
PROGRAMMING-IN-THE LARGE 
VERSUS 

PROGRAMMING-IN-THE-SMALL 

Frank DeRemer 
Hans Kron 

University of California, Santa Cruz 

Key words and phrases 
Module interconnection language, v i s i b i l i t y ,  
accessibi l i ty, scope of definit ion, external name, 
l inking, system hierarchy, protection, information 
hiding, virtual machine, project management tool. 

Abstract 
We distinguish the act iv i ty  of writing large pro- 
grams from that of writing small ones. By large 
programs we mean systems consisting of many small 
programs (modules), possibly written bY different 
people. 

We need languages for programming-in-the-small, 
i .e. languages not unlike the common programming 
languages of today, for writing modules. We also 
need a "module interconnection language" for knit- 
ting those modules together into an integrated 
whole and for providing an overview that formally 
records the intent of the programmer(s) and that 
can be checked for consistency by a compiler. 

' We explore the software r e l i a b i l i t y  aspects of 
such an interconnection language. Emphasis is 
placed on fac i l i t i es  for information hiding and 
for defining layers of virtual machines. 

I. Introduction 
Programming a large system in any typical pro- 
gramming language available today is an exercise 
in obscuration. We work hard at discovering the 
inherent structure in a problem and then struc- 
turing our solution in a compatible way. Re- 
search into "structured programming" (Dijkstra 
1972) te l l s  us that this approach wi l l  lead to 
readable, understandable, provable, and modifiable 
solutions. However, current languages discourage 
the accurate recording of the overall solution 
structure; they force us to write programs in 
which we are so preoccupied with the trees that 
we lose sight of the forest, as do the readers of 
our programs! 

Let us refer to typical languages as "languages 
for programming-in-the-small" (LPSs). Let us use 
the term "module" to refer to a segment of LPS 
code defining one or more named resources. Each 
"resource" is a variable, constant, procedure, 
data structure, mode, or whatever is definable in 
the LPS. Preferably a module is one to a few pages 

Work reported herein was supported in part by the 
National Science Foundation via grant number 
GJ 36339. 

long and is easily comprehensible by a single per- 
son who understands the intended environment and 
function of the module. 

We argue that structuring a large collection of 
modules to form a "system" is an essentially dis- 
t inct  and different intellectual act iv i ty  from that 
of constructing the individual modules. That is, 
we distinguish programming-in-the-large from 
programming-in-the-small. Correspondingly, we be- 
lieve that essentially dist inct and different lang- 
uages should be used for the two act iv i t ies.  We 
refer to a language for describing system structure 
as a "module interconnection language" (MIL); i t  is 
one necessity ~or supporting programming-in-the- 
large. 

An MIL should provide a means for the programmer(s) 
of a large system to express their intent regarding 
the overall program structure in a concise, precise, 
and checkable form. Where an MIL is not available, 
module interconnectivity information is usually 
buried partly in the modules, partly inan often 
amorphous collection of linkage-editor instructions, 
and partly in the informal documentation of the 
project. Aside from the issue that each of these 
three areas is i l l - su i ted  to express interconnec- 
t i v i t y ,  the smearing of the relevant information 
over disjoint media is highly unreliable. Even 
more unsatisfactory are the fac i l i t i es  for specify- 
ing and enforcing module disconnectivity via infor- 
mating hiding, l imit ing access to resources, estab- 
lishing protection layers, closing bf f  subsystems, 
etc. The lack of such fac i l i t i es  invites undiscip- 
lined or even unsocial programming, as shown by one 
of Weinberg's case studies (Weinberg 1971, pp. 71- 
75), since there is no automated means of enforcing 
the surface consensus of the programming team. 

That current languages fa i l  to support the global 
task of composing large systems was well argued by 
Wulf and Shaw in their paper entit led "Global vari- 
ables considered harmful" (Wulf 1973). A respond- 
ing paper (George 1973) proposed a scheme of de- 
clarations to augment block structure as a solu- 
tion to the problems associated with global vari- 
ables. The scheme provided mechanisms to protect 
variables from violations of various sorts by con- 
tained blocks, and to allow limited access to cer- 
tain variables by selected internal blocks. Simi- 
lar approaches have been suggested by others (Clark 
1971, White 1972, and ~chbiah 1974). We believe 
that some of the mechahisms proposed were appro- 
priate, but that they were inappropriately placed 
in the LPS. 

i14 



That is, we distinguish between block structure 
and module interconnectivity. Block structure 
works well on a small scale, but humans simply 
cannot keep track of nesting levels after a few 
pages. Furthermore, and perhaps most important, 
module interconnectivi ty must in many cases take 
the shape of a graph or partial o r d e r .  The 
more limited tree structure of nested blocks 
forces us to place some'low-level modules at 
high-level places, extending their scope of defin- 
i t ion to inappropriate places. I t  follows, then, 
that we need a separate language, or at least sep- 
arate language constructs, for describing module 
interconnectivity, rather than complicating exist- 
ing constructs that are well suited for 
programming-in-the-small. 

