computer Science, Aug. 1978.

[G] Goto: Program Synthesis from Natural Deduc-
t ion Proofs, IJCAI 1979, Tokyo.

[McC] John McCarthy: "A formal descr ipt ion of a
subset of Algol 60", in Formal Language Des-
c r i p t i on Languages, ed. Steel, North-Holland.

[P] Dag Prawitz: "Natural Deduction, a Proof Theo-
re t i ca l Study", Almqvist & Wiksel l , Stock-
holm 1965.

[Gd] Christopher Goad: "Computational Uses of the
Manipulation of Formal Proofs". (Thesis).
Standard Report CS-80-819, 1980.

153

154