Similarly, we reject Liskov's strong association 
of module interconnectivity with data abstraction 
(Liskov 1974). We believe that both are necessary, 
but that they should not be tied together inextric- 
ably. The programmer is the. best judge of when ' 
they ought to be used in concert; he should be able 
to state his intents and to rely on a compiling 
system to s e e - ~  they are carried out correctly. 
We regard data abstraction as a technique that 
should be supported by an LPS, rather than by a 
global mechanism such as an MIL. 

2. Objectives of any module interconnection 
language (MIL~ 

In general, an MIL should serve as (1) a project 
management tool, (2) a means of communication be- 
tween members of a programming team, (3) a design 
tool for, and actual means of establishing over- 
al l  program structure, and'(4) a means of docu- 
menting that structure in a clear, concise, for- 
mal and checkable way. 

ToM-down. As a communications device i t  
should ~espec ia l l y  effective from the top down. 
That is,  i t  should fac i l i ta te  the structuring of 
a system by a project manager (Weinberg Ig71) or 
chief programmer (Mills 1970) or "modularizer" 
(Maynard 1972), and i t  should fac i l i ta te  the 
communication of that structure to the relevant 
programmers. 

One level at a time. Furthermore, i t  must 
encourage the structuring on one level at a time, 
since we humans do not usually deal effectively 
with several levels simultaneously. Given a job a 
programmer should be able to switch to the role of 
chief programmer for his subtask, assigning sub- 
problems to his assistant programmers via an MIL 
program, just as he was given his job assignment 
by his superior. Such separate assignment of task 
and subtasks, via separate MIL programs, is per- 
haps most important when the chief programmer and 
his assistants are, in fact, one and the same per- 
son. The most l ike ly  person to attempt to violate 
system structure, whether intentionally or acci- 
dentally, is the one who is famil iar with more 
than one level. 

Bottom-up. Of course, an MIL should also sup- 
port bottom-up programming. After a l l ,  we fre- 
quently gain understanding of a problem by f i r s t  
working on some of i ts  details. Also, we often 
can make use of subsystems that have already been 
written to solve parts of other problems. In such 
cases we must be able to compose systems from ex- 
isting subsystems. 

Horizontal. Similarly, programmers at a single 
level may need to communicate. Each may need a re- 
source supplied by the other. Or they may be creat- 
ing co-subsystems, in the sense of coroutines. Or 
they may be writing mutually recursive subsystems. 
Thus, module linkage in the horizontal, as well as 
the vertical direction is needed. 

Composition. Finally, when al l  the partial MIL 
programs for a system are put together, they should 
constitute a comple£e definit ion of the overall sys- 
tem structure. The description should be readable 
by humans to aid in understanding the system. More- 
over, the compiling system should print graphical 
representations of the system structure, preferably 
in several layers of detai l ,  for ease of human con- 
sumption. 

L i n ~ .  One may regard an MIL as being a 
higher-level language for specifying how a "linker" 
is to prepare for "loading" a program comprised of 
separately compiled segments (Presser 1972). 
Roughly, the l inker must resolve static references 
to "external" names; i .e. names defined externally 
to each separately compiled module. A distinction, 
however, is that we do not expect the linkage to 
happen after compilation but rather as part of i t .  

Proving-in-the-small. Thus, an MIL might help to 
al leviate the disadvantages of independent compila- 
tion of modules, as addressed by Hoare (Hoare 1973). 
Modules can be small without sacrificing a proper 
description of the problem structure, since the 
la t ter  is adequately and exp l ic i t l y  expressed in the 
MIL program. Working with small modules, we may 
find i t  less prohibitive to prove their correctness. 

Proving-in-the-large. After establishing the 
correctness of the modules, we may be able to prove 
separately, on the MIL level, that correct modules 
work together correctly. Due to formalizing the 
description of system structure via a language, we 
may build a compiler that can check that a system 
of modules does indeed conform to the intended 
structure. That structure might be designed, for 
example: (1) to hide certain information (Parnas 
IgTl) or (2) to build layers of virtual machines 
(Dijkstra 1972). Any MIL should inherently support 
these two concepts. 

Independent of formal and mechanized proofs of 
correctness, the protection and documentation pro- 
vided by the MIL program enhance the likelihood of 
correct construction in the f i r s t  place and correct 
modifications later on. 

Trade-off. One cost of this approach wi l l  be a 
more complex compiling system than has been neces- 
sary heretofore. However, the compiler can be more 
helpful to us by providing more feedback at early 
stages of system development. The cost should be 
more than offset by the increased speed and accuracy 
with which we wi l l  be able to construct and maintain 
large systems. 

In summary, then, an MIL should: 
(1) encourage the structuring of a system before 
starting to program the details; 
(2) encourage the programming of modules assuming a 
correct environment, but without knowledge of the 
irrelevant details of that environment; 
(3) encourage system hierarchy, while allowing f lex- 
ible, i f  disciplined connections between modules; 
(4) encourage information hiding and the construc- 
tion of virtual machines, i .e.  subsystems whose 

I15 



internal structure is hidden, but which provide 
desired resources; and 
(5) encourage descriptions of module interconnec- 
t i v i t y  that are separate from the descriptions of 
the modules themselves. 

3. An example 
To demonstrate the use of an MIL we graphically 
display a sample program structure in Figure I .  
The particular system i l lustrated is a theorem 
proving program written in Algol/W (Wirth 1966) 
by Professor Sharon Sickel at the University of 
California, Santa Cruz. The program was written 
without the aid of an MIL; we tediously reviewed 
i t  after i t  was complete and factored out the over- 
a l l  structure. Theexercise took several hours 
because the structure was not completely clear 
in i ts  author's mind, nor was i t  apparent from 
the program l is t ing ,  and because the exercise 
suggested some ways to improve the structure; in 
fact, what is presented here is the improved ver- 
sion. 
The missing part of Figure l is developed in 
Section 5, culminating in Figure 5. In that sec- 
tion, we also define the concepts that are only 
sketched next. 

a) ~. MainE-D4 .... -~ 

i ,; 11 \ 
<oo  ,/ / . "  // \ ,' - - / . L  . . ._ .L. .  
modules / ( I n n . ~ ' ~ - r ~ h m  ~ . - b . / "  n.en,,t 

system. / ,# I ~' '.~.' . . . . .  / • ' -  ,' 
" ,' / I NV_ ee.V" / 

/ / ' i i ,,' 
i # ~l % ,  11 St 

".----." :- -'::::::.':/-: ........... I.," 

/ . ."  " .  

,L . . . . . . . . . . .  # 

Legend: ~ system t ree 
a c c e s s i b i l i t y  

. . . .  • - provided resources 
. . . .  ~ used resources 

Figure 1. The system s t ruc ture  f o r  a theorem wov ing  program, 

Graphical Representation. Any system structure 
is represented as follows: 
( I )  Nodes and bold edges constitute the "system 
treelr;'-~ch edge connects a "parent" (system) to 
one of i ts  "children" (subsystems). 
(2) Dotted lines going upward along the tree edges 
from a child to i ts parent indicate that r~sources 
"provided" by the child are also "provided" by the 
parent. In other words, some of the resources pro- 
vided by the child are passed via the parent to 
siblings and/or ancestors of the parent. 
(3) Solid arrows, always between siblings, denote 
"sibling accessibil i ty l inks". These are establish- 
ed by the parent, viz. chief programmer, so that 
the siblings may use each other's resources as 
necessary. 
(4) Rectangular boxes attached tO the nodes indicate 
LPS modules. Every leaf has a module. In our 
sample system, each module attached to a non-leaf 
serves the purpose of being the "driver" of i ts  
(sub-) system. 
(5) Dashed arrows indicate that some resources pro- 
vided by the node at the ta i l  of the arrow are used 
by the module at the head of the arrow. The global 
aspects of the flow of resource names are addressed 
in detail in Section 5. 

Refinements. Figure l represents the program at 
a high level of abstraction. As the diagram is 
further developed, specific resource names would 
start to appear and refinements would be made to 
accessibil i ty. For examples, a parent might give a 
child accessibil i ty to only a subset ("group") of 
the resources provided by siblings of the child, or 
the parent might hide some or al l  of i ts  environ- 
ment from the child. 

Programmin 9 versus structurin 9. I t  is to be em- 
phasized that "top-down programming" of a system 
would not necessarily proceed top-down relat ive to 
such a system diagram. Indeed, we are l i ke ly  to 
start by programming the essential algorithms f i r s t ,  
e.g. t h o s e  inside Thrm_prover here, and deducing 
from their descriptions what would be the best 
form for the data to take and what innate opera- 
tions should be supplied with the data, e.g. in the 
Clauses subsystem here. Adding the names of such 
data and operations to our diagram and appropriately 
refining related links would be working in a dis- 
t inc t ly  bottom-up fashion relat ive to the diagram. 
Nonetheless, we regard i t  as obvious that this 
overall approach is a top-down one relat ive to 
the problem being solved. 

Misuse of structure. We now regard the modified 
Algol/W program as being reasonably well structured 
and the diagram of Figure l as a good display of 
i ts  overall structure. One exception is that we 
believe the Clauses subsystem to be over-structured, 
in the sense that the Algol/W program structure.is 
being used to t r ~ t o  achieve data abstraction. Un- 
fortunately, this technique is both incomplete and 
uncheckable. 

I t  is incomplete in that a l l  of the irrelevant 
details of implementation of "clauses" cannot be 
hidden in Algol/W; one must rely upon programmer 
self-discipl ine as regards the correct use of data 
manipulation procedures provided with the virtual 
data type "clause". The technique is uncheckable 
by the compiler because i t  does not know that this 

116 



part of the program structure is being used for  
data abstract ion, which in turn is due to Algol/W 
having no data abstraction f a c i l i t y  to hide the 
deta i ls  of implementation of new data types. 

An LPS with general data abstraction f a c i l i t i e s  
would obviate the need for such misuse of program 
structure. Likewise, an MIL would eliminate the 
necessity of using block structure to describe 
overall system structure. 

4. The universe of discourse of MIL 75 
We now present a particular language, MIL 75, for 
describing interconnections among modules. Being 
quite new, i t  has recieved l i t t l e  use thus far, so 
we expect i t  to evolve further toward an optimally 
useful language for describing system structure. 
Of course, the language is intended to satisfy the 
objectives stated in Section 2 above. I t  would, 
however, be a poor tool for enhancing r e l i a b i l i t y  
i f  i t  innately included "harmful" or unreliable 
features. Avoiding the la t ter  must, of course, be 
a design objective of any language. 

Names. The universe of discourse of MIL 75 
consists of names: the names of resources 
originating in the separate modules, the names of 
the modules themselves, and the names of systems 
of modules. 

External scope. An MIL 75 program addresses 
the question of who knows whom within a collection 
of modules. I t  defines the scopes of definitions 
of names across module and subsystem boundaries. 
I t  has nothing to say about the scopes of defini- 
tions within modules, these being defined by 
block structure and/or other constructs in the 
LPS. 

Statics not dynamic. We emphasize that the 
interconnections addressed in MIL 75 are static 
ones, just as the names used to e s t a b l i s h T  
connections are stat ica l ly  known, rather than be- 
ing computed at run-time. I N f e c t ,  the MIL 
program structures a global region through which 
the modules communicate. Thus, for example, MIL 
75 could be used as a high-level language for 
programming the "global" declarations that are 
included in the compilation of each BCPL module 
(Richards 1969). However, MIL 75 admits of rather 
less restricted implementations, as may be deduced 
from Section 5. 

No loadin 9. Furthermore, i t  is to be stressed 
that MIL 75 does not address the problem of 
loading. That is,  i t  has nothing to say about 
when modules or subsystems are to be loaded, nor 
does i t  say what, i f  any, overlay scheme is to be 
used. Perhaps we need, in addit ion to an MIL, a 
"subsystem loading language" to address exactly 
those issues. Presumably, the MIL program provides 
many of the r ight  points of reference for  describ- 
ing loading and overlay strategies.  

No functional speci f icat ion.  An MIL 75 pro- 
gram does not specify the nature of resources; i t  
o n ,  specifies what those resources are to be 
named. Of course, the functional specification of 
modules and subsystems is important, but that is a 
separate issue not dealt with in this paper. A 
good solution may be to coalesce an MIL and a 
"function specification language". Perhaps the 
lat ter  would be a language of axioms (Parnas 1972, 
Hoare 1972, Guttag 1974). 

No types. S im i la r l y ,  MIL 75 does not provide 
any ways of speci~ ing the type of an object or de- 
f in ing language extensions. Rather i t  is  used to 
spec i~  a t ~ f o r  t ransmit t ing relevant information 
from one module to another. Such paths may be de- 
f ined for any named en t i t y  that has i t s  defined and 
applied occurences d is t r ibuted over d i f fe ren t  LPS 
modules. 

I t  is assumed, however, that the to ta l  LPS + MIL 
compiling system w i l l  do as much bookkeeping as 
necessa~ to do a l l  s ta t i c  checking as soon as the 
necessa~ information is avai lable.  Clear ly,  th is  
w i l l  require a non- t r i v ia l  f i l e  system so that the 
compiler may keep summaries of each module and i t s  
external connections for  the compiler's own use in 
subsequent compilations and recompilations. A mod- 
i f i ca t i on  of Liskov's "descript ion units" (Liskov 
1974) seem to be appropriate for such bookkeeping. 

Access ib i l i t y .  F ina l l y ,  an MIL 75 program gives 
a par t icu lar  module e i ther  unrestr icted access to 
an object or none at a l l .  We assume that any re- 
s t r i c t ions  such as "read only",  "wr i te only",  
"read before wr i te " ,  "execute only",  and other more 
general monitorings, are appropriate to the domain 
of,  and programmable in ,  the LPS. 

5. The semantics of MIL 75 
The module interconnection language MIL 75 can be 
defined via a t t r ibu te  grammars (Knuth 1968); 
essent ia l l y ,  an MIL 75 program specif ies a tree 
whose nodes are augmented by a t t r ibutes.  The l a t t e r  
are sets of resource names. In th is  section, how- 
ever, we define the language by star t ing with a 
simple algebraic structure (a tree) and ref in ing i t  
stepwise. Simultaneously, the language concepts 
are presented and motivated by the stepwise devel- 
opment of the subsystem, Thrm~rover, which is to 
become part of the system in Figure I .  

5.1 System hierarchy 
We concentrate on the overal l  system structure 
f i r s t .S ince  MIL 75 is intended to encourage struc- 
tured programming, i t  imposes a tree structure on 
the system under construction. This "system tree" 
expresses nothing but the hierarchical  re la t ion be- 
tween systems and subsystems. For now, we do not 
contemplate modules or resources at a l l .  This w i l l  
happen l a te r ,  possibly forcing us to ref ine the 
system tree during the development of an actual 
system. Figure 2 shows the tree of the system 
Thrm~rover. 

Ftgure 2. A sample system tree. 

Our guideline for  the rough decomposition of the 
project into a tree is that each node should f i n -  
a l l y  encompass an i n t e l l e c t u a l l y  manageable part of 
the whole problem, assuming that adequate support 
is provided by other nodes. Conceptually, there is 

117 



for each system tree node a designer who is respon- 
sible for the programming associated with "his" 
node and who supervises the designers of i ts chi ld- 
ren. 

Definit ion: A "system tree" is a tuple 
T = (N, S, Pa, Sn, t)  where 
(1) N is a f i n i t e  set of "nodes"; 
(2) t is a distinguished member of N 

called the "root"; 
(3) Pa: (N-{t}) ~ N is a total function, called the 

"parent function", such that for any node n I in 

N there is a sequence of nodes n l ,  n 2 . . . . .  n k 

(k ~ l )  with n k = t and Pa(n i)  = ni+ l 
(I ~ i < k). 
The terms "chi ld",  "s ib l ing",  etc. are defined 
in the obvious manner. 
Final ly, 

(4) S is a f i n i t e  set of "system names"; and 
(5) Sn: N ~ S is a bi j~ction; i .e.  each node in N 

is associated with a unique system name. 

When pre-existing subsystems are used in a new 
system, or when a very large system is constructed, 
the uniqueness of system names may prove d i f f i c u l t  
to achieve. Therefore, the syntax of MIL 75 
allows "qualif ied names" (e.g. Resolve.Unify) 
for unambiguity and "aliases" for renaming. 

5.2 Provided and derived resources 
The next decisions to be made during the top-down 
development presumably concern the function of each 
subsystem. As the function of a subsystem can be 
completely described in terms of the resources i t  
uses and provides, we now consider the association 
of resources with system tree nodes. 

Ultimately, resources w i l l  originate in the LPS 
modules. Pursuing a top-down approach, however, 
the designer of any system tree node p states 
the set of resources provided by p. Then the 
question is where these resources come from. 
Some might originate in a module later to be 
attached to the node p, and thus are the direct 
responsibi l i ty of the designer of p. All other 
resources must come from any children of p. There- 
fore, the designer of p states the set of re- 
sources each child q must r o E .  This state- 
ment specifies the desiST'function of q, pro- 
vided that al l  resources are adequately specified. 

As seen from the node p, the resources i t  de- 
mands from i ts children are called "derived re- 
sources". The node p may derive resources from 
a child q and provide them to i ts own parent, in 
turn. In diagrams, such a case is indicated by a 
dotted arrow from q to p (cf. Figure 3 below). 

Definit ion: A "resource-augmented system tree" 
is a tuple TR = (T, R, Pr, Mp) where 

( I )  T = (N, S, Pa, Sn, t) is a system tree; 
(2) R is a f i n i t e  set of resources; 
(3) Pr: N ~ 2 R is a total function (2 R denotes 

the powerset of R); 
we say thatD"n provides r" i f f  r ~ Pr(n); 

(4) Mp: N ~ 2" is a total function; 
we say that "n must provide r" i f f  
r c Mp (n); 

(5) Mp(n) cPr(n)  for a l l  n in N; and 
(6) Mp(p) ~Mp(n) = ~ for al l  pairs of siblings 

p, n. 

Naturally, i t  is a task of an MIL compiler to 

check that condition (5) is sat isf ied, i .e.  that 
the bottom-up flow of derived resources is consis- 
tent. We allow set inclusion in (5) for f a c i l i t a t -  
ing a bottom-up approach, where pre-existing sub- 
systems are used in a new parent system. 

5.3 Accessibil i ty 
The next refinement is concerned with the interac- 
tion between siblings. The power and the responsi- 
b i l i t y  to establish channels for transmitting 
names of resources between siblings rests solely 
with their parent. Here we follow Parnas' policy 
of a "designer controlled information distr ibut ion" 
(Parnas 1971). Consider Figure 3, where the "sib- 
l ing accessibi l i ty l inks" are drawn as solid arrows 
between siblings. ~ -  - ~  

~hmjrover~ 
e o 

I ° o  B 

• o 

Fig~e 3. Sibling accessibil i~ links. 

These l i n k s d o  not represent ind iv idua l  connec- 
t ions between modules and resources. Rather, they 
allow the sibl ing at the ta i l  of the arrow to access 
any resource provided ~ the sibl ing at the arrow 
head. In Figure 3, for example, Search has access 
to (any resource provided by) Resolve. For r e l i -  
ab i l i t y  reasons, access rights are non-transitive; 
for instance, Search has no access to Refine. Also, 
the children of Resolve are inv is ib le to Search. 
Thus, Search can access a resource provided by 
Uni~ i f  and only i f  this resource is also provided 
by Resolve. In short, the substructure of one sib- 
l ing is not apparent to another. 

The accessibi l i ty links between a set of sib- 
lings may form any directed graph. Thus, the par- 
ent may allow mutual recursion between resources 
(e.g. procedures, coroutines, or data structures) 
of i ts children. 

Inherited access. Typically, the access rights 
granted to a node are also useful for most of i ts 
children. In MIL 75, a child inherits .~_default 
al l  access rights that have been granted to i ts  
parent. In Figure 3, Resolution inherits access 
to i ts  "uncle" Refine; in Figure la, Parse inherits 
access to i ts "granduncle" Clauses. 

Alternat ively,  any parent may "w i l l "  a child 
nothing or an exp l i c i t l y  specified subset of i ts 
own access rights, thus making the child less 
"privileged" and formally asserting that the child 
and al l  i ts descendants cannot exploit or disturb 
certain resources. I f  a child is to be par t ia l ly  
disinherited, the parent must l i s t  al l  access 
rights l e f t  to the child. Thus, i f  the parent 
later obtains additional access rights to vulner- 
able resources, they do not inadvertently shine 
through to the less privileged child. 

Derived access. Naturally, a parent has access 
to the resources that i t  demands from any of i ts 
children. However, al l  descendants of i ts  children 
are inv is ib le to the parent. Thus, we can build 
layers of v ir tual  machines as in Figure 4, where 

118 



the most privileged nodes are at the bottom. 

Interrupt system 

Figure 4. Privileged nodes at the bottom. 

Definition: An "access-augmented system tree" 
is a tuple T A = (T, Sac, Iac) where 

(1) T = (N, S, Pa, SR, t) is a system tree; 
( 2) Sac and lac are relations on N-{t}; 
(3) p Sac n (pronounced "p has sibling-access to 

n") implies that p and n are siblings; 
(4) p lac n (pronounced "p inherits access to n") 

implies that either Pa(p) Sac n or Pa(p) lac n. 

Definition A node p "has access to" a node n 
i f f  either p Sac n, p lac n, or p = Pa(n). 

5.4 Module placement 
W e proceed to place modules into the system tree. 
With each node, we may associate at most one LPS 
module, as indicated by the following. 
(1) With each leaf n, we must associate a module, 

the "leaf module" at n. A leaf without 
module is not allowed, since i t  cannot provide 
any resources. 

(2) A module associated with a non-leaf n may act 
as a "driver" or "monitor" of the system 
named Sn(n). Such a "root module" at n must 
define a l l  resources in Pr(n) that are not de- 
rived from the children of n. 

(3) A non-leaf without root module serves as a 
structural enti ty only, making an integrated 
whole out of i ts subsystems and establishing 
a single interface to the outside. 

",% 

Figure 5. Module placement and usage links. 

Different modules might be programmed in d i f fer -  
ent LPSs. The site of the modules is primarily 
determined by their  intel lectual manageability, 
vis-a-vis programming-in-the-small, and secondar- 
i l y  by the quality of the MIL program that binds 
them together. For i f  the modules are too small, 
the MIL program is inconcise and introduces over- 
head; i f  the modules are too large, the MIL pro- 
gram does not give enough information about the 

system structure. 

Origin and usage of resources. For each module 
m at a node n, there must be two statements in 
the MIL 75 program: (1) the "statement of or igin",  
l is t ing the resources defined in m, and (2) the 
"statement of usage", l is t ing the resources that 
are used, but not defined, in m. For c lar i ty ,  the 
la t ter  statement is divided into a l i s t  of the 
"derived resources" provided by children of n, and 
a l i s t  of a l l  others, i .e.  those obtained through 
sibling or inherited access. 

The compiling system must check that (1) the 
actual usage of resources ~ module m conforms to 
the access rights granted to node n, and that (2) 
any resource provided by n either comes from a 
child or originates in module m. No node may pro- 
vide a resource that is obtained through sibling -* 
access or inherited access; such a flow of re- 
sources would probably have deleterious effects on 
re l i ab i l i t y .  

Usage l inks..  The compiling system can now de- 
rive and graphically display the "usage l inks", 
drawn as dashed arrows in Figures l and 5. I f  a 
node n has access to a node p, and the module m 
at n uses a resource provided ~ p, then a 
usage l ink points from the node p to the module 
m. Figure 6 shows the three possible cases. Re- 
call that the resource(s) provided by p might 
not originate in the module at p, i f  any. How- 
ever, this is irrelevant to, and hidden from, the 
module m. 

~ n 

FiBure 6. Usage links. 

Figure 6 also suggests a graphical check on con- 
sistency: we can always form a cycle by travers- 
ing the usage l ink, zero or more tree edges up- 
ward, and f ina l l y  one sibling accessibi l i~ l ink 
(parts a and b), or by traversing the usage l ink 
and one tree edge downward (part c). 

Definition: A "module interconnection struc- 
ture" is a tuple 

T M = (T, T R, T A, M, Mod, Or, Ud, Und) where 

(1) T = (N, S, Pa, Sn, t) is a system tree, 
TR= (T, R, Pr, Mp) is a resource-augmented 

system tree, and 
TA= (T, Sac, lac) is an acess-augmented system 

tree; 
(2) M is a f in i te  set of modules; 
(3) Mod: N + M is a a r t ~ ,  injective function, 

such that Mod(q) is defined for every leaf q; 
we say that Mod(n) is the "module at n"; R 

(4) Or, Ud, and Und are total functions N + 2 , 
such that Or(n) = Ud(n) = Und(n) = ~ i f  Mod(n) 
is undefined; we say that r ~ Or(n) is a 

119 



"resource originatinq in Mod(n)", re Ud(n) is a 
"derived resource used in Mod(n)", and reUnd(n) 
is a "non-derived resource used in Mod(n)"; 

l~I for every p,n in N: Or (p) n Or (n) : @; 
we define for all,peN the set of "derived re- 
sources" 
D(p) = {reRl3qeN: Pa(q) = p and reMp(q)}; 
then, for al l  peN, 

(7) Pr(p) ¢ Or (p) U D(p); 
(8) Ud (p)-_cD(p); and 
(9) reUnd (p~ implies (3n)[(p Sac n or p lac n) and 

reMp(n)]. 

5.5 Programming in MIL 75 
A complete MIL 75 program consists of a sequence 
of one-level "system descriptions". Each is assum- 
ed to be (re-) compilable alone, or with any others. 
Put together, they can be translated into a module 
interconnection structure T M. 

A system description for a node p consists of 
statements specifying 
(1) Sn(p), the designer's name, and a relevant date; 
(2) Pr(p); 
(3) Mod(p), Or(p), Ud(p), and Und(p); 

and for each child q of p: 
(4) Sn(q), Mp(q), and {neNlq Sac n}; and 
(5) the set W = {neNlq lac n} either by enumeration 

(such that W c I is satisfied) or by default 
(then W = I iF assumed), where 
I ={neN I p lac n or p Sac n}. 

Phrases specifying empty sets in (3) and (4) 
above may be omitted. Also, the name of Mod(p) may 
be le f t  out i f  i t  is identical with the system 

name Sn(p). There follows a sample system descrip- 
tion. 

system Input 
author 'Sharon Sickel' 
date 'July, 1974' 
provides Inputparser 
consists of 

root module 
originates Input_parser 
uses derived Parser, Post. processor 
uses nonderived ~nguage_extensions 

subsystem Scan 
must provide Scanner 

subsystem Parse 
must provide Parser 
has access to Scan 

subsystem Post 
must provide Post. processor 

Groups. To increase the compactness of MIL 75 
programs and to encourage an even more refined 
granting of access rights, MIL 75 also contains the 
concept of grouping (cf. George 1973). The design- 
er of a parent can define named subsets or "groups" 
of the set of derived resources provided by i ts  
children. Then, the parent can grant i ts  children 
access rights to these groups. A group acts as a 
virtual child of the parent, but has neither module, 
children, nor access rights. The compiler must 
check that no child q has access to a group that 
provides a resource also provided by q, lest the 
descendants of q inherit access to that resource. 

6. Conclusions: The gain in r e l i a b i l i t y  
A module interconnection language can be a s ign i f i -  
cant asset. I t  embodies a design methodology for 
rel iable software. I t  provides much needed forms 

of abstraction, expression, and ver i f icat ion, vis-a- 
vis programming-in-the-large. I t  also enhances the 
effects on r e l i a b i l i t y  that are gained by other me- 
thods: management styles; top-down, modular, and 
structured programming; data abstraction; and in- 
formation hiding. Rel iabi l i ty  is enhanced during 
system design, the actual programming, system testing, 
and maintenance and modification. 

System Design. Modularization, as a forethought 
rather than an afterthought, helps in finding r e l i -  
able solutions to complex problems byapplying the 
traditional method of "divide and conquer". The 
advantages of modularization, however, are often 
apparently offset by added complexity in the connec- 
tions among modules (Liskov 1972). This is not sur- 
prising; our problems are not solved by design meth- 
odologies that concentrate only on issues of 
programming-in-the-small. We wi l l  obtain more r e l i -  
able software only i f  programming-in-the-large is 
recognized as a separate act iv i ty  that rel ies,  as 
heavily as does programming-in-the-small, on a lang- 
uage providing abstraction, structure, and style. 

Programming. The results of the system design 
phase must be communicated to and among the members 
of the programming team or project. Such communica- 
tion concerns, among other things, the modules that 
constitute the system, the position of each module 
in the hierarchy, the resources each module must 
provide, and the access rights with which each mod- 
ule is endowed. I t  is unreasonable to expect that 
this information can be rel iably transmitted via 
anything but a formal language, or enforced by any- 
thing less than a rigorous compiling system. 

Testing. A substantial amount of testing can be 
done by independently exercising each module. How- 
ever, there is a wide gap between testing individ- 
ual modules and testing the system as a whole. Per- 
forming only these two kinds of tests involves too 
big a jump in levels of abstraction and results in 
a gap in confidence. ~ The hierarchical subsystem 
concept of an MIL suggests a more gradual bottom-up 
development of the testing phase. Also, the MIL 
program states Clearly, for each subsystem, the 
connections to other subsystems and who is respon- 
sible for testing. In short, the MIL supports 
"structured testing!'. 

Maintenance and modification. Each connection 
and dependency between modules is durably document- 
ed in the MIL program. No l ink between modules can 
be le f t  out of the documentation and be forgotten-- 
the compiling system wi l l  complain. Thus, system 
modifications are more l i ke ly  to be successful, 
since their implications are more l ike ly  to be fore- 
seen when using an MIL. Furthermore, the hierarchi- 
cal structure imposed by the MIL makes i t  easy to 
replace modules and/or sObsystems; and the compiler 
can support system modification by providing cross- 
references and graphs of system structure, accessi- 
b i l i t y  l inks, and usage links. Finally, the modi- 
fied system structure is automatically checked for 
consistency. 

Outlook. I t  is obvious that we need languages 
for programming-in-the-large. An MIL is but a f i r s t  
approximation to such a language, since i t  does not 
include fac i l i t i es  for the specification of the 
function of modules. An MIL may even be regarded 
as ~ ' l y  a "language feature" in the sense of Hoare 
(Hoare 1973). I t  seems, however, powerful enough 
to increase software r e l i a b i l i t y ,  even in the 

120 



absence of other needed extensions to current lang- 
uages. 

Acknowledgments 
We are grateful to Frank Frazier, Nico Habermann, 
Jim Horning, Jean Ichbiah, Bernard Lorho, Bi l l  
McKeeman, Doug Michels, Dan Ross, Sharon Sickel, 
and Bil l  Wulf for many helpful comments and stim- 
ulating discussions. 

References 
Clark, B.L, and Horning, J.J. "The system language 

for project SUE." SIGPLAN Notices 6, 9 (October 
Ig71). 

Dijkstra, E.W. "Notes on structured programming." 
In: Dahl, O.J., Dijkstra, E.W., and Hoare, 
C.A.W. "Structured Programming." Academic Press, 
London, New York, 1972. 

George, J.E., and Sager, G.R. "Variables--Bindings 
and protection." SIGPLAN Notices 8, 12 (Decem- 
ber 1973). 

Guttag, J. "The use of type for the definition of 
abstract data objects." Dept. of Computer Sci- 
ence, Univ. of Toronto, Ontario, Canada (March 
1974). 

Hoare, C.A.R. "Proof of correctness of data repre- 
sentations." Acta Informatica l ,  271-281 (1972). 

Hoare, C.A.R. "Hints on programming language design." 
Memo AIM-224, Computer Science Dept., Stanford 
University (December 1973). Also in: Proc. 
Symposium on Principles of Programming Languages, 
Boston (October 1973). 

Ichbiah, J.D. "Vis ib i l i ty  and separate compilations." 
Proc. of IFIP WG 2.4, La Grande Motte, France 
(May 1974). 

Knuth, D.E. "Semantics of context-free languages." 
Mathematical Systems Theory 2, 2 (1968). 

Liskov, B.H. "A design methodology for reliable soft- 
ware systems." Proc. Fall Joint Computer Confer- 
ence, lgl-199 (1972). 

Liskov, B.H., and Zi l les, S. "Programming with ab- 
stract data types." Proc. Symposium on Very High 
Level Languages, SIGPLAN Notices 2, 4 (April 
1974). 

Maynard, J."Modular Programming". Petrocelli Books, 
New York, 1972. 

Mills, H.D. "Chief programmer teams: Techniques 
and procedures." IBM Internal Report (January 
1970). 

Parnas, D.L. "Information distr ibution aspects of 
design methodology." Technical Report, Dept. 
Computer Science, Carnegie-Mellon Univ. (Febru- 
ary 1971). 

Parnas, D.L. "A technique for software module speci- 
fications with examples." CACM I_5, 5 (May 1972). 

Presser, L., and White, J.R. "Linkers and loaders." 
ACM Computing Surveys 4, 3 (September 1972). 

Richards, M. "The BCPL reference manual." Memo 
69/I, The University Mathematical Laboratory, 
Cambridge, England (January 1969). 

Weinberg, G.M. "The psychology of computer program- 
ming." Van Nostrand Reinhold Co., New York, 1971. 

White, J.R., and Presser, L. "A tool for enforcing 
system structure." Report CS-ll, Dept. of E.E., 
Univ. of California, Santa Barbara (April 1972). 

Wirth, N., and Hoare, C.A.R. "A contribution to the 
development of ALGOL." CACM 2, 6 (June 1966). 

Wulf, W., and Shaw, M. "Global variable considered 
harmful." SIGPLAN Notices 8, 2 (February 1973). 

121 


